Compare commits

..

38 Commits

Author SHA1 Message Date
8a9ad7844d release : v1.7.4 2025-01-06 15:13:48 +02:00
eb874b3a3c ci : cont
Some checks are pending
CI / ubuntu-latest-clang (linux/amd64, Debug) (push) Waiting to run
CI / ubuntu-latest-clang (linux/amd64, Release) (push) Waiting to run
CI / ubuntu-latest-clang (linux/arm64, Debug) (push) Waiting to run
CI / ubuntu-latest-clang (linux/arm64, Release) (push) Waiting to run
CI / ubuntu-latest-clang (linux/ppc64le, Debug) (push) Waiting to run
CI / ubuntu-latest-clang (linux/ppc64le, Release) (push) Waiting to run
CI / ubuntu-latest-gcc-sanitized (linux/amd64, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-gcc-sanitized (linux/amd64, THREAD) (push) Waiting to run
CI / ubuntu-latest-gcc-sanitized (linux/amd64, UNDEFINED) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Waiting to run
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Waiting to run
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Waiting to run
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Waiting to run
CI / windows-cublas (x64, Release, ON, 11.8.0, ON, 2.28.5) (push) Waiting to run
CI / windows-cublas (x64, Release, ON, 12.2.0, ON, 2.28.5) (push) Waiting to run
CI / emscripten (Release) (push) Waiting to run
CI / ios-xcode-build (Release) (push) Waiting to run
CI / android (push) Waiting to run
CI / quantize (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Waiting to run
2025-01-06 10:46:10 +02:00
eb78e3a3f1 ci : fix ubuntu runner names 2025-01-06 09:29:10 +02:00
ece3ff88f6 cli : fix segfault on missing argument (#2700)
Some checks failed
CI / ubuntu-latest-clang (linux/amd64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/amd64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, THREAD) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, UNDEFINED) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 11.8.0, ON, 2.28.5) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 12.2.0, ON, 2.28.5) (push) Has been cancelled
CI / emscripten (Release) (push) Has been cancelled
CI / ios-xcode-build (Release) (push) Has been cancelled
CI / android (push) Has been cancelled
CI / quantize (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Has been cancelled
2025-01-04 10:47:41 +02:00
9366544991 ci : fix arm builds 2025-01-04 10:45:01 +02:00
95583942ed sync : ggml
ggml-ci
2025-01-04 10:45:01 +02:00
2e93cb6a2f ggml : do not install metal source when embed library (ggml/1054) 2025-01-04 10:45:01 +02:00
de5cd60d1c metal : avoid uint (llama/11019) 2025-01-04 10:45:01 +02:00
3fcba3e58b ggml : fixes for AVXVNNI instruction set with MSVC and Clang (llama/11027)
* Fixes for clang AVX VNNI

* enable AVX VNNI and alder lake build for MSVC

* Apply suggestions from code review

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-01-04 10:45:01 +02:00
cea5f1c52f vulkan: optimize mul_mat for small values of N (llama/10991)
Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where
the batch_strides are overloaded to hold the row strides. Put the loads from the
B matrix in the innermost loop because it should cache better.

Share some code for reducing the result values to memory in mul_mat_vec_base.
2025-01-04 10:45:01 +02:00
2112462db4 vulkan: im2col and matmul optimizations for stable diffusion (llama/10942)
* tests: Add im2col perf tests

* vulkan: optimize im2col, more elements per thread

* vulkan: increase small tile size for NV_coopmat2

* vulkan: change im2col to 512 elements per workgroup
2025-01-04 10:45:01 +02:00
fc84ecd445 vulkan: Use push constant offset to handle misaligned descriptors (llama/10987) 2025-01-04 10:45:01 +02:00
Eve
8de1e99907 vulkan: multi-row k quants (llama/10846)
* multi row k quant shaders!

* better row selection

* more row choices

* readjust row selection

* rm_kq=2 by default
2025-01-04 10:45:01 +02:00
499af9294a examples, ggml : fix GCC compiler warnings (llama/10983)
Warning types fixed (observed under MSYS2 GCC 14.2.0):
* format '%ld' expects argument of type 'long int', but argument has type 'size_t'
* llama.cpp/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers]  (emitted for all struct field except first)
2025-01-04 10:45:01 +02:00
bcf937c216 ggml : more perfo with llamafile tinyblas on x86_64 (llama/10714)
* more perfo with llamafile tinyblas on x86_64.

- add bf16 suport
- change dispache strategie (thanks:
https://github.com/ikawrakow/ik_llama.cpp/pull/71 )
- reduce memory bandwidth

simple tinyblas dispache and more cache freindly

* tinyblas dynamic dispaching

* sgemm: add M blocs.

* - git 2.47 use short id of len 9.
- show-progress is not part of GNU Wget2

* remove not stable test
2025-01-04 10:45:01 +02:00
b8d90953d7 ggml : use wstring for backend search paths (llama/10960)
ggml-ci
2025-01-04 10:45:01 +02:00
60a422147b ggml : fix arm enabled features check (llama/10961) 2025-01-04 10:45:01 +02:00
3387415bad ggml : fix const usage in SSE path (llama/10962) 2025-01-04 10:45:01 +02:00
536ca3ec89 ggml : fix run-time on FreeBSD in get_executable_path() (llama/10948) 2025-01-04 10:45:01 +02:00
a4bb983190 vulkan: build fixes for 32b (llama/10927)
* vulkan: build fixes for 32b

Should fix #10923

* vulkan: initialize some buffer/offset variables
2025-01-04 10:45:01 +02:00
39c205f555 vulkan: optimize coopmat2 dequant functions (llama/10855)
Change the code to do 16b loads when possible and extract the appropriate
component late, so the code is effectively decoding a pair of elements and
then selecting one. This can allow more commoning to happen in the compiler
when neighboring elements are loaded.
2025-01-04 10:45:01 +02:00
6d502f33dc ggml-cpu: replace NEON asm with intrinsics in ggml_gemv_q4_0_4x8_q8_0() (llama/10874)
* ggml-cpu: replace NEON asm with intrinsics in ggml_gemv_q4_0_4x8_q8_0()

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml-cpu: format code

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-01-04 10:45:01 +02:00
5ea27d089d SYCL: Migrate away from deprecated ggml_tensor->backend (llama/10840)
* Migrate to tensor->buffer for checking backend buffer type: 1

* SYCL: common.cpp try to migrate away from tensor->backend

* SYCL: fix assertions and add proper comments

* SYCL: remove extra space

* SYCL: Add back static to ggml_backend_buffer_is_sycl_split function

* SYCL: Add pragma directive to suppress warning spam

* SYCL: Integrate debug logs with GGML_LOG and other fixes

* Revert "SYCL: Integrate debug logs with GGML_LOG and other fixes"

This reverts commit 2607b7de0f0d2f4f1f690226f86fa861aa39cb97.
Let's keep the current SYCL specific logging mechanism for now

* SYCL: Use GGML_SYCL_DEBUG after reverting

* SYCL: reg_get_proc_address func, update to the current func signature

* SYCL: Refactor SYCL buffer checks in ggml_sycl_cpy_tensor_2d
2025-01-04 10:45:01 +02:00
1462d92588 ggml : add test for SVE and disable when it fails (llama/10906) 2025-01-04 10:45:01 +02:00
7ba1a41f47 ggml: fix arm build with gcc (llama/10895)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-01-04 10:45:01 +02:00
5ea088636f ggml : fix arm build (llama/10890)
* ggml: GGML_NATIVE uses -mcpu=native on ARM

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml: Show detected features with GGML_NATIVE

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* remove msvc support, add GGML_CPU_ARM_ARCH option

* disable llamafile in android example

* march -> mcpu, skip adding feature macros

ggml-ci

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Adrien Gallouët <angt@huggingface.co>
2025-01-04 10:45:01 +02:00
f32ddb3b1c tts : add OuteTTS support (llama/10784)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
2025-01-04 10:45:01 +02:00
79b75ece03 tests: add tests for GGUF (llama/10830) 2025-01-04 10:45:01 +02:00
6348d73e55 ggml : improve inputs log sched_print_assignments (ggml/1053)
This commit attempts to improve the log message for the inputs of the
splits in the sched_print_assignments function.

The motivation for this change is that currently even if there are no
inputs a colon is displayed at the end of the line, which can make it a
little confusing when reading the output as it could be interpreted as
the line below are inputs when they are in fact nodes. With this change
the colon will only be printed if there actually are inputs.
2025-01-04 10:45:01 +02:00
fb36a1538a readme : fix real-time audio input example build instructions (#2692)
Some checks failed
CI / ubuntu-latest-clang (linux/amd64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/amd64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, THREAD) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, UNDEFINED) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 11.8.0, ON, 2.28.5) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 12.2.0, ON, 2.28.5) (push) Has been cancelled
CI / emscripten (Release) (push) Has been cancelled
CI / ios-xcode-build (Release) (push) Has been cancelled
CI / android (push) Has been cancelled
CI / quantize (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64,linux/arm64 tag:main]) (push) Has been cancelled
2025-01-02 12:05:38 +02:00
c81b8b910b objc : rename ggml-cpu-aarch64.c to .cpp (#2687) 2025-01-02 12:05:09 +02:00
85b60f31d0 docs : replace Core ML with OpenVINO (#2686) 2025-01-02 12:03:02 +02:00
227b5ffa36 make : fix "main" -> "whisper-cli"
Some checks failed
CI / ubuntu-latest-clang (linux/amd64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/amd64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, THREAD) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, UNDEFINED) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 11.8.0, ON, 2.28.5) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 12.2.0, ON, 2.28.5) (push) Has been cancelled
CI / emscripten (Release) (push) Has been cancelled
CI / ios-xcode-build (Release) (push) Has been cancelled
CI / android (push) Has been cancelled
CI / quantize (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64,linux/arm64 tag:main]) (push) Has been cancelled
2024-12-31 11:46:17 +02:00
36a64a253f ci : re-enable Windows cublas build (#2676)
* Enable Windows cublas build

* Re-add v12 cuda
2024-12-31 11:11:42 +02:00
c84b83c370 ruby : Fix of C++ header guard name, model URI support, type signature and more (#2683)
Some checks failed
CI / ubuntu-latest-gcc (linux/ppc64le, Release) (push) Waiting to run
CI / ubuntu-latest-clang (linux/amd64, Debug) (push) Waiting to run
CI / ubuntu-latest-clang (linux/amd64, Release) (push) Waiting to run
CI / ubuntu-latest-clang (linux/arm64, Debug) (push) Waiting to run
CI / ubuntu-latest-clang (linux/arm64, Release) (push) Waiting to run
CI / ubuntu-latest-clang (linux/ppc64le, Debug) (push) Waiting to run
CI / ubuntu-latest-clang (linux/ppc64le, Release) (push) Waiting to run
CI / ubuntu-latest-gcc-sanitized (linux/amd64, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-gcc-sanitized (linux/amd64, THREAD) (push) Waiting to run
CI / ubuntu-latest-gcc-sanitized (linux/amd64, UNDEFINED) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Waiting to run
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Waiting to run
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Waiting to run
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Waiting to run
CI / emscripten (Release) (push) Waiting to run
CI / ios-xcode-build (Release) (push) Waiting to run
CI / android (push) Waiting to run
CI / quantize (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64,linux/arm64 tag:main]) (push) Waiting to run
Bindings Tests (Ruby) / ubuntu-latest (push) Has been cancelled
* Add test to make Whisper::Context.new accept URI string

* Add test to make Whisper::Context.new accept URI

* Make Whisper::Context.new accept URI string and URI

* Update README

Revert "Fix argument of rb_undefine_finalizer"

* Fix typos

* Add type signature file

* Assign literarl to const variable

* Load Whisper::Model::URI from Init_whisper

* Simplify .gitignore

* Don't load whisper.so from whisper/model/uri.rb

* Use each_with_object instead of each

* Add Development section to README

* Rename header guard to conform to C++ naming convention
2024-12-30 14:26:35 +02:00
5136fd92c2 examples : handle "main.exe" deprecation 2024-12-30 13:00:18 +02:00
7d55637f0b cli : add --suppress_nst support (#2664)
Some checks failed
CI / ubuntu-latest-gcc (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-latest-gcc (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/amd64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/amd64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/arm64, Release) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-latest-clang (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, THREAD) (push) Has been cancelled
CI / ubuntu-latest-gcc-sanitized (linux/amd64, UNDEFINED) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Has been cancelled
CI / emscripten (Release) (push) Has been cancelled
CI / ios-xcode-build (Release) (push) Has been cancelled
CI / android (push) Has been cancelled
CI / quantize (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64,linux/arm64 tag:main]) (push) Has been cancelled
2024-12-24 09:30:07 +02:00
0994506054 cli : add no_speech_thold (#2663) 2024-12-24 09:29:19 +02:00
66 changed files with 2139 additions and 1558 deletions

View File

@ -1,5 +1,15 @@
name: CI
on: [push, pull_request]
on:
push:
branches:
- master
pull_request:
types: [opened, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
env:
ubuntu_image: "ubuntu:22.04"
@ -12,7 +22,7 @@ jobs:
strategy:
fail-fast: false
matrix:
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
arch: [linux/amd64, linux/ppc64le]
steps:
- name: Clone
@ -32,6 +42,58 @@ jobs:
cmake -B build
cmake --build build --config Release -j $(nproc)'
ubuntu-latest-arm64:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
arch: [linux/arm64]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
cmake --build build --config Release -j $(nproc)'
ubuntu-latest-arm-v7:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
arch: [linux/arm/v7]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
cmake --build build --config Release -j $(nproc)'
macOS-latest:
runs-on: macOS-latest
@ -74,7 +136,7 @@ jobs:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
arch: [linux/amd64, linux/ppc64le]
steps:
- name: Clone
@ -95,6 +157,62 @@ jobs:
make
ctest -L gh --output-on-failure'
ubuntu-latest-gcc-arm64:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/arm64]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
make
ctest -L gh --output-on-failure'
ubuntu-latest-gcc-arm-v7:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/arm/v7]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
make
ctest -L gh --output-on-failure'
ubuntu-latest-clang:
runs-on: ubuntu-latest
@ -430,72 +548,73 @@ jobs:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
# TODO: fix and re-enable
# windows-cublas:
# runs-on: windows-2019
#
# strategy:
# matrix:
# build: [Release]
# arch: [x64]
# cublas: [ON]
# sdl2: [ON]
# cuda-toolkit: [12.2.0, 11.8.0]
# include:
# - arch: x64
# s2arc: x64
# - sdl2: ON
# s2ver: 2.28.5
#
# steps:
# - name: Clone
# uses: actions/checkout@v4
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v2
#
# - name: Install CUDA Toolkit
# id: cuda-toolkit
# uses: Jimver/cuda-toolkit@v0.2.15
# with:
# cuda: '${{ matrix.cuda-toolkit }}'
#
# - name: Fetch SDL2 and set SDL2_DIR
# if: matrix.sdl2 == 'ON'
# run: |
# C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
# 7z x sdl2.zip
# echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
#
# - name: Configure
# run: >
# cmake -S . -B ./build -A ${{ matrix.arch }}
# -DCMAKE_BUILD_TYPE=${{ matrix.build }}
# -DGGML_CUDA=${{ matrix.cublas }}
# -DWHISPER_SDL2=${{ matrix.sdl2 }}
#
# - name: Build ${{ matrix.cuda-toolkit }}
# run: |
# cd ./build
# cmake --build . --config ${{ matrix.build }}
#
# - name: Copy CUDA DLLs
# run: >
# Copy-Item -PassThru
# -Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
# -Include cudart64_*,cublas64_*,cublasLt64_*
# -Destination build/bin/${{ matrix.build }}
#
# - name: Copy SDL2.dll
# if: matrix.sdl2 == 'ON'
# run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
#
# - name: Upload binaries
# if: matrix.sdl2 == 'ON'
# uses: actions/upload-artifact@v4
# with:
# name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
# path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-2019
strategy:
matrix:
build: [Release]
arch: [x64]
cublas: [ON]
sdl2: [ON]
cuda-toolkit: [12.2.0, 11.8.0]
include:
- arch: x64
sdl2: ON
sdl2_ver: 2.28.5
steps:
- name: Clone repository
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v2
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.15
with:
cuda: '${{ matrix.cuda-toolkit }}'
- name: Install 7-Zip
run: choco install 7zip -y
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
Invoke-WebRequest -Uri https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.sdl2_ver }}/SDL2-devel-${{ matrix.sdl2_ver }}-VC.zip -OutFile sdl2.zip
7z x sdl2.zip
echo "SDL2_DIR=${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" > SDL2_PATH.txt
- name: Configure CMake
shell: cmd
run: |
cmake -S . -B ./build -A ${{ matrix.arch }} ^
-DCMAKE_BUILD_TYPE=${{ matrix.build }} ^
-DGGML_CUDA=${{ matrix.cublas }} ^
-DCMAKE_CUDA_ARCHITECTURES=all ^
-DWHISPER_SDL2=${{ matrix.sdl2 }} ^
-DSDL2_DIR="%SDL2_DIR%"
- name: Build Project
shell: cmd
run: |
cd ./build
cmake --build . --config ${{ matrix.build }}
- name: Copy CUDA DLLs
run: |
Get-ChildItem "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/" -Filter "*.dll" |
Copy-Item -Destination "build/bin/${{ matrix.build }}"
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.arch }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
uses: actions/upload-artifact@v4
with:
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
emscripten:
runs-on: ubuntu-latest

View File

@ -17,7 +17,7 @@ jobs:
strategy:
matrix:
config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" }
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64" }
#TODO: the cuda image keeps failing - disable for now
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }

View File

@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.3)
project("whisper.cpp" VERSION 1.7.4)
include(CheckIncludeFileCXX)
set(SOVERSION 1)

View File

@ -64,6 +64,6 @@ tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 larg
echo "[+] Running $@ on $$f ... (run 'ffplay $$f' to listen)" ; \
echo "----------------------------------------------" ; \
echo "" ; \
./build/bin/main -m models/ggml-$@.bin -f $$f ; \
./build/bin/whisper-cli -m models/ggml-$@.bin -f $$f ; \
echo "" ; \
done

View File

@ -7,7 +7,7 @@
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.7.3](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.3) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.7.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -293,7 +293,7 @@ This can result in significant speedup in encoder performance. Here are the inst
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
cached for the next run.
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
For more information about the OpenVINO implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
## NVIDIA GPU support
@ -381,9 +381,9 @@ The [stream](examples/stream) tool samples the audio every half a second and run
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```bash
cmake -B build
cmake -B build -DWHISPER_SDL2=ON
cmake --build build --config Release
./build/bin/stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.7.3",
"version": "1.7.4",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

View File

@ -1,5 +1,3 @@
LICENSE
pkg/
lib/whisper.so
lib/whisper.bundle
lib/whisper.dll
lib/whisper.*

View File

@ -60,10 +60,10 @@ You also can use shorthand for pre-converted models:
whisper = Whisper::Context.new("base.en")
```
You can see the list of prepared model names by `Whisper::Model.preconverted_models.keys`:
You can see the list of prepared model names by `Whisper::Model.pre_converted_models.keys`:
```ruby
puts Whisper::Model.preconverted_models.keys
puts Whisper::Model.pre_converted_models.keys
# tiny
# tiny.en
# tiny-q5_1
@ -87,8 +87,9 @@ whisper = Whisper::Context.new("path/to/your/model.bin")
Or, you can download model files:
```ruby
model_uri = Whisper::Model::URI.new("http://example.net/uri/of/your/model.bin")
whisper = Whisper::Context.new(model_uri)
whisper = Whisper::Context.new("https://example.net/uri/of/your/model.bin")
# Or
whisper = Whisper::Context.new(URI("https://example.net/uri/of/your/model.bin"))
```
See [models][] page for details.
@ -222,6 +223,17 @@ end
The second argument `samples` may be an array, an object with `length` and `each` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
Development
-----------
% git clone https://github.com/ggerganov/whisper.cpp.git
% cd whisper.cpp/bindings/ruby
% rake test
First call of `rake test` builds an extension and downloads a model for testing. After that, you add tests in `tests` directory and modify `ext/ruby_whisper.cpp`.
If something seems wrong on build, running `rake clean` solves some cases.
License
-------

View File

@ -49,6 +49,7 @@ static ID id_length;
static ID id_next;
static ID id_new;
static ID id_to_path;
static ID id_URI;
static ID id_pre_converted_models;
static bool is_log_callback_finalized = false;
@ -283,6 +284,17 @@ static VALUE ruby_whisper_initialize(int argc, VALUE *argv, VALUE self) {
if (!NIL_P(pre_converted_model)) {
whisper_model_file_path = pre_converted_model;
}
if (TYPE(whisper_model_file_path) == T_STRING) {
const char * whisper_model_file_path_str = StringValueCStr(whisper_model_file_path);
if (strncmp("http://", whisper_model_file_path_str, 7) == 0 || strncmp("https://", whisper_model_file_path_str, 8) == 0) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
}
if (rb_obj_is_kind_of(whisper_model_file_path, rb_path2class("URI::HTTP"))) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
if (rb_respond_to(whisper_model_file_path, id_to_path)) {
whisper_model_file_path = rb_funcall(whisper_model_file_path, id_to_path, 0);
}
@ -837,7 +849,7 @@ static VALUE ruby_whisper_full_get_segment_text(VALUE self, VALUE i_segment) {
/*
* call-seq:
* full_get_segment_no_speech_prob -> Float
* full_get_segment_no_speech_prob(segment_index) -> Float
*/
static VALUE ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment) {
ruby_whisper *rw;
@ -1755,7 +1767,7 @@ static VALUE ruby_whisper_c_model_type(VALUE self) {
static VALUE ruby_whisper_error_initialize(VALUE self, VALUE code) {
const int c_code = NUM2INT(code);
char *raw_message;
const char *raw_message;
switch (c_code) {
case -2:
raw_message = "failed to compute log mel spectrogram";
@ -1802,6 +1814,7 @@ void Init_whisper() {
id_next = rb_intern("next");
id_new = rb_intern("new");
id_to_path = rb_intern("to_path");
id_URI = rb_intern("URI");
id_pre_converted_models = rb_intern("pre_converted_models");
mWhisper = rb_define_module("Whisper");
@ -1941,6 +1954,8 @@ void Init_whisper() {
rb_define_method(cModel, "n_mels", ruby_whisper_c_model_n_mels, 0);
rb_define_method(cModel, "ftype", ruby_whisper_c_model_ftype, 0);
rb_define_method(cModel, "type", ruby_whisper_c_model_type, 0);
rb_require("whisper/model/uri");
}
#ifdef __cplusplus
}

View File

@ -1,5 +1,5 @@
#ifndef __RUBY_WHISPER_H
#define __RUBY_WHISPER_H
#ifndef RUBY_WHISPER_H
#define RUBY_WHISPER_H
#include "whisper.h"

View File

@ -1,2 +0,0 @@
require "whisper.so"
require "whisper/model/uri"

View File

@ -1,163 +1,163 @@
require "whisper.so"
require "uri"
require "net/http"
require "time"
require "pathname"
require "io/console/size"
class Whisper::Model
class URI
def initialize(uri)
@uri = URI(uri)
end
module Whisper
class Model
class URI
def initialize(uri)
@uri = URI(uri)
end
def to_path
cache
cache_path.to_path
end
def to_path
cache
cache_path.to_path
end
def clear_cache
path = cache_path
path.delete if path.exist?
end
def clear_cache
path = cache_path
path.delete if path.exist?
end
private
private
def cache_path
base_cache_dir/@uri.host/@uri.path[1..]
end
def cache_path
base_cache_dir/@uri.host/@uri.path[1..]
end
def base_cache_dir
base = case RUBY_PLATFORM
when /mswin|mingw/
ENV.key?("LOCALAPPDATA") ? Pathname(ENV["LOCALAPPDATA"]) : Pathname(Dir.home)/"AppData/Local"
when /darwin/
Pathname(Dir.home)/"Library/Caches"
else
ENV.key?("XDG_CACHE_HOME") ? ENV["XDG_CACHE_HOME"] : Pathname(Dir.home)/".cache"
end
base/"whisper.cpp"
end
def base_cache_dir
base = case RUBY_PLATFORM
when /mswin|mingw/
ENV.key?("LOCALAPPDATA") ? Pathname(ENV["LOCALAPPDATA"]) : Pathname(Dir.home)/"AppData/Local"
when /darwin/
Pathname(Dir.home)/"Library/Caches"
else
ENV.key?("XDG_CACHE_HOME") ? ENV["XDG_CACHE_HOME"] : Pathname(Dir.home)/".cache"
end
base/"whisper.cpp"
end
def cache
path = cache_path
headers = {}
headers["if-modified-since"] = path.mtime.httpdate if path.exist?
request @uri, headers
path
end
def cache
path = cache_path
headers = {}
headers["if-modified-since"] = path.mtime.httpdate if path.exist?
request @uri, headers
path
end
def request(uri, headers)
Net::HTTP.start uri.host, uri.port, use_ssl: uri.scheme == "https" do |http|
request = Net::HTTP::Get.new(uri, headers)
http.request request do |response|
case response
when Net::HTTPNotModified
def request(uri, headers)
Net::HTTP.start uri.host, uri.port, use_ssl: uri.scheme == "https" do |http|
request = Net::HTTP::Get.new(uri, headers)
http.request request do |response|
case response
when Net::HTTPNotModified
# noop
when Net::HTTPOK
download response
when Net::HTTPRedirection
request URI(response["location"]), headers
else
return if headers.key?("if-modified-since") # Use cache file
when Net::HTTPOK
download response
when Net::HTTPRedirection
request URI(response["location"]), headers
else
return if headers.key?("if-modified-since") # Use cache file
raise "#{response.code} #{response.message}\n#{response.body}"
raise "#{response.code} #{response.message}\n#{response.body}"
end
end
end
end
end
def download(response)
path = cache_path
path.dirname.mkpath unless path.dirname.exist?
downloading_path = Pathname("#{path}.downloading")
size = response.content_length
downloading_path.open "wb" do |file|
downloaded = 0
response.read_body do |chunk|
file << chunk
downloaded += chunk.bytesize
show_progress downloaded, size
def download(response)
path = cache_path
path.dirname.mkpath unless path.dirname.exist?
downloading_path = Pathname("#{path}.downloading")
size = response.content_length
downloading_path.open "wb" do |file|
downloaded = 0
response.read_body do |chunk|
file << chunk
downloaded += chunk.bytesize
show_progress downloaded, size
end
$stderr.puts
end
$stderr.puts
end
downloading_path.rename path
end
def show_progress(current, size)
progress_rate_available = size && $stderr.tty?
unless @prev
@prev = Time.now
$stderr.puts "Downloading #{@uri} to #{cache_path}"
downloading_path.rename path
end
now = Time.now
def show_progress(current, size)
progress_rate_available = size && $stderr.tty?
if progress_rate_available
return if now - @prev < 1 && current < size
unless @prev
@prev = Time.now
$stderr.puts "Downloading #{@uri} to #{cache_path}"
end
progress_width = 20
progress = current.to_f / size
arrow_length = progress * progress_width
arrow = "=" * (arrow_length - 1) + ">" + " " * (progress_width - arrow_length)
line = "[#{arrow}] (#{format_bytesize(current)} / #{format_bytesize(size)})"
padding = ' ' * ($stderr.winsize[1] - line.size)
$stderr.print "\r#{line}#{padding}"
else
return if now - @prev < 1
now = Time.now
$stderr.print "."
if progress_rate_available
return if now - @prev < 1 && current < size
progress_width = 20
progress = current.to_f / size
arrow_length = progress * progress_width
arrow = "=" * (arrow_length - 1) + ">" + " " * (progress_width - arrow_length)
line = "[#{arrow}] (#{format_bytesize(current)} / #{format_bytesize(size)})"
padding = ' ' * ($stderr.winsize[1] - line.size)
$stderr.print "\r#{line}#{padding}"
else
return if now - @prev < 1
$stderr.print "."
end
@prev = now
end
def format_bytesize(bytesize)
return "0.0 B" if bytesize.zero?
units = %w[B KiB MiB GiB TiB]
exp = (Math.log(bytesize) / Math.log(1024)).to_i
format("%.1f %s", bytesize.to_f / 1024 ** exp, units[exp])
end
@prev = now
end
def format_bytesize(bytesize)
return "0.0 B" if bytesize.zero?
@pre_converted_models = %w[
tiny
tiny.en
tiny-q5_1
tiny.en-q5_1
tiny-q8_0
base
base.en
base-q5_1
base.en-q5_1
base-q8_0
small
small.en
small.en-tdrz
small-q5_1
small.en-q5_1
small-q8_0
medium
medium.en
medium-q5_0
medium.en-q5_0
medium-q8_0
large-v1
large-v2
large-v2-q5_0
large-v2-q8_0
large-v3
large-v3-q5_0
large-v3-turbo
large-v3-turbo-q5_0
large-v3-turbo-q8_0
].each_with_object({}) {|name, models|
models[name] = URI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}.bin")
}
units = %w[B KiB MiB GiB TiB]
exp = (Math.log(bytesize) / Math.log(1024)).to_i
format("%.1f %s", bytesize.to_f / 1024 ** exp, units[exp])
class << self
attr_reader :pre_converted_models
end
end
@pre_converted_models = {}
%w[
tiny
tiny.en
tiny-q5_1
tiny.en-q5_1
tiny-q8_0
base
base.en
base-q5_1
base.en-q5_1
base-q8_0
small
small.en
small.en-tdrz
small-q5_1
small.en-q5_1
small-q8_0
medium
medium.en
medium-q5_0
medium.en-q5_0
medium-q8_0
large-v1
large-v2
large-v2-q5_0
large-v2-q8_0
large-v3
large-v3-q5_0
large-v3-turbo
large-v3-turbo-q5_0
large-v3-turbo-q8_0
].each do |name|
@pre_converted_models[name] = URI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}.bin")
end
class << self
attr_reader :pre_converted_models
end
end

View File

@ -0,0 +1,153 @@
module Whisper
interface _Samples
def length: () -> Integer
def each: { (Float) -> void } -> void
end
type log_callback = ^(Integer level, String message, Object user_data) -> void
type new_segment_callback = ^(Whisper::Context, void, Integer n_new, Object user_data) -> void
type progress_callback = ^(Whisper::Context, void, Integer progress, Object user_data) -> void
type abort_callback = ^(Whisper::Context, void, Object user_data) -> boolish
LOG_LEVEL_NONE: Integer
LOG_LEVEL_INFO: Integer
LOG_LEVEL_WARN: Integer
LOG_LEVEL_ERROR: Integer
LOG_LEVEL_DEBUG: Integer
LOG_LEVEL_CONT: Integer
def self.lang_max_id: () -> Integer
def self.lang_id: (string name) -> Integer
def self.lang_str: (Integer id) -> String
def self.lang_str_full: (Integer id) -> String
def self.log_set=: (log_callback) -> log_callback
def self.finalize_log_callback: (void) -> void # Second argument of ObjectSpace.define_finalizer
class Context
def initialize: (string | _ToPath | ::URI::HTTP ) -> void
def transcribe: (string, Params) -> void
| (string, Params) { (String) -> void } -> void
def model_n_vocab: () -> Integer
def model_n_audio_ctx: () -> Integer
def model_n_audio_state: () -> Integer
def model_n_text_head: () -> Integer
def model_n_text_layer: () -> Integer
def model_n_mels: () -> Integer
def model_ftype: () -> Integer
def model_type: () -> String
def full_n_segments: () -> Integer
def full_lang_id: () -> Integer
def full_get_segment_t0: (Integer) -> Integer
def full_get_segment_t1: (Integer) -> Integer
def full_get_segment_speaker_turn_next: (Integer) -> (true | false)
def full_get_segment_text: (Integer) -> String
def full_get_segment_no_speech_prob: (Integer) -> Float
def full: (Params, Array[Float], ?Integer) -> void
| (Params, _Samples, ?Integer) -> void
def full_parallel: (Params, Array[Float], ?Integer) -> void
| (Params, _Samples, ?Integer) -> void
| (Params, _Samples, ?Integer?, Integer) -> void
def each_segment: { (Segment) -> void } -> void
| () -> Enumerator[Segment]
def model: () -> Model
end
class Params
def initialize: () -> void
def language=: (String) -> String # TODO: Enumerate lang names
def language: () -> String
def translate=: (boolish) -> boolish
def translate: () -> (true | false)
def no_context=: (boolish) -> boolish
def no_context: () -> (true | false)
def single_segment=: (boolish) -> boolish
def single_segment: () -> (true | false)
def print_special=: (boolish) -> boolish
def print_special: () -> (true | false)
def print_progress=: (boolish) -> boolish
def print_progress: () -> (true | false)
def print_realtime=: (boolish) -> boolish
def print_realtime: () -> (true | false)
def print_timestamps=: (boolish) -> boolish
def print_timestamps: () -> (true | false)
def suppress_blank=: (boolish) -> boolish
def suppress_blank: () -> (true | false)
def suppress_nst=: (boolish) -> boolish
def suppress_nst: () -> (true | false)
def token_timestamps=: (boolish) -> boolish
def token_timestamps: () -> (true | false)
def split_on_word=: (boolish) -> boolish
def split_on_word: () -> (true | false)
def initial_prompt=: (_ToS) -> _ToS
def initial_prompt: () -> String
def diarize=: (boolish) -> boolish
def diarize: () -> (true | false)
def offset=: (Integer) -> Integer
def offset: () -> Integer
def duration=: (Integer) -> Integer
def duration: () -> Integer
def max_text_tokens=: (Integer) -> Integer
def max_text_tokens: () -> Integer
def temperature=: (Float) -> Float
def temperature: () -> Float
def max_initial_ts=: (Float) -> Float
def max_initial_ts: () -> Float
def length_penalty=: (Float) -> Float
def length_penalty: () -> Float
def temperature_inc=: (Float) -> Float
def temperature_inc: () -> Float
def entropy_thold=: (Float) -> Float
def entropy_thold: () -> Float
def logprob_thold=: (Float) -> Float
def logprob_thold: () -> Float
def no_speech_thold=: (Float) -> Float
def no_speech_thold: () -> Float
def new_segment_callback=: (new_segment_callback) -> new_segment_callback
def new_segment_callback_user_data=: (Object) -> Object
def progress_callback=: (progress_callback) -> progress_callback
def progress_callback_user_data=: (Object) -> Object
def abort_callback=: (abort_callback) -> abort_callback
def abort_callback_user_data=: (Object) -> Object
def on_new_segment: { (Segment) -> void } -> void
def on_progress: { (Integer) -> void } -> void
def abort_on: { (Object) -> boolish } -> void
end
class Model
def self.pre_converted_models: () -> Hash[String, Model::URI]
def initialize: () -> void
def n_vocab: () -> Integer
def n_audio_ctx: () -> Integer
def n_audio_state: () -> Integer
def n_audio_head: () -> Integer
def n_audio_layer: () -> Integer
def n_text_ctx: () -> Integer
def n_text_state: () -> Integer
def n_text_head: () -> Integer
def n_text_layer: () -> Integer
def n_mels: () -> Integer
def ftype: () -> Integer
def type: () -> String
class URI
def initialize: (string | ::URI::HTTP) -> void
def to_path: -> String
def clear_cache: -> void
end
end
class Segment
def initialize: () -> void
def start_time: () -> Integer
def end_time: () -> Integer
def speaker_next_turn?: () -> (true | false)
def text: () -> String
def no_speech_prob: () -> Float
end
class Error < StandardError
attr_reader code: Integer
def initialize: (Integer) -> void
end
end

View File

@ -68,4 +68,42 @@ class TestModel < TestBase
assert_path_exist path
assert_equal 147964211, File.size(path)
end
def test_uri_string
path = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin"
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_uri
path = URI("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin")
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
end

View File

@ -43,6 +43,7 @@ struct whisper_params {
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
float no_speech_thold = 0.6f;
float grammar_penalty = 100.0f;
float temperature = 0.0f;
float temperature_inc = 0.2f;
@ -70,6 +71,7 @@ struct whisper_params {
bool log_score = false;
bool use_gpu = true;
bool flash_attn = false;
bool suppress_nst = false;
std::string language = "en";
std::string prompt;
@ -104,6 +106,11 @@ static char * whisper_param_turn_lowercase(char * in){
return in;
}
static char * requires_value_error(const std::string & arg) {
fprintf(stderr, "error: argument %s requires value\n", arg.c_str());
exit(0);
}
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -122,21 +129,23 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(argv[++i]); }
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(argv[++i]); }
#define ARGV_NEXT (((i + 1) < argc) ? argv[++i] : requires_value_error(arg))
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(ARGV_NEXT); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(ARGV_NEXT); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(ARGV_NEXT); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(ARGV_NEXT); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(ARGV_NEXT); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(ARGV_NEXT); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(ARGV_NEXT); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(ARGV_NEXT); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(ARGV_NEXT); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(ARGV_NEXT); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(ARGV_NEXT); }
else if (arg == "-nth" || arg == "--no-speech-thold") { params.no_speech_thold = std::stof(ARGV_NEXT); }
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(ARGV_NEXT); }
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(ARGV_NEXT); }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
@ -148,30 +157,31 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = ARGV_NEXT; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(ARGV_NEXT); }
else if (arg == "-np" || arg == "--no-prints") { params.no_prints = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(argv[++i]); }
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(ARGV_NEXT); }
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
else if ( arg == "--prompt") { params.prompt = ARGV_NEXT; }
else if (arg == "-m" || arg == "--model") { params.model = ARGV_NEXT; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(ARGV_NEXT); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = ARGV_NEXT; }
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = ARGV_NEXT; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else if (arg == "-sns" || arg == "--suppress-nst") { params.suppress_nst = true; }
else if ( arg == "--suppress-regex") { params.suppress_regex = ARGV_NEXT; }
else if ( arg == "--grammar") { params.grammar = ARGV_NEXT; }
else if ( arg == "--grammar-rule") { params.grammar_rule = ARGV_NEXT; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(ARGV_NEXT); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -202,6 +212,7 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
fprintf(stderr, " -nth N, --no-speech-thold N [%-7.2f] no speech threshold\n", params.no_speech_thold);
fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature);
fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc);
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
@ -234,6 +245,7 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -sns, --suppress-nst [%-7s] suppress non-speech tokens\n", params.suppress_nst ? "true" : "false");
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
@ -1121,9 +1133,12 @@ int main(int argc, char ** argv) {
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.no_speech_thold = params.no_speech_thold;
wparams.no_timestamps = params.no_timestamps;
wparams.suppress_nst = params.suppress_nst;
whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
const auto & grammar_parsed = params.grammar_parsed;

View File

@ -24,6 +24,10 @@ int main(int argc, char** argv) {
replacement_filename = "whisper-cli";
}
if (filename == "main.exe") {
replacement_filename = "whisper-cli.exe";
}
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());

View File

@ -27,7 +27,7 @@
18E864A92CE73C1E0094B8B3 /* ggml-cpu.c in Sources */ = {isa = PBXBuildFile; fileRef = 18E864A82CE73C1E0094B8B3 /* ggml-cpu.c */; };
18F8C0BC2CEDF4DC00CAD607 /* ggml-threading.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0BB2CEDF4DC00CAD607 /* ggml-threading.cpp */; };
18F8C0BE2CEDF50700CAD607 /* ggml-cpu.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0BD2CEDF50700CAD607 /* ggml-cpu.cpp */; };
18F8C0C42CEDF52700CAD607 /* ggml-cpu-aarch64.c in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.c */; };
18F8C0C42CEDF52700CAD607 /* ggml-cpu-aarch64.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.cpp */; };
18F8C0C52CEDF52700CAD607 /* ggml-cpu-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C32CEDF52700CAD607 /* ggml-cpu-quants.c */; };
18F8C0C72CEDF7AB00CAD607 /* ggml-backend-reg.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18F8C0C62CEDF7AB00CAD607 /* ggml-backend-reg.cpp */; };
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
@ -88,7 +88,7 @@
18F8C0BB2CEDF4DC00CAD607 /* ggml-threading.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = "ggml-threading.cpp"; path = "../../../ggml/src/ggml-threading.cpp"; sourceTree = "<group>"; };
18F8C0BD2CEDF50700CAD607 /* ggml-cpu.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = "ggml-cpu.cpp"; path = "../../../ggml/src/ggml-cpu/ggml-cpu.cpp"; sourceTree = "<group>"; };
18F8C0BF2CEDF52700CAD607 /* ggml-cpu-aarch64.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpu-aarch64.h"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-aarch64.h"; sourceTree = "<group>"; };
18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.c */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.c; name = "ggml-cpu-aarch64.c"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-aarch64.c"; sourceTree = "<group>"; };
18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.c; name = "ggml-cpu-aarch64.cpp"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp"; sourceTree = "<group>"; };
18F8C0C12CEDF52700CAD607 /* ggml-cpu-impl.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpu-impl.h"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-impl.h"; sourceTree = "<group>"; };
18F8C0C22CEDF52700CAD607 /* ggml-cpu-quants.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-cpu-quants.h"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-quants.h"; sourceTree = "<group>"; };
18F8C0C32CEDF52700CAD607 /* ggml-cpu-quants.c */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.c; name = "ggml-cpu-quants.c"; path = "../../../ggml/src/ggml-cpu/ggml-cpu-quants.c"; sourceTree = "<group>"; };
@ -134,7 +134,7 @@
children = (
18F8C0C62CEDF7AB00CAD607 /* ggml-backend-reg.cpp */,
18F8C0BF2CEDF52700CAD607 /* ggml-cpu-aarch64.h */,
18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.c */,
18F8C0C02CEDF52700CAD607 /* ggml-cpu-aarch64.cpp */,
18F8C0C12CEDF52700CAD607 /* ggml-cpu-impl.h */,
18F8C0C22CEDF52700CAD607 /* ggml-cpu-quants.h */,
18F8C0C32CEDF52700CAD607 /* ggml-cpu-quants.c */,
@ -278,7 +278,7 @@
18F8C0C72CEDF7AB00CAD607 /* ggml-backend-reg.cpp in Sources */,
18F8C0BE2CEDF50700CAD607 /* ggml-cpu.cpp in Sources */,
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */,
18F8C0C42CEDF52700CAD607 /* ggml-cpu-aarch64.c in Sources */,
18F8C0C42CEDF52700CAD607 /* ggml-cpu-aarch64.cpp in Sources */,
18F8C0C52CEDF52700CAD607 /* ggml-cpu-quants.c in Sources */,
18E864A92CE73C1E0094B8B3 /* ggml-cpu.c in Sources */,
18ABE15A2AF556340044A204 /* ggml-backend.cpp in Sources */,

View File

@ -74,10 +74,10 @@ if (NOT GGML_CUDA_GRAPHS_DEFAULT)
endif()
# general
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: enable -march=native flag" ${GGML_NATIVE_DEFAULT})
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: optimize the build for the current system" ${GGML_NATIVE_DEFAULT})
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
# debug
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
@ -120,8 +120,9 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_SVE "ggml: enable SVE" OFF)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
if (WIN32)
@ -251,26 +252,6 @@ set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
install(TARGETS ggml LIBRARY PUBLIC_HEADER)
install(TARGETS ggml-base LIBRARY)
# FIXME: this should be done in the backend cmake files
if (GGML_METAL)
# FIXME: does this need to be installed with GGML_METAL_EMBED_LIBRARY?
install(
FILES src/ggml-metal/ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE
GROUP_READ
WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR})
if (NOT GGML_METAL_EMBED_LIBRARY)
install(
FILES ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DESTINATION ${CMAKE_INSTALL_BINDIR}
)
endif()
endif()
if (GGML_STANDALONE)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/ggml.pc.in
${CMAKE_CURRENT_BINARY_DIR}/ggml.pc

View File

@ -1564,17 +1564,6 @@ extern "C" {
int d1, // dilation dimension 1
bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
@ -1592,6 +1581,23 @@ extern "C" {
int s, // stride
int d); // dilation
// depthwise
// TODO: this is very likely wrong for some cases! - needs more testing
GGML_API struct ggml_tensor * ggml_conv_1d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int d0); // dilation
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
@ -1611,7 +1617,6 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
@ -1638,6 +1643,18 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// depthwise
GGML_API struct ggml_tensor * ggml_conv_2d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,

View File

@ -234,6 +234,7 @@ function(ggml_add_backend_library backend)
# write the shared library to the output directory
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
add_dependencies(ggml ${backend})
else()
add_library(${backend} ${ARGN})
target_link_libraries(ggml PUBLIC ${backend})
@ -289,9 +290,9 @@ if (GGML_CPU_ALL_VARIANTS)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AVX-VNNI or AMX
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
endif()
else ()

View File

@ -66,6 +66,26 @@
#include "ggml-kompute.h"
#endif
// disable C++17 deprecation warning for std::codecvt_utf8
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
static std::wstring utf8_to_utf16(const std::string & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.from_bytes(str);
}
static std::string utf16_to_utf8(const std::wstring & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.to_bytes(str);
}
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
#ifdef _WIN32
using dl_handle = std::remove_pointer_t<HMODULE>;
@ -88,11 +108,6 @@ static dl_handle * dl_load_library(const std::wstring & path) {
return handle;
}
static dl_handle * dl_load_library(const std::string & path) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return dl_load_library(converter.from_bytes(path));
}
static void * dl_get_sym(dl_handle * handle, const char * name) {
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
@ -114,8 +129,8 @@ struct dl_handle_deleter {
}
};
static void * dl_load_library(const std::string & path) {
dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL);
static void * dl_load_library(const std::wstring & path) {
dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
return handle;
}
@ -202,11 +217,11 @@ struct ggml_backend_registry {
devices.push_back(device);
}
ggml_backend_reg_t load_backend(const char * path, bool silent) {
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
dl_handle_ptr handle { dl_load_library(path) };
if (!handle) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path);
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
}
return nullptr;
}
@ -214,7 +229,7 @@ struct ggml_backend_registry {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn && score_fn() == 0) {
if (!silent) {
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path);
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
}
return nullptr;
}
@ -222,7 +237,7 @@ struct ggml_backend_registry {
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
if (!backend_init_fn) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path);
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
}
return nullptr;
}
@ -231,16 +246,16 @@ struct ggml_backend_registry {
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
if (!silent) {
if (!reg) {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path);
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
} else {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
__func__, path, reg->api_version, GGML_BACKEND_API_VERSION);
__func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
}
}
return nullptr;
}
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path);
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
register_backend(reg, std::move(handle));
@ -376,14 +391,14 @@ ggml_backend_t ggml_backend_init_best(void) {
// Dynamic loading
ggml_backend_reg_t ggml_backend_load(const char * path) {
return get_reg().load_backend(path, false);
return get_reg().load_backend(utf8_to_utf16(path), false);
}
void ggml_backend_unload(ggml_backend_reg_t reg) {
get_reg().unload_backend(reg, true);
}
static std::string get_executable_path() {
static std::wstring get_executable_path() {
#if defined(__APPLE__)
// get executable path
std::vector<char> path;
@ -401,13 +416,17 @@ static std::string get_executable_path() {
if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash);
}
return base_path + "/";
#elif defined(__linux__)
return utf8_to_utf16(base_path + "/");
#elif defined(__linux__) || defined(__FreeBSD__)
std::string base_path = ".";
std::vector<char> path(1024);
while (true) {
// get executable path
# if defined(__linux__)
ssize_t len = readlink("/proc/self/exe", path.data(), path.size());
# elif defined(__FreeBSD__)
ssize_t len = readlink("/proc/curproc/file", path.data(), path.size());
# endif
if (len == -1) {
break;
}
@ -423,57 +442,63 @@ static std::string get_executable_path() {
path.resize(path.size() * 2);
}
return base_path + "/";
return utf8_to_utf16(base_path + "/");
#elif defined(_WIN32)
std::vector<char> path(MAX_PATH);
DWORD len = GetModuleFileNameA(NULL, path.data(), path.size());
std::vector<wchar_t> path(MAX_PATH);
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
if (len == 0) {
return "";
return {};
}
std::string base_path(path.data(), len);
std::wstring base_path(path.data(), len);
// remove executable name
auto last_slash = base_path.find_last_of('\\');
if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash);
}
return base_path + "\\";
return base_path + L"\\";
#else
return {};
#endif
}
static std::string backend_filename_prefix() {
static std::wstring backend_filename_prefix() {
#ifdef _WIN32
return "ggml-";
return L"ggml-";
#else
return "libggml-";
return L"libggml-";
#endif
}
static std::string backend_filename_suffix() {
static std::wstring backend_filename_suffix() {
#ifdef _WIN32
return ".dll";
return L".dll";
#else
return ".so";
return L".so";
#endif
}
static std::wstring path_separator() {
#ifdef _WIN32
return L"\\";
#else
return L"/";
#endif
}
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths
std::string file_prefix = backend_filename_prefix() + name + "-";
std::vector<std::string> search_paths;
std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
std::vector<std::wstring> search_paths;
if (user_search_path == nullptr) {
search_paths.push_back("./");
search_paths.push_back(L"." + path_separator());
search_paths.push_back(get_executable_path());
} else {
#if defined(_WIN32)
search_paths.push_back(std::string(user_search_path) + "\\");
#else
search_paths.push_back(std::string(user_search_path) + "/");
#endif
search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
}
int best_score = 0;
std::string best_path;
std::wstring best_path;
namespace fs = std::filesystem;
for (const auto & search_path : search_paths) {
@ -483,27 +508,27 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().c_str()) };
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str());
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
}
if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn) {
int s = score_fn();
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s);
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
#endif
if (s > best_score) {
best_score = s;
best_path = entry.path().string();
best_path = entry.path().wstring();
}
} else {
if (!silent) {
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str());
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
}
}
}
@ -515,15 +540,15 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) {
// try to load the base backend
for (const auto & search_path : search_paths) {
std::string path = search_path + backend_filename_prefix() + name + backend_filename_suffix();
std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
if (fs::exists(path)) {
return get_reg().load_backend(path.c_str(), silent);
return get_reg().load_backend(path, silent);
}
}
return nullptr;
}
return get_reg().load_backend(best_path.c_str(), silent);
return get_reg().load_backend(best_path, silent);
}
void ggml_backend_load_all() {

View File

@ -795,9 +795,12 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs", cur_split, ggml_backend_name(split_backend),
sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
if (j == 0) {
GGML_LOG_DEBUG(": ");
}
GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}

View File

@ -74,112 +74,96 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
message(STATUS "ARM detected")
if (MSVC)
list(APPEND ARCH_DEFINITIONS __aarch64__) # MSVC defines _M_ARM64 instead
list(APPEND ARCH_DEFINITIONS __ARM_NEON)
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_FMA)
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
if (GGML_COMPILER_SUPPORT_DOTPROD)
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_DOTPROD)
message(STATUS "ARM feature DOTPROD enabled")
endif ()
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_MATMUL_INT8)
message(STATUS "ARM feature MATMUL_INT8 enabled")
endif ()
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
message(STATUS "ARM feature FP16_VECTOR_ARITHMETIC enabled")
endif ()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
elseif (APPLE)
if (GGML_NATIVE)
set(USER_PROVIDED_MARCH FALSE)
foreach(flag_var IN ITEMS CMAKE_C_FLAGS CMAKE_CXX_FLAGS CMAKE_REQUIRED_FLAGS)
if ("${${flag_var}}" MATCHES "-march=[a-zA-Z0-9+._-]+")
set(USER_PROVIDED_MARCH TRUE)
break()
endif()
endforeach()
if (NOT USER_PROVIDED_MARCH)
set(MARCH_FLAGS "-march=armv8.2a")
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
if (GGML_COMPILER_SUPPORT_DOTPROD)
set(MARCH_FLAGS "${MARCH_FLAGS}+dotprod")
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_DOTPROD)
message(STATUS "ARM feature DOTPROD enabled")
endif ()
set(TEST_I8MM_FLAGS "-march=armv8.2a+i8mm")
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${TEST_I8MM_FLAGS}")
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
set(MARCH_FLAGS "${MARCH_FLAGS}+i8mm")
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_MATMUL_INT8)
message(STATUS "ARM feature MATMUL_INT8 enabled")
endif ()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
list(APPEND ARCH_FLAGS "${MARCH_FLAGS}")
endif ()
endif ()
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
else()
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
check_cxx_compiler_flag(-mfp16-format=ieee GGML_COMPILER_SUPPORTS_FP16_FORMAT_I3E)
if (NOT "${GGML_COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
# Raspberry Pi 1, Zero
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
# Android armeabi-v7a
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
else()
# Raspberry Pi 2
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
if (GGML_NATIVE)
# -mcpu=native does not always enable all the features in some compilers,
# so we check for them manually and enable them if available
execute_process(
COMMAND ${CMAKE_C_COMPILER} -mcpu=native -E -v -
INPUT_FILE "/dev/null"
OUTPUT_QUIET
ERROR_VARIABLE ARM_MCPU
RESULT_VARIABLE ARM_MCPU_RESULT
)
if (NOT ARM_MCPU_RESULT)
string(REGEX MATCH "-mcpu=[^ ']+" ARM_MCPU_FLAG "${ARM_MCPU}")
endif()
if ("${ARM_MCPU_FLAG}" STREQUAL "")
set(ARM_MCPU_FLAG -mcpu=native)
message(STATUS "ARM -mcpu not found, -mcpu=native will be used")
endif()
include(CheckCXXSourceRuns)
function(check_arm_feature tag code)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+${tag}")
check_cxx_source_runs(
"${code}"
GGML_MACHINE_SUPPORTS_${tag}
)
if (GGML_MACHINE_SUPPORTS_${tag})
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+${tag}" PARENT_SCOPE)
else()
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+no${tag}" PARENT_SCOPE)
endif()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
endfunction()
check_arm_feature(dotprod "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }")
check_arm_feature(i8mm "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }")
check_arm_feature(sve "#include <arm_sve.h>\nint main() { svfloat32_t _a, _b; volatile svfloat32_t _c = svadd_f32_z(svptrue_b8(), _a, _b); return 0; }")
list(APPEND ARCH_FLAGS "${ARM_MCPU_FLAG}${ARM_MCPU_FLAG_FIX}")
else()
if (GGML_CPU_ARM_ARCH)
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
endif()
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
# Android arm64-v8a
# Raspberry Pi 3, 4, Zero 2 (32-bit)
list(APPEND ARCH_FLAGS -mno-unaligned-access)
# show enabled features
if (CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows")
set(FEAT_INPUT_FILE "NUL")
else()
set(FEAT_INPUT_FILE "/dev/null")
endif()
if (GGML_SVE)
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
execute_process(
COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E -
INPUT_FILE ${FEAT_INPUT_FILE}
OUTPUT_VARIABLE ARM_FEATURE
RESULT_VARIABLE ARM_FEATURE_RESULT
)
if (ARM_FEATURE_RESULT)
message(WARNING "Failed to get ARM features")
else()
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC)
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
if (NOT ${feature_pos} EQUAL -1)
message(STATUS "ARM feature ${feature} enabled")
endif()
endforeach()
endif()
endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
@ -231,8 +215,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
endif()
if (GGML_AVX_VNNI)
# MSVC generates AVX512 with AVX-VNNI intrinsics even with /arch:AVX2
#list(APPEND ARCH_DEFINITIONS __AVXVNNI__ GGML_AVX_VNNI)
list(APPEND ARCH_DEFINITIONS __AVXVNNI__ GGML_AVX_VNNI)
endif()
else ()
if (GGML_NATIVE)
@ -339,6 +322,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
if (GGML_BACKEND_DL)
if (GGML_NATIVE)
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
endif()
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same

View File

@ -194,9 +194,12 @@ static inline __m256i sum_i16_pairs_int32x8(const __m256i x) {
}
static inline __m256i mul_sum_us8_pairs_int32x8(const __m256i ax, const __m256i sy) {
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
const __m256i zero = _mm256_setzero_si256();
return _mm256_dpbusd_epi32(zero, ax, sy);
#elif defined(__AVXVNNI__)
const __m256i zero = _mm256_setzero_si256();
return _mm256_dpbusd_avx_epi32(zero, ax, sy);
#else
// Perform multiplication and create 16-bit values
const __m256i dot = _mm256_maddubs_epi16(ax, sy);
@ -564,21 +567,21 @@ static void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *)vx;
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx;
for (int c = 0; c < nc; c += ncols_interleaved) {
const block_q8_0 * a_ptr = (const block_q8_0 *)vy;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
float32x4_t acc = vdupq_n_f32(0);
for (int b = 0; b < nb; b++) {
int8x16_t b0 = vld1q_s8((const int8_t *)b_ptr->qs);
int8x16_t b1 = vld1q_s8((const int8_t *)b_ptr->qs + 16);
int8x16_t b2 = vld1q_s8((const int8_t *)b_ptr->qs + 32);
int8x16_t b3 = vld1q_s8((const int8_t *)b_ptr->qs + 48);
float16x4_t bd = vld1_f16((const __fp16 *)b_ptr->d);
int8x16_t b0 = vld1q_s8((const int8_t *) b_ptr->qs);
int8x16_t b1 = vld1q_s8((const int8_t *) b_ptr->qs + 16);
int8x16_t b2 = vld1q_s8((const int8_t *) b_ptr->qs + 32);
int8x16_t b3 = vld1q_s8((const int8_t *) b_ptr->qs + 48);
float16x4_t bd = vld1_f16((const __fp16 *) b_ptr->d);
int8x16_t a0 = vld1q_s8(a_ptr->qs);
int8x16_t a1 = vld1q_s8(a_ptr->qs + qk/2);
float16x4_t ad = vld1_dup_f16((const __fp16 *)&a_ptr->d);
float16x4_t ad = vld1_dup_f16((const __fp16 *) &a_ptr->d);
int32x4_t ret = vdupq_n_s32(0);
@ -647,72 +650,52 @@ static void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
const void * b_ptr = vx;
const void * a_ptr = vy;
float * res_ptr = s;
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx;
__asm__ __volatile__(
"movi v2.16b, #0x4\n"
"movi v1.16b, #0xf0\n"
"add %x[b_ptr], %x[b_ptr], #0x8\n"
"1:" // Column loop
"add x23, %x[a_ptr], #0x2\n"
"movi v0.16b, #0x0\n"
"mov x22, %x[nb]\n"
"2:" // Block loop
"ldr q31, [%x[b_ptr], #0x0]\n"
"ldr q30, [%x[b_ptr], #0x10]\n"
"mov x21, x23\n"
"movi v29.4s, #0x0\n"
"ldr q28, [%x[b_ptr], #0x20]\n"
"ldr q27, [%x[b_ptr], #0x30]\n"
"movi v26.4s, #0x0\n"
"sub x20, x23, #0x2\n"
"ld1r { v25.8h }, [x20]\n"
"ldr q24, [%x[b_ptr], #-0x8]\n"
"sub x22, x22, #0x1\n"
"add x23, x23, #0x22\n"
"ld1r { v23.2d }, [x21], #0x8\n"
"sshl v22.16b, v31.16b, v2.16b\n"
"sshl v16.16b, v30.16b, v2.16b\n"
"add %x[b_ptr], %x[b_ptr], #0x48\n"
"ld1r { v21.2d }, [x21], #0x8\n"
"sshl v20.16b, v28.16b, v2.16b\n"
"sshl v19.16b, v27.16b, v2.16b\n"
"ld1r { v18.2d }, [x21], #0x8\n"
"ld1r { v17.2d }, [x21], #0x8\n"
"and v31.16b, v31.16b, v1.16b\n"
"and v30.16b, v30.16b, v1.16b\n"
".inst 0x4e9796dd // sdot v29.4s, v22.16b, v23.16b\n"
".inst 0x4e97961a // sdot v26.4s, v16.16b, v23.16b\n"
"and v28.16b, v28.16b, v1.16b\n"
"and v27.16b, v27.16b, v1.16b\n"
"fcvtl v25.4s, v25.4h\n"
"fcvtl v16.4s, v24.4h\n"
".inst 0x4e95969d // sdot v29.4s, v20.16b, v21.16b\n"
".inst 0x4e95967a // sdot v26.4s, v19.16b, v21.16b\n"
"fmul v16.4s, v16.4s, v25.4s\n"
".inst 0x4e9297fd // sdot v29.4s, v31.16b, v18.16b\n"
".inst 0x4e9297da // sdot v26.4s, v30.16b, v18.16b\n"
".inst 0x4e91979d // sdot v29.4s, v28.16b, v17.16b\n"
".inst 0x4e91977a // sdot v26.4s, v27.16b, v17.16b\n"
"addp v29.4s, v29.4s, v26.4s\n"
"scvtf v29.4s, v29.4s, #0x4\n"
"fmla v0.4s, v29.4s, v16.4s\n"
"cbnz x22, 2b\n"
"sub %x[nc], %x[nc], #0x4\n"
"str q0, [%x[res_ptr], #0x0]\n"
"add %x[res_ptr], %x[res_ptr], #0x10\n"
"cbnz %x[nc], 1b\n"
: [b_ptr] "+&r" (b_ptr), [res_ptr] "+&r" (res_ptr), [nc] "+&r" (nc)
: [a_ptr] "r" (a_ptr), [nb] "r" (nb)
: "memory", "v0", "v1", "v2", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x20", "x21", "x22", "x23"
);
for (int c = 0; c < nc; c += ncols_interleaved) {
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
float32x4_t acc = vdupq_n_f32(0);
for (int b = 0; b < nb; b++) {
int8x16_t b0 = vld1q_s8((const int8_t *) b_ptr->qs);
int8x16_t b1 = vld1q_s8((const int8_t *) b_ptr->qs + 16);
int8x16_t b2 = vld1q_s8((const int8_t *) b_ptr->qs + 32);
int8x16_t b3 = vld1q_s8((const int8_t *) b_ptr->qs + 48);
float16x4_t bd = vld1_f16((const __fp16 *) b_ptr->d);
int8x16_t a0 = (int8x16_t) vld1q_dup_s64((const int64_t *) a_ptr->qs);
int8x16_t a1 = (int8x16_t) vld1q_dup_s64((const int64_t *) a_ptr->qs + 1);
int8x16_t a2 = (int8x16_t) vld1q_dup_s64((const int64_t *) a_ptr->qs + 2);
int8x16_t a3 = (int8x16_t) vld1q_dup_s64((const int64_t *) a_ptr->qs + 3);
float16x4_t ad = vld1_dup_f16((const __fp16 *) &a_ptr->d);
int32x4_t ret0 = vdupq_n_s32(0);
int32x4_t ret1 = vdupq_n_s32(0);
ret0 = vdotq_s32(ret0, b0 << 4, a0);
ret1 = vdotq_s32(ret1, b1 << 4, a0);
ret0 = vdotq_s32(ret0, b2 << 4, a1);
ret1 = vdotq_s32(ret1, b3 << 4, a1);
ret0 = vdotq_s32(ret0, b0 & 0xf0U, a2);
ret1 = vdotq_s32(ret1, b1 & 0xf0U, a2);
ret0 = vdotq_s32(ret0, b2 & 0xf0U, a3);
ret1 = vdotq_s32(ret1, b3 & 0xf0U, a3);
int32x4_t ret = vpaddq_s32(ret0, ret1);
acc = vfmaq_f32(acc, vcvtq_n_f32_s32(ret, 4),
vmulq_f32(vcvt_f32_f16(ad), vcvt_f32_f16(bd)));
a_ptr++;
b_ptr++;
}
vst1q_f32(s, acc);
s += ncols_interleaved;
}
return;
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
float sumf[4];
int sumi;

View File

@ -103,10 +103,14 @@ static inline __m256 sum_i16_pairs_float(const __m256i x) {
}
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
const __m256i zero = _mm256_setzero_si256();
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
return _mm256_cvtepi32_ps(summed_pairs);
#elif defined(__AVXVNNI__)
const __m256i zero = _mm256_setzero_si256();
const __m256i summed_pairs = _mm256_dpbusd_avx_epi32(zero, ax, sy);
return _mm256_cvtepi32_ps(summed_pairs);
#else
// Perform multiplication and create 16-bit values
const __m256i dot = _mm256_maddubs_epi16(ax, sy);

View File

@ -986,7 +986,7 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
@ -997,7 +997,7 @@ static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
return _mm_loadu_ps(tmp);
}
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
_mm_storeu_ps(arr, y);
@ -7419,14 +7419,14 @@ static void ggml_compute_forward_mul_mat(
if (src1_cont) {
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
if (!llamafile_sgemm(params,
ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type),
(const char *)src1->data + i12*nb12 + i13*nb13,
nb11/ggml_type_size(src1->type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
src0->type,
src1->type,
dst->type))
@ -7471,14 +7471,14 @@ UseGgmlGemm1:;
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
if (!llamafile_sgemm(params,
ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type),
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
row_size/ggml_type_size(vec_dot_type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
src0->type,
vec_dot_type,
dst->type))

View File

@ -522,6 +522,12 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_sve()) {
features.push_back({ "SVE", "1" });
}
if (ggml_cpu_has_dotprod()) {
features.push_back({ "DOTPROD", "1" });
}
if (ggml_cpu_has_matmul_int8()) {
features.push_back({ "MATMUL_INT8", "1" });
}
if (ggml_cpu_get_sve_cnt() > 0) {
static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt());
features.push_back({ "SVE_CNT", sve_cnt.c_str() });

View File

@ -53,6 +53,8 @@
#include "ggml-cpu-impl.h"
#include "ggml-quants.h"
#include <atomic>
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
@ -134,6 +136,16 @@ inline __m512 madd(__m512 a, __m512 b, __m512 c) {
return _mm512_fmadd_ps(a, b, c);
}
#endif
#if defined(__AVX512BF16__)
template <>
inline __m512 madd(__m512bh a, __m512bh b, __m512 c) {
return _mm512_dpbf16_ps(c, a, b);
}
template <>
inline __m256 madd(__m256bh a, __m256bh b, __m256 c) {
return _mm256_dpbf16_ps(c, a, b);
}
#endif
#endif
#if defined(__ARM_FEATURE_FMA)
@ -204,6 +216,7 @@ template <> inline float32x4_t load(const float *p) {
return vld1q_f32(p);
}
#if !defined(_MSC_VER)
// FIXME: this should check for __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <> inline float16x8_t load(const ggml_fp16_t *p) {
return vld1q_f16((const float16_t *)p);
}
@ -225,6 +238,13 @@ template <> inline __m256 load(const float *p) {
}
#endif // __AVX__
#if defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m256 load(const ggml_bf16_t *p) {
return _mm256_castsi256_ps(
_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)p)), 16));
}
#endif // __AVX2__
#if defined(__F16C__)
template <> inline __m256 load(const ggml_fp16_t *p) {
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
@ -238,8 +258,27 @@ template <> inline __m512 load(const float *p) {
template <> inline __m512 load(const ggml_fp16_t *p) {
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
}
template <> inline __m512 load(const ggml_bf16_t *p) {
return _mm512_castsi512_ps(
_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)p)), 16));
}
#endif // __AVX512F__
#if defined(__AVX512BF16__)
template <> inline __m512bh load(const ggml_bf16_t *p) {
return (__m512bh)_mm512_loadu_ps((const float *)p);
}
template <> inline __m256bh load(const ggml_bf16_t *p) {
return (__m256bh)_mm256_loadu_ps((const float *)p);
}
template <> inline __m512bh load(const float *p) {
return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p));
}
template <> inline __m256bh load(const float *p) {
return _mm512_cvtneps_pbh(_mm512_loadu_ps(p));
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// CONSTANTS
@ -251,199 +290,170 @@ static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
template <int M>
static inline int64_t BLOCK_SIZE(size_t m) {
const int64_t NB_BLOC_M = (m + M - 1) / M;
return (m % NB_BLOC_M == 0) ? m / NB_BLOC_M : (m / NB_BLOC_M) + 1;
}
static constexpr inline int64_t BLOC_POS(int64_t ib, int64_t ibN, int64_t bloc_size) {
return ib < ibN ? ib * bloc_size : ibN * bloc_size + (ib - ibN) * (bloc_size - 1);
}
template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS {
public:
tinyBLAS(int64_t k,
tinyBLAS(const ggml_compute_params * params, int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
TC *C, int64_t ldc)
: params(params), A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
bool matmul(int64_t m, int64_t n) {
if (k % KN != 0)
return false;
// compute RM for only need tile with size RM&RM-1
#if VECTOR_REGISTERS == 32
if (m % 16 == 0 && (m/16 >= params->nth)) {
const int64_t SIZE_N = BLOCK_SIZE<6>(n);
mnpack<4, 6, 4>(m, n, SIZE_N, 12);
return true;
}
if (m % 8 == 0 ) {
const int64_t SIZE_N = BLOCK_SIZE<6>(n);
mnpack<4, 6, 2>(m, n, SIZE_N, 12);
return true;
}
if (m % 4 == 0) {
const int64_t SIZE_N = BLOCK_SIZE<6>(n);
mnpack<4, 6, 1>(m, n, SIZE_N, 12);
return true;
}
#else // VECTOR_REGISTERS == 16
if (m % 16 == 0 && (m/16 >= params->nth)) {
const int64_t SIZE_N = BLOCK_SIZE<3>(n);
mnpack<4, 3, 4>(m, n, SIZE_N, 24);
return true;
}
if (m % 8 == 0 ) {
const int64_t SIZE_N = BLOCK_SIZE<3>(n);
mnpack<4, 3, 2>(m, n, SIZE_N, 24);
return true;
}
if (m % 4 == 0) {
const int64_t SIZE_N = BLOCK_SIZE<3>(n);
mnpack<4, 3, 1>(m, n, SIZE_N, 24);
return true;
}
#endif
return false;
}
private:
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
#if VECTOR_REGISTERS == 32
case 0x55:
mc = 5;
nc = 5;
gemm<5, 5>(m0, m, n0, n);
break;
case 0x45:
mc = 4;
nc = 5;
gemm<4, 5>(m0, m, n0, n);
break;
case 0x54:
mc = 5;
nc = 4;
gemm<5, 4>(m0, m, n0, n);
break;
case 0x44:
mc = 4;
nc = 4;
gemm<4, 4>(m0, m, n0, n);
break;
case 0x53:
mc = 5;
nc = 3;
gemm<5, 3>(m0, m, n0, n);
break;
case 0x35:
mc = 3;
nc = 5;
gemm<3, 5>(m0, m, n0, n);
break;
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3>(m0, m, n0, n);
break;
#else
case 0x55:
case 0x54:
case 0x53:
case 0x45:
case 0x44:
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3>(m0, m, n0, n);
break;
case 0x35:
#endif
case 0x34:
mc = 3;
nc = 4;
gemm<3, 4>(m0, m, n0, n);
break;
case 0x52:
mc = 5;
nc = 2;
gemm<5, 2>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3>(m0, m, n0, n);
break;
case 0x25:
mc = 2;
nc = 5;
gemm<2, 5>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm<4, 2>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm<2, 4>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3>(m0, m, n0, n);
break;
case 0x51:
mc = 5;
nc = 1;
gemm<5, 1>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm<4, 1>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2>(m0, m, n0, n);
break;
case 0x15:
mc = 1;
nc = 5;
gemm<1, 5>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm<1, 4>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm<3, 1>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm<1, 3>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1>(m0, m, n0, n);
break;
default:
return;
template <int RM, int RN, int BM>
inline void mnpack(int64_t m, int64_t n, int64_t SIZE_N, int64_t BN) {
if (SIZE_N == RN) {
return gemm<RM, RN, BM>(m, n, BN);
}
if constexpr (RN > 1) {
return mnpack<RM, RN-1, BM>(m, n, SIZE_N, BN);
} else {
GGML_LOG_ERROR("mnpack<%d, %d> bloc size not supported\n", RM, (int)SIZE_N);
GGML_ASSERT(false); // we have miss something.
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
D Cv[RN][RM] = {};
for (int64_t l = 0; l < k; l += KN)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
load<V>(B + ldb * (jj + j) + l),
Cv[j][i]);
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
inline void gemm_bloc(int64_t ii, int64_t jj) {
D Cv[RN][RM] = {};
for (int64_t l = 0; l < k; l += KN) {
// help compiler for op order.
if constexpr (RM <= RN) {
V Av[RM];
for (int64_t i = 0; i < RM; ++i) {
Av[i] = load<V>(A + lda * (ii + i) + l);
}
for (int64_t j = 0; j < RN; ++j) {
V Bv = load<V>(B + ldb * (jj + j) + l);
for (int64_t i = 0; i < RM; ++i) {
Cv[j][i] = madd(Av[i], Bv, Cv[j][i]);
}
}
} else {
V Bv[RN];
for (int64_t j = 0; j < RN; ++j) {
Bv[j] = load<V>(B + ldb * (jj + j) + l);
}
for (int64_t i = 0; i < RM; ++i) {
V Av = load<V>(A + lda * (ii + i) + l);
for (int64_t j = 0; j < RN; ++j) {
Cv[j][i] = madd(Av, Bv[j], Cv[j][i]);
}
}
}
}
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
template <int RM, int RN, int BM>
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
static std::atomic<int64_t> current_chunk;
GGML_ASSERT(m % (RM * BM) == 0);
const int64_t ytiles = m / (RM * BM);
const int64_t xtiles = (n + RN -1) / RN;
const int64_t jj_RN = (xtiles - (xtiles * RN - n));
// "round" bloc_size to "nearest" BN
const int64_t NB_BN = xtiles < BN ? 1 : (xtiles + BN / 2) / BN;
const int64_t SIZE_BN = xtiles % NB_BN == 0 ? xtiles / NB_BN : xtiles / NB_BN + 1;
const int64_t jj_BN = (NB_BN - (NB_BN * SIZE_BN - xtiles));
const int64_t nb_job = ytiles * NB_BN;
if (params->ith == 0) {
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
std::atomic_store_explicit(&current_chunk, (int64_t)params->nth, std::memory_order_relaxed);
}
ggml_barrier(params->threadpool);
int64_t job = params->ith;
while (job < nb_job) {
const int64_t ii = (job % ytiles) * RM * BM;
const int64_t jb = job / ytiles;
const int64_t jr0 = BLOC_POS(jb , jj_BN, SIZE_BN);
const int64_t jrN = BLOC_POS(jb+1, jj_BN, SIZE_BN);
const int64_t jj0 = BLOC_POS(jr0, jj_RN, RN);
const int64_t jj2 = BLOC_POS(jrN, jj_RN, RN);
const int64_t jj1 = jj2 < jj_RN * RN ? jj2 : jj_RN * RN;
for (int64_t bi = 0; bi < BM * RM; bi += RM) {
int64_t jj = jj0;
for (; jj < jj1; jj += RN) {
gemm_bloc<RM, RN>(ii + bi, jj);
}
if constexpr (RN > 1) {
for (; jj < jj2; jj += RN - 1) {
gemm_bloc<RM, RN-1>(ii + bi, jj);
}
}
GGML_ASSERT(jj == jj2);
}
// next step.
job = std::atomic_fetch_add_explicit(&current_chunk, (int64_t)1, std::memory_order_relaxed);
}
ggml_barrier(params->threadpool);
return;
}
const ggml_compute_params * params;
const TA *const A;
const TB *const B;
TC *const C;
@ -451,8 +461,6 @@ class tinyBLAS {
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
//////////////////////////////////////////////////////////////////////////////////////////
@ -992,8 +1000,10 @@ class tinyBLAS_Q0_AVX {
inline __m256 updot(__m256i u, __m256i s) {
__m256i res;
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
#elif defined(__AVXVNNI__)
res = _mm256_dpbusd_avx_epi32(_mm256_setzero_si256(), u, s);
#else
res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
#endif
@ -1656,8 +1666,9 @@ class tinyBLAS_PPC {
* @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int Atype, int Btype, int Ctype) {
assert(m >= 0);
assert(n >= 0);
@ -1665,8 +1676,8 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
assert(params->nth > 0);
assert(params->ith < params->nth);
// only enable sgemm for prompt processing
if (n < 2)
@ -1681,37 +1692,25 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
if (Btype != GGML_TYPE_F32)
return false;
#if defined(__AVX512F__)
if (k % 16)
return false;
tinyBLAS<16, __m512, __m512, float, float, float> tb{
tinyBLAS<16, __m512, __m512, float, float, float> tb{ params,
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
(float *)C, ldc};
return tb.matmul(m, n);
#elif defined(__AVX__) || defined(__AVX2__)
if (k % 8)
return false;
tinyBLAS<8, __m256, __m256, float, float, float> tb{
tinyBLAS<8, __m256, __m256, float, float, float> tb{ params,
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
(float *)C, ldc};
return tb.matmul(m, n);
#elif defined(__ARM_NEON)
if (n < 4)
return false;
if (k % 4)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params,
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
(float *)C, ldc};
return tb.matmul(m, n);
#elif defined(__MMA__)
if (k % 8)
return false;
@ -1719,7 +1718,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
@ -1727,60 +1726,71 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
#endif
}
case GGML_TYPE_BF16: {
#if defined(__AVX512BF16__)
if (Btype == GGML_TYPE_BF16) {
tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__AVX512F__)
if (Btype == GGML_TYPE_BF16) {
tinyBLAS<16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__AVX2__)
if (Btype == GGML_TYPE_BF16) {
tinyBLAS<8, __m256, __m256, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#endif
return false;
}
case GGML_TYPE_F16: {
#if defined(__AVX512F__)
if (k % 16)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
if (Btype == GGML_TYPE_F16) {
tinyBLAS<16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k,
(const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if (k % 8)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
if (Btype == GGML_TYPE_F16) {
tinyBLAS<8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k,
(const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 8)
return false;
if (k % 8)
return false;
if (Btype != GGML_TYPE_F16)
return false;
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
if (Btype == GGML_TYPE_F16) {
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params,
k, (const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
if (Btype == GGML_TYPE_F32) {
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ params,
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#endif
return false;
}
case GGML_TYPE_Q8_0: {
@ -1791,7 +1801,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
@ -1799,7 +1809,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
@ -1815,7 +1825,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
@ -1823,7 +1833,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
@ -1839,7 +1849,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q5_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
@ -1855,7 +1865,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_iq4_nl *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
@ -1867,6 +1877,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
return false;
}
(void)params;
(void)m;
(void)n;
(void)k;
@ -1876,8 +1887,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(void)ldb;
(void)C;
(void)ldc;
(void)ith;
(void)nth;
(void)Atype;
(void)Btype;
(void)Ctype;

View File

@ -5,8 +5,8 @@
extern "C" {
#endif
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
const void *, int64_t, void *, int64_t, int, int,
bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t, int64_t, int64_t,
const void *, int64_t, const void *, int64_t, void *, int64_t,
int, int, int);
#ifdef __cplusplus

View File

@ -551,6 +551,22 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
// expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
struct gguf_buf {
void * data;
size_t size;
size_t offset;
};
GGML_API struct gguf_buf gguf_buf_init(size_t size);
GGML_API void gguf_buf_free(struct gguf_buf buf);
GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta);
#ifdef __cplusplus
}
#endif

View File

@ -103,3 +103,19 @@ else()
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
)
endif() # GGML_METAL_EMBED_LIBRARY
if (NOT GGML_METAL_EMBED_LIBRARY)
install(
FILES src/ggml-metal/ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE
GROUP_READ
WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR})
install(
FILES ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DESTINATION ${CMAKE_INSTALL_BINDIR}
)
endif()

View File

@ -2067,8 +2067,8 @@ static void ggml_metal_encode_node(
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
const uint r2 = ne12/ne02;
const uint r3 = ne13/ne03;
const uint32_t r2 = ne12/ne02;
const uint32_t r3 = ne13/ne03;
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel

View File

@ -11,6 +11,8 @@
//
#include "common.hpp"
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
int get_current_device_id() {
@ -65,9 +67,9 @@ void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
const ggml_sycl_op_flatten_t op) try {
const bool use_src1 = src1 != nullptr;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
if(use_src1)
GGML_ASSERT(strcmp(src1->buffer->buft->iface.get_name(src1->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
GGML_ASSERT(strcmp(dst->buffer->buft->iface.get_name(dst->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
// dd = data device
float * src0_ddf = (float *) src0->data;

View File

@ -26,7 +26,11 @@
#define GGML_COMMON_DECL_SYCL
#define GGML_COMMON_IMPL_SYCL
/* suppress warning spam */
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnested-anon-types"
#include "ggml-common.h"
#pragma clang diagnostic pop
void* ggml_sycl_host_malloc(size_t size);
void ggml_sycl_host_free(void* ptr);

View File

@ -288,10 +288,8 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
if (tensor->view_src != NULL && tensor->view_offs == 0) {
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
tensor->backend = tensor->view_src->backend;
tensor->extra = tensor->view_src->extra;
return;
}
@ -539,7 +537,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
auto dev_count = ggml_backend_sycl_get_device_count();
if (device>=dev_count or device<0) {
printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
GGML_LOG_ERROR("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
device, dev_count-1);
GGML_ASSERT(device<dev_count);
}
@ -567,7 +565,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_conte
int device = ctx->device;
if (device>=ggml_sycl_info().device_count or device<0) {
printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
GGML_LOG_ERROR("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
device, ggml_sycl_info().device_count-1);
GGML_ASSERT(device<ggml_sycl_info().device_count);
}
@ -746,7 +744,7 @@ ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
// FIXME: do not crash if cudaMalloc fails
// FIXME: do not crash if SYCL Buffer alloc fails
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
ggml_sycl_set_device(i);
const queue_ptr stream = ctx->streams[i];
@ -788,7 +786,6 @@ ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
}
}
tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
tensor->extra = extra;
}
catch (sycl::exception const &exc) {
@ -2349,12 +2346,22 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
dpct::memcpy_direction kind;
char * src_ptr;
if (src->backend == GGML_BACKEND_TYPE_CPU) {
if (ggml_backend_buffer_is_host(src->buffer)) {
kind = dpct::host_to_device;
//GGML_SYCL_DEBUG("%s: Host buffer type src tensor\n", __func__);
src_ptr = (char *) src->data;
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
} else if (ggml_backend_buffer_is_sycl(src->buffer)) {
// If buffer is a SYCL buffer
//GGML_SYCL_DEBUG("%s: SYCL buffer type src tensor\n", __func__);
kind = dpct::device_to_device;
src_ptr = (char *) src->data;
} else if (ggml_backend_buffer_is_sycl_split(src->buffer)) {
/*
If buffer is a SYCL split buffer
*/
//GGML_SYCL_DEBUG("%s: Split buffer type src tensor\n", __func__);
GGML_ASSERT(i1_low == 0 && i1_high == src->ne[1]);
kind = dpct::device_to_device;
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
int id;
@ -2857,8 +2864,8 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(dst->buffer));
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src1->buffer));
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
@ -2878,7 +2885,7 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
GGML_ASSERT(!(split && ne02 > 1));
GGML_ASSERT(!(split && ne03 > 1));
GGML_ASSERT(!(split && ne02 < ne12));
@ -3198,7 +3205,7 @@ static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const gg
const ggml_tensor *src1,
ggml_tensor *dst) try {
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer));
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
GGML_ASSERT(src0->type == GGML_TYPE_F16);
@ -3231,7 +3238,7 @@ static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -3293,7 +3300,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
ggml_tensor *dst) try {
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS
@ -4638,10 +4645,9 @@ static ggml_backend_dev_t ggml_backend_sycl_reg_get_device(ggml_backend_reg_t re
static void *ggml_backend_sycl_reg_get_proc_address(ggml_backend_reg_t reg, const char *name) {
GGML_UNUSED(reg);
// TODO: update to the current function signature
//if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
// return (void *)ggml_backend_sycl_split_buffer_type;
//}
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
return (void *)ggml_backend_sycl_split_buffer_type;
}
// SYCL doesn't support registering host memory, left here for reference
// "ggml_backend_register_host_buffer"

View File

@ -145,6 +145,8 @@ class vk_perf_logger;
#endif
static void ggml_vk_destroy_buffer(vk_buffer& buf);
static constexpr uint32_t mul_mat_vec_max_cols = 8;
struct vk_device_struct {
std::mutex mutex;
@ -202,8 +204,8 @@ struct vk_device_struct {
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32;
@ -411,7 +413,7 @@ struct vk_op_unary_push_constants {
uint32_t ne;
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
uint32_t d_offset;
uint32_t misalign_offsets;
float param1; float param2;
uint32_t ne0_012mp; uint32_t ne0_012L;
uint32_t ne0_01mp; uint32_t ne0_01L;
@ -459,7 +461,7 @@ struct vk_op_binary_push_constants {
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23;
uint32_t d_offset;
uint32_t misalign_offsets;
float param1; float param2; int32_t param3;
};
@ -546,7 +548,7 @@ struct vk_staging_memcpy {
};
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t d_offset;
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
float sf0; float sf1; float sf2; float sf3;
@ -1404,10 +1406,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
// spec constants and tile sizes for non-quant matmul/matmul_id
l_warptile = { 256, 128, 256, 64 };
m_warptile = { 256, 128, 128, 64 };
s_warptile = { 128, 32, 16, 64 };
s_warptile = { 128, 64, 64, 64 };
l_wg_denoms = {128, 256, 1 };
m_wg_denoms = {128, 128, 1 };
s_wg_denoms = { 32, 16, 1 };
s_wg_denoms = { 64, 64, 1 };
// spec constants and tile sizes for quant matmul (non-Qi_K)
l_warptile_mmq = { 256, 128, 256, 64 };
@ -1855,53 +1857,60 @@ static void ggml_vk_load_shaders(vk_device& device) {
// mul mat vec
// AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled
uint32_t rm = 1;
if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL)
rm = 2;
// the number of rows computed per shader depends on GPU model and quant
uint32_t rm_stdq = 1;
uint32_t rm_kq = 2;
if (device->vendor_id == VK_VENDOR_ID_AMD) {
if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN
rm_stdq = 2;
rm_kq = 4;
}
} else if (device->vendor_id == VK_VENDOR_ID_INTEL)
rm_stdq = 2;
// computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq, i+1}, 1, true);
}
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
// dequant shaders
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
@ -2012,11 +2021,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
}
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
@ -2887,9 +2896,10 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc;
}
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) {
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t num_cols) {
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16);
GGML_ASSERT(num_cols >= 1 && num_cols <= mul_mat_vec_max_cols);
switch (a_type) {
case GGML_TYPE_F32:
@ -2910,7 +2920,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
return nullptr;
}
return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type];
return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type][num_cols-1] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type][num_cols-1];
}
static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
@ -3205,8 +3215,8 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont
GGML_ABORT("fatal error");
}
// Check if src is pinned memory
vk_buffer buf;
size_t buf_offset;
vk_buffer buf = nullptr;
size_t buf_offset = 0;
ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset);
const uint64_t ne0 = tensor->ne[0];
@ -3269,7 +3279,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont
VkBufferCopy buf_copy{ 0, offset, copy_size };
ggml_vk_sync_buffers(subctx);
vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
for (uint64_t i3 = 0; i3 < ne3; i3++) {
for (uint64_t i2 = 0; i2 < ne2; i2++) {
@ -3302,7 +3312,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz
}
// Check if src is pinned memory
vk_buffer buf = nullptr;
size_t buf_offset;
size_t buf_offset = 0;
ggml_vk_host_get(dst->device, src, buf, buf_offset);
if (buf != nullptr) {
@ -3344,7 +3354,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz
copy_size};
ggml_vk_sync_buffers(subctx);
vkCmdCopyBuffer(subctx->s->buffer, staging_buffer->buffer, dst->buffer, 1, &buf_copy);
vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging_buffer->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
if (width == spitch) {
deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys);
@ -3400,7 +3410,7 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size
// Check if dst is pinned memory
vk_buffer buf = nullptr;
size_t buf_offset;
size_t buf_offset = 0;
ggml_vk_host_get(src->device, dst, buf, buf_offset);
std::vector<vk::BufferCopy> slices(1);
@ -3480,7 +3490,7 @@ static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t ds
VkBufferCopy bc{ src_offset, dst_offset, size };
vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
vkCmdCopyBuffer(ctx->s->buffer, (VkBuffer)src->buffer, (VkBuffer)dst->buffer, 1, &bc);
}
static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
@ -3732,9 +3742,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src0_uma = false;
@ -3920,8 +3930,6 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
const uint64_t ne12 = src1->ne[2];
const uint64_t ne13 = src1->ne[3];
GGML_ASSERT(ne11 == 1);
const uint64_t ne20 = dst->ne[0];
const uint64_t ne21 = dst->ne[1];
const uint64_t ne22 = dst->ne[2];
@ -3930,13 +3938,18 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
const uint64_t r2 = ne12 / ne02;
const uint64_t r3 = ne13 / ne03;
// batch_n indicates that we need to compute a few vector results, and this assumes
// ne12 and ne13 are 1. It overloads the batch_strides to hold the row strides.
GGML_ASSERT(ne11 == 1 || ne12 * ne13 == 1);
bool batch_n = ne11 > 1;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src0_uma = false;
@ -3980,7 +3993,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type);
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11);
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
GGML_ASSERT(dmmv != nullptr);
@ -4052,8 +4065,10 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
}
uint32_t stride_batch_x = ne00*ne01;
uint32_t stride_batch_y = ne10*ne11;
// For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride
uint32_t stride_batch_x = batch_n ? 0 : ne00*ne01;
uint32_t stride_batch_y = batch_n ? ne10 : (ne10*ne11);
uint32_t stride_batch_d = batch_n ? ne20 : (ne20*ne21);
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
@ -4076,7 +4091,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
// compute
const vk_mat_vec_push_constants pc = {
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
stride_batch_x, stride_batch_y, (uint32_t)(ne20*ne21),
stride_batch_x, stride_batch_y, stride_batch_d,
(uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
};
ggml_vk_sync_buffers(subctx);
@ -4112,7 +4127,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qy;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
bool src1_uma = false;
@ -4256,7 +4271,10 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
} else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1 &&
!ggml_is_permuted(src0) && !ggml_is_permuted(src1)) {
ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst, dryrun);
} else if (dst->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
// when ne12 and ne13 are one.
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
} else {
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
@ -4300,11 +4318,11 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
vk_buffer d_ids;
vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0;
bool src0_uma = false;
@ -4505,11 +4523,11 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx;
vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0;
vk_buffer d_Qy;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
vk_buffer d_ids;
vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0;
bool src0_uma = false;
@ -4768,8 +4786,8 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
ggml_vk_sync_buffers(subctx);
vk_buffer d_Q, d_K, d_V, d_D, d_M;
uint64_t q_buf_offset, k_buf_offset, v_buf_offset, d_buf_offset, m_buf_offset;
vk_buffer d_Q = nullptr, d_K = nullptr, d_V = nullptr, d_D = nullptr, d_M = nullptr;
size_t q_buf_offset = 0, k_buf_offset = 0, v_buf_offset = 0, d_buf_offset = 0, m_buf_offset = 0;
bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false;
@ -5071,6 +5089,57 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
}
}
static uint32_t get_misalign_bytes(ggml_backend_vk_context * ctx, const ggml_tensor * t)
{
return ((vk_tensor_offset(t) + t->view_offs) & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1));;
}
template <typename T> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
GGML_UNUSED(p);
GGML_UNUSED(src0);
GGML_UNUSED(src1);
GGML_UNUSED(src2);
GGML_UNUSED(dst);
static_assert(!std::is_const<T>::value, "unexpected type");
GGML_ASSERT(!src0 || get_misalign_bytes(ctx, src0) == 0);
GGML_ASSERT(!src1 || get_misalign_bytes(ctx, src1) == 0);
GGML_ASSERT(!src2 || get_misalign_bytes(ctx, src2) == 0);
GGML_ASSERT(!dst || get_misalign_bytes(ctx, dst) == 0);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
p.misalign_offsets = (a_offset << 16) | d_offset;
GGML_UNUSED(src1);
GGML_UNUSED(src2);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
GGML_ASSERT(dst->op != GGML_OP_GET_ROWS || (a_offset == 0 && b_offset == 0 && d_offset == 0));
p.misalign_offsets = (a_offset << 16) | (b_offset << 8) | d_offset;
GGML_UNUSED(src2);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
p.a_offset = a_offset;
p.d_offset = d_offset;
GGML_UNUSED(src1);
GGML_UNUSED(src2);
}
template<typename PC>
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
@ -5174,8 +5243,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
GGML_ASSERT(d_D != nullptr);
uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT
uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
if(!src0_uma) {
d_X = src0_buf_ctx->dev_buffer;
x_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
@ -5191,6 +5259,12 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
GGML_ASSERT(d_Z != nullptr);
}
// Compute misalignment offset for descriptors and store it in in push constants, then align the descriptor offsets.
init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, dst);
x_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
y_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0);
@ -5378,7 +5452,6 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
@ -5390,7 +5463,7 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
d_offset,
0,
0.0f, 0.0f, offset,
}, dryrun);
}
@ -5474,8 +5547,8 @@ static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subc
ggml_vk_sync_buffers(subctx);
vk_buffer d_D, d_K, d_V, d_R, d_TF, d_TD, d_State;
uint64_t k_offset, v_offset, r_offset, tf_offset, td_offset, state_offset, dst_offset;
vk_buffer d_D = nullptr, d_K = nullptr, d_V = nullptr, d_R = nullptr, d_TF = nullptr, d_TD = nullptr, d_State = nullptr;
size_t k_offset = 0, v_offset = 0, r_offset = 0, tf_offset = 0, td_offset = 0, state_offset = 0, dst_offset = 0;
bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false;
if (ctx->device->uma) {
@ -5594,7 +5667,7 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c
const float sf3 = (float)dst->ne[3] / src0->ne[3];
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
(uint32_t)ggml_nelements(dst), 0,
(uint32_t)ggml_nelements(dst), 0, 0,
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
sf0, sf1, sf2, sf3,
@ -5704,13 +5777,12 @@ static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, co
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
d_offset,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);

View File

@ -21,9 +21,9 @@ void main() {
get_indices(idx, i00, i01, i02, i03);
if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) {
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
} else {
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]));
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]));
}
}

View File

@ -22,7 +22,7 @@ void main() {
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03);
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)]));
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)]));
idx += num_threads;
}

View File

@ -12,6 +12,6 @@ void main() {
return;
}
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
}

View File

@ -30,12 +30,12 @@ void main() {
const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03;
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : data_b[src1_idx]);
data_d[get_doffset() + dst_idx] = D_TYPE(is_src0 ? data_a[get_aoffset() + src0_idx] : data_b[get_boffset() + src1_idx]);
#else
if (is_src0) {
data_d[p.d_offset + dst_idx] = data_a[src0_idx];
data_d[get_doffset() + dst_idx] = data_a[get_aoffset() + src0_idx];
} else {
data_d[p.d_offset + dst_idx] = data_b[src1_idx];
data_d[get_doffset() + dst_idx] = data_b[get_boffset() + src1_idx];
}
#endif
}

View File

@ -19,9 +19,9 @@ void main() {
if (idx + (num_iter-1)*num_threads < p.ne) {
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[p.d_offset + idx] = D_TYPE(data_a[idx]);
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[p.d_offset + idx] = data_a[idx];
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
#endif
idx += num_threads;
}
@ -32,9 +32,9 @@ void main() {
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[p.d_offset + idx] = D_TYPE(data_a[idx]);
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[p.d_offset + idx] = data_a[idx];
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
#endif
idx += num_threads;
}

View File

@ -13,8 +13,8 @@ void main() {
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
#else
data_d[p.d_offset + dst_idx(idx)] = data_a[src0_idx(idx)];
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];
#endif
}

View File

@ -12,6 +12,6 @@ void main() {
return;
}
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(cos(val));
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(cos(val));
}

View File

@ -10,9 +10,10 @@ float16_t dequantFuncQ4_0(const in decodeBufQ4_0 bl, const in uint blockCoords[2
const float16_t d = bl.block.d;
const uint idx = coordInBlock[1];
const uint shift = (idx & 0x10) >> 2;
uint32_t qs = unpack8(uint32_t(bl.block.qs[(idx & 0xE) >> 1]))[idx & 1];
uint32_t qs = uint32_t(bl.block.qs[(idx & 0xE) >> 1]);
qs >>= shift;
qs &= 0xF;
qs &= 0x0F0F;
qs = unpack8(qs)[idx & 1];
float16_t ret = (float16_t(qs) - float16_t(8)) * d;
return ret;
}
@ -152,15 +153,17 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4
block_q4_K block;
};
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4_K_packed16 {
block_q4_K_packed16 block;
};
float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
decodeBufQ4_K_packed16 bl16 = decodeBufQ4_K_packed16(bl);
const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint n = iqs / 64; // 0,1,2,3
const uint b = (iqs % 64) / 32; // 0,1
const uint b = (idx & 0x20) >> 5; // 0,1
const uint is = (idx & 0xE0) >> 5; // 0..7
const uint qsi = n * 32 + (iqs % 32); // 0..127
const f16vec2 loadd = bl.block.d;
@ -184,9 +187,11 @@ float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2
const float16_t d = loadd.x * float16_t(sc);
const float16_t m = loadd.y * float16_t(mbyte);
uint32_t dmask = 0xF << (b * 4);
uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]);
qs = (qs >> (b * 4)) & 0x0F0F;
qs = unpack8(qs)[idx & 1];
float16_t ret = d * float16_t((bl.block.qs[qsi ] & dmask) >> (b * 4)) - m;
float16_t ret = d * float16_t(qs) - m;
return ret;
}
@ -195,18 +200,19 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5
block_q5_K block;
};
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5_K_packed16 {
block_q5_K_packed16 block;
};
float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
decodeBufQ5_K_packed16 bl16 = decodeBufQ5_K_packed16(bl);
const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint n = iqs / 64; // 0,1,2,3
const uint b = (iqs % 64) / 32; // 0,1
const uint b = (idx & 0x20) >> 5; // 0,1
const uint is = (idx & 0xE0) >> 5; // 0..7
const uint qsi = n * 32 + (iqs % 32); // 0..127
const uint qhi = (iqs % 32); // 0..31
const uint8_t hm = uint8_t(1 << (iqs / 32));
const uint32_t hm = 0x0101 << is;
const f16vec2 loadd = bl.block.d;
@ -230,9 +236,15 @@ float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2
const float16_t d = loadd.x * float16_t(sc);
const float16_t m = loadd.y * float16_t(mbyte);
uint32_t dmask = 0xF << (b * 4);
uint qh = uint32_t(bl16.block.qh[(idx & 0x1E) >> 1]);
qh = qh & hm;
qh = unpack8(qh)[idx & 1];
float16_t ret = d * (float16_t((bl.block.qs[qsi ] & dmask) >> (b * 4)) + float16_t((bl.block.qh[qhi ] & hm) != 0 ? 16 : 0)) - m;
uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]);
qs = (qs >> (b * 4)) & 0x0F0F;
qs = unpack8(qs)[idx & 1];
float16_t ret = d * (float16_t(qs) + (qh != 0 ? float16_t(16) : float16_t(0))) - m;
return ret;
}
@ -241,22 +253,30 @@ layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufQ6_
block_q6_K block;
};
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ6_K_packed16 {
block_q6_K_packed16 block;
};
float16_t dequantFuncQ6_K(const in decodeBufQ6_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
decodeBufQ6_K_packed16 bl16 = decodeBufQ6_K_packed16(bl);
const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint n = iqs / 128; // 0,1
const uint b = (iqs % 128) / 64; // 0,1
const uint is_b = (iqs % 32) / 16; // 0,1
const uint qhshift = ((iqs % 128) / 32) * 2;// 0,2,4,6
const uint is = 8 * n + qhshift + is_b; // 0..15
const uint qsi = n * 64 + (iqs % 64); // 0..127
const uint qhi = n * 32 + (iqs % 32); // 0..63
const uint b = (idx & 0x40) >> 6; // 0,1
const uint qhshift = (idx & 0x60) >> 4; // 0,2,4,6
const uint is = (idx & 0xF0) >> 4; // 0..15
const float16_t dscale = bl.block.d * float16_t(bl.block.scales[is]);
float16_t ret = dscale * float16_t(int8_t(((bl.block.ql[qsi ] >> (b * 4)) & 0xF) | (((bl.block.qh[qhi ] >> qhshift) & 3) << 4)) - 32);
uint ql = uint32_t(bl16.block.ql[((idx & 0x80) >> 2) + ((idx & 0x3E) >> 1)]);
ql = (ql >> (b * 4)) & 0x0F0F;
uint qh = uint32_t(bl16.block.qh[((idx & 0x80) >> 3) + ((idx & 0x1E) >> 1)]);
qh = ((qh >> qhshift) & 0x0303) << 4;
int q = unpack8(ql | qh)[idx & 1];
float16_t ret = dscale * float16_t(q - 32);
return ret;
}

View File

@ -20,7 +20,7 @@ void main() {
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03);
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) / FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)]));
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) / FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)]));
idx += num_threads;
}

View File

@ -7,7 +7,7 @@ layout (push_constant) uniform parameter
uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23;
uint d_offset;
uint misalign_offsets;
float param1; float param2; int param3;
} p;
@ -22,6 +22,10 @@ uint get_idx() {
return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
}
uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_boffset() { return (p.misalign_offsets >> 8) & 0xFF; }
uint get_doffset() { return p.misalign_offsets & 0xFF; }
// mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1
uint fastmod(uint a, uint b) {
if ((b & (b-1)) == 0) {

View File

@ -6,7 +6,7 @@ layout (push_constant) uniform parameter
uint ne;
uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
uint d_offset;
uint misalign_offsets;
float param1; float param2;
uint ne0_012mp; uint ne0_012L;
@ -24,6 +24,9 @@ uint get_idx() {
return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
}
uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_doffset() { return p.misalign_offsets & 0xFFFF; }
// see init_fastdiv_values in ggml-vulkan.cpp
uint fastdiv(uint n, uint mp, uint L) {
uint msbs, lsbs;

View File

@ -15,10 +15,10 @@ void main() {
return;
}
const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);

View File

@ -2,6 +2,7 @@
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_spirv_intrinsics: enable
#extension GL_EXT_control_flow_attributes : require
#if RTE16
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
@ -23,40 +24,64 @@ layout (push_constant) uniform parameter
#include "types.comp"
#define BLOCK_SIZE 256
layout(constant_id = 0) const uint BLOCK_SIZE = 32;
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
const uint NUM_ITER = 512 / BLOCK_SIZE;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint i = gl_GlobalInvocationID.x;
if (i >= p.pelements) {
return;
}
const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1);
const uint kx = i / ksize;
const uint kd = kx * ksize;
const uint ky = (i - kd) / p.OW;
const uint ix = i % p.OW;
const uint gidx = gl_GlobalInvocationID.x;
const uint oh = gl_GlobalInvocationID.y;
const uint batch = gl_GlobalInvocationID.z / p.IC;
const uint ic = gl_GlobalInvocationID.z % p.IC;
const uint iiw = ix * p.s0 + kx * p.d0 - p.p0;
const uint iih = oh * p.s1 + ky * p.d1 - p.p1;
const uint offset_dst =
((batch * p.OH + oh) * p.OW + ix) * p.CHW +
(ic * (p.KW * p.KH) + ky * p.KW + kx);
if (iih < 0 || iih >= p.IH || iiw < 0 || iiw >= p.IW) {
data_d[offset_dst] = D_TYPE(0.0f);
} else {
const uint offset_src = ic * p.offset_delta + batch * p.batch_offset;
data_d[offset_dst] = D_TYPE(data_a[offset_src + iih * p.IW + iiw]);
A_TYPE values[NUM_ITER];
uint offset_dst[NUM_ITER];
[[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) {
values[idx] = A_TYPE(0);
}
[[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) {
const uint i = gidx * NUM_ITER + idx;
const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1);
const uint kx = i / ksize;
const uint kd = kx * ksize;
const uint ky = (i - kd) / p.OW;
const uint ix = i % p.OW;
const uint iiw = ix * p.s0 + kx * p.d0 - p.p0;
const uint iih = oh * p.s1 + ky * p.d1 - p.p1;
offset_dst[idx] =
((batch * p.OH + oh) * p.OW + ix) * p.CHW +
(ic * (p.KW * p.KH) + ky * p.KW + kx);
if (i >= p.pelements) {
continue;
}
if (iih < p.IH && iiw < p.IW) {
const uint offset_src = ic * p.offset_delta + batch * p.batch_offset;
values[idx] = data_a[offset_src + iih * p.IW + iiw];
}
}
[[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) {
const uint i = gidx * NUM_ITER + idx;
if (i >= p.pelements) {
continue;
}
data_d[offset_dst[idx]] = D_TYPE(values[idx]);
}
}

View File

@ -20,7 +20,7 @@ void main() {
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03);
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) * FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)]));
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) * FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)]));
idx += num_threads;
}

View File

@ -9,9 +9,6 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
#define K_PER_ITER 8
#else
@ -21,70 +18,70 @@ layout (constant_id = 1) const uint NUM_ROWS = 1;
uint a_offset, b_offset, d_offset, y_offset;
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
{
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
#if K_PER_ITER == 8
#if QUANT_R == 2
const B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
const B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
const B_TYPE_VEC4 bv02 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4];
const B_TYPE_VEC4 bv13 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4];
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
#else
const vec4 bv0 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4]);
const vec4 bv1 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4 + 1]);
const vec4 bv0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]);
const vec4 bv1 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4 + 1]);
#endif
#else
// Check if the second of the pair of elements is OOB, and don't fetch B or
// accumulate it. We still fetch a pair of elements for A, which is fine for
// quantized formats since they'll be within the same block. We should
// probably skip fetching the second element for F16/F32, but as of now we
// still do.
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
// Check if the second of the pair of elements is OOB, and don't fetch B or
// accumulate it. We still fetch a pair of elements for A, which is fine for
// quantized formats since they'll be within the same block. We should
// probably skip fetching the second element for F16/F32, but as of now we
// still do.
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
FLOAT_TYPE b0 = 0, b1 = 0;
b0 = FLOAT_TYPE(data_b[b_offset + iybs + iqs]);
if (!OOB) {
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
}
FLOAT_TYPE b0 = 0, b1 = 0;
b0 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs]);
if (!OOB) {
b1 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs + y_offset]);
}
#endif
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = (ibi + col)/QUANT_K; // block index
ibi += p.ncols;
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = (ibi + col)/QUANT_K; // block index
ibi += p.ncols;
#if K_PER_ITER == 8
vec4 v = dequantize4(ib, iqs, a_offset);
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
vec4 v = dequantize4(ib, iqs, a_offset);
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
const vec2 dm = get_dm(ib, a_offset);
if (dm.y != 0) { // quant has min component
v = v * dm.x + dm.y;
v2 = v2 * dm.x + dm.y;
}
const vec2 dm = get_dm(ib, a_offset);
if (dm.y != 0) { // quant has min component
v = v * dm.x + dm.y;
v2 = v2 * dm.x + dm.y;
}
// matrix multiplication
FLOAT_TYPE rowtmp = dot(bv0, v);
rowtmp += dot(bv1, v2);
// matrix multiplication
FLOAT_TYPE rowtmp = dot(bv0, v);
rowtmp += dot(bv1, v2);
if (dm.y == 0)
rowtmp *= dm.x;
if (dm.y == 0)
rowtmp *= dm.x;
temp[n] += rowtmp;
temp[j][n] += rowtmp;
#else
const vec2 v = dequantize(ib, iqs, a_offset);
const vec2 v = dequantize(ib, iqs, a_offset);
// matrix multiplication
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
if (!OOB) {
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
}
// matrix multiplication
temp[j][n] = fma(FLOAT_TYPE(v.x), b0, temp[j][n]);
if (!OOB) {
temp[j][n] = fma(FLOAT_TYPE(v.y), b1, temp[j][n]);
}
#endif
}
}
}
@ -96,10 +93,12 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
FLOAT_TYPE temp[NUM_ROWS];
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
@ -131,24 +130,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
i++;
}
// sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
void main() {

View File

@ -83,3 +83,36 @@ void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) {
batch_idx * p.batch_stride_d;
#endif
}
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
layout (constant_id = 2) const uint NUM_COLS = 1;
shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE];
void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
// sum up partial sums and write back result
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][tid] = temp[j][n];
}
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][tid] += tmpsh[j][n][tid + s];
}
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
}
}
}
}

View File

@ -5,22 +5,11 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
@ -38,76 +27,89 @@ void main() {
const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = d.x;
const FLOAT_TYPE dmin = d.y;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = d.x;
const FLOAT_TYPE dmin = d.y;
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24];
B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32];
B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40];
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
uvec2 qs0 = uvec2(unpack8(qs0_u16));
uvec2 qs16 = uvec2(unpack8(qs16_u16));
uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
uvec2 qs0 = uvec2(unpack8(qs0_u16));
uvec2 qs16 = uvec2(unpack8(qs16_u16));
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16];
B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24];
B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32];
B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40];
B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56];
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
}
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
}
}
temp = fma(dall, sum1, fma(-dmin, sum2, temp));
}
tmp[gl_LocalInvocationID.x] = temp;
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
compute_outputs(first_row, p.stride_d - first_row);
}
}

View File

@ -5,22 +5,11 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
@ -35,66 +24,80 @@ void main() {
const uint8_t m = uint8_t(1 << (4 * v_im));
const uint l0 = 2*v_in; // 0...15
const uint l0 = 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
const uint s_shift = 4 * v_im;
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24];
B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32];
B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40];
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3];
uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4];
uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5];
u8vec2 s0 = unpack8(s0_16);
u8vec2 s2 = unpack8(s2_16);
u8vec2 s4 = unpack8(s4_16);
u8vec2 s6 = unpack8(s6_16);
u8vec2 s8 = unpack8(s8_16);
u8vec2 s10 = unpack8(s10_16);
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3];
uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4];
uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5];
u8vec2 s0 = unpack8(s0_16);
u8vec2 s2 = unpack8(s2_16);
u8vec2 s4 = unpack8(s4_16);
u8vec2 s6 = unpack8(s6_16);
u8vec2 s8 = unpack8(s8_16);
u8vec2 s10 = unpack8(s10_16);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16];
B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24];
B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32];
B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40];
B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56];
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
}
temp[j][n] = fma(d, sum, temp[j][n]);
}
}
temp = fma(d, sum, temp);
}
tmp[gl_LocalInvocationID.x] = temp;
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
compute_outputs(first_row, p.stride_d - first_row);
}
}

View File

@ -6,22 +6,11 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
@ -31,8 +20,8 @@ void main() {
const uint step = 4;
const uint il = itid/step; // 0...3
const uint ir = itid - step*il; // 0...7 or 0...3
const uint il = itid/step; // 0...3
const uint ir = itid - step*il; // 0...7 or 0...3
const uint n = 4;
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
@ -42,90 +31,103 @@ void main() {
const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
uvec4 scale0 = uvec4(unpack8(scale0_u32));
uvec4 scale4 = uvec4(unpack8(scale4_u32));
uvec4 scale8 = uvec4(unpack8(scale8_u32));
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
uvec4 scale0 = uvec4(unpack8(scale0_u32));
uvec4 scale4 = uvec4(unpack8(scale4_u32));
uvec4 scale8 = uvec4(unpack8(scale8_u32));
const uint32_t sc0 = ( scale0.x & 0x3f);
const uint32_t sc1 = ( scale0.y & 0x3f);
const uint32_t sc2 = ( scale4.x & 0x3f);
const uint32_t sc3 = ( scale4.y & 0x3f);
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
const uint32_t sc0 = ( scale0.x & 0x3f);
const uint32_t sc1 = ( scale0.y & 0x3f);
const uint32_t sc2 = ( scale4.x & 0x3f);
const uint32_t sc3 = ( scale4.y & 0x3f);
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4];
uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16];
uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4];
uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16];
uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F;
uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F;
uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F;
uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F;
uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F;
uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4));
uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4));
uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4));
uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4));
uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4));
uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4));
uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4));
uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4));
const uint32_t q4_0 = qs0_lo4.x;
const uint32_t q4_1 = qs0_lo4.y;
const uint32_t q4_2 = qs0_lo4.z;
const uint32_t q4_3 = qs0_lo4.w;
const uint32_t q4_4 = qs0_hi4.x;
const uint32_t q4_5 = qs0_hi4.y;
const uint32_t q4_6 = qs0_hi4.z;
const uint32_t q4_7 = qs0_hi4.w;
const uint32_t q4_8 = qs64_lo4.x;
const uint32_t q4_9 = qs64_lo4.y;
const uint32_t q4_10 = qs64_lo4.z;
const uint32_t q4_11 = qs64_lo4.w;
const uint32_t q4_12 = qs64_hi4.x;
const uint32_t q4_13 = qs64_hi4.y;
const uint32_t q4_14 = qs64_hi4.z;
const uint32_t q4_15 = qs64_hi4.w;
const uint32_t q4_0 = qs0_lo4.x;
const uint32_t q4_1 = qs0_lo4.y;
const uint32_t q4_2 = qs0_lo4.z;
const uint32_t q4_3 = qs0_lo4.w;
const uint32_t q4_4 = qs0_hi4.x;
const uint32_t q4_5 = qs0_hi4.y;
const uint32_t q4_6 = qs0_hi4.z;
const uint32_t q4_7 = qs0_hi4.w;
const uint32_t q4_8 = qs64_lo4.x;
const uint32_t q4_9 = qs64_lo4.y;
const uint32_t q4_10 = qs64_lo4.z;
const uint32_t q4_11 = qs64_lo4.w;
const uint32_t q4_12 = qs64_hi4.x;
const uint32_t q4_13 = qs64_hi4.y;
const uint32_t q4_14 = qs64_hi4.z;
const uint32_t q4_15 = qs64_hi4.w;
B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4];
B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8];
B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4];
B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
B_TYPE_VEC4 by10 = data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4];
B_TYPE_VEC4 by132 = data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 + 8];
B_TYPE_VEC4 by20 = data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4];
B_TYPE_VEC4 by232 = data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 + 8];
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7,
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp));
}
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7,
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
}
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
}
}

View File

@ -6,22 +6,11 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
@ -39,122 +28,135 @@ void main() {
const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
uvec4 scale0 = uvec4(unpack8(scale0_u32));
uvec4 scale4 = uvec4(unpack8(scale4_u32));
uvec4 scale8 = uvec4(unpack8(scale8_u32));
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
uvec4 scale0 = uvec4(unpack8(scale0_u32));
uvec4 scale4 = uvec4(unpack8(scale4_u32));
uvec4 scale8 = uvec4(unpack8(scale8_u32));
const uint32_t sc0 = ( scale0.x & 0x3f);
const uint32_t sc1 = ( scale0.y & 0x3f);
const uint32_t sc2 = ( scale4.x & 0x3f);
const uint32_t sc3 = ( scale4.y & 0x3f);
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
const uint32_t sc0 = ( scale0.x & 0x3f);
const uint32_t sc1 = ( scale0.y & 0x3f);
const uint32_t sc2 = ( scale4.x & 0x3f);
const uint32_t sc3 = ( scale4.y & 0x3f);
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16);
uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16);
uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F;
uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F;
uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F;
uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F;
uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F;
uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8]));
uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8]));
uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4;
uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3;
uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0;
uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1;
uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4;
uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3;
uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0;
uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1;
qs0_16_u32_lo4 += qs0_16_lo4_offset16;
qs0_16_u32_hi4 += qs0_16_hi4_offset16;
qs64_80_u32_lo4 += qs64_80_lo4_offset16;
qs64_80_u32_hi4 += qs64_80_hi4_offset16;
qs0_16_u32_lo4 += qs0_16_lo4_offset16;
qs0_16_u32_hi4 += qs0_16_hi4_offset16;
qs64_80_u32_lo4 += qs64_80_lo4_offset16;
qs64_80_u32_hi4 += qs64_80_hi4_offset16;
uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4));
uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4));
uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4));
uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4));
uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4));
uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4));
uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4));
uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4));
const uint32_t q4_0 = qs0_16_lo4.x;
const uint32_t q4_1 = qs0_16_lo4.y;
const uint32_t q4_2 = qs0_16_lo4.z;
const uint32_t q4_3 = qs0_16_lo4.w;
const uint32_t q4_4 = qs0_16_hi4.x;
const uint32_t q4_5 = qs0_16_hi4.y;
const uint32_t q4_6 = qs0_16_hi4.z;
const uint32_t q4_7 = qs0_16_hi4.w;
const uint32_t q4_8 = qs64_80_lo4.x;
const uint32_t q4_9 = qs64_80_lo4.y;
const uint32_t q4_10 = qs64_80_lo4.z;
const uint32_t q4_11 = qs64_80_lo4.w;
const uint32_t q4_12 = qs64_80_hi4.x;
const uint32_t q4_13 = qs64_80_hi4.y;
const uint32_t q4_14 = qs64_80_hi4.z;
const uint32_t q4_15 = qs64_80_hi4.w;
const uint32_t q4_0 = qs0_16_lo4.x;
const uint32_t q4_1 = qs0_16_lo4.y;
const uint32_t q4_2 = qs0_16_lo4.z;
const uint32_t q4_3 = qs0_16_lo4.w;
const uint32_t q4_4 = qs0_16_hi4.x;
const uint32_t q4_5 = qs0_16_hi4.y;
const uint32_t q4_6 = qs0_16_hi4.z;
const uint32_t q4_7 = qs0_16_hi4.w;
const uint32_t q4_8 = qs64_80_lo4.x;
const uint32_t q4_9 = qs64_80_lo4.y;
const uint32_t q4_10 = qs64_80_lo4.z;
const uint32_t q4_11 = qs64_80_lo4.w;
const uint32_t q4_12 = qs64_80_hi4.x;
const uint32_t q4_13 = qs64_80_hi4.y;
const uint32_t q4_14 = qs64_80_hi4.z;
const uint32_t q4_15 = qs64_80_hi4.w;
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
B_TYPE_VEC2 by10 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2];
B_TYPE_VEC2 by116 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 8];
B_TYPE_VEC2 by132 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 16];
B_TYPE_VEC2 by148 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 24];
B_TYPE_VEC2 by20 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2];
B_TYPE_VEC2 by216 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 8];
B_TYPE_VEC2 by232 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 16];
B_TYPE_VEC2 by248 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 24];
const FLOAT_TYPE sx =
fma(FLOAT_TYPE(by10.x), q4_0,
fma(FLOAT_TYPE(by10.y), q4_1,
fma(FLOAT_TYPE(by116.x), q4_2,
FLOAT_TYPE(by116.y) * q4_3)));
const FLOAT_TYPE sy =
fma(FLOAT_TYPE(by132.x), q4_4,
fma(FLOAT_TYPE(by132.y), q4_5,
fma(FLOAT_TYPE(by148.x), q4_6,
FLOAT_TYPE(by148.y) * q4_7)));
const FLOAT_TYPE sz =
fma(FLOAT_TYPE(by20.x), q4_8,
fma(FLOAT_TYPE(by20.y), q4_9,
fma(FLOAT_TYPE(by216.x), q4_10,
FLOAT_TYPE(by216.y) * q4_11)));
const FLOAT_TYPE sw =
fma(FLOAT_TYPE(by232.x), q4_12,
fma(FLOAT_TYPE(by232.y), q4_13,
fma(FLOAT_TYPE(by248.x), q4_14,
FLOAT_TYPE(by248.y) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp));
}
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
const FLOAT_TYPE sx =
fma(FLOAT_TYPE(by10.x), q4_0,
fma(FLOAT_TYPE(by10.y), q4_1,
fma(FLOAT_TYPE(by116.x), q4_2,
FLOAT_TYPE(by116.y) * q4_3)));
const FLOAT_TYPE sy =
fma(FLOAT_TYPE(by132.x), q4_4,
fma(FLOAT_TYPE(by132.y), q4_5,
fma(FLOAT_TYPE(by148.x), q4_6,
FLOAT_TYPE(by148.y) * q4_7)));
const FLOAT_TYPE sz =
fma(FLOAT_TYPE(by20.x), q4_8,
fma(FLOAT_TYPE(by20.y), q4_9,
fma(FLOAT_TYPE(by216.x), q4_10,
FLOAT_TYPE(by216.y) * q4_11)));
const FLOAT_TYPE sw =
fma(FLOAT_TYPE(by232.x), q4_12,
fma(FLOAT_TYPE(by232.y), q4_13,
fma(FLOAT_TYPE(by248.x), q4_14,
FLOAT_TYPE(by248.y) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
}
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
}
}

View File

@ -6,22 +6,11 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
@ -42,69 +31,82 @@ void main() {
const uint s_offset = 8*v_im + is;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
FLOAT_TYPE scales[4];
scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]);
scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]);
scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]);
scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]);
FLOAT_TYPE scales[4];
scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]);
scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]);
scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]);
scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]);
uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16);
uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16);
uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16);
uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16);
uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F;
uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F;
uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F;
uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F;
uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F;
uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F;
uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F;
uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F;
uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16);
uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4;
uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2;
uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0;
uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2;
uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16);
uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4;
uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2;
uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0;
uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2;
uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32;
uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32;
uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32;
uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32;
uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32;
uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32;
uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32;
uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32;
uvec4 q0 = uvec4(unpack8(q0_u32));
uvec4 q1 = uvec4(unpack8(q1_u32));
uvec4 q2 = uvec4(unpack8(q2_u32));
uvec4 q3 = uvec4(unpack8(q3_u32));
uvec4 q0 = uvec4(unpack8(q0_u32));
uvec4 q1 = uvec4(unpack8(q1_u32));
uvec4 q2 = uvec4(unpack8(q2_u32));
uvec4 q3 = uvec4(unpack8(q3_u32));
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
B_TYPE_VEC4 by0 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4];
B_TYPE_VEC4 by32 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8];
B_TYPE_VEC4 by64 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16];
B_TYPE_VEC4 by96 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24];
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 4; ++l) {
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32),
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 4; ++l) {
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32),
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
}
temp[j][n] += sum * d;
}
}
temp += sum * d;
}
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
compute_outputs(first_row, p.stride_d - first_row);
}
}

View File

@ -24,5 +24,5 @@ void main() {
const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03;
data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : 0.0f);
data_d[get_doffset() + dst_idx] = D_TYPE(is_src0 ? data_a[get_aoffset() + src0_idx] : 0.0f);
}

View File

@ -22,5 +22,5 @@ void main() {
return;
}
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx_mod(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx_mod(idx)]);
}

View File

@ -18,7 +18,7 @@ void main() {
continue;
}
data_d[p.d_offset + idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) * FLOAT_TYPE(p.param1));
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) * FLOAT_TYPE(p.param1));
idx += num_threads;
}
}

View File

@ -12,6 +12,6 @@ void main() {
return;
}
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(sin(val));
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(sin(val));
}

View File

@ -12,6 +12,6 @@ void main() {
return;
}
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val * val);
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val * val);
}

View File

@ -2,7 +2,7 @@
layout (push_constant) uniform parameter
{
uint ne; uint d_offset;
uint ne; uint a_offset; uint d_offset;
uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13;
float sf0; float sf1; float sf2; float sf3;
@ -32,5 +32,5 @@ void main() {
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
data_d[p.d_offset + idx] = D_TYPE(data_a[i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]);
data_d[p.d_offset + idx] = D_TYPE(data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]);
}

View File

@ -78,7 +78,8 @@ void execute_command(const std::string& command, std::string& stdout_str, std::s
}
PROCESS_INFORMATION pi;
STARTUPINFOA si = { sizeof(STARTUPINFOA) };
STARTUPINFOA si = {};
si.cb = sizeof(STARTUPINFOA);
si.dwFlags = STARTF_USESTDHANDLES;
si.hStdOutput = stdout_write;
si.hStdError = stderr_write;

View File

@ -3760,104 +3760,10 @@ struct ggml_tensor * ggml_clamp(
return result;
}
// ggml_conv_1d
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OCIC, K] => [OC, IC * K]
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
return result;
}
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d) {
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
}
// ggml_conv_transpose_1d
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
}
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
GGML_ASSERT(ggml_is_matrix(b));
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(p0 == 0);
GGML_ASSERT(d0 == 1);
const int64_t ne[4] = {
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
a->ne[1], b->ne[2], 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_TRANSPOSE_1D;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_depthwise
struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC1, KH, KW] => [1, OC, 1, KH * KW]
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
return result;
}
// ggml_conv_2d
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
// a: [OCIC, KH, KW]
// b: [N, IC, IH, IW]
@ -3874,10 +3780,11 @@ struct ggml_tensor * ggml_im2col(
int d1,
bool is_2D,
enum ggml_type dst_type) {
if(is_2D) {
if (is_2D) {
GGML_ASSERT(a->ne[2] == b->ne[2]);
} else {
GGML_ASSERT(a->ne[1] == b->ne[1]);
//GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
GGML_ASSERT(b->ne[1] == a->ne[1]);
GGML_ASSERT(b->ne[3] == 1);
}
@ -3928,6 +3835,108 @@ struct ggml_tensor * ggml_im2col_back(
return result;
}
// ggml_conv_1d
struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OCIC, K] => [OC, IC * K]
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
return result;
}
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d) {
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
}
// ggml_conv_1d_dw
struct ggml_tensor * ggml_conv_1d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]);
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16);
struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a);
result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1);
return result;
}
// ggml_conv_1d_dw_ph
struct ggml_tensor * ggml_conv_1d_dw_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int d0) {
return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0);
}
// ggml_conv_transpose_1d
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
}
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
GGML_ASSERT(ggml_is_matrix(b));
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(p0 == 0);
GGML_ASSERT(d0 == 1);
const int64_t ne[4] = {
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
a->ne[1], b->ne[2], 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_TRANSPOSE_1D;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_2d
// a: [OCIC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OC, OH, OW]
@ -3973,6 +3982,31 @@ struct ggml_tensor * ggml_conv_2d_s1_ph(
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
}
// ggml_conv_2d_dw
struct ggml_tensor * ggml_conv_2d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC1, KH, KW] => [1, OC, 1, KH * KW]
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
return result;
}
// ggml_conv_transpose_2d_p0
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
@ -6489,7 +6523,7 @@ struct gguf_context {
void * data;
};
static size_t gguf_type_size(enum gguf_type type) {
size_t gguf_type_size(enum gguf_type type) {
GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
return GGUF_TYPE_SIZE[type];
}
@ -6617,13 +6651,7 @@ struct gguf_context * gguf_init_empty(void) {
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = ggml_fopen(fname, "rb");
if (!file) {
fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
return NULL;
}
struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
// offset from start of file
size_t offset = 0;
@ -6636,7 +6664,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
for (uint32_t i = 0; i < sizeof(magic); i++) {
if (magic[i] != GGUF_MAGIC[i]) {
fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
fclose(file);
return NULL;
}
}
@ -6647,7 +6674,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
if (!ctx) {
fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
fclose(file);
return NULL;
}
@ -6665,7 +6691,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (ctx->header.version == 1) {
fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6678,7 +6703,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6688,12 +6712,13 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
{
const uint64_t n_kv = ctx->header.n_kv;
ctx->kv = calloc(n_kv, sizeof(struct gguf_kv));
if (!ctx->kv) {
fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
if (n_kv > 0) {
ctx->kv = calloc(n_kv, sizeof(struct gguf_kv));
if (!ctx->kv) {
fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__);
gguf_free(ctx);
return NULL;
}
}
for (uint64_t i = 0; i < n_kv; ++i) {
@ -6740,7 +6765,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// prevent from integer overflow in the malloc below
if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6748,7 +6772,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
if (!kv->value.arr.data) {
fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6760,7 +6783,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// prevent from integer overflow in the malloc below
if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6768,7 +6790,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str));
if (!kv->value.arr.data) {
fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6799,7 +6820,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (!ok) {
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6810,7 +6830,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
if (!ctx->infos) {
fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6846,7 +6865,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6889,7 +6907,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// this tensor type support have been removed:
fprintf(stderr, "%s: tensor '%s' of type %d: %s\n",
__func__, info->name.data, (int) info->type, ggml_type_name(info->type));
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6897,7 +6914,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (ne % ggml_blck_size(info->type) != 0) {
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
__func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6929,7 +6945,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
*params.ctx = ggml_init(pdata);
if (*params.ctx == NULL) {
fprintf(stderr, "%s: failed to initialize context\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
@ -6948,7 +6963,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (!ok) {
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
@ -6987,7 +7001,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (!ok) {
fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
@ -6996,11 +7009,21 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
ggml_set_no_alloc(ctx_data, params.no_alloc);
}
fclose(file);
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = ggml_fopen(fname, "rb");
if (!file) {
fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
return NULL;
}
struct gguf_context * result = gguf_init_from_file_impl(file, params);
fclose(file);
return result;
}
void gguf_free(struct gguf_context * ctx) {
if (ctx == NULL) {
return;
@ -7460,13 +7483,7 @@ void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const vo
// fwrite(val, sizeof(char), size, file);
//}
struct gguf_buf {
void * data;
size_t size;
size_t offset;
};
static struct gguf_buf gguf_buf_init(size_t size) {
struct gguf_buf gguf_buf_init(size_t size) {
struct gguf_buf buf = {
/*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
/*buf.size =*/ size,
@ -7476,7 +7493,7 @@ static struct gguf_buf gguf_buf_init(size_t size) {
return buf;
}
static void gguf_buf_free(struct gguf_buf buf) {
void gguf_buf_free(struct gguf_buf buf) {
if (buf.data) {
GGML_FREE(buf.data);
}
@ -7514,7 +7531,7 @@ static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_si
buf->offset += el_size;
}
static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
// write header
gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));

View File

@ -1 +1 @@
cc1ab854224b1723961863c7f73bc7905cc22bf2
e61b9f5df05f44714128507f31128b89c7fb3134