Compare commits

...

249 Commits

Author SHA1 Message Date
8cbc363561 coreml : attempt to fix ANE-optimized models 2023-07-11 23:03:53 +03:00
4774d2feb0 whisper : minor OpenVINO refactoring (#1037)
Hopefully I didn't break something - haven't tested
2023-07-04 20:28:27 +03:00
6f0114f4a6 go : call SetDuration appropriately (#1077) 2023-07-04 16:13:25 +03:00
66616dbd4d go : fix context.Process call in examples (#1067) 2023-07-04 16:05:35 +03:00
62b81276e0 whisper : add OpenVINO support (#1037)
* openvino: use OpenVINO encoder inference

* openvino: add python script for OpenVINO model generation

* whisper: Fix 'unused' warnings when OpenVINO isn't enabled in build

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* whisper: Fix compilation error

* whisper: revert whisper_get_openvino_path_encoder & whisper_get_openvino_path_cache to non-const func signatures

* cmake: Add openvino-encoder as separate object target

* whisper : minor style fixes

* minor : indentation fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-04 15:56:11 +03:00
176d7e4e7b readme : better wording (#1064) 2023-07-04 15:30:31 +03:00
70e6fcd78b readme : add tinydiarize instructions (#1058) 2023-07-04 09:51:22 +03:00
c8d0f5fe98 whisper : support speaker segmentation (local diarization) of mono audio via tinydiarize (#1058)
* add HuggingFace mirror to download  ggml model

* support tdrz via simple hack overriding solm tokens

* fix incorrect translate/transcribe token_ids that are not static const

* add apollo 13 sample for tdrz demo

* render [SPEAKER TURN] consistently in all terminal output using vocab.id_to_token

* extend whisper_segment with speaker_turn_next field and save in json output

* fix failing go build

* slipped in some python syntax whoops

* whisper : finalize tinydiarize support (add flag + fixes)

* whisper : tdrz support for word-level timestamps (respect max_len)

* java : try to fix tests after adding tdrz_enable flag

* main : remove TODO leftover

* java : fix params order list after adding "tdrz_enable"

* whisper : fix solm and add nosp token

* main : print tinydiarize help

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-04 09:45:00 +03:00
fdf58a6668 talk-llama : fix new rope interface 2023-07-03 19:24:01 +03:00
8ba42095c5 Revert "ggml : do not use _GNU_SOURCE gratuitously (#1027)"
This reverts commit 3f7a03ebe3.
2023-07-02 21:53:52 +03:00
d6509bf78d ggml : sync latest repo (mostly refactoring changes) 2023-07-02 21:46:09 +03:00
85ed71aaec talk-llama : fix build on macOS (#1062)
* talk-llama : use posix_madvise() instead of madvise() derived from BSD

sed -i 's,\<madvise\>,posix_&,g;s,\<MADV_,POSIX_&,g' examples/talk-llama/llama-util.h

* make : enable Darwin extensions for macOS builds

This is an attempt at fixing macOS build error coming from the fact that
RLIMIT_MEMLOCK define is not available there without Darwin extensions.
2023-06-28 22:34:50 +03:00
49c9472fa0 extra : update 'quantize-all.sh' to quantize all downloaded models (#1054)
Script will now do what it says: quantize everything except testing models in the 'models'  directory.
2023-06-28 22:07:02 +03:00
72deb41eb2 whisper : split_on_word no longer trims (#1046) 2023-06-25 23:51:01 +03:00
3f7a03ebe3 ggml : do not use _GNU_SOURCE gratuitously (#1027)
* Do not use _GNU_SOURCE gratuitously.

What is needed to build whisper.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions.

There is no need to penalize musl libc which simply follows standards.

Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
minimal FTM (_XOPEN_SOURCE=600) or other FTM depending on their needs.

It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.

* examples : include SDL headers before other headers

This is an attempt at fixing macOS build error coming from SDL2 relying
on Darwin extension memset_pattern4/8/16 coming from Apple's string.h.
2023-06-25 16:34:30 +03:00
62642bb61c talk-llama : fix build after ggml sync (#1049)
sed -i 's,GGML_BACKEND_CUDA,GGML_BACKEND_GPU,g' examples/talk-llama/llama.cpp
2023-06-25 16:13:50 +03:00
f1c9df5806 metal : sync ggml-metal (ref #1047) 2023-06-25 15:40:39 +03:00
6c25fae1c4 opencl : sync latest ggml-opencl 2023-06-25 15:38:30 +03:00
44cb044e66 whisper : fix build with -Werror=undef (#1045) 2023-06-25 15:30:39 +03:00
6c68218e3c models : add ggml_to_pt script (#1042)
* adding ggml_to_pt

* typo sys too many args

* fixing swap errors dimensions

---------

Co-authored-by: simonMoisselin <simon.moisselin@gmail.com>
2023-06-25 15:29:54 +03:00
f11f33f1c0 models : cd statements are quoted to allow spaces in path (#1041) 2023-06-25 15:27:28 +03:00
8ac23c9f77 models : handle paths with spaces in download script (close #1038) 2023-06-25 15:23:23 +03:00
14baf2e7f3 main : add diarization support for all current output types (#1031)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-25 15:07:57 +03:00
bc2dcf85fe readme : add java alternative binding (#1029)
Signed-off-by: Miguel Álvarez <miguelwork92@gmail.com>
2023-06-25 14:46:07 +03:00
1e45911f1a go : add support for whisper_full_lang_id() (#1010)
* * Add support for whisper_full_lang_id() to go bindings

* Expose token.id so we can test beg, eot etc

---------

Co-authored-by: Jay Binks <jay.binks@overthewire.com.au>
2023-06-25 14:45:33 +03:00
67564201ec go : fix "cb" -> "callNewSegment" 2023-06-25 14:34:10 +03:00
5feb0dffba ggml : sync latest ggml lib 2023-06-25 14:30:44 +03:00
7dfc11843c go : improve progress reporting and callback handling (#1024)
- Rename `cb` to `callNewSegment` in the `Process` function
- Add `callProgress` as a new parameter to the `Process` function
- Introduce `ProgressCallback` type for reporting progress during processing
- Update `Whisper_full` function to include `progressCallback` parameter
- Add `registerProgressCallback` function and `cbProgress` map for handling progress callbacks

Signed-off-by: appleboy <appleboy.tw@gmail.com>
2023-06-25 14:07:55 +03:00
6a7f3b8db2 make : update cuBLAS build both x86 and aarch64 (#1015)
make cuBLAS compilation compatible with x86 as well as aarch64.
2023-06-25 13:59:48 +03:00
207a12f5bc make : fix for CUDA native not working as an option on Ubuntu (#1012) 2023-06-25 13:57:18 +03:00
26b70395ff main : exit gracefully when invalid params are passed
* Refactor whisper_params_parse to return false on failure

* Updated help flag behavior
2023-06-25 13:52:29 +03:00
598f607e28 main : gracefully exit when invalid params are passed (#1002)
* Refactor whisper_params_parse to return false on failure

* Updated help flag behavior
2023-06-25 13:51:59 +03:00
3ec7bfffe0 py : make convert-pt-to-ggml.py backwards compatible with older vocab.json tokenizer files (#1001)
* patch checkpoint convert script to keep compatibility with older hf_transformers whisper tokenizer

* typo fix
2023-06-25 13:50:14 +03:00
a7f822ef59 readme : corrected syntax for markdown link (#995) 2023-06-25 13:46:44 +03:00
57543c169e updated java README 2023-06-06 10:27:26 +10:00
5b9e59bc07 speak scripts for Windows 2023-06-01 22:45:00 +10:00
3f7436e8a0 updated README for java 2023-06-01 16:55:48 +10:00
ce6f747064 whisper.android : support decode wav file has 2 channels (#972) 2023-05-31 10:13:14 +03:00
d7c936b44a Feature/java bindings2 (#944)
* Java needs to call `whisper_full_default_params_by_ref()`, returning struct by val does not seem to work.
* added convenience methods to WhisperFullParams
* Remove unused WhisperJavaParams
2023-05-29 09:38:58 +10:00
9b926844e3 models : fix README.md (#964)
Fixes typo on line 76 of models/README.md
2023-05-27 10:40:28 +03:00
5e2b3407ef examples : update elevenlabs scripts to use official python API (#837)
* Update elevenlabs example to use ufficial python API

* Update elevenlabs example to use official python API
2023-05-24 21:11:01 +03:00
4e16a8fb63 readme : highlight OpenBLAS support (#956)
* highlight openblas support

* Update README.md
2023-05-24 11:23:51 +03:00
77eab3fbfe talk-llama : sync latest llama.cpp (close #922, close #954) 2023-05-23 14:04:39 +03:00
041be06d58 cmake : build with any BLAS compatible library (#927)
* Build with any BLAS library

* ci: Removed explicit CUDA nvcc path
2023-05-20 21:23:45 +03:00
429b9785c0 ggml : update WASM SIMD 2023-05-20 20:00:06 +03:00
e410cfc3ce ggml : sync latest ggml repo
- new Q4 and Q8 quantization
- updated CUDA
2023-05-20 18:56:30 +03:00
bc89f285d8 bindings : add java bindings (#931)
* WIP - java bindings

* updated README

* failed attempt at JNI

* fullTranscribe() test passes

* tested on Ubuntu 20

* link to Java bindings
2023-05-20 18:25:02 +03:00
56a87ba45d whisper : fix hebrew language code (#935) 2023-05-20 18:17:54 +03:00
95b02d76b0 coreml : add support of large-v1 model (#926) 2023-05-15 18:36:06 +03:00
a5defbc1b9 release : v1.4.2 2023-05-14 19:06:45 +03:00
aaf0d41c7c ggml : add AVX dot products 2023-05-14 18:56:46 +03:00
0cb820e0f9 talk-llama : fix build + sync latest llama.cpp 2023-05-14 18:46:42 +03:00
16564f554f readme : improve Core ML model conversion guidance (#915) 2023-05-14 18:11:08 +03:00
fd01209d09 coreml : support quantized model files 2023-05-14 18:09:44 +03:00
e693074aa6 ggml : sync latest ggml
- New Q4 and Q5 formats
- Various improvements
2023-05-14 18:04:23 +03:00
d652cf12ec main : fix help for --no-timestamps arg (#908) 2023-05-14 17:54:57 +03:00
2b6a074305 extra : update ggml sync script 2023-05-14 10:01:52 +03:00
5300117471 whisper.objc : enable Core ML in example & fix segmentation fault (#910)
* coreml : update endcoder header import path

* coreml : force objc_arc in whisper-encoder.mm

* whisper.objc : create coreml/ group link

* whisper.objc : add coreml model link

* whisper.objc : update readme

* coreml : use -fobjc-arc for coreml/whisper-encoder.mm

* ci: create dummy .mlmodelc for pass ios build

* whisper.objc : update readme

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-14 09:47:02 +03:00
70af52a316 coreml : fix seg fault, double free (#919, #917, #899) 2023-05-14 09:42:19 +03:00
1d17cd5bb3 coreml : fix memory leak (#899) 2023-05-09 18:38:12 +03:00
bf2449dfae cmake : fix define used for COREML_ALLOW_FALLBACK (#893) 2023-05-08 21:08:09 +03:00
4e4d00c67a talk-llama : only copy used KV cache in get / set state (#890)
---------

Co-authored-by: ejones <evan.q.jones@gmail.com>
2023-05-08 20:59:21 +03:00
9931d66400 readme : add instructions on converting to GGML + "--no-config" to wget (#874) 2023-05-08 20:58:36 +03:00
1a548c048e cmake : fix options disabling AVX and AVX2 flags (#885) 2023-05-08 20:45:53 +03:00
14bee39b29 cmake : add options to disable CPU flags (#860) 2023-05-04 19:31:04 +03:00
d458fcbc15 ci : add cuBLAS build workflow and fix error causing lines in CMakeLists (#867)
* Add windows build with cuBLAS

* Remove error causing lines for cuBLAS on Windows
2023-05-03 23:47:37 +03:00
919e58b96a readme : partial OpenCL GPU support via CLBlast (#863)
* ggml : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
WHISPER_CLBLAST=1 make

* CMake/Makefile : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
```
Makefile:
cd whisper.cpp
WHISPER_CLBLAST=1 make

CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON  ..
make
```

* Update README.md

Added OpenCL Build Instructions

* Instruction: Partial OpenCL GPU support via CLBlast

Added build instructions and examples for Make and CMake to support OpenCL enabled GPUs.
2023-05-03 19:24:43 +03:00
05bef0f0e9 build : CLBlast support as in llama.cpp (#862)
* ggml : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
WHISPER_CLBLAST=1 make

* CMake/Makefile : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
```
Makefile:
cd whisper.cpp
WHISPER_CLBLAST=1 make

CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON  ..
make
```
2023-05-02 22:50:32 +03:00
5974c8facd ggml : fix 32-bit ARM build + quantization 2023-05-02 21:52:26 +03:00
0bcb64b184 ggml : sync ggml (clBLAST + tensor names) 2023-05-02 21:24:18 +03:00
0bf680fea2 talk-llama : fix session prompt load (#854) 2023-05-02 20:05:27 +03:00
b806420873 whisper : add detect-language mode (#853)
* add detectlanguage flag

* renaming and help

* no idea why that last one didn't commit

* run language detection if dl is set

* help message fix

* various fixes

* fix quitting

* fix language being english on print
2023-05-02 19:51:52 +03:00
be5911a9f3 talk-llama : add --session support (#845)
* feat: adding session support

* readme: adding --session info in examples/talk-llama

* llama: adding session fixes

* readme: updating session doc

* talk-llama: update the value of need_to_save_session to true in order to save the session in the subsequent interaction

* talk-llama: adding missing function which updates session_tokens
2023-05-01 20:18:10 +03:00
d375d73b2e bench : improve benchmarks 2023-05-01 14:44:39 +03:00
7765770f89 whisper : add memory sizes for Q8_0 (close #846) 2023-05-01 10:03:56 +03:00
872a85ae94 whisper.wasm : fix typo in readme (#832) 2023-05-01 09:28:05 +03:00
9c61f5f585 release : v1.4.1 2023-04-30 22:57:42 +03:00
c94c469592 whisper : fix quantize bug (#842)
* whisper : debug

* whisper : fix bug during quantization
2023-04-30 22:50:04 +03:00
feac80dd3f ggml : fix UB (int << 31) 2023-04-30 22:27:30 +03:00
fa8dbdc888 release : v1.4.0 2023-04-30 19:23:37 +03:00
4a7d49af95 examples : fix + refactor Levenshtein distance 2023-04-30 19:12:49 +03:00
794b162a46 whisper : add integer quantization support (#540)
* whisper : add integer quantization support

* examples : add common-ggml + prepare to add "quantize" tool

* whisper : quantization tool ready

* whisper : fix F32 support

* whisper : try to fix shared lib linkage

* wasm : update quantized models to Q5

* bench.wasm : remove "medium" button

* bench.wasm : fix custom model button

* ggml : add Q5_0 and Q5_1 WASM SIMD

* wasm : add quantized models to all WASM examples

* wasm : bump DB version number to 2

* talk-llama : update example to latest llama.cpp

* node : increase test timeout to 10s

* readme : add information for model quantization

* wasm : add links to other examples
2023-04-30 18:51:57 +03:00
5fd1bdd7fc whisper : add GPU support via cuBLAS (#834)
* make : add WHISPER_CUBLAS

* make : fix CUBLAS build

* whisper : disable Flash Attention + adjust memory buffers

* whisper : remove old commented code

* readme : add cuBLAS instructions

* cmake : add WHISPER_CUBLAS option

* gitignore : ignore build-cublas
2023-04-30 12:14:33 +03:00
0ccd6746c9 ggml : fix WASM build 2023-04-29 21:37:23 +03:00
d9b550c0a1 ggml : fix 32-bit ARM NEON (#836)
* ggml : add support for 32-bit ARM

* ggml : fix

* ggml : fix
2023-04-29 21:33:33 +03:00
e9b091c92a ggml : use vzip instead of vuzp for consistency 2023-04-29 21:14:09 +03:00
1f30b99208 ggml : fix WASM build 2023-04-29 20:21:25 +03:00
05c3ea3bc8 ggml : sync with ggml repo (warning fixes + asserts) 2023-04-29 19:33:28 +03:00
6108d3cc58 whisper : use correct seek_end when offset is used (#833)
Whenever an `offset_ms` is provided, the value of `seek_end` is
calculated incorrectly. This causes Whisper to keep transcribing
after the end of the file.

The current behavior looks like
```
[00:34:40.000 --> 00:34:47.000]   This is an example audio file.
[00:34:47.000 --> 00:34:49.000]   The text has been redacted
[00:34:49.000 --> 00:34:51.000]   This is the end of the audio.
[00:34:51.000 --> 00:34:52.000]   ***
[00:34:52.000 --> 00:34:53.000]   ***
[00:34:53.000 --> 00:34:54.000]   ***
[00:34:55.000 --> 00:34:56.000]   ***
...
```

The expected behavior should be
```
[00:34:40.000 --> 00:34:47.000]   This is an example audio file.
[00:34:47.000 --> 00:34:49.000]   The text has been redacted
[00:34:49.000 --> 00:34:51.000]   This is the end of the audio.
- end of program -
```

This commit changes the calculation of the `seek_end` variable to
only add `seek_start` if a custom `duration_ms` is provided.
Otherwise, it defaults to the end of the file.

Signed-off-by: Thijs Raymakers <thijs@raymakers.nl>
2023-04-29 18:55:37 +03:00
bab97c83d0 tests : add "threads" to run-tests.sh 2023-04-29 12:32:28 +03:00
3eaeb030ff extra : add sync-ggml.sh script 2023-04-29 12:32:28 +03:00
acec73ab6e ggml : sync latest ggml + llama.cpp updates (quantization) 2023-04-29 12:32:28 +03:00
5cc17418c7 whisper.android : add some tips (#816) 2023-04-29 11:00:20 +03:00
3efb81dec6 build : add WHISPER_COREML_ALLOW_FALLBACK to make / CMake (#812) 2023-04-29 10:55:24 +03:00
94a7cd2a07 whisper : allow non-CoreML fallback when Core ML cannot be loaded (#812)
if the Core ML model cannot be loaded, continue without Core ML instead of
returning. This allows a single build to transcribe using Core ML models
where available, and regular models when not.
2023-04-29 10:49:02 +03:00
3e82ff4747 whisper : fix bug from previous commit 2023-04-29 10:42:14 +03:00
b5bd2f43c5 whisper : avoid designated initializers 2023-04-29 10:36:50 +03:00
94aa56f19e minor : improve C++ and Python style (#768)
* use some STL functions

* use self.field than setattr, use pathlib.Path

* recover some format

* const some iter

* Keep the original

* 2 space
2023-04-29 10:06:25 +03:00
4d89ee2e59 readme : add logo 2023-04-28 22:41:29 +03:00
70567eff23 main : escape quotes in csv output (#815) 2023-04-23 19:01:59 +03:00
02ec83c5d5 stream : flush upon finishing inference (#811) 2023-04-23 17:00:30 +03:00
2bd4b8d577 examples : add missing #include <cstdint> (#798)
common.cpp uses uint8_t and uint64_t, which are defined in <cstdint>.
2023-04-23 16:52:52 +03:00
eecf2c3d41 main : update escape_double_quotes() function (#776)
Updated the escape_double_quotes() function such that the function now escapes both double quotes and backslashes in the input string.

Changes Made:

- Renamed the function to escape_quotes_and_backslashes

- Modified the condition in the first loop to increment the value of 'escaped_length' for both double quotes and backslashes.

- Modified the condition in second loop to add a backslash before the current character if it is a double quote or a backslash.

Resolves: #769
2023-04-23 16:47:30 +03:00
c23588cc4b release : v1.3.0 2023-04-15 17:30:44 +03:00
5108b30e6d whisper : pad audio instead of spectrogram (#579)
Also, fallback only if more temperatures are available and if we are
at least 3 seconds before the end of the audio
2023-04-15 17:19:19 +03:00
f19e23fbd1 whisper : restore decoder temperature fallbacks
I disabled this because there were many complaints about slow decoding.
The current implementation does not allow batching the decoders when
using the "best of" or "beam size" parameters, so the decoding time is
proportional to the number of decoders, which is obviously not great.

However, now there are even more complaints about wrong decodings and
repetition.

So, making a compromise by re-enabling the fallbacks, but defaulting to
just 2 "best of" / "beam size" decoders. Also, the temperature step is
increased from 0.2 to 0.4 - i.e. from maximum of 5 fallbacks to maximum
of 2.

Also, the stream example now has fallbacks enabled by default.

close #471 #477 #508 #612 #719 #731
2023-04-15 16:12:55 +03:00
ea1f8a50d4 ggml, ci : fix build on whisper.android (ARM_NEON) + add CI (#764)
* ggml : fix undefined symbol by remove inline handle

* ggml : make own ggml_aligned_malloc function

* ci: add ios/android build
2023-04-15 14:21:58 +03:00
3dead611bb whisper : slightly faster Log Mel computation + n-1 FFT threads (#568) 2023-04-15 14:18:46 +03:00
355da83690 readme : fix link 2023-04-15 13:30:36 +03:00
3e5c49e59a readme : add usage instructions for Core ML 2023-04-15 13:30:07 +03:00
5e47e223bd whisper : add Core ML support (#566)
* coreml : use Core ML encoder inference

* coreml : simlpify whisper_encode + log messages

* whisper : resolve rebase conflicts

* coreml : add scripts for CoreML model generation

* bench-all : recognize COREML flag
2023-04-15 13:21:27 +03:00
794ff3074a whisper : do not launch log_mel threads when n_thread is 1 (#763) 2023-04-14 22:35:34 +03:00
7e2afa4384 whisper : fix the bug related to word splitting errors in the "tokenize" function. (#760)
Co-authored-by: AfryMask <afrymask@gmail.com>
2023-04-14 20:35:03 +03:00
1c5edc3cb3 readme : add SwiftWhisper to listed bindings (#755) 2023-04-14 20:24:00 +03:00
34b772727d gitignore : add .test 2023-04-14 20:13:47 +03:00
2c856fb9e5 whisper : fix potential memory leaks (#740)
* fix potential memory leak if whisper_init_state failed

* fix potential memory leak if gpt2_init failed
2023-04-14 20:05:56 +03:00
7727a40dc9 license : update year (#739) 2023-04-14 20:04:42 +03:00
b5639ed313 whisper : fix typos in whisper.h (#737)
Fixed a couple of typos (in comments, so nothing major). Keep up the great work 😄
2023-04-14 20:03:16 +03:00
2c4ac2627d stream : support language auto-detect (#501)
#445  fix Language auto-detect "auto" flag does not work using the stream tool
2023-04-14 20:02:18 +03:00
674a8e579b readme : add unity bindings (#733) 2023-04-14 19:59:44 +03:00
001083a769 talk, talk-llama : add basic example script for eleven-labs tts (#728) 2023-04-14 19:53:58 +03:00
62b51c3070 models : change convert-pt-to-ggml to use .tiktoken tokenizer files (#725) 2023-04-14 19:50:39 +03:00
61128870b8 cmake : add msvc compiler args /utf-8 fix error C3688 (#721)
* force msvc compiler use utf-8 encode

* only enable on msvc
2023-04-14 19:36:38 +03:00
78548dc03f talk-llama : correct default speak.sh path (#720)
There is `speak.sh` file in `./examples/talk-llama` as described in README.
However `./examples/talk/speak.sh` is used in `talk-llama.cpp`, this commit corrects that.
2023-04-14 19:36:09 +03:00
66110dafcc main : add lrc output support (#718)
* add lrc output support.

* fix wrong comment
2023-04-14 19:35:33 +03:00
Sam
b73a4638ac readme : make the quick start instructions clearer. (#716)
Users wanting to make use of this implementation of the whisper model with no prior knowledge of C/C++ may download the Whisper model but fail to use of the "make" command as specified given that they forgot or didn't know they needed to clone the repository first. Hope this modification clears things up.
2023-04-14 19:33:06 +03:00
5f16420333 make : disable avx in case f16c is not available (#706)
Why:

* ggml.c does not support AVX without F16C
2023-04-14 19:31:51 +03:00
ccb47e7e10 readme : add shell command example for --print-colors (#710)
The section of the readme file explaining `--print-colors` includes only a screenshot with directories that are inconsistent with other examples. This commit adds an example shell command, consistent with the remaining examples.
2023-04-14 19:25:23 +03:00
677ad754a0 ggml : sync latest ggml 2023-04-14 19:20:39 +03:00
514cd04452 whisper : fix bug in prompt processing (close #705)
Was dereferencing a dangling pointer
2023-04-14 19:17:07 +03:00
6704a81255 go : exposed various parts to the Go Interface (#697) 2023-04-14 18:52:10 +03:00
463e46338c ggml : fix q4_1 dot product types (#759)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-14 13:34:20 +03:00
2f889132c6 ggml : sync latest changes from ggml and llama.cpp 2023-04-13 18:53:44 +03:00
ebef1e8620 ggml : fix WASM build 2023-04-10 23:18:29 +03:00
114df388fe talk-llama : increase context to 2048 2023-04-10 23:09:15 +03:00
ea36831459 talk-llama : update to latest llama.cpp (improved performance) 2023-04-10 22:59:13 +03:00
69b8503935 ggml : backport llama.cpp updates (close #709)
- About x2 overall performance improvement on Apple Silicon
- Results should now be the same for different number of threads (not
  tested)
2023-04-10 22:28:54 +03:00
0a2d1210bc whisper : add progress callback (#600) 2023-03-30 20:29:29 +03:00
859ffc994e misc : typo (#688) 2023-03-30 07:51:33 +03:00
5e6e2187a3 talk-llama : fixing usage message for talk-llama (#687)
"-ml" instead of "-mg" for specifying the llama file
2023-03-30 00:10:20 +03:00
a7f1f33715 main : add <cstring> header 2023-03-29 23:59:45 +03:00
86ecfc6333 whisper.addon : fixed test to new async implementation (#686)
* fixed blocking code on node addon

* modify the example to run async

* format

* added logic to see the whisper output

* added logic to see the whisper output

* removed extra function for more clean example

* fixed whisper test to new async implementation
2023-03-29 23:59:17 +03:00
18e6fb0287 models : handle spaces and special characters in shell script paths (#677)
This commit modifies the `get_script_path` function to correctly handle
spaces and special characters in directory paths. The fix involves adding
double quotes around variables and commands where needed to ensure proper
parsing of paths with spaces and special characters.
2023-03-29 23:38:33 +03:00
0f759f125d main : fix typo in JSON output (#648)
* typo in JSON output

* fix double quotes in JSON output
2023-03-29 23:26:39 +03:00
eefed45e37 whisper : add initial_prompt param (#645) 2023-03-29 23:23:23 +03:00
aac1710afb make : 32-bit ARM flags (#486)
* issue #470 - working 32-bit ARM

* Update Makefile

* Update Makefile

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-29 23:11:35 +03:00
21c1e6afc5 whisper.swiftui : update README.md (#682)
- Slight tweaks to README for improved comprehension.
2023-03-29 23:04:38 +03:00
a47e812a54 talk-llama : add alpaca support (#668) 2023-03-29 23:01:14 +03:00
42c6855103 whisper : bump "large" scratch buffer even mode (close #671) 2023-03-28 10:50:49 +03:00
0be9cd3497 whisper : increase scratch buffers after recent change (#671)
Should fix the error:

ggml_new_tensor_impl: not enough space in the scratch memory
2023-03-28 10:36:16 +03:00
e5c197d8aa talk-llama : add discussion link 2023-03-28 10:11:34 +03:00
7cd1d3bc34 talk-llama : try to fix windows build .. 2023-03-27 22:40:59 +03:00
82637b8e9f readme : add talk-llama example to the table 2023-03-27 21:02:35 +03:00
4a0deb8b1e talk-llama : add new example + sync ggml from llama.cpp (#664)
* talk-llama : talk with LLaMA AI

* talk.llama : disable EOS token

* talk-llama : add README instructions

* ggml : fix build in debug
2023-03-27 21:00:32 +03:00
8e361d90d7 whisper : disable fallbacks until the performance is improved (#588) 2023-03-22 22:34:39 +02:00
fc49c44426 cmake : add a flag to disable F16C (#628) 2023-03-22 22:30:40 +02:00
aec01bb337 Include link to R wrapper in README (#626) 2023-03-22 22:28:22 +02:00
21165580a1 Nodejs Addon blocking main thread. Implemented Napi::AsyncWorker (#642)
* fixed blocking code on node addon

* modify the example to run async

* format

* added logic to see the whisper output

* added logic to see the whisper output

* removed extra function for more clean example
2023-03-22 22:19:22 +02:00
1d749919e3 whisper.objc : add -O3 -DNDEBUG in release mode (#640) 2023-03-22 22:16:04 +02:00
d4fa0d92ad fixed language auto-detection for state provided processing (#627)
Co-authored-by: Sandro Hanea <sandrohanea@microsoft.com>
2023-03-22 21:47:09 +02:00
a5e60c019d readme : add react-native bindings (#619) 2023-03-22 21:39:02 +02:00
8fcd1a3b32 main : provide option for creating JSON output (#615)
* examples : provide option for exporting also as JSON file (ggerganov/whisper.cpp#614)

* main : remove leftovers

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-22 21:37:36 +02:00
992aa2cd1b models : change default encoding to utf8 (#605) 2023-03-22 21:17:24 +02:00
4aa3bcf8a4 make : fix MUSL Linux build (#576) 2023-03-22 20:51:42 +02:00
1beff6f66d models : change HF hosting from dataset to model 2023-03-22 20:44:56 +02:00
09e9068007 whisper.android : support benchmark for Android example. (#542)
* whisper.android: Support benchmark for Android example.

* whisper.android: update screenshot in README.

* update: Make text selectable for copy & paste.

* Update whisper.h to restore API name

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* whisper.android: Restore original API names.

---------

Co-authored-by: tinoue <tinoue@xevo.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-07 21:36:30 +02:00
fa9d43181f readme : add bench-wts.sh demo 2023-03-06 21:06:27 +02:00
bb6b54a03d bench-wts.sh : rename script + add execute permission 2023-03-06 21:02:24 +02:00
b597c5a779 qual-bench.sh : add quality comparison tool, and update main.cpp to allow using a font file (#569) 2023-03-06 19:18:11 +02:00
a3fb6c507f whisper.android : enable fp16 instrinsics (FP16_VA) which is supported by ARMv8.2 or later. (#572) 2023-03-06 19:15:57 +02:00
59fdcd19c8 whisper : add whisper_state + default state on the whisper_context (#523)
* Added whisper state + default state on the whisper_context

* Fixed some examples and bindings

* Fixed whisper_n_len (which was used in some binding) and added whisper_n_len_from_state

* Fixed comments

* whisper : reuse kv_cache_free() and fix compiler warnings

* whisper : clean-up the API comments

---------

Co-authored-by: Sandro Hanea <sandrohanea@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-05 21:42:19 +02:00
478289a4b3 whisper : set no_context == true by default (#537) 2023-03-05 20:53:43 +02:00
5e94129cb2 go : NewContext now returns a clean context (#537)
Co-authored-by: Ming <ming@localhost>
2023-03-05 20:50:25 +02:00
72af0f5697 main : add csv header (#552) 2023-03-02 18:32:16 +02:00
af005d573f make : add -DNDEBUG compile flag 2023-02-28 23:27:54 +02:00
ad1389003d release : v1.2.1 2023-02-28 22:29:12 +02:00
f420de1322 make : add "-mcpu=native" when building for aarch64 (#532) 2023-02-27 21:04:16 +02:00
d176160f6f readme : add pybind11 bindings (#538) 2023-02-27 21:02:11 +02:00
ca21f7ab16 readme : add cython bindings (#9) 2023-02-24 08:46:06 +02:00
373043cabe whisper : zero-initialize some more context variables
Just in case
2023-02-21 19:00:42 +02:00
fb4d0d470f whisper : fix uninitialized exp_n_audio_ctx 2023-02-21 18:58:08 +02:00
0d229163bb whisper : add API for applying custom logits filters during decoding 2023-02-19 18:35:01 +02:00
f254e78737 yt-wsp.sh : print help on empty args 2023-02-18 09:42:31 +02:00
a94897bcde whisper : by default disable non-speech tokens suppression (#473)
This seems to be causing hallucinations in the end of the audio, e.g.:

"Thank you for listening"
"Amen"
..
2023-02-15 21:48:49 +02:00
2407ae8ef0 readme : add Ruby discussion + update .NET discussion 2023-02-15 19:51:54 +02:00
b623ca43b1 bindings : add Ruby (#500)
* adding ruby bindings

* avoid adding these they are copied in via extconf.rb

* ignore these files here

* add definitions for boolean params

* initial transcribe for ruby

* use en model and transcribe jfk with assertion

* possibly this works for building ruby binding

* ci : try to add ruby workflow

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-02-15 19:46:55 +02:00
69e6e4644a main : fix std in input (#503)
if we don't add this as an explicit check, then we get an "error: unknown argument: -" later on
2023-02-15 19:31:16 +02:00
09d7d2b68e examples : refactor in order to reuse code and reduce duplication (#482)
* examples : refactor common code into a library

* examples : refactor common SDL code into a library

* make : update Makefile to use common libs

* common : fix MSVC M_PI ..

* addon.node : link common lib
2023-02-15 19:28:10 +02:00
0336161b7d whisper : fix signedness compiler warning (#506) 2023-02-15 19:08:25 +02:00
459753342d yt-wsp.sh : add unique filename generation (#495)
Co-authored-by: genevera <genevera@noreply.users.github.com>
2023-02-14 20:12:51 +02:00
9764782bd9 readme : add another .NET repo (#303) 2023-02-14 20:04:03 +02:00
3b010f9bed readme : add .NET repo (#303) 2023-02-11 17:35:33 +02:00
113fcec513 cmake : install whisper.h header (#485)
Including the header file in the install bundle helps projects that ship binaries.
2023-02-11 09:13:32 +02:00
cfc06bf8df whisper : suppress non-speech-related token outputs (#473)
* add non-speech-token suppression

* add suppress non-speech_tokens param
2023-02-08 09:05:34 +02:00
2bfe0ebc0f whisper : fixed Beam Search Strategy and exposed whisper_pcm_to_mel_phase_vocoder (#474)
Co-authored-by: Sandro Hanea <sandrohanea@microsoft.com>
2023-02-08 09:01:47 +02:00
4dd7119deb whisper : only trim if split_on_word is true (#476) 2023-02-08 08:43:23 +02:00
ab1916fc59 ci : add node addon test and optimize compilation configuration (#468)
* addon: implement node addon call whisper through cpp

* addon: modify the license to MIT

* addon: remove iostream

* addon: rename dir

* addon: fix typo

* addon: configure cmake to build when cmake-js is used

* ci: add addon.node test ci

* addon: remove build WHISPER_BUILD_TESTS

* addon: update build command

* addon: add test

* addon: add test file

* addon: adapt to compile on Windows

* addon: fix typo

* addon: reuse jfk.wav

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* addon: reuse jfk.wav

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-02-05 15:02:08 +02:00
a1c1583cc7 whisper : add whisper_full_lang_id() for getting the context lang (#461) 2023-02-05 14:46:26 +02:00
d012b5c7e4 whisper : add "split_on_word" flag when using using "max_len" option (#455)
* Update whisper.cpp

* fix: trim function

* feat: added flag to split on word

* fix: arguments for main
2023-02-05 14:44:23 +02:00
b2083c5d02 release : v1.2.0 2023-02-04 09:49:49 +02:00
f3ee4a9673 whisper : reduce memory usage during inference (#431)
* ggml : add "scratch" buffer support

* ggml : support for scratch ring-buffer

* ggml : bug fix in ggml_repeat()

* ggml : error on scratch buffer overflow

* whisper : use scratch buffers during inference (base model only)

* whisper : update memory usage for all models

* whisper : fix encoder memory usage

* whisper : use whisper_context functions instead of macros

* whisper : fix FF + remove it from README

* ggml : reuse ggml_new_i32

* ggml : refactor the scratch buffer storage

* whisper : reorder scratch buffers in the decoder

* main : add option to disable temp fallback

* Update README.md
2023-02-04 09:45:52 +02:00
c306a7fd89 addon.node : using whisper as a Node.js addon (#443)
* addon: implement node addon call whisper through cpp

* addon: modify the license to MIT

* addon: remove iostream

* addon: rename dir

* addon: fix typo

* addon: configure cmake to build when cmake-js is used
2023-02-04 09:10:25 +02:00
b2fc4c7010 go : support "auto" as an option when set language (#462)
Co-authored-by: Ming <ming@localhost>
2023-02-04 09:09:27 +02:00
291980369c whisper : suppress task tokens (#442) 2023-02-04 09:03:14 +02:00
86ef64a855 wasm : fix typo in helper.js (#459) 2023-02-04 08:49:15 +02:00
3b1960520a main : CSV format export trimmed spaces fix (#444)
* Update main.cpp

Removed string trimming

* Update main.cpp

* Update main.cpp

* Revert "Update main.cpp"

This reverts commit d8924fdcfe.

* Revert "Update main.cpp"

This reverts commit 252e508d85.
2023-02-04 08:48:35 +02:00
2bee2650c6 go : add wrapper for system info (#456) 2023-01-28 18:44:56 +02:00
beb9512be3 go : add WhisperLangAutoDetect method to go binding (#451) 2023-01-27 01:14:20 +02:00
47737b2e82 livestream.sh : run main with model arg instead of default (#453)
Actually utilizes the $model var when calling ./main.
2023-01-27 01:13:31 +02:00
b992f3709e whisper : do not provide past prompt when n_max_text_ctx == 0 2023-01-25 20:01:00 +02:00
60337f5306 wasm : check if navigator.storage.estimate() is available
Safari does not support it
2023-01-25 20:00:59 +02:00
02c7516c57 go : added wrappers to reset and print timings (#436) 2023-01-25 18:57:30 +02:00
411ea9b833 ci : run workflows on pull requests + bindings depend on .h (#446) 2023-01-25 18:50:50 +02:00
11f61cecd6 whisper.wasm : add labels for easier radio selection (#435) 2023-01-23 20:49:00 +02:00
b5ddb16ec7 whisper : condition timestamps to be monotonically increasing (#425) 2023-01-23 20:48:26 +02:00
ae16c21e9c whisper : PPC64 big-endian support (#398)
* ggml : set cache line size to 128 on POWER9

* whisper : add PPC64 big endian support
2023-01-23 20:48:10 +02:00
2c3f50a021 release : v1.1.1 2023-01-23 20:23:44 +02:00
9a65269a20 .gitignore : add arm_neon.h 2023-01-23 20:19:04 +02:00
78f166174f whisper : fix condition for providing past prompt (critical)
This bug has been present since v1.1.0.

Effectively, the past transcribed text wasn't being used for following
transcriptions, which likely significantly reduces the transcription
quality.

Likely related to #419
2023-01-22 10:47:01 +02:00
21c569ba4a whisper : extend information in whisper_print_timings() 2023-01-19 18:50:33 +02:00
1a91c19af9 whisper : perform entropy check only when we have at least 32 tokens (#412) 2023-01-18 22:52:18 +02:00
f583e2d2f5 main : we had accidentally disabled the temperature fallback .. (#291) 2023-01-18 22:51:41 +02:00
206fc93396 whisper.wasm : add small and small.en models 2023-01-18 21:58:55 +02:00
a6cf6f4c4a bench : minor fixes 2023-01-18 21:40:10 +02:00
472a473fd1 main : add an option to accept optional output filenames (#424)
* Add an option to accept optional output filenames

* Format the file

Co-authored-by: Chia-Hsiang Cheng <gary.chiahsiang.cheng@gmail.com>
2023-01-18 21:26:31 +02:00
9ba66c2fad stream : fix handling of --step == --length (#416) 2023-01-18 21:22:52 +02:00
1ccb8a46a5 bench : fix Windows linkage by moving ggml benches in whisper lib .. 2023-01-18 21:19:50 +02:00
1290fc6457 bench : add memcpy and ggml_mul_mat benchmarks 2023-01-18 20:31:46 +02:00
49b529ba74 whisper.android : add support for loading directly from asset in C (#415) 2023-01-16 21:57:35 +02:00
8088a977af whisper : fix possible uninitialized variables (#291) 2023-01-16 21:44:40 +02:00
c9aeb33676 stream : fix --keep_context argument to be used correctly (#354) 2023-01-16 19:37:40 +02:00
4a3f0d3fe9 go : remove sample_best and sample_timestamp bindings (#409) 2023-01-16 19:18:10 +02:00
874bde887e Update README.md 2023-01-16 18:47:31 +02:00
8738427dd6 cmake : bump version to 1.1.0 2023-01-15 14:33:13 +02:00
c3991bbb24 Update README.md 2023-01-15 14:08:12 +02:00
00ea21668b whisper : account speed_up flag for short audio (close #405) 2023-01-15 12:42:15 +02:00
0b85e8c401 Update README.md 2023-01-15 11:36:20 +02:00
fafd78945d bench.wasm : print system info 2023-01-15 11:34:03 +02:00
8de452c18b Improve decoding (#291)
* whisper : prepare infra for new decoding strategies

* whisper : apply logit filters and compute logprobs

* whisper : add whisper_get_logits()

* whisper : separate self and cross attention memory

Initial step needed for supporting parallel decoders

* whisper : move probs_id buffer to whisper_context

* whisper : refactor kv cache into separate struct

* whisper : move self-attention kv cache to whisper_decoder

* whisper : wip decoding parameters + strategies

* whisper : wip decoding parameters + strategies (part 2)

* whisper : wip decoding parameters + strategies (part 3)

* whisper : wip decoding parameters + strategies (part 4)

* whisper : fix prompt_past update to not include prompt_init

* whisper : temperature + best_of support

* whisper : support for compression_ration_threshold

We actually use entropy, but it is similar

* command : fix example to use logits instead of obsolete probs

* whisper : handle empty sequence ranking

* whisper : add WHISPER_DEBUG + diagnostic prints + new main args

* whisper : minor fixes

* whisper : add beam-search support

* whisper : bug fix when there no previous context

* whisper : add comments

* stream : disable temperature fallback

For real-time processing, we always want a single decoder running at T=0

* whisper.swiftui : update example - fix paths + add empty folders
2023-01-15 11:29:57 +02:00
a6dbd9188b stream : fix a bug that inserted a lot of empty audio at the start
The quality was terrible due to this
2023-01-14 19:20:47 +02:00
4ef3398e8f ggml : remove obsolete zeroing + comment fixes (#390) 2023-01-08 20:21:03 +02:00
5e9f33596f readme : clarify main and stream usage (#391)
Give an example of ./main that uses a sample file that's already there, and make the stream example clarify you need `make stream`
2023-01-08 20:18:41 +02:00
8d7b29cedd ggml : correct behaviour of ggml_vec_sum_f32 (#390) 2023-01-08 20:06:09 +02:00
08dc705a69 whisper : fix sample_to_timestamp calculation with 64 bit precision to avoid overflow (#388)
* Do calculation with 64 bit precision to avoid overflow

* Update whisper.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-01-08 15:08:45 +02:00
1512545149 whisper : add loader class to allow loading from buffer and others (#353)
* whisper : add loader to allow loading from other than file

* whisper : rename whisper_init to whisper_init_from_file

* whisper : add whisper_init_from_buffer

* android : Delete local.properties

* android : load models directly from assets

* whisper : adding <stddef.h> needed for size_t + code style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-01-08 13:03:33 +02:00
52a3e0c92a ggml : improve vec_dot_f16 unrolling in flash_attn_f16 2023-01-08 11:41:18 +02:00
d1ea1220ff command : clean-up / refactoring / formatting (#383) 2023-01-07 21:43:24 +02:00
9c4a1522f6 command : always-prompt mode (#383) 2023-01-07 21:41:11 +02:00
f078a6f20e go : adding features to the go-whisper example, go ci, etc (#384)
* Updated bindings so they can be used in third pary packages.

* Updated makefiles to set FMA flag on optionally, for xeon E5 on Darwin

* Added test script

* Changes for examples

* Reverted

* Made the NewContext method private
2023-01-07 21:21:43 +02:00
186 changed files with 40156 additions and 7169 deletions

22
.github/workflows/bindings-go.yml vendored Normal file
View File

@ -0,0 +1,22 @@
name: Bindings Tests (Go)
on:
push:
paths:
- bindings/go/**
- whisper.h
pull_request:
paths:
- bindings/go/**
- whisper.h
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-go@v3
with:
go-version: '^1.19'
- uses: actions/checkout@v1
- run: |
cd bindings/go
make test

22
.github/workflows/bindings-ruby.yml vendored Normal file
View File

@ -0,0 +1,22 @@
name: Bindings Tests (Ruby)
on:
push:
paths:
- bindings/ruby/**
- whisper.h
pull_request:
paths:
- bindings/ruby/**
- whisper.h
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: ruby/setup-ruby@v1
with:
ruby-version: '3.0'
- uses: actions/checkout@v1
- run: |
cd bindings/ruby/ext
ruby extconf.rb && make

View File

@ -1,267 +1,412 @@
name: CI
on: [push]
on: [push, pull_request]
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install libsdl2-dev
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install libsdl2-dev
- name: Build
run: |
make
make stream
- name: Build
run: |
make
make stream
macOS-latest:
runs-on: macOS-latest
macOS-latest:
runs-on: macOS-latest
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
brew update
brew install sdl2
- name: Dependencies
run: |
brew update
brew install sdl2
- name: Build
run: |
make
make stream
- name: Build
run: |
make
make stream
ubuntu-latest-gcc:
runs-on: ubuntu-latest
ubuntu-latest-gcc:
runs-on: ubuntu-latest
strategy:
matrix:
build: [Debug, Release]
strategy:
matrix:
build: [Debug, Release]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
- name: Build
run: |
make
ctest -L gh --output-on-failure
- name: Build
run: |
make
ctest -L gh --output-on-failure
ubuntu-latest-clang:
runs-on: ubuntu-latest
ubuntu-latest-clang:
runs-on: ubuntu-latest
strategy:
matrix:
build: [Debug, Release]
strategy:
matrix:
build: [Debug, Release]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
- name: Build
run: |
make
ctest -L gh --output-on-failure
- name: Build
run: |
make
ctest -L gh --output-on-failure
ubuntu-latest-gcc-sanitized:
runs-on: ubuntu-latest
ubuntu-latest-gcc-sanitized:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
- name: Configure
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
- name: Configure
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
- name: Build
run: |
make
ctest -L gh --output-on-failure
- name: Build
run: |
make
ctest -L gh --output-on-failure
windows:
runs-on: windows-latest
windows:
runs-on: windows-latest
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
sdl2: [ON]
include:
- arch: Win32
s2arc: x86
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
sdl2: [ON]
include:
- arch: Win32
s2arc: x86
jnaPath: win32-x86
- arch: x64
s2arc: x64
jnaPath: win32-x86-64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
- name: Upload dll
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.jnaPath }}_whisper.dll
path: build/bin/${{ matrix.build }}/whisper.dll
windows-blas:
runs-on: windows-latest
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
blas: [ON]
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
s2arc: x86
- arch: x64
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
windows-blas:
runs-on: windows-latest
steps:
- name: Clone
uses: actions/checkout@v1
strategy:
matrix:
build: [Release]
arch: [Win32, x64]
blas: [ON]
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
s2arc: x86
- arch: x64
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
steps:
- name: Clone
uses: actions/checkout@v1
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
7z x blas.zip -oblas -y
copy blas/include/cblas.h .
copy blas/include/openblas_config.h .
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
7z x blas.zip -oblas -y
copy blas/include/cblas.h .
copy blas/include/openblas_config.h .
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Copy libopenblas.dll
if: matrix.blas == 'ON'
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy libopenblas.dll
if: matrix.blas == 'ON'
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
emscripten:
runs-on: ubuntu-latest
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-latest
strategy:
matrix:
build: [Release]
arch: [x64]
cublas: [ON]
sdl2: [ON]
include:
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
strategy:
matrix:
build: [Release]
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.10
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_CUBLAS=1
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-cublas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
steps:
- name: Clone
uses: actions/checkout@v1
emscripten:
runs-on: ubuntu-latest
- name: Dependencies
run: |
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
tar -xvf master.tar.gz
emsdk-master/emsdk update
emsdk-master/emsdk install latest
emsdk-master/emsdk activate latest
strategy:
matrix:
build: [Release]
- name: Configure
run: echo "tmp"
steps:
- name: Clone
uses: actions/checkout@v1
- name: Build
run: |
pushd emsdk-master
source ./emsdk_env.sh
popd
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
- name: Dependencies
run: |
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
tar -xvf master.tar.gz
emsdk-master/emsdk update
emsdk-master/emsdk install latest
emsdk-master/emsdk activate latest
- name: Configure
run: echo "tmp"
- name: Build
run: |
pushd emsdk-master
source ./emsdk_env.sh
popd
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
ios:
runs-on: macos-latest
strategy:
matrix:
build: [Release]
steps:
- name: Clone
uses: actions/checkout@v1
- name: Configure
run: |
cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
mkdir models/ggml-base.en-encoder.mlmodelc
- name: Build objc example
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
- name: Build swiftui example
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
android:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v1
- name: Install Java
uses: actions/setup-java@v3
with:
distribution: zulu
java-version: 17
- name: Setup Android SDK
uses: android-actions/setup-android@v2
- name: Build
run: |
cd examples/whisper.android
./gradlew assembleRelease --no-daemon
java:
needs: [ 'windows' ]
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Install Java
uses: actions/setup-java@v1
with:
java-version: 17
- name: Download Windows lib
uses: actions/download-artifact@v3
with:
name: win32-x86-64_whisper.dll
path: bindings/java/build/generated/resources/main/win32-x86-64
- name: Build
run: |
models\download-ggml-model.cmd tiny.en
cd bindings/java
chmod +x ./gradlew
./gradlew build
- name: Upload jar
uses: actions/upload-artifact@v3
with:
name: whispercpp.jar
path: bindings/java/build/libs/whispercpp-*.jar
# - name: Publish package
# if: ${{ github.ref == 'refs/heads/master' }}
# uses: gradle/gradle-build-action@v2
# with:
# arguments: publish
# env:
# MAVEN_USERNAME: ${{ secrets.OSSRH_USERNAME }}
# MAVEN_PASSWORD: ${{ secrets.OSSRH_TOKEN }}

48
.github/workflows/examples.yml vendored Normal file
View File

@ -0,0 +1,48 @@
name: Examples Tests
on:
push:
paths:
- examples/addon.node/**
- whisper.h
pull_request:
paths:
- examples/addon.node/**
- whisper.h
jobs:
addon_node-ubuntu-latest:
runs-on: ubuntu-latest
strategy:
matrix:
node-version: [ 16.x, 18.x ]
steps:
- name: Clone
uses: actions/checkout@v1
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Use Node.js ${{ matrix.node-version }}
uses: actions/setup-node@v1
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
- name: Install package.json dependencies
working-directory: ./examples/addon.node
run: npm install
- name: Compile addon.node
run: npx cmake-js compile -T whisper-addon -B Release
- name: Download test model
run: |
bash ./models/download-ggml-model.sh base.en
- name: Test
run: |
cd examples/addon.node
npm run test

17
.gitignore vendored
View File

@ -1,5 +1,8 @@
*.o
*.a
.cache/
.coreml/
.test/
.vs/
.vscode/
.DS_Store
@ -8,6 +11,9 @@ build/
build-em/
build-debug/
build-release/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
@ -15,9 +21,13 @@ build-sanitize-thread/
/stream
/command
/talk
/talk-llama
/bench
/quantize
arm_neon.h
sync.sh
libwhisper.a
libwhisper.so
compile_commands.json
@ -27,3 +37,10 @@ examples/whisper.objc/whisper.objc.xcodeproj/xcuserdata/
examples/whisper.objc/whisper.objc.xcodeproj/project.xcworkspace/xcuserdata
extra/bench-gg.txt
models/*.mlmodel
models/*.mlmodelc
models/*.mlpackage
bindings/java/.gradle/
bindings/java/.idea/
.idea/

View File

@ -1,6 +1,6 @@
cmake_minimum_required (VERSION 3.0)
project(whisper.cpp VERSION 1.0.4)
project(whisper.cpp VERSION 1.4.2)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@ -35,30 +35,40 @@ endif()
# options
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SUPPORT_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
else()
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
option(WHISPER_PERF "whisper: enable perf timings" OFF)
# sanitizers
@ -86,31 +96,106 @@ endif()
find_package(Threads REQUIRED)
# on APPLE - include Accelerate framework
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(WARNING "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
endif()
endif()
endif()
if (WHISPER_SUPPORT_OPENBLAS)
find_library(OPENBLAS_LIB
NAMES openblas libopenblas
)
if (OPENBLAS_LIB)
message(STATUS "OpenBLAS found")
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${OPENBLAS_LIB})
if (WHISPER_BLAS)
set(BLA_STATIC 1)
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
# set(BLA_PREFER_PKGCONFIG 1)
set(BLA_SIZEOF_INTEGER 8)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else()
message(WARNING "OpenBLAS not found")
message(WARNING "BLAS library was not found")
endif()
endif ()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (WHISPER_STATIC)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
else()
message(WARNING "cuBLAS not found")
endif()
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
endif()
endif()
if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
# compiler flags
@ -155,9 +240,17 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES
else()
message(STATUS "x86 detected")
if (MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
@ -172,7 +265,9 @@ else()
if(NOT WHISPER_NO_FMA)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
endif()
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
if(NOT WHISPER_NO_F16C)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
endif()
endif()
endif()
endif()
@ -181,6 +276,51 @@ if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
endif()
if (WHISPER_OPENVINO)
set(TARGET whisper.openvino)
add_library(${TARGET} OBJECT
openvino/whisper-openvino-encoder.h
openvino/whisper-openvino-encoder.cpp
)
target_include_directories(${TARGET} PUBLIC
.
)
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
endif()
#
# whisper - this is the main library of the project
#
@ -190,6 +330,8 @@ set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
${GGML_CUDA_SOURCES}
${GGML_OPENCL_SOURCES}
whisper.h
whisper.cpp
)
@ -200,6 +342,14 @@ target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
@ -215,7 +365,19 @@ if (BUILD_SHARED_LIBS)
target_compile_definitions(${TARGET} PUBLIC
WHISPER_SHARED
GGML_SHARED
)
target_compile_definitions(${TARGET} PRIVATE
WHISPER_BUILD
GGML_BUILD
)
endif()
if (GGML_CUDA_SOURCES)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
if (EMSCRIPTEN)
@ -226,10 +388,13 @@ target_compile_definitions(${TARGET} PUBLIC
${WHISPER_EXTRA_FLAGS}
)
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
install(TARGETS ${TARGET}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
PUBLIC_HEADER DESTINATION include
)
#
@ -242,7 +407,7 @@ add_subdirectory(bindings)
# programs, examples and tests
#
if (WHISPER_BUILD_TESTS)
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
enable_testing()
add_subdirectory(tests)
endif ()

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2022 Georgi Gerganov
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

168
Makefile
View File

@ -1,3 +1,5 @@
default: main bench quantize
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
@ -30,10 +32,23 @@ endif
# Compile flags
#
CFLAGS = -I. -O3 -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
LDFLAGS =
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
ifneq ($(wildcard /usr/include/musl/*),)
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
endif
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
ifeq ($(UNAME_S),Darwin)
CFLAGS += -D_DARWIN_C_SOURCE
CXXFLAGS += -D_DARWIN_C_SOURCE
endif
# OS specific
# TODO: support Windows
ifeq ($(UNAME_S),Linux)
@ -71,10 +86,6 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
CFLAGS += -mavx2
endif
else ifeq ($(UNAME_S),Linux)
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
@ -86,16 +97,17 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
endif
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
ifneq (,$(findstring sse3,$(SSE3_M)))
CFLAGS += -msse3
endif
else ifeq ($(UNAME_S),Haiku)
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
@ -107,6 +119,11 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
endif
else
CFLAGS += -mfma -mf16c -mavx -mavx2
@ -115,12 +132,18 @@ endif
ifeq ($(UNAME_M),amd64)
CFLAGS += -mavx -mavx2 -mfma -mf16c
endif
ifeq ($(UNAME_M),ppc64le)
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
CFLAGS += -mpower9-vector
endif
# Require c++23's std::byteswap for big-endian support.
ifeq ($(UNAME_M),ppc64)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
endif
endif
ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
@ -128,27 +151,71 @@ ifndef WHISPER_NO_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifdef WHISPER_COREML
CXXFLAGS += -DWHISPER_USE_COREML
LDFLAGS += -framework Foundation -framework CoreML
ifdef WHISPER_COREML_ALLOW_FALLBACK
CXXFLAGS += -DWHISPER_COREML_ALLOW_FALLBACK
endif
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
LDFLAGS += -lopenblas
endif
ifdef WHISPER_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib
WHISPER_OBJ += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=any
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef WHISPER_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast -lOpenCL
WHISPER_OBJ += ggml-opencl.o
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CC) $(CFLAGS) -c $< -o $@
endif
ifdef WHISPER_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
CFLAGS += -pg
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, 2, 3
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
# 32-bit Raspberry Pi 1, 2, 3
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
# 32-bit ARM, for example on Armbian or possibly raspbian
#CFLAGS += -mfpu=neon -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
#CXXFLAGS += -mfpu=neon -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
# 64-bit ARM on 32-bit OS, use these (TODO: auto-detect 64-bit)
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
endif
#
@ -166,26 +233,36 @@ $(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )
default: main
#
# Build library
#
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
whisper.o: whisper.cpp whisper.h
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
$(CXX) $(CXXFLAGS) -c $< -o $@
libwhisper.a: ggml.o whisper.o
$(AR) rcs libwhisper.a ggml.o whisper.o
ifndef WHISPER_COREML
WHISPER_OBJ += whisper.o
else
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder.mm -o whisper-encoder.o
libwhisper.so: ggml.o whisper.o
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ)
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
libwhisper.so: ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
clean:
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
rm -f *.o main stream command talk talk-llama bench quantize libwhisper.a libwhisper.so
#
# Examples
@ -193,21 +270,30 @@ clean:
CC_SDL=`sdl2-config --cflags --libs`
main: examples/main/main.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o whisper.o -o main $(LDFLAGS)
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
./main -h
stream: examples/stream/stream.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
command: examples/command/command.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
quantize: examples/quantize/quantize.cpp ggml.o $(WHISPER_OBJ) $(SRC_COMMON)
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o quantize $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
bench: examples/bench/bench.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
#
# Audio samples
@ -222,12 +308,16 @@ samples:
@wget --quiet --show-progress -O samples/gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
@wget --quiet --show-progress -O samples/hp0.ogg https://upload.wikimedia.org/wikipedia/en/d/d4/En.henryfphillips.ogg
@wget --quiet --show-progress -O samples/mm1.wav https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav
@wget --quiet --show-progress -O samples/a13.mp3 https://upload.wikimedia.org/wikipedia/commons/transcoded/6/6f/Apollo13-wehaveaproblem.ogg/Apollo13-wehaveaproblem.ogg.mp3
@echo "Converting to 16-bit WAV ..."
@ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav
@ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav
@ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav
@rm samples/*.ogg
@ffmpeg -loglevel -0 -y -i samples/mm1.wav -ar 16000 -ac 1 -c:a pcm_s16le samples/mm0.wav
@rm samples/mm1.wav
@ffmpeg -loglevel -0 -y -i samples/a13.mp3 -ar 16000 -ac 1 -c:a pcm_s16le -ss 00:00:00 -to 00:00:30 samples/a13.wav
@rm samples/a13.mp3
#
# Models

415
README.md
View File

@ -1,21 +1,27 @@
# whisper.cpp
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
[![Actions Status](https://github.com/ggerganov/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/whisper.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
[Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- Low memory usage (Flash Attention + Flash Forward)
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- Low memory usage (Flash Attention)
- Zero memory allocations at runtime
- Runs on the CPU
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
Supported platforms:
@ -23,6 +29,7 @@ Supported platforms:
- [x] Mac OS (Intel and Arm)
- [x] [iOS](examples/whisper.objc)
- [x] [Android](examples/whisper.android)
- [x] [Java](bindings/java/README.md)
- [x] Linux / [FreeBSD](https://github.com/ggerganov/whisper.cpp/issues/56#issuecomment-1350920264)
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
@ -58,12 +65,16 @@ the Accelerate framework utilizes the special-purpose AMX coprocessor available
## Quick start
First, download one of the Whisper models converted in [ggml format](models). For example:
First clone the repository.
Then, download one of the Whisper models converted in [ggml format](models). For example:
```bash
bash ./models/download-ggml-model.sh base.en
```
If you wish to convert the Whisper models to ggml format yourself, instructions are in [models/README.md](models/README.md).
Now build the [main](examples/main) example and transcribe an audio file like this:
```bash
@ -71,7 +82,7 @@ Now build the [main](examples/main) example and transcribe an audio file like th
make
# transcribe an audio file
./main -f input.wav
./main -f samples/jfk.wav
```
---
@ -89,27 +100,39 @@ c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o gg
usage: ./main [options] file0.wav file1.wav ...
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-di, --diarize [false ] stereo audio diarization
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
bash ./models/download-ggml-model.sh base.en
Downloading ggml model base.en ...
@ -128,7 +151,8 @@ Running base.en on all samples in ./samples ...
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
----------------------------------------------
whisper_model_load: loading model from 'models/ggml-base.en.bin'
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 512
@ -141,13 +165,14 @@ whisper_model_load: n_text_layer = 6
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 2
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
whisper_model_load: kv self size = 5.25 MB
whisper_model_load: kv cross size = 17.58 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: mem_required = 506.00 MB
whisper_model_load: ggml ctx size = 140.60 MB
whisper_model_load: memory size = 22.83 MB
whisper_model_load: model ctx = 140.60 MB
whisper_model_load: model size = 140.54 MB
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
@ -155,12 +180,13 @@ main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 proc
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
whisper_print_timings: load time = 105.91 ms
whisper_print_timings: mel time = 24.62 ms
whisper_print_timings: sample time = 3.63 ms
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
whisper_print_timings: total time = 542.81 ms
whisper_print_timings: fallbacks = 0 p / 0 h
whisper_print_timings: load time = 113.81 ms
whisper_print_timings: mel time = 15.40 ms
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
whisper_print_timings: total time = 476.31 ms
```
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
@ -203,26 +229,140 @@ make large
| Model | Disk | Mem | SHA |
| --- | --- | --- | --- |
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
## Quantization
`whisper.cpp` supports integer quantization of the Whisper `ggml` models.
Quantized models require less memory and disk space and depending on the hardware can be processed more efficiently.
Here are the steps for creating and using a quantized model:
```bash
# quantize a model with Q5_0 method
make quantize
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
# run the examples as usual, specifying the quantized model file
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
```
## Core ML support
On Apple Silicon devices, the Encoder inference can be executed on the Apple Neural Engine (ANE) via Core ML. This can result in significant
speed-up - more than x3 faster compared with CPU-only execution. Here are the instructions for generating a Core ML model and using it with `whisper.cpp`:
- Install Python dependencies needed for the creation of the Core ML model:
```bash
pip install ane_transformers
pip install openai-whisper
pip install coremltools
```
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
- Python 3.10 is recommended.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
- To activate the environment, use: `conda activate py310-whisper`
- Generate a Core ML model. For example, to generate a `base.en` model, use:
```bash
./models/generate-coreml-model.sh base.en
```
This will generate the folder `models/ggml-base.en-encoder.mlmodelc`
- Build `whisper.cpp` with Core ML support:
```bash
# using Makefile
make clean
WHISPER_COREML=1 make -j
# using CMake
cd build
cmake -DWHISPER_COREML=1 ..
```
- Run the examples as usual. For example:
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
whisper_init_state: loading Core ML model from 'models/ggml-base.en-encoder.mlmodelc'
whisper_init_state: first run on a device may take a while ...
whisper_init_state: Core ML model loaded
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
...
```
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
Next runs are faster.
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## NVIDIA GPU support via cuBLAS
With NVIDIA cards the Encoder processing can to a large extent be offloaded to the GPU through cuBLAS.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with cuBLAS support:
```
make clean
WHISPER_CUBLAS=1 make -j
```
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
Now build `whisper.cpp` with CLBlast support:
```
Makefile:
cd whisper.cpp
make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON ..
make clean
make -j
cp bin/* ../
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
Encoder processing can be accelerated on the CPU via OpenBLAS.
First, make sure you have installed `openblas`: https://www.openblas.net/
Now build `whisper.cpp` with OpenBLAS support:
```
make clean
WHISPER_OPENBLAS=1 make -j
```
## Limitations
- Inference only
- No GPU support
- Very basic greedy sampling scheme - always pick up the token with highest probability.
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
to run the python code with the following parameters:
```
whisper --best_of None --beam_size None ...
```
In the future, `whisper.cpp` will support more sampling strategies.
## Another example
@ -235,7 +375,8 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
```java
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
whisper_model_load: loading model from 'models/ggml-medium.en.bin'
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 1024
@ -248,65 +389,71 @@ whisper_model_load: n_text_layer = 24
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 4
whisper_model_load: mem_required = 2610.00 MB
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
whisper_model_load: kv self size = 42.00 MB
whisper_model_load: kv cross size = 140.62 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: ggml ctx size = 1644.97 MB
whisper_model_load: memory size = 182.62 MB
whisper_model_load: model size = 1462.12 MB
whisper_model_load: model ctx = 1462.35 MB
whisper_model_load: model size = 1462.12 MB
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, lang = en, task = transcribe, timestamps = 1 ...
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
[00:00.000 --> 00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
[00:08.000 --> 00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
[00:17.000 --> 00:23.000] A short time later, debris was seen falling from the skies above Texas.
[00:23.000 --> 00:29.000] The Columbia's lost. There are no survivors.
[00:29.000 --> 00:32.000] On board was a crew of seven.
[00:32.000 --> 00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
[00:39.000 --> 00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
[00:48.000 --> 00:52.000] a colonel in the Israeli Air Force.
[00:52.000 --> 00:58.000] These men and women assumed great risk in the service to all humanity.
[00:58.000 --> 01:03.000] In an age when space flight has come to seem almost routine,
[01:03.000 --> 01:07.000] it is easy to overlook the dangers of travel by rocket
[01:07.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
[01:12.000 --> 01:18.000] These astronauts knew the dangers, and they faced them willingly,
[01:18.000 --> 01:23.000] knowing they had a high and noble purpose in life.
[01:23.000 --> 01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
[01:31.000 --> 01:36.000] All Americans today are thinking as well of the families of these men and women
[01:36.000 --> 01:40.000] who have been given this sudden shock and grief.
[01:40.000 --> 01:45.000] You're not alone. Our entire nation grieves with you,
[01:45.000 --> 01:52.000] and those you love will always have the respect and gratitude of this country.
[01:52.000 --> 01:56.000] The cause in which they died will continue.
[01:56.000 --> 02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
[02:04.000 --> 02:11.000] and the longing to understand. Our journey into space will go on.
[02:11.000 --> 02:16.000] In the skies today, we saw destruction and tragedy.
[02:16.000 --> 02:22.000] Yet farther than we can see, there is comfort and hope.
[02:22.000 --> 02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
[02:29.000 --> 02:35.000] who created all these. He who brings out the starry hosts one by one
[02:35.000 --> 02:39.000] and calls them each by name."
[02:39.000 --> 02:46.000] Because of His great power and mighty strength, not one of them is missing.
[02:46.000 --> 02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
[02:55.000 --> 03:01.000] The crew of the shuttle Columbia did not return safely to earth,
[03:01.000 --> 03:05.000] yet we can pray that all are safely home.
[03:05.000 --> 03:13.000] May God bless the grieving families, and may God continue to bless America.
[03:13.000 --> 03:41.000] Audio
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
whisper_print_timings: load time = 575.92 ms
whisper_print_timings: mel time = 230.60 ms
whisper_print_timings: sample time = 73.19 ms
whisper_print_timings: encode time = 19552.61 ms / 814.69 ms per layer
whisper_print_timings: decode time = 13249.96 ms / 552.08 ms per layer
whisper_print_timings: total time = 33686.27 ms
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
[00:03:13.000 --> 00:03:19.000] [Silence]
whisper_print_timings: fallbacks = 1 p / 0 h
whisper_print_timings: load time = 569.03 ms
whisper_print_timings: mel time = 146.85 ms
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
whisper_print_timings: total time = 32733.52 ms
```
</details>
## Real-time audio input example
This is a naive example of performing real-time inference on audio from your microphone.
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continously.
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```java
make stream
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
@ -317,18 +464,22 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
to highlight words with high or low confidence:
```java
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
```
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
## Controlling the length of the generated text segments (experimental)
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
@ -343,7 +494,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
[00:00:10.020 --> 00:00:11.000] country.
```
## Word-level timestamp
## Word-level timestamp (experimental)
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
@ -352,11 +503,11 @@ The `--max-len` argument can be used to obtain word-level timestamps. Simply use
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
[00:00:00.000 --> 00:00:00.320]
[00:00:00.000 --> 00:00:00.320]
[00:00:00.320 --> 00:00:00.370] And
[00:00:00.370 --> 00:00:00.690] so
[00:00:00.690 --> 00:00:00.850] my
@ -384,6 +535,32 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
[00:00:10.510 --> 00:00:11.000] .
```
## Speaker segmentation via tinydiarize (experimental)
More information about this approach is available here: https://github.com/ggerganov/whisper.cpp/pull/1058
Sample usage:
```py
# download a tinydiarize compatible model
./models/download-ggml-model.sh small.en-tdrz
# run as usual, adding the "-tdrz" command-line argument
./main -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
...
main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ...
...
[00:00:00.000 --> 00:00:03.800] Okay Houston, we've had a problem here. [SPEAKER_TURN]
[00:00:03.800 --> 00:00:06.200] This is Houston. Say again please. [SPEAKER_TURN]
[00:00:06.200 --> 00:00:08.260] Uh Houston we've had a problem.
[00:00:08.260 --> 00:00:11.320] We've had a main beam up on a volt. [SPEAKER_TURN]
[00:00:11.320 --> 00:00:13.820] Roger main beam interval. [SPEAKER_TURN]
[00:00:13.820 --> 00:00:15.100] Uh uh [SPEAKER_TURN]
[00:00:15.100 --> 00:00:18.020] So okay stand, by thirteen we're looking at it. [SPEAKER_TURN]
[00:00:18.020 --> 00:00:25.740] Okay uh right now uh Houston the uh voltage is uh is looking good um.
[00:00:27.620 --> 00:00:29.940] And we had a a pretty large bank or so.
```
## Karaoke-style movie generation (experimental)
The [main](examples/main) example provides support for output of karaoke-style movies, where the
@ -422,6 +599,19 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
---
## Video comparison of different models
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
```java
./extra/bench-wts.sh samples/jfk.wav
ffplay ./samples/jfk.wav.all.mp4
```
https://user-images.githubusercontent.com/1991296/223206245-2d36d903-cf8e-4f09-8c3b-eb9f9c39d6fc.mp4
---
## Benchmarks
In order to have an objective comparison of the performance of the inference across different system configurations,
@ -442,7 +632,7 @@ The original models are converted to a custom binary format. This allows to pack
You can download the converted models using the [models/download-ggml-model.sh](models/download-ggml-model.sh) script
or manually from here:
- https://huggingface.co/datasets/ggerganov/whisper.cpp
- https://huggingface.co/ggerganov/whisper.cpp
- https://ggml.ggerganov.com
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or the README
@ -452,9 +642,21 @@ in [models](models).
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [X] Java:
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [ ] Python: soon | [WIP](https://github.com/ggerganov/whisper.cpp/issues/9)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [X] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
## Examples
@ -468,6 +670,7 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |

View File

@ -32,7 +32,7 @@ mkdir:
modtidy:
@go mod tidy
clean:
clean:
@echo Clean
@rm -fr $(BUILD_DIR)
@go clean

View File

@ -31,7 +31,7 @@ func main() {
if err != nil {
panic(err)
}
if err := context.Process(samples, nil); err != nil {
if err := context.Process(samples, nil, nil); err != nil {
return err
}
@ -71,7 +71,7 @@ The examples are placed in the `build` directory. Once built, you can download a
And you can then test a model against samples with the following command:
```bash
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
```
## Using the bindings

View File

@ -17,9 +17,9 @@ import (
// CONSTANTS
const (
srcUrl = "https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main" // The location of the models
srcExt = ".bin" // Filename extension
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main" // The location of the models
srcExt = ".bin" // Filename extension
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
)
var (

View File

@ -0,0 +1,22 @@
package main
import "fmt"
///////////////////////////////////////////////////////////////////////////////
// CONSTANTS
const (
Reset = "\033[0m"
RGBPrefix = "\033[38;5;" // followed by RGB values in decimal format separated by colons
RGBSuffix = "m"
)
///////////////////////////////////////////////////////////////////////////////
// PUBLIC METHODS
// Colorize text with RGB values, from 0 to 23
func Colorize(text string, v int) string {
// https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
// Grayscale colors are in the range 232-255
return RGBPrefix + fmt.Sprint(v%24+232) + RGBSuffix + text + Reset
}

View File

@ -2,6 +2,12 @@ package main
import (
"flag"
"fmt"
"strings"
"time"
// Packages
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
)
///////////////////////////////////////////////////////////////////////////////
@ -42,6 +48,26 @@ func (flags *Flags) GetLanguage() string {
return flags.Lookup("language").Value.String()
}
func (flags *Flags) IsTranslate() bool {
return flags.Lookup("translate").Value.(flag.Getter).Get().(bool)
}
func (flags *Flags) GetOffset() time.Duration {
return flags.Lookup("offset").Value.(flag.Getter).Get().(time.Duration)
}
func (flags *Flags) GetDuration() time.Duration {
return flags.Lookup("duration").Value.(flag.Getter).Get().(time.Duration)
}
func (flags *Flags) GetThreads() uint {
return flags.Lookup("threads").Value.(flag.Getter).Get().(uint)
}
func (flags *Flags) GetOut() string {
return strings.ToLower(flags.Lookup("out").Value.String())
}
func (flags *Flags) IsSpeedup() bool {
return flags.Lookup("speedup").Value.String() == "true"
}
@ -50,12 +76,81 @@ func (flags *Flags) IsTokens() bool {
return flags.Lookup("tokens").Value.String() == "true"
}
func (flags *Flags) IsColorize() bool {
return flags.Lookup("colorize").Value.String() == "true"
}
func (flags *Flags) GetMaxLen() uint {
return flags.Lookup("max-len").Value.(flag.Getter).Get().(uint)
}
func (flags *Flags) GetMaxTokens() uint {
return flags.Lookup("max-tokens").Value.(flag.Getter).Get().(uint)
}
func (flags *Flags) GetWordThreshold() float32 {
return float32(flags.Lookup("word-thold").Value.(flag.Getter).Get().(float64))
}
func (flags *Flags) SetParams(context whisper.Context) error {
if lang := flags.GetLanguage(); lang != "" && lang != "auto" {
fmt.Fprintf(flags.Output(), "Setting language to %q\n", lang)
if err := context.SetLanguage(lang); err != nil {
return err
}
}
if flags.IsTranslate() && context.IsMultilingual() {
fmt.Fprintf(flags.Output(), "Setting translate to true\n")
context.SetTranslate(true)
}
if offset := flags.GetOffset(); offset != 0 {
fmt.Fprintf(flags.Output(), "Setting offset to %v\n", offset)
context.SetOffset(offset)
}
if duration := flags.GetDuration(); duration != 0 {
fmt.Fprintf(flags.Output(), "Setting duration to %v\n", duration)
context.SetDuration(duration)
}
if flags.IsSpeedup() {
fmt.Fprintf(flags.Output(), "Setting speedup to true\n")
context.SetSpeedup(true)
}
if threads := flags.GetThreads(); threads != 0 {
fmt.Fprintf(flags.Output(), "Setting threads to %d\n", threads)
context.SetThreads(threads)
}
if max_len := flags.GetMaxLen(); max_len != 0 {
fmt.Fprintf(flags.Output(), "Setting max_segment_length to %d\n", max_len)
context.SetMaxSegmentLength(max_len)
}
if max_tokens := flags.GetMaxTokens(); max_tokens != 0 {
fmt.Fprintf(flags.Output(), "Setting max_tokens to %d\n", max_tokens)
context.SetMaxTokensPerSegment(max_tokens)
}
if word_threshold := flags.GetWordThreshold(); word_threshold != 0 {
fmt.Fprintf(flags.Output(), "Setting word_threshold to %f\n", word_threshold)
context.SetTokenThreshold(word_threshold)
}
// Return success
return nil
}
///////////////////////////////////////////////////////////////////////////////
// PRIVATE METHODS
func registerFlags(flag *Flags) {
flag.String("model", "", "Path to the model file")
flag.String("language", "", "Language")
flag.String("language", "", "Spoken language")
flag.Bool("translate", false, "Translate from source language to english")
flag.Duration("offset", 0, "Time offset")
flag.Duration("duration", 0, "Duration of audio to process")
flag.Uint("threads", 0, "Number of threads to use")
flag.Bool("speedup", false, "Enable speedup")
flag.Uint("max-len", 0, "Maximum segment length in characters")
flag.Uint("max-tokens", 0, "Maximum tokens per segment")
flag.Float64("word-thold", 0, "Maximum segment score")
flag.Bool("tokens", false, "Display tokens")
flag.Bool("colorize", false, "Colorize tokens")
flag.String("out", "", "Output format (srt, none or leave as empty string)")
}

View File

@ -35,8 +35,7 @@ func main() {
// Process files
for _, filename := range flags.Args() {
fmt.Println("Processing", filename)
if err := Process(model, filename, flags.GetLanguage(), flags.IsSpeedup(), flags.IsTokens()); err != nil {
if err := Process(model, filename, flags); err != nil {
fmt.Fprintln(os.Stderr, err)
continue
}

View File

@ -11,7 +11,7 @@ import (
wav "github.com/go-audio/wav"
)
func Process(model whisper.Model, path string, lang string, speedup, tokens bool) error {
func Process(model whisper.Model, path string, flags *Flags) error {
var data []float32
// Create processing context
@ -20,14 +20,22 @@ func Process(model whisper.Model, path string, lang string, speedup, tokens bool
return err
}
// Set the parameters
if err := flags.SetParams(context); err != nil {
return err
}
fmt.Printf("\n%s\n", context.SystemInfo())
// Open the file
fmt.Fprintf(flags.Output(), "Loading %q\n", path)
fh, err := os.Open(path)
if err != nil {
return err
}
defer fh.Close()
// Decode the WAV file
// Decode the WAV file - load the full buffer
dec := wav.NewDecoder(fh)
if buf, err := dec.FullPCMBuffer(); err != nil {
return err
@ -39,42 +47,86 @@ func Process(model whisper.Model, path string, lang string, speedup, tokens bool
data = buf.AsFloat32Buffer().Data
}
// Set the parameters
// Segment callback when -tokens is specified
var cb whisper.SegmentCallback
if lang != "" {
if err := context.SetLanguage(lang); err != nil {
return err
}
}
if speedup {
context.SetSpeedup(true)
}
if tokens {
if flags.IsTokens() {
cb = func(segment whisper.Segment) {
fmt.Printf("%02d [%6s->%6s] ", segment.Num, segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond))
fmt.Fprintf(flags.Output(), "%02d [%6s->%6s] ", segment.Num, segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond))
for _, token := range segment.Tokens {
fmt.Printf("%q ", token.Text)
if flags.IsColorize() && context.IsText(token) {
fmt.Fprint(flags.Output(), Colorize(token.Text, int(token.P*24.0)), " ")
} else {
fmt.Fprint(flags.Output(), token.Text, " ")
}
}
fmt.Println("")
fmt.Fprintln(flags.Output(), "")
fmt.Fprintln(flags.Output(), "")
}
}
// Process the data
if err := context.Process(data, cb); err != nil {
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
context.ResetTimings()
if err := context.Process(data, cb, nil); err != nil {
return err
}
context.PrintTimings()
// Print out the results
switch {
case flags.GetOut() == "srt":
return OutputSRT(os.Stdout, context)
case flags.GetOut() == "none":
return nil
default:
return Output(os.Stdout, context, flags.IsColorize())
}
}
// Output text as SRT file
func OutputSRT(w io.Writer, context whisper.Context) error {
n := 1
for {
segment, err := context.NextSegment()
if err == io.EOF {
break
return nil
} else if err != nil {
return err
}
fmt.Printf("[%6s->%6s] %s\n", segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond), segment.Text)
fmt.Fprintln(w, n)
fmt.Fprintln(w, srtTimestamp(segment.Start), " --> ", srtTimestamp(segment.End))
fmt.Fprintln(w, segment.Text)
fmt.Fprintln(w, "")
n++
}
// Return success
return nil
}
// Output text to terminal
func Output(w io.Writer, context whisper.Context, colorize bool) error {
for {
segment, err := context.NextSegment()
if err == io.EOF {
return nil
} else if err != nil {
return err
}
fmt.Fprintf(w, "[%6s->%6s]", segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond))
if colorize {
for _, token := range segment.Tokens {
if !context.IsText(token) {
continue
}
fmt.Fprint(w, " ", Colorize(token.Text, int(token.P*24.0)))
}
fmt.Fprint(w, "\n")
} else {
fmt.Fprintln(w, " ", segment.Text)
}
}
}
// Return srtTimestamp
func srtTimestamp(t time.Duration) string {
return fmt.Sprintf("%02d:%02d:%02d,%03d", t/time.Hour, (t%time.Hour)/time.Minute, (t%time.Minute)/time.Second, (t%time.Second)/time.Millisecond)
}

View File

@ -47,7 +47,12 @@ func (p *Params) SetSpeedup(v bool) {
p.speed_up = toBool(v)
}
// Set language id
func (p *Params) SetLanguage(lang int) error {
if lang == -1 {
p.language = nil
return nil
}
str := C.whisper_lang_str(C.int(lang))
if str == nil {
return ErrInvalidLanguage
@ -57,6 +62,7 @@ func (p *Params) SetLanguage(lang int) error {
return nil
}
// Get language id
func (p *Params) Language() int {
if p.language == nil {
return -1
@ -64,18 +70,50 @@ func (p *Params) Language() int {
return int(C.whisper_lang_id(p.language))
}
// Threads available
func (p *Params) Threads() int {
return int(p.n_threads)
}
// Set number of threads to use
func (p *Params) SetThreads(threads int) {
p.n_threads = C.int(threads)
}
// Set start offset in ms
func (p *Params) SetOffset(offset_ms int) {
p.offset_ms = C.int(offset_ms)
}
// Set audio duration to process in ms
func (p *Params) SetDuration(duration_ms int) {
p.duration_ms = C.int(duration_ms)
}
// Set timestamp token probability threshold (~0.01)
func (p *Params) SetTokenThreshold(t float32) {
p.thold_pt = C.float(t)
}
// Set timestamp token sum probability threshold (~0.01)
func (p *Params) SetTokenSumThreshold(t float32) {
p.thold_ptsum = C.float(t)
}
// Set max segment length in characters
func (p *Params) SetMaxSegmentLength(n int) {
p.max_len = C.int(n)
}
func (p *Params) SetTokenTimestamps(b bool) {
p.token_timestamps = toBool(b)
}
// Set max tokens per segment (0 = no limit)
func (p *Params) SetMaxTokensPerSegment(n int) {
p.max_tokens = C.int(n)
}
///////////////////////////////////////////////////////////////////////////////
// PRIVATE METHODS

View File

@ -11,10 +11,11 @@ import (
// ERRORS
var (
ErrUnableToLoadModel = errors.New("unable to load model")
ErrInternalAppError = errors.New("internal application error")
ErrProcessingFailed = errors.New("processing failed")
ErrUnsupportedLanguage = errors.New("unsupported language")
ErrUnableToLoadModel = errors.New("unable to load model")
ErrInternalAppError = errors.New("internal application error")
ErrProcessingFailed = errors.New("processing failed")
ErrUnsupportedLanguage = errors.New("unsupported language")
ErrModelNotMultilingual = errors.New("model is not multilingual")
)
///////////////////////////////////////////////////////////////////////////////

View File

@ -1,7 +1,9 @@
package whisper
import (
"fmt"
"io"
"runtime"
"strings"
"time"
@ -24,7 +26,7 @@ var _ Context = (*context)(nil)
///////////////////////////////////////////////////////////////////////////////
// LIFECYCLE
func NewContext(model *model, params whisper.Params) (Context, error) {
func newContext(model *model, params whisper.Params) (Context, error) {
context := new(context)
context.model = model
context.params = params
@ -41,7 +43,13 @@ func (context *context) SetLanguage(lang string) error {
if context.model.ctx == nil {
return ErrInternalAppError
}
if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
if !context.model.IsMultilingual() {
return ErrModelNotMultilingual
}
if lang == "auto" {
context.params.SetLanguage(-1)
} else if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
return ErrUnsupportedLanguage
} else if err := context.params.SetLanguage(id); err != nil {
return err
@ -50,23 +58,110 @@ func (context *context) SetLanguage(lang string) error {
return nil
}
func (context *context) IsMultilingual() bool {
return context.model.IsMultilingual()
}
// Get language
func (context *context) Language() string {
id := context.params.Language()
if id == -1 {
return "auto"
}
return whisper.Whisper_lang_str(context.params.Language())
}
// Set translate flag
func (context *context) SetTranslate(v bool) {
context.params.SetTranslate(v)
}
// Set speedup flag
func (context *context) SetSpeedup(v bool) {
context.params.SetSpeedup(v)
}
// Set number of threads to use
func (context *context) SetThreads(v uint) {
context.params.SetThreads(int(v))
}
// Set time offset
func (context *context) SetOffset(v time.Duration) {
context.params.SetOffset(int(v.Milliseconds()))
}
// Set duration of audio to process
func (context *context) SetDuration(v time.Duration) {
context.params.SetDuration(int(v.Milliseconds()))
}
// Set timestamp token probability threshold (~0.01)
func (context *context) SetTokenThreshold(t float32) {
context.params.SetTokenThreshold(t)
}
// Set timestamp token sum probability threshold (~0.01)
func (context *context) SetTokenSumThreshold(t float32) {
context.params.SetTokenSumThreshold(t)
}
// Set max segment length in characters
func (context *context) SetMaxSegmentLength(n uint) {
context.params.SetMaxSegmentLength(int(n))
}
// Set token timestamps flag
func (context *context) SetTokenTimestamps(b bool) {
context.params.SetTokenTimestamps(b)
}
// Set max tokens per segment (0 = no limit)
func (context *context) SetMaxTokensPerSegment(n uint) {
context.params.SetMaxTokensPerSegment(int(n))
}
// ResetTimings resets the mode timings. Should be called before processing
func (context *context) ResetTimings() {
context.model.ctx.Whisper_reset_timings()
}
// PrintTimings prints the model timings to stdout.
func (context *context) PrintTimings() {
context.model.ctx.Whisper_print_timings()
}
// SystemInfo returns the system information
func (context *context) SystemInfo() string {
return fmt.Sprintf("system_info: n_threads = %d / %d | %s\n",
context.params.Threads(),
runtime.NumCPU(),
whisper.Whisper_print_system_info(),
)
}
// Use mel data at offset_ms to try and auto-detect the spoken language
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
// Returns the probabilities of all languages.
func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]float32, error) {
langProbs, err := context.model.ctx.Whisper_lang_auto_detect(offset_ms, n_threads)
if err != nil {
return nil, err
}
return langProbs, nil
}
// Process new sample data and return any errors
func (context *context) Process(data []float32, cb SegmentCallback) error {
func (context *context) Process(
data []float32,
callNewSegment SegmentCallback,
callProgress ProgressCallback,
) error {
if context.model.ctx == nil {
return ErrInternalAppError
}
// If the callback is defined then we force on single_segment mode
if cb != nil {
if callNewSegment != nil {
context.params.SetSingleSegment(true)
}
@ -74,24 +169,28 @@ func (context *context) Process(data []float32, cb SegmentCallback) error {
processors := 0
if processors > 1 {
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, nil, func(new int) {
if cb != nil {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
cb(toSegment(context.model.ctx, i))
callNewSegment(toSegment(context.model.ctx, i))
}
}
}); err != nil {
return err
}
} else if err := context.model.ctx.Whisper_full(context.params, data, nil, func(new int) {
if cb != nil {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
cb(toSegment(context.model.ctx, i))
callNewSegment(toSegment(context.model.ctx, i))
}
}
}, func(progress int) {
if callProgress != nil {
callProgress(progress)
}
}); err != nil {
return err
}
@ -119,6 +218,65 @@ func (context *context) NextSegment() (Segment, error) {
return result, nil
}
// Test for text tokens
func (context *context) IsText(t Token) bool {
switch {
case context.IsBEG(t):
return false
case context.IsSOT(t):
return false
case whisper.Token(t.Id) >= context.model.ctx.Whisper_token_eot():
return false
case context.IsPREV(t):
return false
case context.IsSOLM(t):
return false
case context.IsNOT(t):
return false
default:
return true
}
}
// Test for "begin" token
func (context *context) IsBEG(t Token) bool {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_beg()
}
// Test for "start of transcription" token
func (context *context) IsSOT(t Token) bool {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_sot()
}
// Test for "end of transcription" token
func (context *context) IsEOT(t Token) bool {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_eot()
}
// Test for "start of prev" token
func (context *context) IsPREV(t Token) bool {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_prev()
}
// Test for "start of lm" token
func (context *context) IsSOLM(t Token) bool {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_solm()
}
// Test for "No timestamps" token
func (context *context) IsNOT(t Token) bool {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_not()
}
// Test for token associated with a specific language
func (context *context) IsLANG(t Token, lang string) bool {
if id := context.model.ctx.Whisper_lang_id(lang); id >= 0 {
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_lang(id)
} else {
return false
}
}
///////////////////////////////////////////////////////////////////////////////
// PRIVATE METHODS
@ -135,10 +293,14 @@ func toSegment(ctx *whisper.Context, n int) Segment {
func toTokens(ctx *whisper.Context, n int) []Token {
result := make([]Token, ctx.Whisper_full_n_tokens(n))
for i := 0; i < len(result); i++ {
data := ctx.Whisper_full_get_token_data(n, i)
result[i] = Token{
Id: int(ctx.Whisper_full_get_token_id(n, i)),
Text: strings.TrimSpace(ctx.Whisper_full_get_token_text(n, i)),
P: ctx.Whisper_full_get_token_p(n, i),
Id: int(ctx.Whisper_full_get_token_id(n, i)),
Text: ctx.Whisper_full_get_token_text(n, i),
P: ctx.Whisper_full_get_token_p(n, i),
Start: time.Duration(data.T0()) * time.Millisecond * 10,
End: time.Duration(data.T1()) * time.Millisecond * 10,
}
}
return result

View File

@ -12,6 +12,10 @@ import (
// time. It is called during the Process function
type SegmentCallback func(Segment)
// ProgressCallback is the callback function for reporting progress during
// processing. It is called during the Process function
type ProgressCallback func(int)
// Model is the interface to a whisper model. Create a new model with the
// function whisper.New(string)
type Model interface {
@ -20,24 +24,53 @@ type Model interface {
// Return a new speech-to-text context.
NewContext() (Context, error)
// Return true if the model is multilingual.
IsMultilingual() bool
// Return all languages supported.
Languages() []string
}
// Context is the speach recognition context.
type Context interface {
SetLanguage(string) error // Set the language to use for speech recognition.
SetLanguage(string) error // Set the language to use for speech recognition, use "auto" for auto detect language.
SetTranslate(bool) // Set translate flag
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
SetSpeedup(bool) // Set speedup flag
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the
// callback function during processing.
Process([]float32, SegmentCallback) error
Process([]float32, SegmentCallback, ProgressCallback) error
// After process is called, return segments until the end of the stream
// is reached, when io.EOF is returned.
NextSegment() (Segment, error)
IsBEG(Token) bool // Test for "begin" token
IsSOT(Token) bool // Test for "start of transcription" token
IsEOT(Token) bool // Test for "end of transcription" token
IsPREV(Token) bool // Test for "start of prev" token
IsSOLM(Token) bool // Test for "start of lm" token
IsNOT(Token) bool // Test for "No timestamps" token
IsLANG(Token, string) bool // Test for token associated with a specific language
IsText(Token) bool // Test for text token
// Timings
PrintTimings()
ResetTimings()
SystemInfo() string
}
// Segment is the text result of a speech recognition.
@ -57,7 +90,8 @@ type Segment struct {
// Token is a text or special token
type Token struct {
Id int
Text string
P float32
Id int
Text string
P float32
Start, End time.Duration
}

View File

@ -23,7 +23,7 @@ var _ Model = (*model)(nil)
///////////////////////////////////////////////////////////////////////////////
// LIFECYCLE
func New(path string) (*model, error) {
func New(path string) (Model, error) {
model := new(model)
if _, err := os.Stat(path); err != nil {
return nil, err
@ -64,6 +64,11 @@ func (model *model) String() string {
///////////////////////////////////////////////////////////////////////////////
// PUBLIC METHODS
// Return true if model is multilingual (language and translation options are supported)
func (model *model) IsMultilingual() bool {
return model.ctx.Whisper_is_multilingual() != 0
}
// Return all recognized languages. Initially it is set to auto-detect
func (model *model) Languages() []string {
result := make([]string, 0, whisper.Whisper_lang_max_id())
@ -89,7 +94,8 @@ func (model *model) NewContext() (Context, error) {
params.SetPrintRealtime(false)
params.SetPrintTimestamps(false)
params.SetThreads(runtime.NumCPU())
params.SetNoContext(true)
// Return new context
return NewContext(model, params)
return newContext(model, params)
}

View File

@ -15,21 +15,31 @@ import (
#include <stdlib.h>
extern void callNewSegment(void* user_data, int new);
extern void callProgress(void* user_data, int progress);
extern bool callEncoderBegin(void* user_data);
// Text segment callback
// Called on every newly generated text segment
// Use the whisper_full_...() functions to obtain the text segments
static void whisper_new_segment_cb(struct whisper_context* ctx, int n_new, void* user_data) {
static void whisper_new_segment_cb(struct whisper_context* ctx, struct whisper_state* state, int n_new, void* user_data) {
if(user_data != NULL && ctx != NULL) {
callNewSegment(user_data, n_new);
}
}
// Progress callback
// Called on every newly generated text segment
// Use the whisper_full_...() functions to obtain the text segments
static void whisper_progress_cb(struct whisper_context* ctx, struct whisper_state* state, int progress, void* user_data) {
if(user_data != NULL && ctx != NULL) {
callProgress(user_data, progress);
}
}
// Encoder begin callback
// If not NULL, called before the encoder starts
// If it returns false, the computation is aborted
static bool whisper_encoder_begin_cb(struct whisper_context* ctx, void* user_data) {
static bool whisper_encoder_begin_cb(struct whisper_context* ctx, struct whisper_state* state, void* user_data) {
if(user_data != NULL && ctx != NULL) {
return callEncoderBegin(user_data);
}
@ -43,6 +53,8 @@ static struct whisper_full_params whisper_full_default_params_cb(struct whisper_
params.new_segment_callback_user_data = (void*)(ctx);
params.encoder_begin_callback = whisper_encoder_begin_cb;
params.encoder_begin_callback_user_data = (void*)(ctx);
params.progress_callback = whisper_progress_cb;
params.progress_callback_user_data = (void*)(ctx);
return params;
}
*/
@ -91,7 +103,7 @@ var (
func Whisper_init(path string) *Context {
cPath := C.CString(path)
defer C.free(unsafe.Pointer(cPath))
if ctx := C.whisper_init(cPath); ctx != nil {
if ctx := C.whisper_init_from_file(cPath); ctx != nil {
return (*Context)(ctx)
} else {
return nil
@ -147,16 +159,6 @@ func (ctx *Context) Whisper_decode(tokens []Token, past, threads int) error {
}
}
// whisper_sample_best() returns the token with the highest probability
func (ctx *Context) Whisper_sample_best() TokenData {
return TokenData(C.whisper_sample_best((*C.struct_whisper_context)(ctx)))
}
// whisper_sample_timestamp() returns the most probable timestamp token
func (ctx *Context) Whisper_sample_timestamp(is_initial bool) TokenData {
return TokenData(C.whisper_sample_timestamp((*C.struct_whisper_context)(ctx), C.bool(is_initial)))
}
// Convert the provided text into tokens. The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success
func (ctx *Context) Whisper_tokenize(text string, tokens []Token) (int, error) {
@ -268,13 +270,13 @@ func (ctx *Context) Whisper_token_lang(lang_id int) Token {
}
// Task tokens
func Whisper_token_translate() Token {
return Token(C.whisper_token_translate())
func (ctx *Context) Whisper_token_translate() Token {
return Token(C.whisper_token_translate((*C.struct_whisper_context)(ctx)))
}
// Task tokens
func Whisper_token_transcribe() Token {
return Token(C.whisper_token_transcribe())
func (ctx *Context) Whisper_token_transcribe() Token {
return Token(C.whisper_token_transcribe((*C.struct_whisper_context)(ctx)))
}
// Performance information
@ -300,11 +302,19 @@ func (ctx *Context) Whisper_full_default_params(strategy SamplingStrategy) Param
// Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
// Uses the specified decoding strategy to obtain the text.
func (ctx *Context) Whisper_full(params Params, samples []float32, encoderBeginCallback func() bool, newSegmentCallback func(int)) error {
func (ctx *Context) Whisper_full(
params Params,
samples []float32,
encoderBeginCallback func() bool,
newSegmentCallback func(int),
progressCallback func(int),
) error {
registerEncoderBeginCallback(ctx, encoderBeginCallback)
registerNewSegmentCallback(ctx, newSegmentCallback)
registerProgressCallback(ctx, progressCallback)
defer registerEncoderBeginCallback(ctx, nil)
defer registerNewSegmentCallback(ctx, nil)
defer registerProgressCallback(ctx, nil)
if C.whisper_full((*C.struct_whisper_context)(ctx), (C.struct_whisper_full_params)(params), (*C.float)(&samples[0]), C.int(len(samples))) == 0 {
return nil
} else {
@ -328,6 +338,18 @@ func (ctx *Context) Whisper_full_parallel(params Params, samples []float32, proc
}
}
// Return the id of the autodetected language, returns -1 if not found
// Added to whisper.cpp in
// https://github.com/ggerganov/whisper.cpp/commit/a1c1583cc7cd8b75222857afc936f0638c5683d6
//
// Examples:
//
// "de" -> 2
// "german" -> 2
func (ctx *Context) Whisper_full_lang_id() int {
return int(C.whisper_full_lang_id((*C.struct_whisper_context)(ctx)))
}
// Number of generated text segments.
// A segment can be a few words, a sentence, or even a paragraph.
func (ctx *Context) Whisper_full_n_segments() int {
@ -366,7 +388,7 @@ func (ctx *Context) Whisper_full_get_token_id(segment int, token int) Token {
// Get token data for the specified token in the specified segment.
// This contains probabilities, timestamps, etc.
func (ctx *Context) whisper_full_get_token_data(segment int, token int) TokenData {
func (ctx *Context) Whisper_full_get_token_data(segment int, token int) TokenData {
return TokenData(C.whisper_full_get_token_data((*C.struct_whisper_context)(ctx), C.int(segment), C.int(token)))
}
@ -380,6 +402,7 @@ func (ctx *Context) Whisper_full_get_token_p(segment int, token int) float32 {
var (
cbNewSegment = make(map[unsafe.Pointer]func(int))
cbProgress = make(map[unsafe.Pointer]func(int))
cbEncoderBegin = make(map[unsafe.Pointer]func() bool)
)
@ -391,6 +414,14 @@ func registerNewSegmentCallback(ctx *Context, fn func(int)) {
}
}
func registerProgressCallback(ctx *Context, fn func(int)) {
if fn == nil {
delete(cbProgress, unsafe.Pointer(ctx))
} else {
cbProgress[unsafe.Pointer(ctx)] = fn
}
}
func registerEncoderBeginCallback(ctx *Context, fn func() bool) {
if fn == nil {
delete(cbEncoderBegin, unsafe.Pointer(ctx))
@ -406,6 +437,13 @@ func callNewSegment(user_data unsafe.Pointer, new C.int) {
}
}
//export callProgress
func callProgress(user_data unsafe.Pointer, progress C.int) {
if fn, ok := cbProgress[user_data]; ok {
fn(int(progress))
}
}
//export callEncoderBegin
func callEncoderBegin(user_data unsafe.Pointer) C.bool {
if fn, ok := cbEncoderBegin[user_data]; ok {
@ -417,3 +455,15 @@ func callEncoderBegin(user_data unsafe.Pointer) C.bool {
}
return true
}
func (t TokenData) T0() int64 {
return int64(t.t0)
}
func (t TokenData) T1() int64 {
return int64(t.t1)
}
func (t TokenData) Id() Token {
return Token(t.id)
}

View File

@ -52,7 +52,7 @@ func Test_Whisper_001(t *testing.T) {
defer ctx.Whisper_free()
params := ctx.Whisper_full_default_params(whisper.SAMPLING_GREEDY)
data := buf.AsFloat32Buffer().Data
err = ctx.Whisper_full(params, data, nil, nil)
err = ctx.Whisper_full(params, data, nil, nil, nil)
assert.NoError(err)
// Print out tokens

124
bindings/java/.idea/uiDesigner.xml generated Normal file
View File

@ -0,0 +1,124 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Palette2">
<group name="Swing">
<item class="com.intellij.uiDesigner.HSpacer" tooltip-text="Horizontal Spacer" icon="/com/intellij/uiDesigner/icons/hspacer.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="1" hsize-policy="6" anchor="0" fill="1" />
</item>
<item class="com.intellij.uiDesigner.VSpacer" tooltip-text="Vertical Spacer" icon="/com/intellij/uiDesigner/icons/vspacer.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="1" anchor="0" fill="2" />
</item>
<item class="javax.swing.JPanel" icon="/com/intellij/uiDesigner/icons/panel.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3" />
</item>
<item class="javax.swing.JScrollPane" icon="/com/intellij/uiDesigner/icons/scrollPane.svg" removable="false" auto-create-binding="false" can-attach-label="true">
<default-constraints vsize-policy="7" hsize-policy="7" anchor="0" fill="3" />
</item>
<item class="javax.swing.JButton" icon="/com/intellij/uiDesigner/icons/button.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="0" fill="1" />
<initial-values>
<property name="text" value="Button" />
</initial-values>
</item>
<item class="javax.swing.JRadioButton" icon="/com/intellij/uiDesigner/icons/radioButton.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
<initial-values>
<property name="text" value="RadioButton" />
</initial-values>
</item>
<item class="javax.swing.JCheckBox" icon="/com/intellij/uiDesigner/icons/checkBox.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
<initial-values>
<property name="text" value="CheckBox" />
</initial-values>
</item>
<item class="javax.swing.JLabel" icon="/com/intellij/uiDesigner/icons/label.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="0" anchor="8" fill="0" />
<initial-values>
<property name="text" value="Label" />
</initial-values>
</item>
<item class="javax.swing.JTextField" icon="/com/intellij/uiDesigner/icons/textField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JPasswordField" icon="/com/intellij/uiDesigner/icons/passwordField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JFormattedTextField" icon="/com/intellij/uiDesigner/icons/formattedTextField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JTextArea" icon="/com/intellij/uiDesigner/icons/textArea.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTextPane" icon="/com/intellij/uiDesigner/icons/textPane.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JEditorPane" icon="/com/intellij/uiDesigner/icons/editorPane.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JComboBox" icon="/com/intellij/uiDesigner/icons/comboBox.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="2" anchor="8" fill="1" />
</item>
<item class="javax.swing.JTable" icon="/com/intellij/uiDesigner/icons/table.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JList" icon="/com/intellij/uiDesigner/icons/list.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="2" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTree" icon="/com/intellij/uiDesigner/icons/tree.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTabbedPane" icon="/com/intellij/uiDesigner/icons/tabbedPane.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
<preferred-size width="200" height="200" />
</default-constraints>
</item>
<item class="javax.swing.JSplitPane" icon="/com/intellij/uiDesigner/icons/splitPane.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
<preferred-size width="200" height="200" />
</default-constraints>
</item>
<item class="javax.swing.JSpinner" icon="/com/intellij/uiDesigner/icons/spinner.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
</item>
<item class="javax.swing.JSlider" icon="/com/intellij/uiDesigner/icons/slider.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
</item>
<item class="javax.swing.JSeparator" icon="/com/intellij/uiDesigner/icons/separator.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3" />
</item>
<item class="javax.swing.JProgressBar" icon="/com/intellij/uiDesigner/icons/progressbar.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1" />
</item>
<item class="javax.swing.JToolBar" icon="/com/intellij/uiDesigner/icons/toolbar.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1">
<preferred-size width="-1" height="20" />
</default-constraints>
</item>
<item class="javax.swing.JToolBar$Separator" icon="/com/intellij/uiDesigner/icons/toolbarSeparator.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="0" anchor="0" fill="1" />
</item>
<item class="javax.swing.JScrollBar" icon="/com/intellij/uiDesigner/icons/scrollbar.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="0" anchor="0" fill="2" />
</item>
</group>
</component>
</project>

71
bindings/java/README.md Normal file
View File

@ -0,0 +1,71 @@
# Java JNI bindings for Whisper
This package provides Java JNI bindings for whisper.cpp. They have been tested on:
* <strike>Darwin (OS X) 12.6 on x64_64</strike>
* Ubuntu on x86_64
* Windows on x86_64
The "low level" bindings are in `WhisperCppJnaLibrary`. The most simple usage is as follows:
JNA will attempt to load the `whispercpp` shared library from:
- jna.library.path
- jna.platform.library
- ~/Library/Frameworks
- /Library/Frameworks
- /System/Library/Frameworks
- classpath
```java
import io.github.ggerganov.whispercpp.WhisperCpp;
public class Example {
public static void main(String[] args) {
WhisperCpp whisper = new WhisperCpp();
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
long context = whisper.initContext("base.en");
try {
var whisperParams = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// custom configuration if required
whisperParams.temperature_inc = 0f;
var samples = readAudio(); // divide each value by 32767.0f
whisper.fullTranscribe(whisperParams, samples);
int segmentCount = whisper.getTextSegmentCount(context);
for (int i = 0; i < segmentCount; i++) {
String text = whisper.getTextSegment(context, i);
System.out.println(segment.getText());
}
} finally {
whisper.freeContext(context);
}
}
}
```
## Building & Testing
In order to build, you need to have the JDK 8 or higher installed. Run the tests with:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp/bindings/java
./gradlew build
```
You need to have the `whisper` library in your [JNA library path](https://java-native-access.github.io/jna/4.2.1/com/sun/jna/NativeLibrary.html). On Windows the dll is included in the jar and you can update it:
```bash
copy /y ..\..\build\bin\Release\whisper.dll build\generated\resources\main\win32-x86-64\whisper.dll
```
## License
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.

112
bindings/java/build.gradle Normal file
View File

@ -0,0 +1,112 @@
plugins {
id 'java'
id 'java-library'
id 'maven-publish'
}
archivesBaseName = 'whispercpp'
group = 'io.github.ggerganov'
version = '1.4.0'
sourceCompatibility = 1.8
targetCompatibility = 1.8
sourceSets {
main {
resources {
srcDirs = ['src/main/resources', 'build/generated/resources/main']
}
}
test {
runtimeClasspath += files('build/generated/resources/main')
}
}
tasks.register('copyLibwhisperDynlib', Copy) {
from '../../build'
include 'libwhisper.dynlib'
into 'build/generated/resources/main/darwin'
}
tasks.register('copyLibwhisperSo', Copy) {
from '../../build'
include 'libwhisper.so'
into 'build/generated/resources/main/linux-x86-64'
}
tasks.register('copyWhisperDll', Copy) {
from '../../build/Release'
include 'whisper.dll'
into 'build/generated/resources/main/windows-x86-64'
}
tasks.register('copyLibs') {
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDll
}
test {
systemProperty 'jna.library.path', project.file('build/generated/resources/main').absolutePath
}
java {
withSourcesJar()
withJavadocJar()
}
jar {
exclude '**/whisper_java.exp', '**/whisper_java.lib'
}
javadoc {
options.addStringOption('Xdoclint:none', '-quiet')
}
tasks.withType(Test) {
useJUnitPlatform()
}
dependencies {
implementation "net.java.dev.jna:jna:5.13.0"
testImplementation "org.junit.jupiter:junit-jupiter:5.9.2"
testImplementation "org.assertj:assertj-core:3.24.2"
}
repositories {
mavenCentral()
}
publishing {
publications {
mavenJava(MavenPublication) {
artifactId = 'whispercpp'
from components.java
pom {
name = 'whispercpp'
description = "Java JNA bindings for OpenAI's Whisper model, implemented in C/C++"
url = 'https://github.com/ggerganov/whisper.cpp'
licenses {
license {
name = 'MIT licence'
url = 'https://raw.githubusercontent.com/ggerganov/whisper.cpp/master/LICENSE'
}
}
developers {
developer {
id = 'ggerganov'
name = 'Georgi Gerganov'
email = 'ggerganov@gmail.com'
}
developer {
id = 'nalbion'
name = 'Nicholas Albion'
email = 'nalbion@yahoo.com'
}
}
scm {
connection = 'scm:git:git://github.com/ggerganov/whisper.cpp.git'
url = 'https://github.com/ggerganov/whisper.cpp'
}
}
}
}
}

View File

@ -0,0 +1,6 @@
org.gradle.jvmargs=-Xms256m -Xmx1024m
system.include.dir=/usr/include
#system.local.include.dir=../../include
system.local.include.dir=./build/generated/sources/headers/java/main
jni.include.dir=/usr/lib/jvm/java-8-openjdk-amd64/include/
jni.lib.dir=/usr/lib/jvm/java-8-openjdk-amd64/lib/

Binary file not shown.

View File

@ -0,0 +1,6 @@
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.1-bin.zip
networkTimeout=10000
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

244
bindings/java/gradlew vendored Normal file
View File

@ -0,0 +1,244 @@
#!/bin/sh
#
# Copyright © 2015-2021 the original authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
##############################################################################
#
# Gradle start up script for POSIX generated by Gradle.
#
# Important for running:
#
# (1) You need a POSIX-compliant shell to run this script. If your /bin/sh is
# noncompliant, but you have some other compliant shell such as ksh or
# bash, then to run this script, type that shell name before the whole
# command line, like:
#
# ksh Gradle
#
# Busybox and similar reduced shells will NOT work, because this script
# requires all of these POSIX shell features:
# * functions;
# * expansions «$var», «${var}», «${var:-default}», «${var+SET}»,
# «${var#prefix}», «${var%suffix}», and «$( cmd )»;
# * compound commands having a testable exit status, especially «case»;
# * various built-in commands including «command», «set», and «ulimit».
#
# Important for patching:
#
# (2) This script targets any POSIX shell, so it avoids extensions provided
# by Bash, Ksh, etc; in particular arrays are avoided.
#
# The "traditional" practice of packing multiple parameters into a
# space-separated string is a well documented source of bugs and security
# problems, so this is (mostly) avoided, by progressively accumulating
# options in "$@", and eventually passing that to Java.
#
# Where the inherited environment variables (DEFAULT_JVM_OPTS, JAVA_OPTS,
# and GRADLE_OPTS) rely on word-splitting, this is performed explicitly;
# see the in-line comments for details.
#
# There are tweaks for specific operating systems such as AIX, CygWin,
# Darwin, MinGW, and NonStop.
#
# (3) This script is generated from the Groovy template
# https://github.com/gradle/gradle/blob/HEAD/subprojects/plugins/src/main/resources/org/gradle/api/internal/plugins/unixStartScript.txt
# within the Gradle project.
#
# You can find Gradle at https://github.com/gradle/gradle/.
#
##############################################################################
# Attempt to set APP_HOME
# Resolve links: $0 may be a link
app_path=$0
# Need this for daisy-chained symlinks.
while
APP_HOME=${app_path%"${app_path##*/}"} # leaves a trailing /; empty if no leading path
[ -h "$app_path" ]
do
ls=$( ls -ld "$app_path" )
link=${ls#*' -> '}
case $link in #(
/*) app_path=$link ;; #(
*) app_path=$APP_HOME$link ;;
esac
done
# This is normally unused
# shellcheck disable=SC2034
APP_BASE_NAME=${0##*/}
APP_HOME=$( cd "${APP_HOME:-./}" && pwd -P ) || exit
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"'
# Use the maximum available, or set MAX_FD != -1 to use that value.
MAX_FD=maximum
warn () {
echo "$*"
} >&2
die () {
echo
echo "$*"
echo
exit 1
} >&2
# OS specific support (must be 'true' or 'false').
cygwin=false
msys=false
darwin=false
nonstop=false
case "$( uname )" in #(
CYGWIN* ) cygwin=true ;; #(
Darwin* ) darwin=true ;; #(
MSYS* | MINGW* ) msys=true ;; #(
NONSTOP* ) nonstop=true ;;
esac
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
# Determine the Java command to use to start the JVM.
if [ -n "$JAVA_HOME" ] ; then
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
# IBM's JDK on AIX uses strange locations for the executables
JAVACMD=$JAVA_HOME/jre/sh/java
else
JAVACMD=$JAVA_HOME/bin/java
fi
if [ ! -x "$JAVACMD" ] ; then
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
else
JAVACMD=java
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
# Increase the maximum file descriptors if we can.
if ! "$cygwin" && ! "$darwin" && ! "$nonstop" ; then
case $MAX_FD in #(
max*)
# In POSIX sh, ulimit -H is undefined. That's why the result is checked to see if it worked.
# shellcheck disable=SC3045
MAX_FD=$( ulimit -H -n ) ||
warn "Could not query maximum file descriptor limit"
esac
case $MAX_FD in #(
'' | soft) :;; #(
*)
# In POSIX sh, ulimit -n is undefined. That's why the result is checked to see if it worked.
# shellcheck disable=SC3045
ulimit -n "$MAX_FD" ||
warn "Could not set maximum file descriptor limit to $MAX_FD"
esac
fi
# Collect all arguments for the java command, stacking in reverse order:
# * args from the command line
# * the main class name
# * -classpath
# * -D...appname settings
# * --module-path (only if needed)
# * DEFAULT_JVM_OPTS, JAVA_OPTS, and GRADLE_OPTS environment variables.
# For Cygwin or MSYS, switch paths to Windows format before running java
if "$cygwin" || "$msys" ; then
APP_HOME=$( cygpath --path --mixed "$APP_HOME" )
CLASSPATH=$( cygpath --path --mixed "$CLASSPATH" )
JAVACMD=$( cygpath --unix "$JAVACMD" )
# Now convert the arguments - kludge to limit ourselves to /bin/sh
for arg do
if
case $arg in #(
-*) false ;; # don't mess with options #(
/?*) t=${arg#/} t=/${t%%/*} # looks like a POSIX filepath
[ -e "$t" ] ;; #(
*) false ;;
esac
then
arg=$( cygpath --path --ignore --mixed "$arg" )
fi
# Roll the args list around exactly as many times as the number of
# args, so each arg winds up back in the position where it started, but
# possibly modified.
#
# NB: a `for` loop captures its iteration list before it begins, so
# changing the positional parameters here affects neither the number of
# iterations, nor the values presented in `arg`.
shift # remove old arg
set -- "$@" "$arg" # push replacement arg
done
fi
# Collect all arguments for the java command;
# * $DEFAULT_JVM_OPTS, $JAVA_OPTS, and $GRADLE_OPTS can contain fragments of
# shell script including quotes and variable substitutions, so put them in
# double quotes to make sure that they get re-expanded; and
# * put everything else in single quotes, so that it's not re-expanded.
set -- \
"-Dorg.gradle.appname=$APP_BASE_NAME" \
-classpath "$CLASSPATH" \
org.gradle.wrapper.GradleWrapperMain \
"$@"
# Stop when "xargs" is not available.
if ! command -v xargs >/dev/null 2>&1
then
die "xargs is not available"
fi
# Use "xargs" to parse quoted args.
#
# With -n1 it outputs one arg per line, with the quotes and backslashes removed.
#
# In Bash we could simply go:
#
# readarray ARGS < <( xargs -n1 <<<"$var" ) &&
# set -- "${ARGS[@]}" "$@"
#
# but POSIX shell has neither arrays nor command substitution, so instead we
# post-process each arg (as a line of input to sed) to backslash-escape any
# character that might be a shell metacharacter, then use eval to reverse
# that process (while maintaining the separation between arguments), and wrap
# the whole thing up as a single "set" statement.
#
# This will of course break if any of these variables contains a newline or
# an unmatched quote.
#
eval "set -- $(
printf '%s\n' "$DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS" |
xargs -n1 |
sed ' s~[^-[:alnum:]+,./:=@_]~\\&~g; ' |
tr '\n' ' '
)" '"$@"'
exec "$JAVACMD" "$@"

92
bindings/java/gradlew.bat vendored Normal file
View File

@ -0,0 +1,92 @@
@rem
@rem Copyright 2015 the original author or authors.
@rem
@rem Licensed under the Apache License, Version 2.0 (the "License");
@rem you may not use this file except in compliance with the License.
@rem You may obtain a copy of the License at
@rem
@rem https://www.apache.org/licenses/LICENSE-2.0
@rem
@rem Unless required by applicable law or agreed to in writing, software
@rem distributed under the License is distributed on an "AS IS" BASIS,
@rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@rem See the License for the specific language governing permissions and
@rem limitations under the License.
@rem
@if "%DEBUG%"=="" @echo off
@rem ##########################################################################
@rem
@rem Gradle startup script for Windows
@rem
@rem ##########################################################################
@rem Set local scope for the variables with windows NT shell
if "%OS%"=="Windows_NT" setlocal
set DIRNAME=%~dp0
if "%DIRNAME%"=="" set DIRNAME=.
@rem This is normally unused
set APP_BASE_NAME=%~n0
set APP_HOME=%DIRNAME%
@rem Resolve any "." and ".." in APP_HOME to make it shorter.
for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
set DEFAULT_JVM_OPTS="-Xmx64m" "-Xms64m"
@rem Find java.exe
if defined JAVA_HOME goto findJavaFromJavaHome
set JAVA_EXE=java.exe
%JAVA_EXE% -version >NUL 2>&1
if %ERRORLEVEL% equ 0 goto execute
echo.
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:findJavaFromJavaHome
set JAVA_HOME=%JAVA_HOME:"=%
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
if exist "%JAVA_EXE%" goto execute
echo.
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:execute
@rem Setup the command line
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
@rem Execute Gradle
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %*
:end
@rem End local scope for the variables with windows NT shell
if %ERRORLEVEL% equ 0 goto mainEnd
:fail
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
rem the _cmd.exe /c_ return code!
set EXIT_CODE=%ERRORLEVEL%
if %EXIT_CODE% equ 0 set EXIT_CODE=1
if not ""=="%GRADLE_EXIT_CONSOLE%" exit %EXIT_CODE%
exit /b %EXIT_CODE%
:mainEnd
if "%OS%"=="Windows_NT" endlocal
:omega

View File

@ -0,0 +1 @@
rootProject.name = "whispercpp"

View File

@ -0,0 +1,39 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.Structure;
import com.sun.jna.ptr.PointerByReference;
import io.github.ggerganov.whispercpp.ggml.GgmlType;
import io.github.ggerganov.whispercpp.WhisperModel;
import java.util.List;
public class WhisperContext extends Structure {
int t_load_us = 0;
int t_start_us = 0;
/** weight type (FP32 / FP16 / QX) */
GgmlType wtype = GgmlType.GGML_TYPE_F16;
/** intermediate type (FP32 or FP16) */
GgmlType itype = GgmlType.GGML_TYPE_F16;
// WhisperModel model;
public PointerByReference model;
// whisper_vocab vocab;
// whisper_state * state = nullptr;
public PointerByReference vocab;
public PointerByReference state;
/** populated by whisper_init_from_file() */
String path_model;
// public static class ByReference extends WhisperContext implements Structure.ByReference {
// }
//
// public static class ByValue extends WhisperContext implements Structure.ByValue {
// }
//
// @Override
// protected List<String> getFieldOrder() {
// return List.of("t_load_us", "t_start_us", "wtype", "itype", "model", "vocab", "state", "path_model");
// }
}

View File

@ -0,0 +1,151 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.Native;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
/**
* Before calling most methods, you must call `initContext(modelPath)` to initialise the `ctx` Pointer.
*/
public class WhisperCpp implements AutoCloseable {
private WhisperCppJnaLibrary lib = WhisperCppJnaLibrary.instance;
private Pointer ctx = null;
private Pointer greedyPointer = null;
private Pointer beamPointer = null;
public File modelDir() {
String modelDirPath = System.getenv("XDG_CACHE_HOME");
if (modelDirPath == null) {
modelDirPath = System.getProperty("user.home") + "/.cache";
}
return new File(modelDirPath, "whisper");
}
/**
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
*/
public void initContext(String modelPath) throws FileNotFoundException {
if (ctx != null) {
lib.whisper_free(ctx);
}
if (!modelPath.contains("/") && !modelPath.contains("\\")) {
if (!modelPath.endsWith(".bin")) {
modelPath = "ggml-" + modelPath.replace("-", ".") + ".bin";
}
modelPath = new File(modelDir(), modelPath).getAbsolutePath();
}
ctx = lib.whisper_init_from_file(modelPath);
if (ctx == null) {
throw new FileNotFoundException(modelPath);
}
}
/**
* Provides default params which can be used with `whisper_full()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*
* @param strategy - GREEDY
*/
public WhisperFullParams getFullDefaultParams(WhisperSamplingStrategy strategy) {
Pointer pointer;
// whisper_full_default_params_by_ref allocates memory which we need to delete, so only create max 1 pointer for each strategy.
if (strategy == WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY) {
if (greedyPointer == null) {
greedyPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
}
pointer = greedyPointer;
} else {
if (beamPointer == null) {
beamPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
}
pointer = beamPointer;
}
WhisperFullParams params = new WhisperFullParams(pointer);
params.read();
return params;
}
@Override
public void close() {
freeContext();
freeParams();
System.out.println("Whisper closed");
}
private void freeContext() {
if (ctx != null) {
lib.whisper_free(ctx);
}
}
private void freeParams() {
if (greedyPointer != null) {
Native.free(Pointer.nativeValue(greedyPointer));
greedyPointer = null;
}
if (beamPointer != null) {
Native.free(Pointer.nativeValue(beamPointer));
beamPointer = null;
}
}
/**
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text.
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
public String fullTranscribe(WhisperFullParams whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
throw new IOException("Failed to process audio");
}
int nSegments = lib.whisper_full_n_segments(ctx);
StringBuilder str = new StringBuilder();
for (int i = 0; i < nSegments; i++) {
String text = lib.whisper_full_get_segment_text(ctx, i);
System.out.println("Segment:" + text);
str.append(text);
}
return str.toString().trim();
}
// public int getTextSegmentCount(Pointer ctx) {
// return lib.whisper_full_n_segments(ctx);
// }
// public String getTextSegment(Pointer ctx, int index) {
// return lib.whisper_full_get_segment_text(ctx, index);
// }
public String getSystemInfo() {
return lib.whisper_print_system_info();
}
public int benchMemcpy(int nthread) {
return lib.whisper_bench_memcpy(nthread);
}
public int benchGgmlMulMat(int nthread) {
return lib.whisper_bench_ggml_mul_mat(nthread);
}
}

View File

@ -0,0 +1,376 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.Library;
import com.sun.jna.Native;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.model.WhisperModelLoader;
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
public interface WhisperCppJnaLibrary extends Library {
WhisperCppJnaLibrary instance = Native.load("whisper", WhisperCppJnaLibrary.class);
String whisper_print_system_info();
/**
* Allocate (almost) all memory needed for the model by loading from a file.
*
* @param path_model Path to the model file
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file(String path_model);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer.
*
* @param buffer Model buffer
* @param buffer_size Size of the model buffer
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_buffer(Pointer buffer, int buffer_size);
/**
* Allocate (almost) all memory needed for the model using a model loader.
*
* @param loader Model loader
* @return Whisper context on success, null on failure
*/
Pointer whisper_init(WhisperModelLoader loader);
/**
* Allocate (almost) all memory needed for the model by loading from a file without allocating the state.
*
* @param path_model Path to the model file
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file_no_state(String path_model);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer without allocating the state.
*
* @param buffer Model buffer
* @param buffer_size Size of the model buffer
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_buffer_no_state(Pointer buffer, int buffer_size);
// Pointer whisper_init_from_buffer_no_state(Pointer buffer, long buffer_size);
/**
* Allocate (almost) all memory needed for the model using a model loader without allocating the state.
*
* @param loader Model loader
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_no_state(WhisperModelLoader loader);
/**
* Allocate memory for the Whisper state.
*
* @param ctx Whisper context
* @return Whisper state on success, null on failure
*/
Pointer whisper_init_state(Pointer ctx);
/**
* Free all allocated memory associated with the Whisper context.
*
* @param ctx Whisper context
*/
void whisper_free(Pointer ctx);
/**
* Free all allocated memory associated with the Whisper state.
*
* @param state Whisper state
*/
void whisper_free_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
*
* @param ctx - Pointer to a WhisperContext
* @return 0 on success
*/
int whisper_pcm_to_mel(Pointer ctx, final float[] samples, int n_samples, int n_threads);
/**
* @param ctx Pointer to a WhisperContext
* @param state Pointer to WhisperState
* @param n_samples
* @param n_threads
* @return 0 on success
*/
int whisper_pcm_to_mel_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/**
* This can be used to set a custom log mel spectrogram inside the default state of the provided whisper context.
* Use this instead of whisper_pcm_to_mel() if you want to provide your own log mel spectrogram.
* n_mel must be 80
* @return 0 on success
*/
int whisper_set_mel(Pointer ctx, final float[] data, int n_len, int n_mel);
int whisper_set_mel_with_state(Pointer ctx, Pointer state, final float[] data, int n_len, int n_mel);
/**
* Run the Whisper encoder on the log mel spectrogram stored inside the default state in the provided whisper context.
* Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
* Offset can be used to specify the offset of the first frame in the spectrogram.
* @return 0 on success
*/
int whisper_encode(Pointer ctx, int offset, int n_threads);
int whisper_encode_with_state(Pointer ctx, Pointer state, int offset, int n_threads);
/**
* Run the Whisper decoder to obtain the logits and probabilities for the next token.
* Make sure to call whisper_encode() first.
* tokens + n_tokens is the provided context for the decoder.
* n_past is the number of tokens to use from previous decoder calls.
* Returns 0 on success
* TODO: add support for multiple decoders
*/
int whisper_decode(Pointer ctx, Pointer tokens, int n_tokens, int n_past, int n_threads);
/**
* @param ctx
* @param state
* @param tokens Pointer to int tokens
* @param n_tokens
* @param n_past
* @param n_threads
* @return
*/
int whisper_decode_with_state(Pointer ctx, Pointer state, Pointer tokens, int n_tokens, int n_past, int n_threads);
/**
* Convert the provided text into tokens.
* The tokens pointer must be large enough to hold the resulting tokens.
* Returns the number of tokens on success, no more than n_max_tokens
* Returns -1 on failure
* TODO: not sure if correct
*/
int whisper_tokenize(Pointer ctx, String text, Pointer tokens, int n_max_tokens);
/** Largest language id (i.e. number of available languages - 1) */
int whisper_lang_max_id();
/**
* @return the id of the specified language, returns -1 if not found.
* Examples:
* "de" -> 2
* "german" -> 2
*/
int whisper_lang_id(String lang);
/** @return the short string of the specified language id (e.g. 2 -> "de"), returns nullptr if not found */
String whisper_lang_str(int id);
/**
* Use mel data at offset_ms to try and auto-detect the spoken language.
* Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first
* Returns the top language id or negative on failure
* If not null, fills the lang_probs array with the probabilities of all languages
* The array must be whisper_lang_max_id() + 1 in size
*
* ref: https://github.com/openai/whisper/blob/main/whisper/decoding.py#L18-L69
*/
int whisper_lang_auto_detect(Pointer ctx, int offset_ms, int n_threads, float[] lang_probs);
int whisper_lang_auto_detect_with_state(Pointer ctx, Pointer state, int offset_ms, int n_threads, float[] lang_probs);
int whisper_n_len (Pointer ctx); // mel length
int whisper_n_len_from_state(Pointer state); // mel length
int whisper_n_vocab (Pointer ctx);
int whisper_n_text_ctx (Pointer ctx);
int whisper_n_audio_ctx (Pointer ctx);
int whisper_is_multilingual (Pointer ctx);
int whisper_model_n_vocab (Pointer ctx);
int whisper_model_n_audio_ctx (Pointer ctx);
int whisper_model_n_audio_state(Pointer ctx);
int whisper_model_n_audio_head (Pointer ctx);
int whisper_model_n_audio_layer(Pointer ctx);
int whisper_model_n_text_ctx (Pointer ctx);
int whisper_model_n_text_state (Pointer ctx);
int whisper_model_n_text_head (Pointer ctx);
int whisper_model_n_text_layer (Pointer ctx);
int whisper_model_n_mels (Pointer ctx);
int whisper_model_ftype (Pointer ctx);
int whisper_model_type (Pointer ctx);
/**
* Token logits obtained from the last call to whisper_decode().
* The logits for the last token are stored in the last row
* Rows: n_tokens
* Cols: n_vocab
*/
float[] whisper_get_logits (Pointer ctx);
float[] whisper_get_logits_from_state(Pointer state);
// Token Id -> String. Uses the vocabulary in the provided context
String whisper_token_to_str(Pointer ctx, int token);
String whisper_model_type_readable(Pointer ctx);
// Special tokens
int whisper_token_eot (Pointer ctx);
int whisper_token_sot (Pointer ctx);
int whisper_token_prev(Pointer ctx);
int whisper_token_solm(Pointer ctx);
int whisper_token_not (Pointer ctx);
int whisper_token_beg (Pointer ctx);
int whisper_token_lang(Pointer ctx, int lang_id);
// Task tokens
int whisper_token_translate (Pointer ctx);
int whisper_token_transcribe(Pointer ctx);
// Performance information from the default state.
void whisper_print_timings(Pointer ctx);
void whisper_reset_timings(Pointer ctx);
// Note: Even if `whisper_full_params is stripped back to just 4 ints, JNA throws "Invalid memory access"
// when `whisper_full_default_params()` tries to return a struct.
// WhisperFullParams whisper_full_default_params(int strategy);
/**
* Provides default params which can be used with `whisper_full()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*
* @param strategy - WhisperSamplingStrategy.value
*/
Pointer whisper_full_default_params_by_ref(int strategy);
void whisper_free_params(Pointer params);
/**
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
int whisper_full(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples);
int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
// Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
// Result is stored in the default state of the context
// Not thread safe if executed in parallel on the same context.
// It seems this approach can offer some speedup in some cases.
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
int whisper_full_parallel(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples, int n_processors);
/**
* Number of generated text segments.
* A segment can be a few words, a sentence, or even a paragraph.
* @param ctx Pointer to WhisperContext
*/
int whisper_full_n_segments (Pointer ctx);
/**
* @param state Pointer to WhisperState
*/
int whisper_full_n_segments_from_state(Pointer state);
/**
* Language id associated with the context's default state.
* @param ctx Pointer to WhisperContext
*/
int whisper_full_lang_id(Pointer ctx);
/** Language id associated with the provided state */
int whisper_full_lang_id_from_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
* @return 0 on success
*/
int whisper_pcm_to_mel_phase_vocoder(Pointer ctx, final float[] samples, int n_samples, int n_threads);
int whisper_pcm_to_mel_phase_vocoder_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/** Get the start time of the specified segment. */
long whisper_full_get_segment_t0(Pointer ctx, int i_segment);
/** Get the start time of the specified segment from the state. */
long whisper_full_get_segment_t0_from_state(Pointer state, int i_segment);
/** Get the end time of the specified segment. */
long whisper_full_get_segment_t1(Pointer ctx, int i_segment);
/** Get the end time of the specified segment from the state. */
long whisper_full_get_segment_t1_from_state(Pointer state, int i_segment);
/** Get the text of the specified segment. */
String whisper_full_get_segment_text(Pointer ctx, int i_segment);
/** Get the text of the specified segment from the state. */
String whisper_full_get_segment_text_from_state(Pointer state, int i_segment);
/** Get the number of tokens in the specified segment. */
int whisper_full_n_tokens(Pointer ctx, int i_segment);
/** Get the number of tokens in the specified segment from the state. */
int whisper_full_n_tokens_from_state(Pointer state, int i_segment);
/** Get the token text of the specified token in the specified segment. */
String whisper_full_get_token_text(Pointer ctx, int i_segment, int i_token);
/** Get the token text of the specified token in the specified segment from the state. */
String whisper_full_get_token_text_from_state(Pointer ctx, Pointer state, int i_segment, int i_token);
/** Get the token ID of the specified token in the specified segment. */
int whisper_full_get_token_id(Pointer ctx, int i_segment, int i_token);
/** Get the token ID of the specified token in the specified segment from the state. */
int whisper_full_get_token_id_from_state(Pointer state, int i_segment, int i_token);
/** Get token data for the specified token in the specified segment. */
WhisperTokenData whisper_full_get_token_data(Pointer ctx, int i_segment, int i_token);
/** Get token data for the specified token in the specified segment from the state. */
WhisperTokenData whisper_full_get_token_data_from_state(Pointer state, int i_segment, int i_token);
/** Get the probability of the specified token in the specified segment. */
float whisper_full_get_token_p(Pointer ctx, int i_segment, int i_token);
/** Get the probability of the specified token in the specified segment from the state. */
float whisper_full_get_token_p_from_state(Pointer state, int i_segment, int i_token);
/**
* Benchmark function for memcpy.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark.
*/
int whisper_bench_memcpy(int nThreads);
/**
* Benchmark function for memcpy as a string.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark as a string.
*/
String whisper_bench_memcpy_str(int nThreads);
/**
* Benchmark function for ggml_mul_mat.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark.
*/
int whisper_bench_ggml_mul_mat(int nThreads);
/**
* Benchmark function for ggml_mul_mat as a string.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark as a string.
*/
String whisper_bench_ggml_mul_mat_str(int nThreads);
}

View File

@ -0,0 +1,24 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.WhisperContext;
import io.github.ggerganov.whispercpp.model.WhisperState;
/**
* Callback before the encoder starts.
* If not null, called before the encoder starts.
* If it returns false, the computation is aborted.
*/
public interface WhisperEncoderBeginCallback extends Callback {
/**
* Callback method before the encoder starts.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param user_data User data.
* @return True if the computation should proceed, false otherwise.
*/
boolean callback(Pointer ctx, Pointer state, Pointer user_data);
}

View File

@ -0,0 +1,25 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
/**
* Callback to filter logits.
* Can be used to modify the logits before sampling.
* If not null, called after applying temperature to logits.
*/
public interface WhisperLogitsFilterCallback extends Callback {
/**
* Callback method to filter logits.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param tokens The array of whisper_token_data.
* @param n_tokens The number of tokens.
* @param logits The array of logits.
* @param user_data User data.
*/
void callback(Pointer ctx, Pointer state, WhisperTokenData[] tokens, int n_tokens, float[] logits, Pointer user_data);
}

View File

@ -0,0 +1,24 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.WhisperContext;
import io.github.ggerganov.whispercpp.model.WhisperState;
/**
* Callback for the text segment.
* Called on every newly generated text segment.
* Use the whisper_full_...() functions to obtain the text segments.
*/
public interface WhisperNewSegmentCallback extends Callback {
/**
* Callback method for the text segment.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param n_new The number of newly generated text segments.
* @param user_data User data.
*/
void callback(Pointer ctx, Pointer state, int n_new, Pointer user_data);
}

View File

@ -0,0 +1,22 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.WhisperContext;
import io.github.ggerganov.whispercpp.model.WhisperState;
/**
* Callback for progress updates.
*/
public interface WhisperProgressCallback extends Callback {
/**
* Callback method for progress updates.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param progress The progress value.
* @param user_data User data.
*/
void callback(Pointer ctx, Pointer state, int progress, Pointer user_data);
}

View File

@ -0,0 +1,4 @@
package io.github.ggerganov.whispercpp.ggml;
public class GgmlTensor {
}

View File

@ -0,0 +1,18 @@
package io.github.ggerganov.whispercpp.ggml;
public enum GgmlType {
GGML_TYPE_F32,
GGML_TYPE_F16,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
REMOVED_GGML_TYPE_Q4_2, // support has been removed
REMOVED_GGML_TYPE_Q4_3, // support has been removed
GGML_TYPE_Q5_0,
GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,
GGML_TYPE_Q8_1,
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
}

View File

@ -0,0 +1,10 @@
package io.github.ggerganov.whispercpp.model;
public enum EModel {
MODEL_UNKNOWN,
MODEL_TINY,
MODEL_BASE,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
}

View File

@ -0,0 +1,49 @@
package io.github.ggerganov.whispercpp;
import io.github.ggerganov.whispercpp.ggml.GgmlTensor;
import io.github.ggerganov.whispercpp.model.EModel;
public class WhisperModel {
// EModel type = EModel.MODEL_UNKNOWN;
//
// WhisperHParams hparams;
// WhisperFilters filters;
//
// // encoder.positional_embedding
// GgmlTensor e_pe;
//
// // encoder.conv1
// GgmlTensor e_conv_1_w;
// GgmlTensor e_conv_1_b;
//
// // encoder.conv2
// GgmlTensor e_conv_2_w;
// GgmlTensor e_conv_2_b;
//
// // encoder.ln_post
// GgmlTensor e_ln_w;
// GgmlTensor e_ln_b;
//
// // decoder.positional_embedding
// GgmlTensor d_pe;
//
// // decoder.token_embedding
// GgmlTensor d_te;
//
// // decoder.ln
// GgmlTensor d_ln_w;
// GgmlTensor d_ln_b;
//
// std::vector<whisper_layer_encoder> layers_encoder;
// std::vector<whisper_layer_decoder> layers_decoder;
//
// // context
// struct ggml_context * ctx;
//
// // the model memory buffer is read-only and can be shared between processors
// std::vector<uint8_t> * buf;
//
// // tensors
// int n_loaded;
// Map<String, GgmlTensor> tensors;
}

View File

@ -0,0 +1,62 @@
package io.github.ggerganov.whispercpp.model;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import com.sun.jna.Structure;
public class WhisperModelLoader extends Structure {
public Pointer context;
public ReadFunction read;
public EOFFunction eof;
public CloseFunction close;
public static class ReadFunction implements Callback {
public Pointer invoke(Pointer ctx, Pointer output, int readSize) {
// TODO
return ctx;
}
}
public static class EOFFunction implements Callback {
public boolean invoke(Pointer ctx) {
// TODO
return false;
}
}
public static class CloseFunction implements Callback {
public void invoke(Pointer ctx) {
// TODO
}
}
// public WhisperModelLoader(Pointer p) {
// super(p);
// read = new ReadFunction();
// eof = new EOFFunction();
// close = new CloseFunction();
// read.setCallback(this);
// eof.setCallback(this);
// close.setCallback(this);
// read.write();
// eof.write();
// close.write();
// }
public WhisperModelLoader() {
super();
}
public interface ReadCallback extends Callback {
Pointer invoke(Pointer ctx, Pointer output, int readSize);
}
public interface EOFCallback extends Callback {
boolean invoke(Pointer ctx);
}
public interface CloseCallback extends Callback {
void invoke(Pointer ctx);
}
}

View File

@ -0,0 +1,4 @@
package io.github.ggerganov.whispercpp.model;
public class WhisperState {
}

View File

@ -0,0 +1,50 @@
package io.github.ggerganov.whispercpp.model;
import com.sun.jna.Structure;
import java.util.Arrays;
import java.util.List;
/**
* Structure representing token data.
*/
public class WhisperTokenData extends Structure {
/** Token ID. */
public int id;
/** Forced timestamp token ID. */
public int tid;
/** Probability of the token. */
public float p;
/** Log probability of the token. */
public float plog;
/** Probability of the timestamp token. */
public float pt;
/** Sum of probabilities of all timestamp tokens. */
public float ptsum;
/**
* Start time of the token (token-level timestamp data).
* Do not use if you haven't computed token-level timestamps.
*/
public long t0;
/**
* End time of the token (token-level timestamp data).
* Do not use if you haven't computed token-level timestamps.
*/
public long t1;
/** Voice length of the token. */
public float vlen;
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("id", "tid", "p", "plog", "pt", "ptsum", "t0", "t1", "vlen");
}
}

View File

@ -0,0 +1,19 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.Structure;
import java.util.Arrays;
import java.util.List;
public class BeamSearchParams extends Structure {
/** ref: <a href="https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L265">...</a> */
public int beam_size;
/** ref: <a href="https://arxiv.org/pdf/2204.05424.pdf">...</a> */
public float patience;
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("beam_size", "patience");
}
}

View File

@ -0,0 +1,30 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.IntegerType;
import java.util.function.BooleanSupplier;
public class CBool extends IntegerType implements BooleanSupplier {
public static final int SIZE = 1;
public static final CBool FALSE = new CBool(0);
public static final CBool TRUE = new CBool(1);
public CBool() {
this(0);
}
public CBool(long value) {
super(SIZE, value, true);
}
@Override
public boolean getAsBoolean() {
return intValue() == 1;
}
@Override
public String toString() {
return intValue() == 1 ? "true" : "false";
}
}

View File

@ -0,0 +1,16 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.Structure;
import java.util.Collections;
import java.util.List;
public class GreedyParams extends Structure {
/** <a href="https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L264">...</a> */
public int best_of;
@Override
protected List<String> getFieldOrder() {
return Collections.singletonList("best_of");
}
}

View File

@ -0,0 +1,10 @@
package io.github.ggerganov.whispercpp.params;
import java.util.List;
public class WhisperFilters {
int n_mel;
int n_fft;
List<Float> data;
}

View File

@ -0,0 +1,321 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import io.github.ggerganov.whispercpp.callbacks.WhisperEncoderBeginCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperLogitsFilterCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperNewSegmentCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperProgressCallback;
import java.util.Arrays;
import java.util.List;
/**
* Parameters for the whisper_full() function.
* If you change the order or add new parameters, make sure to update the default values in whisper.cpp:
* whisper_full_default_params()
*/
public class WhisperFullParams extends Structure {
public WhisperFullParams(Pointer p) {
super(p);
// super(p, ALIGN_MSVC);
// super(p, ALIGN_GNUC);
}
/** Sampling strategy for whisper_full() function. */
public int strategy;
/** Number of threads. (default = 4) */
public int n_threads;
/** Maximum tokens to use from past text as a prompt for the decoder. (default = 16384) */
public int n_max_text_ctx;
/** Start offset in milliseconds. (default = 0) */
public int offset_ms;
/** Audio duration to process in milliseconds. (default = 0) */
public int duration_ms;
/** Translate flag. (default = false) */
public CBool translate;
/** The compliment of translateMode() */
public void transcribeMode() {
translate = CBool.FALSE;
}
/** The compliment of transcribeMode() */
public void translateMode() {
translate = CBool.TRUE;
}
/** Flag to indicate whether to use past transcription (if any) as an initial prompt for the decoder. (default = true) */
public CBool no_context;
/** Flag to indicate whether to use past transcription (if any) as an initial prompt for the decoder. (default = true) */
public void enableContext(boolean enable) {
no_context = enable ? CBool.FALSE : CBool.TRUE;
}
/** Flag to force single segment output (useful for streaming). (default = false) */
public CBool single_segment;
/** Flag to force single segment output (useful for streaming). (default = false) */
public void singleSegment(boolean single) {
single_segment = single ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
public CBool print_special;
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
public void printSpecial(boolean enable) {
print_special = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print progress information. (default = true) */
public CBool print_progress;
/** Flag to print progress information. (default = true) */
public void printProgress(boolean enable) {
print_progress = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print results from within whisper.cpp (avoid it, use callback instead). (default = true) */
public CBool print_realtime;
/** Flag to print results from within whisper.cpp (avoid it, use callback instead). (default = true) */
public void printRealtime(boolean enable) {
print_realtime = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print timestamps for each text segment when printing realtime. (default = true) */
public CBool print_timestamps;
/** Flag to print timestamps for each text segment when printing realtime. (default = true) */
public void printTimestamps(boolean enable) {
print_timestamps = enable ? CBool.TRUE : CBool.FALSE;
}
/** [EXPERIMENTAL] Flag to enable token-level timestamps. (default = false) */
public CBool token_timestamps;
/** [EXPERIMENTAL] Flag to enable token-level timestamps. (default = false) */
public void tokenTimestamps(boolean enable) {
token_timestamps = enable ? CBool.TRUE : CBool.FALSE;
}
/** [EXPERIMENTAL] Timestamp token probability threshold (~0.01). (default = 0.01) */
public float thold_pt;
/** [EXPERIMENTAL] Timestamp token sum probability threshold (~0.01). */
public float thold_ptsum;
/** Maximum segment length in characters. (default = 0) */
public int max_len;
/** Flag to split on word rather than on token (when used with max_len). (default = false) */
public CBool split_on_word;
/** Flag to split on word rather than on token (when used with max_len). (default = false) */
public void splitOnWord(boolean enable) {
split_on_word = enable ? CBool.TRUE : CBool.FALSE;
}
/** Maximum tokens per segment (0, default = no limit) */
public int max_tokens;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public CBool speed_up;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public void speedUp(boolean enable) {
speed_up = enable ? CBool.TRUE : CBool.FALSE;
}
/** Overwrite the audio context size (0 = use default). */
public int audio_ctx;
/** Enable tinydiarize (default = false) */
public CBool tdrz_enable;
/** Enable tinydiarize (default = false) */
public void tdrzEnable(boolean enable) {
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
}
/** Tokens to provide to the whisper decoder as an initial prompt.
* These are prepended to any existing text context from a previous call. */
public String initial_prompt;
/** Prompt tokens. (int*) */
public Pointer prompt_tokens;
public void setPromptTokens(int[] tokens) {
Memory mem = new Memory(tokens.length * 4L);
mem.write(0, tokens, 0, tokens.length);
prompt_tokens = mem;
}
/** Number of prompt tokens. */
public int prompt_n_tokens;
/** Language for auto-detection.
* For auto-detection, set to `null`, `""`, or "auto". */
public String language;
/** Flag to indicate whether to detect language automatically. */
public CBool detect_language;
/** Flag to indicate whether to detect language automatically. */
public void detectLanguage(boolean enable) {
detect_language = enable ? CBool.TRUE : CBool.FALSE;
}
// Common decoding parameters.
/** Flag to suppress blank tokens. */
public CBool suppress_blank;
public void suppressBlanks(boolean enable) {
suppress_blank = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to suppress non-speech tokens. */
public CBool suppress_non_speech_tokens;
/** Flag to suppress non-speech tokens. */
public void suppressNonSpeechTokens(boolean enable) {
suppress_non_speech_tokens = enable ? CBool.TRUE : CBool.FALSE;
}
/** Initial decoding temperature. */
public float temperature;
/** Maximum initial timestamp. */
public float max_initial_ts;
/** Length penalty. */
public float length_penalty;
// Fallback parameters.
/** Temperature increment. */
public float temperature_inc;
/** Entropy threshold (similar to OpenAI's "compression_ratio_threshold"). */
public float entropy_thold;
/** Log probability threshold. */
public float logprob_thold;
/** No speech threshold. */
public float no_speech_thold;
/** Greedy decoding parameters. */
public GreedyParams greedy;
/**
* Beam search decoding parameters.
*/
public BeamSearchParams beam_search;
public void setBestOf(int bestOf) {
if (greedy == null) {
greedy = new GreedyParams();
}
greedy.best_of = bestOf;
}
public void setBeamSize(int beamSize) {
if (beam_search == null) {
beam_search = new BeamSearchParams();
}
beam_search.beam_size = beamSize;
}
public void setBeamSizeAndPatience(int beamSize, float patience) {
if (beam_search == null) {
beam_search = new BeamSearchParams();
}
beam_search.beam_size = beamSize;
beam_search.patience = patience;
}
/**
* Callback for every newly generated text segment.
* WhisperNewSegmentCallback
*/
public Pointer new_segment_callback;
/**
* User data for the new_segment_callback.
*/
public Pointer new_segment_callback_user_data;
/**
* Callback on each progress update.
* WhisperProgressCallback
*/
public Pointer progress_callback;
/**
* User data for the progress_callback.
*/
public Pointer progress_callback_user_data;
/**
* Callback each time before the encoder starts.
* WhisperEncoderBeginCallback
*/
public Pointer encoder_begin_callback;
/**
* User data for the encoder_begin_callback.
*/
public Pointer encoder_begin_callback_user_data;
/**
* Callback by each decoder to filter obtained logits.
* WhisperLogitsFilterCallback
*/
public Pointer logits_filter_callback;
/**
* User data for the logits_filter_callback.
*/
public Pointer logits_filter_callback_user_data;
public void setNewSegmentCallback(WhisperNewSegmentCallback callback) {
new_segment_callback = CallbackReference.getFunctionPointer(callback);
}
public void setProgressCallback(WhisperProgressCallback callback) {
progress_callback = CallbackReference.getFunctionPointer(callback);
}
public void setEncoderBeginCallbackeginCallbackCallback(WhisperEncoderBeginCallback callback) {
encoder_begin_callback = CallbackReference.getFunctionPointer(callback);
}
public void setLogitsFilterCallback(WhisperLogitsFilterCallback callback) {
logits_filter_callback = CallbackReference.getFunctionPointer(callback);
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
"no_context", "single_segment",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",
"progress_callback", "progress_callback_user_data",
"encoder_begin_callback", "encoder_begin_callback_user_data",
"logits_filter_callback", "logits_filter_callback_user_data");
}
}

View File

@ -0,0 +1,15 @@
package io.github.ggerganov.whispercpp.params;
public class WhisperHParams {
int n_vocab = 51864;
int n_audio_ctx = 1500;
int n_audio_state = 384;
int n_audio_head = 6;
int n_audio_layer = 4;
int n_text_ctx = 448;
int n_text_state = 384;
int n_text_head = 6;
int n_text_layer = 4;
int n_mels = 80;
int ftype = 1;
}

View File

@ -0,0 +1,10 @@
package io.github.ggerganov.whispercpp.params;
/** Available sampling strategies */
public enum WhisperSamplingStrategy {
/** similar to OpenAI's GreedyDecoder */
WHISPER_SAMPLING_GREEDY,
/** similar to OpenAI's BeamSearchDecoder */
WHISPER_SAMPLING_BEAM_SEARCH
}

View File

@ -0,0 +1,102 @@
package io.github.ggerganov.whispercpp;
import static org.junit.jupiter.api.Assertions.*;
import io.github.ggerganov.whispercpp.params.CBool;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import java.io.File;
import java.io.FileNotFoundException;
class WhisperCppTest {
private static WhisperCpp whisper = new WhisperCpp();
private static boolean modelInitialised = false;
@BeforeAll
static void init() throws FileNotFoundException {
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
String modelName = "../../models/ggml-tiny.en.bin";
try {
whisper.initContext(modelName);
// whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// whisper.getJavaDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
modelInitialised = true;
} catch (FileNotFoundException ex) {
System.out.println("Model " + modelName + " not found");
}
}
@Test
void testGetDefaultFullParams_BeamSearch() {
// When
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
// Then
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH.ordinal(), params.strategy);
assertNotEquals(0, params.n_threads);
assertEquals(16384, params.n_max_text_ctx);
assertFalse(params.translate);
assertEquals(0.01f, params.thold_pt);
assertEquals(2, params.beam_search.beam_size);
assertEquals(-1.0f, params.beam_search.patience);
}
@Test
void testGetDefaultFullParams_Greedy() {
// When
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// Then
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY.ordinal(), params.strategy);
assertNotEquals(0, params.n_threads);
assertEquals(16384, params.n_max_text_ctx);
assertEquals(2, params.greedy.best_of);
}
@Test
void testFullTranscribe() throws Exception {
if (!modelInitialised) {
System.out.println("Model not initialised, skipping test");
return;
}
// Given
File file = new File(System.getProperty("user.dir"), "../../samples/jfk.wav");
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file);
byte[] b = new byte[audioInputStream.available()];
float[] floats = new float[b.length / 2];
// WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
// params.initial_prompt = "and so my fellow Americans um, like";
try {
audioInputStream.read(b);
for (int i = 0, j = 0; i < b.length; i += 2, j++) {
int intSample = (int) (b[i + 1]) << 8 | (int) (b[i]) & 0xFF;
floats[j] = intSample / 32767.0f;
}
// When
String result = whisper.fullTranscribe(params, floats);
// Then
System.err.println(result);
assertEquals("And so my fellow Americans ask not what your country can do for you " +
"ask what you can do for your country.",
result.replace(",", ""));
} finally {
audioInputStream.close();
}
}
}

View File

@ -0,0 +1,17 @@
package io.github.ggerganov.whispercpp;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
class WhisperJnaLibraryTest {
@Test
void testWhisperPrint_system_info() {
String systemInfo = WhisperCppJnaLibrary.instance.whisper_print_system_info();
// eg: "AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0
// | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | COREML = 0 | "
System.out.println("System info: " + systemInfo);
assertTrue(systemInfo.length() > 10);
}
}

View File

@ -20,7 +20,7 @@ struct whisper_context * g_context;
EMSCRIPTEN_BINDINGS(whisper) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
if (g_context == nullptr) {
g_context = whisper_init(path_model.c_str());
g_context = whisper_init_from_file(path_model.c_str());
if (g_context != nullptr) {
return true;
} else {

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.0.4",
"version": "1.4.2",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

7
bindings/ruby/ext/.gitignore vendored Normal file
View File

@ -0,0 +1,7 @@
Makefile
ggml.c
ggml.h
whisper.bundle
whisper.cpp
whisper.h
dr_wav.h

View File

@ -0,0 +1,21 @@
require 'mkmf'
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")
# need to use c++ compiler flags
$CXXFLAGS << ' -std=c++11'
# Set to true when building binary gems
if enable_config('static-stdlib', false)
$LDFLAGS << ' -static-libgcc -static-libstdc++'
end
if enable_config('march-tune-native', false)
$CFLAGS << ' -march=native -mtune=native'
$CXXFLAGS << ' -march=native -mtune=native'
end
create_makefile('whisper')

View File

@ -0,0 +1,426 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include <cmath>
#include <fstream>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#ifdef __cplusplus
extern "C" {
#endif
#define BOOL_PARAMS_SETTER(self, prop, value) \
ruby_whisper_params *rwp; \
Data_Get_Struct(self, ruby_whisper_params, rwp); \
if (value == Qfalse || value == Qnil) { \
rwp->params.prop = false; \
} else { \
rwp->params.prop = true; \
} \
return value; \
#define BOOL_PARAMS_GETTER(self, prop) \
ruby_whisper_params *rwp; \
Data_Get_Struct(self, ruby_whisper_params, rwp); \
if (rwp->params.prop) { \
return Qtrue; \
} else { \
return Qfalse; \
}
VALUE mWhisper;
VALUE cContext;
VALUE cParams;
static void ruby_whisper_free(ruby_whisper *rw) {
if (rw->context) {
whisper_free(rw->context);
rw->context = NULL;
}
}
static void ruby_whisper_params_free(ruby_whisper_params *rwp) {
}
void rb_whisper_mark(ruby_whisper *rw) {
// call rb_gc_mark on any ruby references in rw
}
void rb_whisper_free(ruby_whisper *rw) {
ruby_whisper_free(rw);
free(rw);
}
void rb_whisper_params_mark(ruby_whisper_params *rwp) {
}
void rb_whisper_params_free(ruby_whisper_params *rwp) {
ruby_whisper_params_free(rwp);
free(rwp);
}
static VALUE ruby_whisper_allocate(VALUE klass) {
ruby_whisper *rw;
rw = ALLOC(ruby_whisper);
rw->context = NULL;
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
}
static VALUE ruby_whisper_params_allocate(VALUE klass) {
ruby_whisper_params *rwp;
rwp = ALLOC(ruby_whisper_params);
rwp->params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
return Data_Wrap_Struct(klass, rb_whisper_params_mark, rb_whisper_params_free, rwp);
}
static VALUE ruby_whisper_initialize(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
VALUE whisper_model_file_path;
// TODO: we can support init from buffer here too maybe another ruby object to expose
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
Data_Get_Struct(self, ruby_whisper, rw);
if (!rb_respond_to(whisper_model_file_path, rb_intern("to_s"))) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file(StringValueCStr(whisper_model_file_path));
if (rw->context == nullptr) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}
return self;
}
/*
* transcribe a single file
* can emit to a block results
*
**/
static VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
ruby_whisper_params *rwp;
VALUE wave_file_path, blk, params;
rb_scan_args(argc, argv, "02&", &wave_file_path, &params, &blk);
Data_Get_Struct(self, ruby_whisper, rw);
Data_Get_Struct(params, ruby_whisper_params, rwp);
if (!rb_respond_to(wave_file_path, rb_intern("to_s"))) {
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
}
std::string fname_inp = StringValueCStr(wave_file_path);
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// WAV input - this is directly from main.cpp example
{
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname_inp == "-") {
{
uint8_t buf[1024];
while (true) {
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return self;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
} else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return self;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
return self;
}
if (rwp->diarize && wav.channels != 2 && rwp->params.print_timestamps == false) {
fprintf(stderr, "WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
return self;
}
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
fprintf(stderr, "WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
return self;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "WAV file '%s' must be 16-bit\n", fname_inp.c_str());
return self;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (rwp->diarize) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
}
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
rwp->params.encoder_begin_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
fprintf(stderr, "failed to process audio\n");
return self;
}
const int n_segments = whisper_full_n_segments(rw->context);
VALUE output = rb_str_new2("");
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(rw->context, i);
output = rb_str_concat(output, rb_str_new2(text));
}
VALUE idCall = rb_intern("call");
if (blk != Qnil) {
rb_funcall(blk, idCall, 1, output);
}
return self;
}
/*
* params.language = "auto" | "en", etc...
*/
static VALUE ruby_whisper_params_set_language(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (value == Qfalse || value == Qnil) {
rwp->params.language = "auto";
} else {
rwp->params.language = StringValueCStr(value);
}
return value;
}
static VALUE ruby_whisper_params_get_language(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (rwp->params.language) {
return rb_str_new2(rwp->params.language);
} else {
return rb_str_new2("auto");
}
}
static VALUE ruby_whisper_params_set_translate(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, translate, value)
}
static VALUE ruby_whisper_params_get_translate(VALUE self) {
BOOL_PARAMS_GETTER(self, translate)
}
static VALUE ruby_whisper_params_set_no_context(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, no_context, value)
}
static VALUE ruby_whisper_params_get_no_context(VALUE self) {
BOOL_PARAMS_GETTER(self, no_context)
}
static VALUE ruby_whisper_params_set_single_segment(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, single_segment, value)
}
static VALUE ruby_whisper_params_get_single_segment(VALUE self) {
BOOL_PARAMS_GETTER(self, single_segment)
}
static VALUE ruby_whisper_params_set_print_special(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_special, value)
}
static VALUE ruby_whisper_params_get_print_special(VALUE self) {
BOOL_PARAMS_GETTER(self, print_special)
}
static VALUE ruby_whisper_params_set_print_progress(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_progress, value)
}
static VALUE ruby_whisper_params_get_print_progress(VALUE self) {
BOOL_PARAMS_GETTER(self, print_progress)
}
static VALUE ruby_whisper_params_set_print_realtime(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_realtime, value)
}
static VALUE ruby_whisper_params_get_print_realtime(VALUE self) {
BOOL_PARAMS_GETTER(self, print_realtime)
}
static VALUE ruby_whisper_params_set_print_timestamps(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_timestamps, value)
}
static VALUE ruby_whisper_params_get_print_timestamps(VALUE self) {
BOOL_PARAMS_GETTER(self, print_timestamps)
}
static VALUE ruby_whisper_params_set_suppress_blank(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, suppress_blank, value)
}
static VALUE ruby_whisper_params_get_suppress_blank(VALUE self) {
BOOL_PARAMS_GETTER(self, suppress_blank)
}
static VALUE ruby_whisper_params_set_suppress_non_speech_tokens(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, suppress_non_speech_tokens, value)
}
static VALUE ruby_whisper_params_get_suppress_non_speech_tokens(VALUE self) {
BOOL_PARAMS_GETTER(self, suppress_non_speech_tokens)
}
static VALUE ruby_whisper_params_get_token_timestamps(VALUE self) {
BOOL_PARAMS_GETTER(self, token_timestamps)
}
static VALUE ruby_whisper_params_set_token_timestamps(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, token_timestamps, value)
}
static VALUE ruby_whisper_params_get_split_on_word(VALUE self) {
BOOL_PARAMS_GETTER(self, split_on_word)
}
static VALUE ruby_whisper_params_set_split_on_word(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, split_on_word, value)
}
static VALUE ruby_whisper_params_get_speed_up(VALUE self) {
BOOL_PARAMS_GETTER(self, speed_up)
}
static VALUE ruby_whisper_params_set_speed_up(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, speed_up, value)
}
static VALUE ruby_whisper_params_get_diarize(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (rwp->diarize) {
return Qtrue;
} else {
return Qfalse;
}
}
static VALUE ruby_whisper_params_set_diarize(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (value == Qfalse || value == Qnil) {
rwp->diarize = false;
} else {
rwp->diarize = true;
} \
return value;
}
static VALUE ruby_whisper_params_get_offset(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
return INT2NUM(rwp->params.offset_ms);
}
static VALUE ruby_whisper_params_set_offset(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
rwp->params.offset_ms = NUM2INT(value);
return value;
}
static VALUE ruby_whisper_params_get_duration(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
return INT2NUM(rwp->params.duration_ms);
}
static VALUE ruby_whisper_params_set_duration(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
rwp->params.duration_ms = NUM2INT(value);
return value;
}
static VALUE ruby_whisper_params_get_max_text_tokens(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
return INT2NUM(rwp->params.n_max_text_ctx);
}
static VALUE ruby_whisper_params_set_max_text_tokens(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
rwp->params.n_max_text_ctx = NUM2INT(value);
return value;
}
void Init_whisper() {
mWhisper = rb_define_module("Whisper");
cContext = rb_define_class_under(mWhisper, "Context", rb_cObject);
cParams = rb_define_class_under(mWhisper, "Params", rb_cObject);
rb_define_alloc_func(cContext, ruby_whisper_allocate);
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
rb_define_alloc_func(cParams, ruby_whisper_params_allocate);
rb_define_method(cParams, "language=", ruby_whisper_params_set_language, 1);
rb_define_method(cParams, "language", ruby_whisper_params_get_language, 0);
rb_define_method(cParams, "translate=", ruby_whisper_params_set_translate, 1);
rb_define_method(cParams, "translate", ruby_whisper_params_get_translate, 0);
rb_define_method(cParams, "no_context=", ruby_whisper_params_set_no_context, 1);
rb_define_method(cParams, "no_context", ruby_whisper_params_get_no_context, 0);
rb_define_method(cParams, "single_segment=", ruby_whisper_params_set_single_segment, 1);
rb_define_method(cParams, "single_segment", ruby_whisper_params_get_single_segment, 0);
rb_define_method(cParams, "print_special", ruby_whisper_params_get_print_special, 0);
rb_define_method(cParams, "print_special=", ruby_whisper_params_set_print_special, 1);
rb_define_method(cParams, "print_progress", ruby_whisper_params_get_print_progress, 0);
rb_define_method(cParams, "print_progress=", ruby_whisper_params_set_print_progress, 1);
rb_define_method(cParams, "print_realtime", ruby_whisper_params_get_print_realtime, 0);
rb_define_method(cParams, "print_realtime=", ruby_whisper_params_set_print_realtime, 1);
rb_define_method(cParams, "print_timestamps", ruby_whisper_params_get_print_timestamps, 0);
rb_define_method(cParams, "print_timestamps=", ruby_whisper_params_set_print_timestamps, 1);
rb_define_method(cParams, "suppress_blank", ruby_whisper_params_get_suppress_blank, 0);
rb_define_method(cParams, "suppress_blank=", ruby_whisper_params_set_suppress_blank, 1);
rb_define_method(cParams, "suppress_non_speech_tokens", ruby_whisper_params_get_suppress_non_speech_tokens, 0);
rb_define_method(cParams, "suppress_non_speech_tokens=", ruby_whisper_params_set_suppress_non_speech_tokens, 1);
rb_define_method(cParams, "token_timestamps", ruby_whisper_params_get_token_timestamps, 0);
rb_define_method(cParams, "token_timestamps=", ruby_whisper_params_set_token_timestamps, 1);
rb_define_method(cParams, "split_on_word", ruby_whisper_params_get_split_on_word, 0);
rb_define_method(cParams, "split_on_word=", ruby_whisper_params_set_split_on_word, 1);
rb_define_method(cParams, "speed_up", ruby_whisper_params_get_speed_up, 0);
rb_define_method(cParams, "speed_up=", ruby_whisper_params_set_speed_up, 1);
rb_define_method(cParams, "diarize", ruby_whisper_params_get_diarize, 0);
rb_define_method(cParams, "diarize=", ruby_whisper_params_set_diarize, 1);
rb_define_method(cParams, "offset", ruby_whisper_params_get_offset, 0);
rb_define_method(cParams, "offset=", ruby_whisper_params_set_offset, 1);
rb_define_method(cParams, "duration", ruby_whisper_params_get_duration, 0);
rb_define_method(cParams, "duration=", ruby_whisper_params_set_duration, 1);
rb_define_method(cParams, "max_text_tokens", ruby_whisper_params_get_max_text_tokens, 0);
rb_define_method(cParams, "max_text_tokens=", ruby_whisper_params_set_max_text_tokens, 1);
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,15 @@
#ifndef __RUBY_WHISPER_H
#define __RUBY_WHISPER_H
#include "whisper.h"
typedef struct {
struct whisper_context *context;
} ruby_whisper;
typedef struct {
struct whisper_full_params params;
bool diarize;
} ruby_whisper_params;
#endif

View File

@ -0,0 +1,138 @@
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
EXTDIR = File.join(TOPDIR, 'ext')
#$LIBDIR = File.join(TOPDIR, 'lib')
#$:.unshift(LIBDIR)
$:.unshift(EXTDIR)
require 'whisper'
require 'test/unit'
class TestWhisper < Test::Unit::TestCase
def setup
@params = Whisper::Params.new
end
def test_language
@params.language = "en"
assert_equal @params.language, "en"
@params.language = "auto"
assert_equal @params.language, "auto"
end
def test_offset
@params.offset = 10_000
assert_equal @params.offset, 10_000
@params.offset = 0
assert_equal @params.offset, 0
end
def test_duration
@params.duration = 60_000
assert_equal @params.duration, 60_000
@params.duration = 0
assert_equal @params.duration, 0
end
def test_max_text_tokens
@params.max_text_tokens = 300
assert_equal @params.max_text_tokens, 300
@params.max_text_tokens = 0
assert_equal @params.max_text_tokens, 0
end
def test_translate
@params.translate = true
assert @params.translate
@params.translate = false
assert !@params.translate
end
def test_no_context
@params.no_context = true
assert @params.no_context
@params.no_context = false
assert !@params.no_context
end
def test_single_segment
@params.single_segment = true
assert @params.single_segment
@params.single_segment = false
assert !@params.single_segment
end
def test_print_special
@params.print_special = true
assert @params.print_special
@params.print_special = false
assert !@params.print_special
end
def test_print_progress
@params.print_progress = true
assert @params.print_progress
@params.print_progress = false
assert !@params.print_progress
end
def test_print_realtime
@params.print_realtime = true
assert @params.print_realtime
@params.print_realtime = false
assert !@params.print_realtime
end
def test_print_timestamps
@params.print_timestamps = true
assert @params.print_timestamps
@params.print_timestamps = false
assert !@params.print_timestamps
end
def test_suppress_blank
@params.suppress_blank = true
assert @params.suppress_blank
@params.suppress_blank = false
assert !@params.suppress_blank
end
def test_suppress_non_speech_tokens
@params.suppress_non_speech_tokens = true
assert @params.suppress_non_speech_tokens
@params.suppress_non_speech_tokens = false
assert !@params.suppress_non_speech_tokens
end
def test_token_timestamps
@params.token_timestamps = true
assert @params.token_timestamps
@params.token_timestamps = false
assert !@params.token_timestamps
end
def test_split_on_word
@params.split_on_word = true
assert @params.split_on_word
@params.split_on_word = false
assert !@params.split_on_word
end
def test_speed_up
@params.speed_up = true
assert @params.speed_up
@params.speed_up = false
assert !@params.speed_up
end
def test_whisper
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new
params.print_timestamps = false
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
@whisper.transcribe(jfk, params) {|text|
assert_match /ask not what your country can do for you, ask what you can do for your country/, text
}
end
end

View File

@ -0,0 +1,146 @@
//
// whisper-decoder-impl.h
//
// This file was automatically generated and should not be edited.
//
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <stdint.h>
#include <os/log.h>
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_implInput : NSObject<MLFeatureProvider>
/// token_data as 1 by 1 matrix of 32-bit integers
@property (readwrite, nonatomic, strong) MLMultiArray * token_data;
/// audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * audio_data;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data NS_DESIGNATED_INITIALIZER;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
/// var_1195 as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * var_1195;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithVar_1195:(MLMultiArray *)var_1195 NS_DESIGNATED_INITIALIZER;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_impl : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle;
/**
Initialize whisper_decoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init;
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Construct whisper_decoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Make a prediction using the standard interface
@param input an instance of whisper_decoder_implInput to predict from
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the standard interface
@param input an instance of whisper_decoder_implInput to predict from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the convenience interface
@param token_data as 1 by 1 matrix of 32-bit integers:
@param audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Batch prediction
@param inputArray array of whisper_decoder_implInput instances to obtain predictions from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the predictions as NSArray<whisper_decoder_implOutput *>
*/
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
@end
NS_ASSUME_NONNULL_END

View File

@ -0,0 +1,201 @@
//
// whisper-decoder-impl.m
//
// This file was automatically generated and should not be edited.
//
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-decoder-impl.h"
@implementation whisper_decoder_implInput
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data {
self = [super init];
if (self) {
_token_data = token_data;
_audio_data = audio_data;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"token_data", @"audio_data"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"token_data"]) {
return [MLFeatureValue featureValueWithMultiArray:self.token_data];
}
if ([featureName isEqualToString:@"audio_data"]) {
return [MLFeatureValue featureValueWithMultiArray:self.audio_data];
}
return nil;
}
@end
@implementation whisper_decoder_implOutput
- (instancetype)initWithVar_1195:(MLMultiArray *)var_1195 {
self = [super init];
if (self) {
_var_1195 = var_1195;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"var_1195"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"var_1195"]) {
return [MLFeatureValue featureValueWithMultiArray:self.var_1195];
}
return nil;
}
@end
@implementation whisper_decoder_impl
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle {
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_decoder_impl" ofType:@"mlmodelc"];
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-decoder-impl.mlmodelc in the bundle resource"); return nil; }
return [NSURL fileURLWithPath:assetPath];
}
/**
Initialize whisper_decoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
return self;
}
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
}
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
}
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Construct whisper_decoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
configuration:configuration
completionHandler:handler];
}
/**
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
[MLModel loadContentsOfURL:modelURL
configuration:configuration
completionHandler:^(MLModel *model, NSError *error) {
if (model != nil) {
whisper_decoder_impl *typedModel = [[whisper_decoder_impl alloc] initWithMLModel:model];
handler(typedModel, nil);
} else {
handler(nil, error);
}
}];
}
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
}
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
if (!outFeatures) { return nil; }
return [[whisper_decoder_implOutput alloc] initWithVar_1195:(MLMultiArray *)[outFeatures featureValueForName:@"var_1195"].multiArrayValue];
}
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
whisper_decoder_implInput *input_ = [[whisper_decoder_implInput alloc] initWithToken_data:token_data audio_data:audio_data];
return [self predictionFromFeatures:input_ error:error];
}
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
if (!outBatch) { return nil; }
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
for (NSInteger i = 0; i < outBatch.count; i++) {
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1195:(MLMultiArray *)[resultProvider featureValueForName:@"var_1195"].multiArrayValue];
[results addObject:result];
}
return results;
}
@end

View File

@ -0,0 +1,142 @@
//
// whisper-encoder-impl.h
//
// This file was automatically generated and should not be edited.
//
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <stdint.h>
#include <os/log.h>
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_implInput : NSObject<MLFeatureProvider>
/// logmel_data as 1 × 80 × 3000 3-dimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * logmel_data;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data NS_DESIGNATED_INITIALIZER;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_implOutput : NSObject<MLFeatureProvider>
/// output as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * output;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_impl : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle;
/**
Initialize whisper_encoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init;
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Construct whisper_encoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Make a prediction using the standard interface
@param input an instance of whisper_encoder_implInput to predict from
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the standard interface
@param input an instance of whisper_encoder_implInput to predict from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the convenience interface
@param logmel_data as 1 × 80 × 3000 3-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Batch prediction
@param inputArray array of whisper_encoder_implInput instances to obtain predictions from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the predictions as NSArray<whisper_encoder_implOutput *>
*/
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
@end
NS_ASSUME_NONNULL_END

View File

@ -0,0 +1,197 @@
//
// whisper-encoder-impl.m
//
// This file was automatically generated and should not be edited.
//
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-encoder-impl.h"
@implementation whisper_encoder_implInput
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data {
self = [super init];
if (self) {
_logmel_data = logmel_data;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"logmel_data"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"logmel_data"]) {
return [MLFeatureValue featureValueWithMultiArray:self.logmel_data];
}
return nil;
}
@end
@implementation whisper_encoder_implOutput
- (instancetype)initWithOutput:(MLMultiArray *)output {
self = [super init];
if (self) {
_output = output;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"output"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"output"]) {
return [MLFeatureValue featureValueWithMultiArray:self.output];
}
return nil;
}
@end
@implementation whisper_encoder_impl
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle {
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_encoder_impl" ofType:@"mlmodelc"];
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-encoder-impl.mlmodelc in the bundle resource"); return nil; }
return [NSURL fileURLWithPath:assetPath];
}
/**
Initialize whisper_encoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
return self;
}
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
}
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
}
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Construct whisper_encoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
configuration:configuration
completionHandler:handler];
}
/**
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
[MLModel loadContentsOfURL:modelURL
configuration:configuration
completionHandler:^(MLModel *model, NSError *error) {
if (model != nil) {
whisper_encoder_impl *typedModel = [[whisper_encoder_impl alloc] initWithMLModel:model];
handler(typedModel, nil);
} else {
handler(nil, error);
}
}];
}
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
}
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
if (!outFeatures) { return nil; }
return [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
}
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
whisper_encoder_implInput *input_ = [[whisper_encoder_implInput alloc] initWithLogmel_data:logmel_data];
return [self predictionFromFeatures:input_ error:error];
}
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
if (!outBatch) { return nil; }
NSMutableArray<whisper_encoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
for (NSInteger i = 0; i < outBatch.count; i++) {
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
whisper_encoder_implOutput * result = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
[results addObject:result];
}
return results;
}
@end

22
coreml/whisper-encoder.h Normal file
View File

@ -0,0 +1,22 @@
// Wrapper of the Core ML Whisper Encoder model
//
// Code is derived from the work of Github user @wangchou
// ref: https://github.com/wangchou/callCoreMLFromCpp
#if __cplusplus
extern "C" {
#endif
struct whisper_coreml_context;
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
void whisper_coreml_free(struct whisper_coreml_context * ctx);
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
float * mel,
float * out);
#if __cplusplus
}
#endif

63
coreml/whisper-encoder.mm Normal file
View File

@ -0,0 +1,63 @@
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-encoder.h"
#import "whisper-encoder-impl.h"
#import <CoreML/CoreML.h>
#include <stdlib.h>
#if __cplusplus
extern "C" {
#endif
struct whisper_coreml_context {
const void * data;
};
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
if (data == NULL) {
return NULL;
}
whisper_coreml_context * ctx = new whisper_coreml_context;
ctx->data = data;
return ctx;
}
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
CFRelease(ctx->data);
delete ctx;
}
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
float * mel,
float * out) {
MLMultiArray * inMultiArray = [
[MLMultiArray alloc] initWithDataPointer: mel
shape: @[@1, @80, @3000]
dataType: MLMultiArrayDataTypeFloat32
strides: @[@(240000), @(3000), @1]
deallocator: nil
error: nil
];
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
memcpy(out, outCoreML.output.dataPointer, outCoreML.output.count * sizeof(float));
}
#if __cplusplus
}
#endif

View File

@ -4,7 +4,7 @@ find_package(Threads REQUIRED)
# third-party
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# SDL2
find_package(SDL2 REQUIRED)
@ -14,6 +14,41 @@ if (WHISPER_SUPPORT_SDL2)
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
# common
set(TARGET common)
add_library(${TARGET} STATIC
common.h
common.cpp
common-ggml.h
common-ggml.cpp
)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
if (WHISPER_SDL2)
# common-sdl
set(TARGET common-sdl)
add_library(${TARGET} STATIC
common-sdl.h
common-sdl.cpp
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
@ -24,10 +59,14 @@ if (EMSCRIPTEN)
add_subdirectory(command.wasm)
add_subdirectory(talk.wasm)
add_subdirectory(bench.wasm)
elseif(CMAKE_JS_VERSION)
add_subdirectory(addon.node)
else()
add_subdirectory(main)
add_subdirectory(stream)
add_subdirectory(command)
add_subdirectory(bench)
add_subdirectory(quantize)
add_subdirectory(talk)
add_subdirectory(talk-llama)
endif()

3
examples/addon.node/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
.idea
node_modules
build

View File

@ -0,0 +1,31 @@
set(TARGET whisper-addon)
# Base settings
#==================================================================
# env var supported by cmake-js
add_definitions(-DNAPI_VERSION=4)
include_directories(${CMAKE_JS_INC})
#==================================================================
add_library(${TARGET} SHARED ${CMAKE_JS_SRC} addon.cpp)
set_target_properties(${TARGET} PROPERTIES PREFIX "" SUFFIX ".node")
include(DefaultTargetOptions)
# Include N-API wrappers
#==================================================================
execute_process(COMMAND node -p "require('node-addon-api').include"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE NODE_ADDON_API_DIR
)
string(REPLACE "\n" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
string(REPLACE "\"" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
target_include_directories(${TARGET} PRIVATE ${NODE_ADDON_API_DIR})
#==================================================================
target_link_libraries(${TARGET} ${CMAKE_JS_LIB} common whisper ${CMAKE_THREAD_LIBS_INIT})
if(MSVC AND CMAKE_JS_NODELIB_DEF AND CMAKE_JS_NODELIB_TARGET)
# Generate node.lib
execute_process(COMMAND ${CMAKE_AR} /def:${CMAKE_JS_NODELIB_DEF} /out:${CMAKE_JS_NODELIB_TARGET} ${CMAKE_STATIC_LINKER_FLAGS})
endif()

View File

@ -0,0 +1,37 @@
# addon
This is an addon demo that can **perform whisper model reasoning in `node` and `electron` environments**, based on [cmake-js](https://github.com/cmake-js/cmake-js).
It can be used as a reference for using the whisper.cpp project in other node projects.
## Install
```shell
npm install
```
## Compile
Make sure it is in the project root directory and compiled with make-js.
```shell
npx cmake-js compile -T whisper-addon -B Release
```
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
> Such as appointing special cmake path:
> ```shell
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
> ```
## Run
```shell
cd examples/addon.node
node index.js --language='language' --model='model-path' --fname_inp='file-path'
```
Because this is a simple Demo, only the above parameters are set in the node environment.
Other parameters can also be specified in the node environment.

View File

@ -0,0 +1,23 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../../build/Release/whisper-addon"
));
const { promisify } = require("util");
const whisperAsync = promisify(whisper);
const whisperParamsMock = {
language: "en",
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
};
describe("Run whisper.node", () => {
test("it should receive a non-empty value", async () => {
let result = await whisperAsync(whisperParamsMock);
expect(result.length).toBeGreaterThan(0);
}, 10000);
});

View File

@ -0,0 +1,338 @@
#include "napi.h"
#include "common.h"
#include "whisper.h"
#include <string>
#include <thread>
#include <vector>
#include <cmath>
#include <cstdint>
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = 5;
int32_t beam_size = -1;
float word_thold = 0.01f;
float entropy_thold = 2.4f;
float logprob_thold = -1.0f;
bool speed_up = false;
bool translate = false;
bool diarize = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
bool output_wts = false;
bool output_csv = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
std::string language = "en";
std::string prompt;
std::string model = "../../ggml-large.bin";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
};
struct whisper_print_user_data {
const whisper_params * params;
const std::vector<std::vector<float>> * pcmf32s;
};
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
const int n_segments = whisper_full_n_segments(ctx);
std::string speaker = "";
int64_t t0;
int64_t t1;
// print the last n_new segments
const int s0 = n_segments - n_new;
if (s0 == 0) {
printf("\n");
}
for (int i = s0; i < n_segments; i++) {
if (!params.no_timestamps || params.diarize) {
t0 = whisper_full_get_segment_t0(ctx, i);
t1 = whisper_full_get_segment_t1(ctx, i);
}
if (!params.no_timestamps) {
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
}
if (params.diarize && pcmf32s.size() == 2) {
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "(speaker 0)";
} else if (energy1 > 1.1*energy0) {
speaker = "(speaker 1)";
} else {
speaker = "(speaker ?)";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
}
// colorful print bug
//
const char * text = whisper_full_get_segment_text(ctx, i);
printf("%s%s", speaker.c_str(), text);
// with timestamps or speakers: each segment on new line
if (!params.no_timestamps || params.diarize) {
printf("\n");
}
fflush(stdout);
}
}
int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
if (params.fname_inp.empty()) {
fprintf(stderr, "error: no input files specified\n");
return 2;
}
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
exit(0);
}
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
// run the inference
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
wparams.print_timestamps = !params.no_timestamps;
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
wparams.duration_ms = params.duration_ms;
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.speed_up = params.speed_up;
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.initial_prompt = params.prompt.c_str();
whisper_print_user_data user_data = { &params, &pcmf32s };
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback_user_data = &user_data;
}
// example for abort mechanism
// in this example, we do not abort the processing, but we could if the flag is set to true
// the callback is called before every encoder run - if it returns false, the processing is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
wparams.encoder_begin_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "failed to process audio\n");
return 10;
}
}
}
const int n_segments = whisper_full_n_segments(ctx);
result.resize(n_segments);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result[i].emplace_back(to_timestamp(t0, true));
result[i].emplace_back(to_timestamp(t1, true));
result[i].emplace_back(text);
}
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}
class Worker : public Napi::AsyncWorker {
public:
Worker(Napi::Function& callback, whisper_params params)
: Napi::AsyncWorker(callback), params(params) {}
void Execute() override {
run(params, result);
}
void OnOK() override {
Napi::HandleScope scope(Env());
Napi::Object res = Napi::Array::New(Env(), result.size());
for (uint64_t i = 0; i < result.size(); ++i) {
Napi::Object tmp = Napi::Array::New(Env(), 3);
for (uint64_t j = 0; j < 3; ++j) {
tmp[j] = Napi::String::New(Env(), result[i][j]);
}
res[i] = tmp;
}
Callback().Call({Env().Null(), res});
}
private:
whisper_params params;
std::vector<std::vector<std::string>> result;
};
Napi::Value whisper(const Napi::CallbackInfo& info) {
Napi::Env env = info.Env();
if (info.Length() <= 0 || !info[0].IsObject()) {
Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException();
}
whisper_params params;
Napi::Object whisper_params = info[0].As<Napi::Object>();
std::string language = whisper_params.Get("language").As<Napi::String>();
std::string model = whisper_params.Get("model").As<Napi::String>();
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
params.language = language;
params.model = model;
params.fname_inp.emplace_back(input);
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);
worker->Queue();
return env.Undefined();
}
Napi::Object Init(Napi::Env env, Napi::Object exports) {
exports.Set(
Napi::String::New(env, "whisper"),
Napi::Function::New(env, whisper)
);
return exports;
}
NODE_API_MODULE(whisper, Init);

View File

@ -0,0 +1,36 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../build/Release/whisper-addon"
));
const { promisify } = require("util");
const whisperAsync = promisify(whisper);
const whisperParams = {
language: "en",
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
fname_inp: "../../samples/jfk.wav",
};
const arguments = process.argv.slice(2);
const params = Object.fromEntries(
arguments.reduce((pre, item) => {
if (item.startsWith("--")) {
return [...pre, item.slice(2).split("=")];
}
return pre;
}, [])
);
for (const key in params) {
if (whisperParams.hasOwnProperty(key)) {
whisperParams[key] = params[key];
}
}
console.log("whisperParams =", whisperParams);
whisperAsync(whisperParams).then((result) => {
console.log(`Result from whisper: ${result}`);
});

View File

@ -0,0 +1,16 @@
{
"name": "whisper-addon",
"version": "0.0.0",
"description": "",
"main": "index.js",
"author": "Qanhe Chen",
"license": "MIT",
"scripts": {
"test": "jest"
},
"devDependencies": {
"cmake-js": "^7.1.1",
"jest": "^29.4.0",
"node-addon-api": "^5.0.0"
}
}

View File

@ -31,9 +31,9 @@ endif()
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
--bind \
-s USE_PTHREADS=1 \
-s PTHREAD_POOL_SIZE=8 \
-s INITIAL_MEMORY=1024MB \
-s TOTAL_MEMORY=1024MB \
-s PTHREAD_POOL_SIZE_STRICT=0 \
-s INITIAL_MEMORY=2000MB \
-s TOTAL_MEMORY=2000MB \
-s FORCE_FILESYSTEM=1 \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
${EXTRA_FLAGS} \

View File

@ -28,6 +28,11 @@ void bench_main(size_t index) {
return;
}
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
}
if (int ret = whisper_encode(ctx, 0, n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return;
@ -52,7 +57,7 @@ EMSCRIPTEN_BINDINGS(bench) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init(path_model.c_str());
g_contexts[i] = whisper_init_from_file(path_model.c_str());
if (g_contexts[i] != nullptr) {
if (g_worker.joinable()) {
g_worker.join();

View File

@ -35,6 +35,15 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<br><br>
<hr>
Select the model you would like to use and click the "Bench" button.<br>
@ -44,11 +53,18 @@
<div id="model-whisper">
Whisper model: <span id="model-whisper-status"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<span id="fetch-whisper-progress"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<button id="fetch-whisper-small-en-q5_1" onclick="loadWhisper('small-en-q5_1')">small.en (Q5_1, 182 MB)</button>
<button id="fetch-whisper-medium-en-q5_0" onclick="loadWhisper('medium-en-q5_0')">medium.en (Q5_0, 515 MB)</button>
<button id="fetch-whisper-large-q5_0" onclick="loadWhisper('large-q5_0')">large (Q5_0, 1030 MB)</button>
<span id="fetch-whisper-progress"></span>
</div>
<br>
@ -160,6 +176,14 @@
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-small-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
}
@ -168,19 +192,42 @@
let urls = {
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
'small-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en-q5_1.bin',
'medium-en-q5_0':'https://whisper.ggerganov.com/ggml-model-whisper-medium.en-q5_0.bin',
'large-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-large-q5_0.bin',
};
let sizes = {
'tiny.en': 75,
'base.en': 142,
'small.en': 466,
'tiny-en-q5_1': 31,
'base-en-q5_1': 57,
'small-en-q5_1': 182,
'medium-en-q5_0': 515,
'large-q5_0': 1030,
};
let url = urls[model];
let dst = 'whisper.bin';
let size_mb = sizes[model];
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-small-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
cbProgress = function(p) {
@ -190,9 +237,18 @@
cbCancel = function() {
var el;
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-medium-en-q5_0'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-large-q5_0' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);

View File

@ -7,6 +7,7 @@
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
std::string model = "models/ggml-base.en.bin";
};
@ -23,6 +24,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -41,19 +43,17 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, "\n");
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
int whisper_bench_encoder(const whisper_params & params) {
// whisper init
struct whisper_context * ctx = whisper_init(params.model.c_str());
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
{
fprintf(stderr, "\n");
@ -92,3 +92,22 @@ int main(int argc, char ** argv) {
return 0;
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
int ret = -1;
switch (params.what) {
case 0: ret = whisper_bench_encoder(params); break;
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
}
return ret;
}

View File

@ -11,6 +11,7 @@ add_executable(${TARGET}
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE
common
whisper
)

View File

@ -1,4 +1,5 @@
#include "ggml.h"
#include "common.h"
#include "whisper.h"
#include <emscripten.h>
@ -27,92 +28,11 @@ std::string g_transcribed = "";
std::vector<float> g_pcmf32;
static std::string trim(const std::string & s) {
std::regex e("^\\s+|\\s+$");
return std::regex_replace(s, e, "");
}
static void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
const float rc = 1.0f / (2.0f * M_PI * cutoff);
const float dt = 1.0f / sample_rate;
const float alpha = dt / (rc + dt);
float y = data[0];
for (size_t i = 1; i < data.size(); i++) {
y = alpha * (y + data[i] - data[i - 1]);
data[i] = y;
}
}
// compute similarity between two strings using Levenshtein distance
static float similarity(const std::string & s0, const std::string & s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
void command_set_status(const std::string & status) {
std::lock_guard<std::mutex> lock(g_mutex);
g_status = status;
}
bool command_vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
const int n_samples = pcmf32.size();
const int n_samples_last = (sample_rate * last_ms) / 1000;
if (n_samples_last >= n_samples) {
// not enough samples - assume no speech
return false;
}
if (freq_thold > 0.0f) {
high_pass_filter(pcmf32, freq_thold, sample_rate);
}
float energy_all = 0.0f;
float energy_last = 0.0f;
for (size_t i = 0; i < n_samples; i++) {
energy_all += fabsf(pcmf32[i]);
if (i >= n_samples - n_samples_last) {
energy_last += fabsf(pcmf32[i]);
}
}
energy_all /= n_samples;
energy_last /= n_samples_last;
if (verbose) {
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
}
if (energy_last > vad_thold*energy_all) {
return false;
}
return true;
}
std::string command_transcribe(whisper_context * ctx, const whisper_full_params & wparams, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
@ -155,7 +75,7 @@ void command_get_audio(int ms, int sample_rate, std::vector<float> & audio) {
const int64_t n_samples = (ms * sample_rate) / 1000;
int64_t n_take = 0;
if (g_pcmf32.size() < n_samples) {
if (n_samples > (int) g_pcmf32.size()) {
n_take = g_pcmf32.size();
} else {
n_take = n_samples;
@ -187,7 +107,6 @@ void command_main(size_t index) {
printf("command: using %d threads\n", wparams.n_threads);
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;
bool print_energy = false;
@ -233,7 +152,7 @@ void command_main(size_t index) {
{
command_get_audio(vad_ms, WHISPER_SAMPLE_RATE, pcmf32_cur);
if (command_vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, vad_thold, freq_thold, print_energy)) {
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, vad_thold, freq_thold, print_energy)) {
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
command_set_status("Speech detected! Processing ...");
@ -324,7 +243,7 @@ EMSCRIPTEN_BINDINGS(command) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init(path_model.c_str());
g_contexts[i] = whisper_init_from_file(path_model.c_str());
if (g_contexts[i] != nullptr) {
g_running = true;
if (g_worker.joinable()) {

View File

@ -35,6 +35,15 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<br><br>
<hr>
Select the model you would like to use, click the "Start" button and follow the instructions.
@ -45,6 +54,10 @@
Whisper model: <span id="model-whisper-status"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<span id="fetch-whisper-progress"></span>
<!--
@ -162,11 +175,17 @@
let urls = {
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
};
let sizes = {
'tiny.en': 75,
'base.en': 142,
'tiny-en-q5_1': 31,
'base-en-q5_1': 57,
};
let url = urls[model];
@ -177,6 +196,10 @@
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
cbProgress = function(p) {
@ -188,6 +211,10 @@
var el;
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};

View File

@ -1,10 +1,9 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# command
set(TARGET command)
add_executable(${TARGET} command.cpp)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
endif ()

File diff suppressed because it is too large Load Diff

246
examples/common-ggml.cpp Normal file
View File

@ -0,0 +1,246 @@
#include "common-ggml.h"
#include <regex>
#include <map>
static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
{"q4_0", GGML_FTYPE_MOSTLY_Q4_0},
{"q4_1", GGML_FTYPE_MOSTLY_Q4_1},
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
};
void ggml_print_ftypes(FILE * fp) {
for (auto it = GGML_FTYPE_MAP.begin(); it != GGML_FTYPE_MAP.end(); it++) {
fprintf(fp, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
}
}
enum ggml_ftype ggml_parse_ftype(const char * str) {
enum ggml_ftype ftype;
if (str[0] == 'q') {
const auto it = GGML_FTYPE_MAP.find(str);
if (it == GGML_FTYPE_MAP.end()) {
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, str);
return GGML_FTYPE_UNKNOWN;
}
ftype = it->second;
} else {
ftype = (enum ggml_ftype) atoi(str);
}
return ftype;
}
bool ggml_common_quantize_0(
std::ifstream & finp,
std::ofstream & fout,
const ggml_ftype ftype,
const std::vector<std::string> & to_quant,
const std::vector<std::string> & to_skip) {
ggml_type qtype = GGML_TYPE_F32;
switch (ftype) {
case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break;
case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break;
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_UNKNOWN:
case GGML_FTYPE_ALL_F32:
case GGML_FTYPE_MOSTLY_F16:
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
case GGML_FTYPE_MOSTLY_Q2_K:
case GGML_FTYPE_MOSTLY_Q3_K:
case GGML_FTYPE_MOSTLY_Q4_K:
case GGML_FTYPE_MOSTLY_Q5_K:
case GGML_FTYPE_MOSTLY_Q6_K:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
}
};
if (!ggml_is_quantized(qtype)) {
fprintf(stderr, "%s: invalid quantization type %d (%s)\n", __func__, qtype, ggml_type_name(qtype));
return false;
}
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<float> work;
std::vector<uint8_t> data_u8;
std::vector<ggml_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
finp.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (finp.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[4] = { 1, 1, 1, 1 };
for (int i = 0; i < n_dims; ++i) {
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
finp.read (&name[0], length);
printf("%64s - [%5d, %5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype));
bool quantize = false;
// check if we should quantize this tensor
for (const auto & s : to_quant) {
if (std::regex_match(name, std::regex(s))) {
quantize = true;
break;
}
}
// check if we should skip this tensor
for (const auto & s : to_skip) {
if (std::regex_match(name, std::regex(s))) {
quantize = false;
break;
}
}
// quantize only 2D tensors
quantize &= (n_dims == 2);
if (quantize) {
if (ttype != GGML_TYPE_F32 && ttype != GGML_TYPE_F16) {
fprintf(stderr, "%s: unsupported ttype %d (%s) for integer quantization\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
return false;
}
if (ttype == GGML_TYPE_F16) {
data_f16.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
data_f32.resize(nelements);
for (int i = 0; i < nelements; ++i) {
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
}
} else {
data_f32.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
}
ttype = qtype;
} else {
const int bpe = (ttype == 0) ? sizeof(float) : sizeof(uint16_t);
data_u8.resize(nelements*bpe);
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
}
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
fout.write(reinterpret_cast<char *>(&ttype), sizeof(ttype));
for (int i = 0; i < n_dims; ++i) {
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
fout.write(&name[0], length);
if (quantize) {
work.resize(nelements); // for quantization
size_t cur_size = 0;
std::vector<int64_t> hist_cur(1 << 4, 0);
switch ((ggml_type) ttype) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_0:
{
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_1:
{
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q8_0:
{
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
return false;
}
}
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
for (int i = 0; i < (int) hist_cur.size(); ++i) {
hist_all[i] += hist_cur[i];
}
for (int i = 0; i < (int) hist_cur.size(); ++i) {
printf("%5.3f ", hist_cur[i] / (float)nelements);
}
printf("\n");
} else {
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
total_size_new += data_u8.size();
}
total_size_org += nelements * sizeof(float);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));
{
int64_t sum_all = 0;
for (int i = 0; i < (int) hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (int i = 0; i < (int) hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / (float)sum_all);
}
printf("\n");
}
return true;
}

18
examples/common-ggml.h Normal file
View File

@ -0,0 +1,18 @@
#pragma once
#include "ggml.h"
#include <fstream>
#include <vector>
#include <string>
enum ggml_ftype ggml_parse_ftype(const char * str);
void ggml_print_ftypes(FILE * fp = stderr);
bool ggml_common_quantize_0(
std::ifstream & finp,
std::ofstream & fout,
const ggml_ftype ftype,
const std::vector<std::string> & to_quant,
const std::vector<std::string> & to_skip);

226
examples/common-sdl.cpp Normal file
View File

@ -0,0 +1,226 @@
#include "common-sdl.h"
audio_async::audio_async(int len_ms) {
m_len_ms = len_ms;
m_running = false;
}
audio_async::~audio_async() {
if (m_dev_id_in) {
SDL_CloseAudioDevice(m_dev_id_in);
}
}
bool audio_async::init(int capture_id, int sample_rate) {
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
return false;
}
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
{
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
for (int i = 0; i < nDevices; i++) {
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
}
}
SDL_AudioSpec capture_spec_requested;
SDL_AudioSpec capture_spec_obtained;
SDL_zero(capture_spec_requested);
SDL_zero(capture_spec_obtained);
capture_spec_requested.freq = sample_rate;
capture_spec_requested.format = AUDIO_F32;
capture_spec_requested.channels = 1;
capture_spec_requested.samples = 1024;
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
audio_async * audio = (audio_async *) userdata;
audio->callback(stream, len);
};
capture_spec_requested.userdata = this;
if (capture_id >= 0) {
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
} else {
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
}
if (!m_dev_id_in) {
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
m_dev_id_in = 0;
return false;
} else {
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
capture_spec_requested.format);
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
capture_spec_requested.channels);
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
}
m_sample_rate = capture_spec_obtained.freq;
m_audio.resize((m_sample_rate*m_len_ms)/1000);
return true;
}
bool audio_async::resume() {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
return false;
}
if (m_running) {
fprintf(stderr, "%s: already running!\n", __func__);
return false;
}
SDL_PauseAudioDevice(m_dev_id_in, 0);
m_running = true;
return true;
}
bool audio_async::pause() {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
return false;
}
if (!m_running) {
fprintf(stderr, "%s: already paused!\n", __func__);
return false;
}
SDL_PauseAudioDevice(m_dev_id_in, 1);
m_running = false;
return true;
}
bool audio_async::clear() {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
return false;
}
if (!m_running) {
fprintf(stderr, "%s: not running!\n", __func__);
return false;
}
{
std::lock_guard<std::mutex> lock(m_mutex);
m_audio_pos = 0;
m_audio_len = 0;
}
return true;
}
// callback to be called by SDL
void audio_async::callback(uint8_t * stream, int len) {
if (!m_running) {
return;
}
const size_t n_samples = len / sizeof(float);
m_audio_new.resize(n_samples);
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
{
std::lock_guard<std::mutex> lock(m_mutex);
if (m_audio_pos + n_samples > m_audio.size()) {
const size_t n0 = m_audio.size() - m_audio_pos;
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = m_audio.size();
} else {
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
}
}
}
void audio_async::get(int ms, std::vector<float> & result) {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
return;
}
if (!m_running) {
fprintf(stderr, "%s: not running!\n", __func__);
return;
}
result.clear();
{
std::lock_guard<std::mutex> lock(m_mutex);
if (ms <= 0) {
ms = m_len_ms;
}
size_t n_samples = (m_sample_rate * ms) / 1000;
if (n_samples > m_audio_len) {
n_samples = m_audio_len;
}
result.resize(n_samples);
int s0 = m_audio_pos - n_samples;
if (s0 < 0) {
s0 += m_audio.size();
}
if (s0 + n_samples > m_audio.size()) {
const size_t n0 = m_audio.size() - s0;
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
} else {
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
}
}
}
bool sdl_poll_events() {
SDL_Event event;
while (SDL_PollEvent(&event)) {
switch (event.type) {
case SDL_QUIT:
{
return false;
} break;
default:
break;
}
}
return true;
}

50
examples/common-sdl.h Normal file
View File

@ -0,0 +1,50 @@
#pragma once
#include <SDL.h>
#include <SDL_audio.h>
#include <atomic>
#include <cstdint>
#include <vector>
#include <mutex>
//
// SDL Audio capture
//
class audio_async {
public:
audio_async(int len_ms);
~audio_async();
bool init(int capture_id, int sample_rate);
// start capturing audio via the provided SDL callback
// keep last len_ms seconds of audio in a circular buffer
bool resume();
bool pause();
bool clear();
// callback to be called by SDL
void callback(uint8_t * stream, int len);
// get audio data from the circular buffer
void get(int ms, std::vector<float> & audio);
private:
SDL_AudioDeviceID m_dev_id_in = 0;
int m_len_ms = 0;
int m_sample_rate = 0;
std::atomic_bool m_running;
std::mutex m_mutex;
std::vector<float> m_audio;
std::vector<float> m_audio_new;
size_t m_audio_pos = 0;
size_t m_audio_len = 0;
};
// Return false if need to quit
bool sdl_poll_events();

757
examples/common.cpp Normal file
View File

@ -0,0 +1,757 @@
#include "common.h"
// third-party utilities
// use your favorite implementations
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <regex>
#include <locale>
#include <codecvt>
#include <sstream>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = argv[++i];
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(argv[++i]);
} else if (arg == "--top_k") {
params.top_k = std::max(1, std::stoi(argv[++i]));
} else if (arg == "--top_p") {
params.top_p = std::stof(argv[++i]);
} else if (arg == "--temp") {
params.temp = std::stof(argv[++i]);
} else if (arg == "--repeat-last-n") {
params.repeat_last_n = std::stof(argv[++i]);
} else if (arg == "--repeat-penalty") {
params.repeat_penalty = std::stof(argv[++i]);
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "-ip" || arg == "--interactive-port") {
params.interactive = true;
params.interactive_port = std::stoi(argv[++i]);
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
} else if (arg == "-f" || arg == "--file") {
if (++i > argc) {
fprintf(stderr, "Invalid file param");
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-tt" || arg == "--token_test") {
params.token_test = argv[++i];
}
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " load prompt from a file\n");
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
fprintf(stderr, " test tokenization\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
std::string gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
default: return "To";
}
return "The";
}
std::string trim(const std::string & s) {
std::regex e("^\\s+|\\s+$");
return std::regex_replace(s, e, "");
}
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
std::string result = s;
size_t pos = 0;
while ((pos = result.find(from, pos)) != std::string::npos) {
result.replace(pos, from.length(), to);
pos += to.length();
}
return result;
}
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i+1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
std::string convert_to_utf8(const std::wstring & input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.to_bytes(input);
}
std::wstring convert_to_wstring(const std::string & input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.from_bytes(input);
}
void gpt_split_words(std::string str, std::vector<std::string>& words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
std::string special_tokens_subpattern;
for (const auto & token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
}
std::regex re(special_tokens_subpattern);
std::smatch m;
// Split the text by special tokens.
while (std::regex_search(str, m, re)) {
// Split the substrings in-between special tokens into words.
gpt_split_words(m.prefix(), words);
// Add matched special tokens as words.
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
// Remaining text without special tokens will be handled below.
}
gpt_split_words(str, words);
}
// find the longest token that forms each word in words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
for (int i = 0; i < (int) word.size(); ){
for (int j = word.size() - 1; j >= i; j--){
auto cand = word.substr(i, j-i+1);
auto it = vocab.token_to_id.find(cand);
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j + 1;
break;
}
else if (j == i){ // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
i++;
}
}
}
}
return tokens;
}
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
while (std::getline(ss, token, delimiter)) {
output.push_back(std::stoi(token));
}
return output;
}
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
if (fpath_test.empty()){
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();
}
std::map<std::string, std::vector<gpt_vocab::id>> tests;
auto fin = std::ifstream(fpath_test, std::ios_base::in);
const char * delimeter = " => ";
const char del_tok = ',';
std::string line;
while (std::getline(fin, line)) {
size_t delimiterPos = line.find(delimeter);
if (delimiterPos != std::string::npos) {
std::string text = line.substr(0, delimiterPos);
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
}
}
return tests;
}
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
size_t n_fails = 0;
for (const auto & test : tests) {
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
if (tokens != test.second){
n_fails++;
// print out failure cases
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
fprintf(stderr, "%s : tokens in hf: ", __func__);
for (const auto & t : test.second) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : tokens in ggml: ", __func__);
for (const auto & t : tokens) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
}
}
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab & vocab,
const float * logits,
const int32_t * last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
const auto * plogits = logits;
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
if (temp <= 0) {
// select the token with the highest logit directly
float max_logit = plogits[0];
gpt_vocab::id max_id = 0;
for (int i = 1; i < n_logits; ++i) {
if (plogits[i] > max_logit) {
max_logit = plogits[i];
max_id = i;
}
}
return max_id;
}
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const float scale = 1.0f/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
}
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
// printf("\n");
// for (int i = 0; i < (int) probs.size(); i++) {
// for (int i = 0; i < 10; i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
// }
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname == "-") {
{
uint8_t buf[1024];
while (true)
{
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return false;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
}
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
return false;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
return false;
}
if (stereo && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
return false;
}
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
return false;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
return false;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (stereo) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
return true;
}
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
const float rc = 1.0f / (2.0f * M_PI * cutoff);
const float dt = 1.0f / sample_rate;
const float alpha = dt / (rc + dt);
float y = data[0];
for (size_t i = 1; i < data.size(); i++) {
y = alpha * (y + data[i] - data[i - 1]);
data[i] = y;
}
}
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
const int n_samples = pcmf32.size();
const int n_samples_last = (sample_rate * last_ms) / 1000;
if (n_samples_last >= n_samples) {
// not enough samples - assume no speech
return false;
}
if (freq_thold > 0.0f) {
high_pass_filter(pcmf32, freq_thold, sample_rate);
}
float energy_all = 0.0f;
float energy_last = 0.0f;
for (int i = 0; i < n_samples; i++) {
energy_all += fabsf(pcmf32[i]);
if (i >= n_samples - n_samples_last) {
energy_last += fabsf(pcmf32[i]);
}
}
energy_all /= n_samples;
energy_last /= n_samples_last;
if (verbose) {
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
}
if (energy_last > vad_thold*energy_all) {
return false;
}
return true;
}
float similarity(const std::string & s0, const std::string & s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}

157
examples/common.h Normal file
View File

@ -0,0 +1,157 @@
// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
#define COMMON_SAMPLE_RATE 16000
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_batch = 8; // batch size for prompt processing
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.00f;
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt = "";
std::string token_test = "";
bool interactive = false;
int32_t interactive_port = -1;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
std::string trim(const std::string & s);
std::string replace(
const std::string & s,
const std::string & from,
const std::string & to);
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string & token);
};
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
std::string convert_to_utf8(const std::wstring & input);
std::wstring convert_to_wstring(const std::string & input);
void gpt_split_words(std::string str, std::vector<std::string>& words);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// test outputs of gpt_tokenize
//
// - compare with tokens generated by the huggingface tokenizer
// - test cases are chosen based on the model's main language (under 'prompt' directory)
// - if all sentences are tokenized identically, print 'All tests passed.'
// - otherwise, print sentence, huggingface tokens, ggml tokens
//
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
// TODO: temperature is not implemented
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab & vocab,
const float * logits,
const int32_t * last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 & rng);
//
// Audio utils
//
// Read WAV audio file and store the PCM data into pcmf32
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_wav(
const std::string & fname,
std::vector<float> & pcmf32,
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// Apply a high-pass frequency filter to PCM audio
// Suppresses frequencies below cutoff Hz
void high_pass_filter(
std::vector<float> & data,
float cutoff,
float sample_rate);
// Basic voice activity detection (VAD) using audio energy adaptive threshold
bool vad_simple(
std::vector<float> & pcmf32,
int sample_rate,
int last_ms,
float vad_thold,
float freq_thold,
bool verbose);
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1);

View File

@ -8,7 +8,7 @@ function convertTypedArray(src, type) {
var printTextarea = (function() {
var element = document.getElementById('output');
if (element) element.alue = ''; // clear browser cache
if (element) element.value = ''; // clear browser cache
return function(text) {
if (arguments.length > 1) text = Array.prototype.slice.call(arguments).join(' ');
console.log(text);
@ -88,11 +88,15 @@ async function fetchRemote(url, cbProgress, cbPrint) {
// - check if the data is already in the IndexedDB
// - if not, fetch it from the remote URL and store it in the IndexedDB
function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
// query the storage quota and print it
navigator.storage.estimate().then(function (estimate) {
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
});
if (!navigator.storage || !navigator.storage.estimate) {
cbPrint('loadRemote: navigator.storage.estimate() is not supported');
} else {
// query the storage quota and print it
navigator.storage.estimate().then(function (estimate) {
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
});
}
// check if the data is already in the IndexedDB
var rq = indexedDB.open(dbName, dbVersion);
@ -141,7 +145,15 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
var db = event.target.result;
var tx = db.transaction(['models'], 'readwrite');
var os = tx.objectStore('models');
var rq = os.put(data, url);
var rq = null;
try {
var rq = os.put(data, url);
} catch (e) {
cbPrint('loadRemote: failed to store "' + url + '" in the IndexedDB: \n' + e);
cbCancel();
return;
}
rq.onsuccess = function (event) {
cbPrint('loadRemote: "' + url + '" stored in the IndexedDB');
@ -176,7 +188,6 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
rq.onabort = function (event) {
cbPrint('loadRemote: failed to open IndexedDB: abort');
cbCancel();
};
}

View File

@ -100,7 +100,7 @@ while [ $running -eq 1 ]; do
err=$(cat /tmp/whisper-live.err | wc -l)
done
./main -t 8 -m ./models/ggml-base.en.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
./main -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
sleep 1

View File

@ -3,4 +3,4 @@ add_executable(${TARGET} main.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})

View File

@ -9,25 +9,36 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
usage: ./main [options] file0.wav file1.wav ...
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-owts, --output-words [false ] output script for generating karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
```

View File

@ -1,9 +1,6 @@
#include "whisper.h"
#include "common.h"
// third-party utilities
// use your favorite implementations
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include "whisper.h"
#include <cmath>
#include <fstream>
@ -11,6 +8,11 @@
#include <string>
#include <thread>
#include <vector>
#include <cstring>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
@ -53,33 +55,50 @@ void replace_all(std::string & s, const std::string & search, const std::string
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t max_len = 0;
int32_t best_of = 2;
int32_t beam_size = -1;
float word_thold = 0.01f;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
bool speed_up = false;
bool translate = false;
bool diarize = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
bool output_wts = false;
bool output_csv = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool speed_up = false;
bool translate = false;
bool detect_language = false;
bool diarize = false;
bool tinydiarize = false;
bool split_on_word = false;
bool no_fallback = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
bool output_wts = false;
bool output_csv = false;
bool output_jsn = false;
bool output_lrc = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
std::string language = "en";
std::string language = "en";
std::string prompt;
std::string model = "models/ggml-base.en.bin";
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
std::string model = "models/ggml-base.en.bin";
// [TDRZ] speaker turn string
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
std::string openvino_encode_device = "CPU";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -88,6 +107,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-"){
params.fname_inp.push_back(arg);
continue;
}
if (arg[0] != '-') {
params.fname_inp.push_back(arg);
continue;
@ -97,30 +121,43 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -136,31 +173,44 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
fprintf(stderr, " -sow, --split-on-word [%-7s] split on word rather than on token\n", params.split_on_word ? "true" : "false");
fprintf(stderr, " -bo N, --best-of N [%-7d] number of best candidates to keep\n", params.best_of);
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
fprintf(stderr, " -olrc, --output-lrc [%-7s] output result in a lrc file\n", params.output_lrc ? "true" : "false");
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
fprintf(stderr, " -oj, --output-json [%-7s] output result in a JSON file\n", params.output_jsn ? "true" : "false");
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
fprintf(stderr, "\n");
}
@ -170,7 +220,40 @@ struct whisper_print_user_data {
const std::vector<std::vector<float>> * pcmf32s;
};
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
std::string speaker = "";
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "0";
} else if (energy1 > 1.1*energy0) {
speaker = "1";
} else {
speaker = "?";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, speaker = %s\n", is0, is1, energy0, energy1, speaker.c_str());
if (!id_only) {
speaker.insert(0, "(speaker ");
speaker.append(")");
}
return speaker;
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -178,8 +261,8 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
std::string speaker = "";
int64_t t0;
int64_t t1;
int64_t t0 = 0;
int64_t t1 = 0;
// print the last n_new segments
const int s0 = n_segments - n_new;
@ -199,28 +282,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
}
if (params.diarize && pcmf32s.size() == 2) {
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "(speaker 0)";
} else if (energy1 > 1.1*energy0) {
speaker = "(speaker 1)";
} else {
speaker = "(speaker ?)";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
if (params.print_colors) {
@ -235,7 +297,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
const char * text = whisper_full_get_token_text(ctx, i, j);
const float p = whisper_full_get_token_p (ctx, i, j);
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) (std::pow(p, 3)*float(k_colors.size()))));
printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");
}
@ -245,6 +307,12 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
printf("%s%s", speaker.c_str(), text);
}
if (params.tinydiarize) {
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
printf("%s", params.tdrz_speaker_turn.c_str());
}
}
// with timestamps or speakers: each segment on new line
if (!params.no_timestamps || params.diarize) {
printf("\n");
@ -254,7 +322,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
}
}
bool output_txt(struct whisper_context * ctx, const char * fname) {
bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -266,13 +334,22 @@ bool output_txt(struct whisper_context * ctx, const char * fname) {
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
fout << text << "\n";
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
fout << speaker << text << "\n";
}
return true;
}
bool output_vtt(struct whisper_context * ctx, const char * fname) {
bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -288,15 +365,23 @@ bool output_vtt(struct whisper_context * ctx, const char * fname) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
speaker = estimate_diarization_speaker(pcmf32s, t0, t1, true);
speaker.insert(0, "<v Speaker");
speaker.append(">");
}
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
fout << text << "\n\n";
fout << speaker << text << "\n\n";
}
return true;
}
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -310,16 +395,53 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
fout << i + 1 + params.offset_n << "\n";
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
fout << text << "\n\n";
fout << speaker << text << "\n\n";
}
return true;
}
bool output_csv(struct whisper_context * ctx, const char * fname) {
char *escape_double_quotes_and_backslashes(const char *str) {
if (str == NULL) {
return NULL;
}
size_t escaped_length = strlen(str) + 1;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"' || str[i] == '\\') {
escaped_length++;
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
size_t pos = 0;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"' || str[i] == '\\') {
escaped[pos++] = '\\';
}
escaped[pos++] = str[i];
}
// no need to set zero due to calloc() being used prior
return escaped;
}
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -329,32 +451,180 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
const int n_segments = whisper_full_n_segments(ctx);
fout << "start,end,";
if (params.diarize && pcmf32s.size() == 2)
{
fout << "speaker,";
}
fout << "text\n";
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
if (text[0] == ' ')
text = text + sizeof(char); //whisper_full_get_segment_text() returns a string with leading space, point to the next character.
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << ", "
<< 10 * t1 << ", \""
<< text << "\"\n";
char * text_escaped = escape_double_quotes_and_backslashes(text);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << "," << 10 * t1 << ",";
if (params.diarize && pcmf32s.size() == 2)
{
fout << estimate_diarization_speaker(pcmf32s, t0, t1, true) << ",";
}
fout << "\"" << text_escaped << "\"\n";
}
return true;
}
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
int indent = 0;
auto doindent = [&]() {
for (int i = 0; i < indent; i++) fout << "\t";
};
auto start_arr = [&](const char *name) {
doindent();
fout << "\"" << name << "\": [\n";
indent++;
};
auto end_arr = [&](bool end) {
indent--;
doindent();
fout << (end ? "]\n" : "},\n");
};
auto start_obj = [&](const char *name) {
doindent();
if (name) {
fout << "\"" << name << "\": {\n";
} else {
fout << "{\n";
}
indent++;
};
auto end_obj = [&](bool end) {
indent--;
doindent();
fout << (end ? "}\n" : "},\n");
};
auto start_value = [&](const char *name) {
doindent();
fout << "\"" << name << "\": ";
};
auto value_s = [&](const char *name, const char *val, bool end) {
start_value(name);
char * val_escaped = escape_double_quotes_and_backslashes(val);
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
free(val_escaped);
};
auto end_value = [&](bool end) {
fout << (end ? "\n" : ",\n");
};
auto value_i = [&](const char *name, const int64_t val, bool end) {
start_value(name);
fout << val;
end_value(end);
};
auto value_b = [&](const char *name, const bool val, bool end) {
start_value(name);
fout << (val ? "true" : "false");
end_value(end);
};
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
start_obj(nullptr);
value_s("systeminfo", whisper_print_system_info(), false);
start_obj("model");
value_s("type", whisper_model_type_readable(ctx), false);
value_b("multilingual", whisper_is_multilingual(ctx), false);
value_i("vocab", whisper_model_n_vocab(ctx), false);
start_obj("audio");
value_i("ctx", whisper_model_n_audio_ctx(ctx), false);
value_i("state", whisper_model_n_audio_state(ctx), false);
value_i("head", whisper_model_n_audio_head(ctx), false);
value_i("layer", whisper_model_n_audio_layer(ctx), true);
end_obj(false);
start_obj("text");
value_i("ctx", whisper_model_n_text_ctx(ctx), false);
value_i("state", whisper_model_n_text_state(ctx), false);
value_i("head", whisper_model_n_text_head(ctx), false);
value_i("layer", whisper_model_n_text_layer(ctx), true);
end_obj(false);
value_i("mels", whisper_model_n_mels(ctx), false);
value_i("ftype", whisper_model_ftype(ctx), true);
end_obj(false);
start_obj("params");
value_s("model", params.model.c_str(), false);
value_s("language", params.language.c_str(), false);
value_b("translate", params.translate, true);
end_obj(false);
start_obj("result");
value_s("language", whisper_lang_str(whisper_full_lang_id(ctx)), true);
end_obj(false);
start_arr("transcription");
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
start_obj(nullptr);
start_obj("timestamps");
value_s("from", to_timestamp(t0, true).c_str(), false);
value_s("to", to_timestamp(t1, true).c_str(), true);
end_obj(false);
start_obj("offsets");
value_i("from", t0 * 10, false);
value_i("to", t1 * 10, true);
end_obj(false);
value_s("text", text, !params.diarize && !params.tinydiarize);
if (params.diarize && pcmf32s.size() == 2) {
value_s("speaker", estimate_diarization_speaker(pcmf32s, t0, t1, true).c_str(), true);
}
if (params.tinydiarize) {
value_b("speaker_turn_next", whisper_full_get_segment_speaker_turn_next(ctx, i), true);
}
end_obj(i == (n_segments - 1));
}
end_arr(true);
end_obj(true);
return true;
}
// karaoke video generation
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
// TODO: font parameter adjustments
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & /*params*/, float t_sec) {
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
// TODO: become parameter
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
static const char * font = params.font_path.c_str();
std::ifstream fin(font);
if (!fin.is_open()) {
fprintf(stderr, "%s: font not found at '%s', please specify a monospace font with -fp\n", __func__, font);
return false;
}
fout << "#!/bin/bash" << "\n";
fout << "\n";
@ -380,6 +650,11 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
bool is_first = true;
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2) {
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
for (int j = 0; j < n; ++j) {
const auto & token = tokens[j];
@ -388,13 +663,19 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
continue;
}
std::string txt_bg;
std::string txt_fg; // highlight token
std::string txt_ul; // underline
std::string txt_bg = "";
std::string txt_fg = ""; // highlight token
std::string txt_ul = ""; // underline
txt_bg = "> ";
txt_fg = "> ";
txt_ul = "\\ \\ ";
if (params.diarize && pcmf32s.size() == 2) {
txt_bg = speaker;
txt_fg = speaker;
txt_ul = "\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ ";
}
txt_bg.append("> ");
txt_fg.append("> ");
txt_ul.append("\\ \\ ");
{
for (int k = 0; k < n; ++k) {
@ -457,10 +738,51 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
return true;
}
bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
fout << "[by:whisper.cpp]\n";
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t = whisper_full_get_segment_t0(ctx, i);
int64_t msec = t * 10;
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[16];
snprintf(buf, sizeof(buf), "%02d:%02d.%02d", (int) min, (int) sec, (int) ( msec / 10));
std::string timestamp_lrc = std::string(buf);
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
fout << '[' << timestamp_lrc << ']' << speaker << text << "\n";
}
return true;
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
whisper_print_usage(argc, argv, params);
return 1;
}
@ -476,117 +798,34 @@ int main(int argc, char ** argv) {
exit(0);
}
if (params.diarize && params.tinydiarize) {
fprintf(stderr, "error: cannot use both --diarize and --tinydiarize\n");
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context * ctx = whisper_init(params.model.c_str());
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// initial prompt
std::vector<whisper_token> prompt_tokens;
if (!params.prompt.empty()) {
prompt_tokens.resize(1024);
prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size()));
fprintf(stderr, "\n");
fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str());
fprintf(stderr, "initial tokens: [ ");
for (int i = 0; i < (int) prompt_tokens.size(); ++i) {
fprintf(stderr, "%d ", prompt_tokens[i]);
}
fprintf(stderr, "]\n");
}
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// WAV input
{
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname_inp == "-") {
{
uint8_t buf[1024];
while (true)
{
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return 4;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
}
else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return 5;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str());
return 6;
}
if (params.diarize && wav.channels != 2 && params.no_timestamps == false) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", argv[0], fname_inp.c_str());
return 6;
}
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", argv[0], fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
return 8;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str());
return 9;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (params.diarize) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
}
// print system information
@ -606,11 +845,15 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
if (params.detect_language) {
params.language = "auto";
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, %stimestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.tinydiarize ? "tdrz = 1, " : "",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
@ -620,12 +863,15 @@ int main(int argc, char ** argv) {
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
wparams.print_timestamps = !params.no_timestamps;
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.language.c_str();
wparams.detect_language = params.detect_language;
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
@ -634,11 +880,20 @@ int main(int argc, char ** argv) {
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.split_on_word = params.split_on_word;
wparams.speed_up = params.speed_up;
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
wparams.initial_prompt = params.prompt.c_str();
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
whisper_print_user_data user_data = { &params, &pcmf32s };
@ -654,7 +909,7 @@ int main(int argc, char ** argv) {
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
@ -673,34 +928,45 @@ int main(int argc, char ** argv) {
// output to text file
if (params.output_txt) {
const auto fname_txt = fname_inp + ".txt";
output_txt(ctx, fname_txt.c_str());
const auto fname_txt = fname_out + ".txt";
output_txt(ctx, fname_txt.c_str(), params, pcmf32s);
}
// output to VTT file
if (params.output_vtt) {
const auto fname_vtt = fname_inp + ".vtt";
output_vtt(ctx, fname_vtt.c_str());
const auto fname_vtt = fname_out + ".vtt";
output_vtt(ctx, fname_vtt.c_str(), params, pcmf32s);
}
// output to SRT file
if (params.output_srt) {
const auto fname_srt = fname_inp + ".srt";
output_srt(ctx, fname_srt.c_str(), params);
const auto fname_srt = fname_out + ".srt";
output_srt(ctx, fname_srt.c_str(), params, pcmf32s);
}
// output to WTS file
if (params.output_wts) {
const auto fname_wts = fname_inp + ".wts";
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
const auto fname_wts = fname_out + ".wts";
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE, pcmf32s);
}
// output to CSV file
// output to CSV file
if (params.output_csv) {
const auto fname_csv = fname_inp + ".csv";
output_csv(ctx, fname_csv.c_str());
const auto fname_csv = fname_out + ".csv";
output_csv(ctx, fname_csv.c_str(), params, pcmf32s);
}
// output to JSON file
if (params.output_jsn) {
const auto fname_jsn = fname_out + ".json";
output_json(ctx, fname_jsn.c_str(), params, pcmf32s);
}
// output to LRC file
if (params.output_lrc) {
const auto fname_lrc = fname_out + ".lrc";
output_lrc(ctx, fname_lrc.c_str(), params, pcmf32s);
}
}
}

View File

@ -0,0 +1,6 @@
set(TARGET quantize)
add_executable(${TARGET} quantize.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})

View File

@ -0,0 +1,3 @@
# quantize
Tool for integer quantization of Whisper `ggml` model files

Some files were not shown because too many files have changed in this diff Show More