Compare commits

..

20 Commits

Author SHA1 Message Date
51c6961c7b release : v1.7.5 2025-04-02 16:39:48 +03:00
503a786c9a bench : update numbers [no ci] (#2993) 2025-04-02 16:27:36 +03:00
ad4e350933 sync : ggml
ggml-ci
2025-04-02 15:51:57 +03:00
d7a9346ab1 get_rows and dup optimization (llama/12671)
* [CANN]get_rows and dup optimization.

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]GET_ROWS and CPY/DUP optimization

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-04-02 15:51:57 +03:00
b63d23f728 opencl : fix memory allocation size (llama/12649)
issue:
https://github.com/CodeLinaro/llama.cpp/pull/17#issuecomment-2760611283

This patch fixes the memory allocation size
not exceeding the maximum size of the OpenCL device.
2025-04-02 15:51:57 +03:00
f6ce10e4a1 metal : use F32 prec in FA kernels (llama/12688)
* metal : use F32 prec in FA kernels

ggml-ci

* cont : fix FA vec kernel

ggml-ci
2025-04-02 15:51:57 +03:00
6cb2b86581 Fix clang warning in gguf_check_reserved_keys (llama/12686)
* Fix clang warning in gguf_check_reserved_keys

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-02 15:51:57 +03:00
801d6bd809 vulkan: fix build when glslc doesn't support coopmat (llama/12683) 2025-04-02 15:51:57 +03:00
ddf7e6a15d SYCL: Rename oneMKL to oneMath (llama/12192)
* Rename oneMKL Interface to oneMath

* Use oneMath for Intel vendor

* Rename occurences to mkl

* clang-format

* Silence verbose warnings

* Set oneMath HIP_TARGETS

* Fix silence warnings

* Remove step to build oneMath from build instructions

* Use fixed oneMath version

* Remove INTEL_CPU

* Fold CMake oneDNN conditions

* Use Intel oneMKL for Intel devices

* Improve CMake message

* Link against MKL::MKL_SYCL::BLAS only

* Move oneMath documentation to Nvidia and AMD sections
2025-04-02 15:51:57 +03:00
0d42097fd3 SYCL: switch to SYCL namespace (llama/12674) 2025-04-02 15:51:57 +03:00
842b9c984c ggml : faster ssm scan (llama/10558)
* faster ssm_scan

* delete unused commnet

* clang format

* add space

* modify unnecessary calculations

* faster ssm conv implementatioin

* modify file name with dash
2025-04-02 15:51:57 +03:00
0810f02547 Vulkan: Add DP4A MMQ and Q8_1 quantization shader (llama/12135)
* Vulkan: Add DP4A MMQ and Q8_1 quantization shader

* Add q4_0 x q8_1 matrix matrix multiplication support

* Vulkan: Add int8 coopmat MMQ support

* Vulkan: Add q4_1, q5_0 and q5_1 quants, improve integer dot code

* Add GL_EXT_integer_dot_product check

* Remove ggml changes, fix mmq pipeline picker

* Remove ggml changes, restore Intel coopmat behaviour

* Fix glsl compile attempt when integer vec dot is not supported

* Remove redundant code, use non-saturating integer dot, enable all matmul sizes for mmq

* Remove redundant comment

* Fix integer dot check

* Fix compile issue with unsupported int dot glslc

* Update Windows build Vulkan SDK version
2025-04-02 15:51:57 +03:00
8c13c78f9d cmake : fix whitespace (llama/0) 2025-04-02 15:51:57 +03:00
f31b404fcb tests : remove gh label test-whisper-cli-tiny-en (#2988)
Some checks are pending
CI / ubuntu-22-clang (linux/ppc64le, Debug) (push) Waiting to run
CI / ubuntu-22-clang (linux/ppc64le, Release) (push) Waiting to run
CI / ubuntu-22-gcc-sanitized (linux/amd64, ADDRESS) (push) Waiting to run
CI / ubuntu-22-gcc-sanitized (linux/amd64, THREAD) (push) Waiting to run
CI / ubuntu-22-gcc-sanitized (linux/amd64, UNDEFINED) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Waiting to run
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Waiting to run
CI / windows-blas (Win32, ON, Release, x86, 2.28.5, ON) (push) Waiting to run
CI / windows-blas (x64, ON, Release, x64, 2.28.5, ON) (push) Waiting to run
CI / windows-cublas (x64, Release, ON, 11.8.0, ON, 2.28.5) (push) Waiting to run
CI / windows-cublas (x64, Release, ON, 12.2.0, ON, 2.28.5) (push) Waiting to run
CI / emscripten (Release) (push) Waiting to run
CI / ios-xcode-build (Release) (push) Blocked by required conditions
CI / android (push) Waiting to run
CI / android_java (push) Waiting to run
CI / quantize (push) Waiting to run
CI / release (push) Blocked by required conditions
CI / coreml-base-en (push) Blocked by required conditions
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Waiting to run
Examples WASM / deploy-wasm-github-pages (push) Waiting to run
This commit removes test-whisper-cli-tiny-en from the gh label.

The motivation for this change is that until recently the tests were
disabled. But now that they are enabled some of the tests, specifically
the ci jobs that use sanatizers (e.g. thread-sanitizer) take a long time
to run as they are instrumented.
Some of these jobs also have matricies which means that there are
multiple jobs are created that all run these tests.
The suggestion here is to limit the number of tests that are run in the
ci jobs so cut down the CI build time.
2025-04-02 10:50:31 +02:00
854c0518bc examples : clarify Core ML encoder model usage [no ci] (#2987)
This commit clarifies the usage of the Core ML encoder model in the
whisper.obj and whisper.swiftui examples.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2783
2025-04-02 08:32:14 +02:00
c8e3968edd ci : remove intermediate build on push to master (#2986)
This commit removes the builds that happen on each push to master.

Refs: https://github.com/ggerganov/whisper.cpp/discussions/2983#discussioncomment-12691424
2025-04-02 08:29:28 +02:00
b358de2458 whisper.objc : fix typo in README.md [no ci] (#2985)
This commit fixes a typo in the README.md file of the whisper.objc
example.

Resolves: https://github.com/ggerganov/whisper.cpp/issues/2984
2025-04-02 08:26:57 +02:00
11688b262f coreml: fix Whisper to CoreML conversion by disabling SDPA [no ci] (#2979)
* coreml: fix Whisper to CoreML conversion by disabling SDPA

This commit disables the use of PyTorch's
`scaled_dot_product_attention` in the Whisper model to avoid
compatibility issues during CoreML conversion.
The issue occurs because coremltools requires PyTorch 2.5.0, but the
Whisper implementation may expect behavior from newer PyTorch versions.

By setting `MultiHeadAttention.use_sdpa = False`, we force Whisper to
use its fallback manual attention implementation, which works correctly
with PyTorch 2.5.0 during the tracing process.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2783

* coreml: fix audio shape in whisper decoder conversion

This commit fixes the audio shape in the whisper decoder conversion
script.

The motivation for this is that the  audio shape was incorrect and
was causing the conversion to fail.

* coreml : set -e in generate-coreml-interface.sh

The commit sets the -e flag in the generate-coreml-interface.sh script
to make sure the script fails if any command fails.

* coreml : update generated encoder/decoder interfaces

This commit updates the generated encoder/decoder interfaces for the
whisper model which is the result of running the
generate-coreml-interface.sh script.
2025-04-01 18:01:23 +02:00
04b9508fb3 ci : add coreml job that converts base.en to coreml [no ci] (#2981)
* ci : add coreml job that converts base.en to coreml [no ci]

This commit adds a new job to the CI pipeline that downloads the base.en
model and converts it to CoreML format. The CoreML model is then packed
into a zip file and uploaded as an artifact.

This will only be done for pushes to master, releases, or pre-releases.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2783

* coreml : remove publishing of coreml model

* ci : add GGML_OPENMP=OFF to ubuntu-22-gcc-sanitized
2025-04-01 17:04:32 +02:00
4200430e75 tests : re-enable tests [no ci] (#2977)
This commit re-enables the tests in the build process which are
currently commented out.

It is possible to build the tests using `-DWHISPER_BUILD_TESTS=ON` and
then run a single test using:
```console
$ ctest -R test-whisper-cli-tiny.en --test-dir build
Internal ctest changing into directory: /home/danbev/work/ai/whisper-work/build
Test project /home/danbev/work/ai/whisper-work/build
    Start 2: test-whisper-cli-tiny.en
1/1 Test #2: test-whisper-cli-tiny.en .........   Passed    4.44 sec

100% tests passed, 0 tests failed out of 1

Label Time Summary:
en      =   4.44 sec*proc (1 test)
gh      =   4.44 sec*proc (1 test)
tiny    =   4.44 sec*proc (1 test)

Total Test time (real) =   4.44 sec
```

Some of the tests take a long time to run so it might not be a good idea
to enable them in CI, or perhaps we could only run a subset of the tests
in CI.
2025-03-31 17:04:37 +02:00
41 changed files with 2351 additions and 798 deletions

View File

@ -367,7 +367,9 @@ jobs:
set -e
apt update
apt install -y build-essential cmake git
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
cmake . -DCMAKE_BUILD_TYPE=Debug \
-DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF
make
ctest -L gh --output-on-failure'
@ -1055,9 +1057,7 @@ jobs:
./build/bin/quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0
release:
if: ${{ (github.event_name == 'push' && github.ref == 'refs/heads/master') ||
github.event.inputs.create_release == 'true' ||
github.event.inputs.pre_release_tag != '' }}
if: ${{ github.event.inputs.create_release == 'true' || github.event.inputs.pre_release_tag != '' }}
runs-on: ubuntu-latest
@ -1119,3 +1119,31 @@ jobs:
});
}
}
coreml-base-en:
if: ${{ (github.event_name == 'push' && github.ref == 'refs/heads/master') ||
github.event.inputs.create_release == 'true' ||
github.event.inputs.pre_release_tag != '' }}
runs-on: macos-latest
needs: determine-tag
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set environment variables
id: set_vars
run: |
echo "MODEL_NAME=base.en" >> $GITHUB_ENV
echo "GEN_MODEL_NAME=whisper-${{ needs.determine-tag.outputs.tag_name }}-ggml-base.en-encoder.mlmodelc" >> $GITHUB_ENV
- name: Download model
run: |
./models/download-ggml-model.sh ${{ env.MODEL_NAME }}
- name: Generate CoreML model
run: |
python3.11 -m venv venv
source venv/bin/activate
pip install ane_transformers openai-whisper coremltools
./models/generate-coreml-model.sh ${{ env.MODEL_NAME }}

View File

@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.4)
project("whisper.cpp" VERSION 1.7.5)
include(CheckIncludeFileCXX)
set(SOVERSION 1)
@ -190,8 +190,8 @@ install(FILES "${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
#
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
#include(CTest)
#add_subdirectory(tests)
include(CTest)
add_subdirectory(tests)
endif ()
if (WHISPER_BUILD_EXAMPLES)

View File

@ -10,7 +10,7 @@
> [!NOTE]
> New maintenance roadmap: https://github.com/ggerganov/whisper.cpp/discussions/2788
Stable: [v1.7.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.7.5](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.5) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.7.4",
"version": "1.7.5",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

View File

@ -13,7 +13,7 @@ https://user-images.githubusercontent.com/1991296/204126266-ce4177c6-6eca-4bd9-b
This example uses the whisper.xcframework which needs to be built first using the following command:
```bash
./build_xcframework.sh
./build-xcframework.sh
```
A model is also required to be downloaded and can be done using the following command:
@ -30,4 +30,6 @@ mkdir models/ggml-base.en-encoder.mlmodelc
Follow the [`Core ML support` section of readme](../../README.md#core-ml-support) to convert the model.
That is all the needs to be done to use the Core ML model in the app. The converted model is a
resource in the project and will be used if it is available.
resource in the project and will be used if it is available. Note that the Core ML model is only
used for the encoder, the decoder which is in the ggml model is still required so both need to
be available.

View File

@ -34,7 +34,9 @@ sudo xcode-select -switch /Applications/Xcode.app/Contents/Developer
**Note:** Pay attention to the folder path: `whisper.swiftui.demo/Resources/models` is the appropriate directory to place resources whilst `whisper.swiftui.demo/Models` is related to actual code.
### Core ML support
1. Follow all the steps in the `Usage` section, including adding the ggml model file.
1. Follow all the steps in the `Usage` section, including adding the ggml model file.
The ggml model file is required as the Core ML model is only used for the encoder. The
decoder which is in the ggml model is still required.
2. Follow the [`Core ML support` section of readme](../../README.md#core-ml-support) to convert the
model.
3. Add the Core ML model (`models/ggml-base.en-encoder.mlmodelc/`) to `whisper.swiftui.demo/Resources/models` **via Xcode**.

View File

@ -51,13 +51,11 @@ if (CANN_INSTALL_DIR)
${CANN_INSTALL_DIR}/acllib/include
)
add_subdirectory(kernels)
list(APPEND CANN_LIBRARIES
ascendcl
nnopbase
opapi
acl_op_compiler
ascendc_kernels
)
file(GLOB GGML_SOURCES_CANN "*.cpp")

View File

@ -30,6 +30,7 @@
#include <aclnnop/aclnn_copy.h>
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_embedding.h>
#include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_fill_scalar.h>
#include <aclnnop/aclnn_group_norm.h>
@ -58,7 +59,6 @@
#include <vector>
#include "ggml-impl.h"
#include "kernels/ascendc_kernels.h"
#define GGML_COMMON_DECL_C
@ -99,6 +99,35 @@ static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src,
ACL_CHECK(aclDestroyIntArray(repeats));
}
/**
* @brief Casts the elements of a tensor to a specified data type using the CANN backend.
*
* @details This function performs a type conversion on the elements of the input tensor `acl_src`
* and stores the results in the destination tensor `acl_dst`. The conversion type is
* determined based on the `dst` tensor's data type.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be cast.
* @param acl_dst The destination tensor that will store the casted elements.
* @param dst The ggml tensor specifying the target data type.
*/
static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, ggml_tensor* dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src,
ggml_cann_type_mapping(dst->type),
acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(ggml_can_repeat(src, dst));
@ -889,173 +918,76 @@ static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
}
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
ggml_tensor* src0 = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
src->extra = src_extra_allocator.get();
dst->extra = dst_extra_allocator.get();
ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) &&
ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
// TODO: simplify
if (src->type == GGML_TYPE_F16) {
if (dst->type == GGML_TYPE_Q8_0) {
aclrtlaunch_ascendc_quantize_f16_q8_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f16_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp16(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
GGML_ABORT("fatal error");
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
GGML_ABORT("fatal error");
}
// TODO
GGML_ABORT("fatal error");
} else if (src->type == GGML_TYPE_F32) {
// TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size
// && nb0 == type_size)
if (dst->type == GGML_TYPE_Q8_0) {
aclrtlaunch_ascendc_quantize_f32_q8_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f32_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp32(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
} else {
// TODO: dst not contiguous
GGML_ABORT("fatal error");
}
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
}
// TODO
GGML_ABORT("fatal error");
} else {
if (ggml_are_same_shape(src, dst)) {
if (ggml_are_same_shape(src0, dst)) {
if (dst->type == src0->type) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
} else {
aclnn_cast(ctx, acl_src, acl_dst, dst);
}
} else {
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
if (dst->type == src0->type) {
size_t cpy_size = ggml_nbytes(dst);
ACL_CHECK(aclrtMemcpyAsync(
dst->data, cpy_size, src0->data, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
return;
} else {
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(),
ggml_nelements(dst) * ggml_type_size(dst->type));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), src0->ne, src_trans_nb,
GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src, src_trans_tensor, dst);
size_t cpy_size = ggml_nbytes(dst);
ACL_CHECK(aclrtMemcpyAsync(
dst->data, cpy_size, src_trans_buffer, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
ACL_CHECK(aclDestroyTensor(src_trans_tensor));
return;
}
} else if (ggml_is_contiguous(dst)) {
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(dst) * ggml_type_size(dst->type));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), src0->ne, src_trans_nb,
GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src, src_trans_tensor, dst);
size_t cpy_size = ggml_nbytes(dst);
ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src_trans_buffer,
cpy_size, ACL_MEMCPY_DEVICE_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclDestroyTensor(src_trans_tensor));
return;
} else {
GGML_ABORT("Unsupport dst is not tontiguous.");
}
GGML_ABORT("fatal error");
}
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
#ifdef __cplusplus
@ -2378,85 +2310,168 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ACL_CHECK(aclDestroyTensor(tmp_mask_tensor));
}
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
/**
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
*
* This function extracts slices from the source tensor (`src_buffer`),
* index tensor (`index`), and destination tensor (`dst`), and performs an
* embedding operation on them. The embedding operation is applied by iterating
* over the last two dimensions of the source tensor, creating the necessary
* tensors for the source, index, and output, and executing the embedding operation.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer holding the data for the source tensor.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param index The index tensor used in the embedding operation.
* @param dst The destination tensor where the result will be stored.
*/
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
ggml_tensor* dst) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_src_ne, acl_src_nb, 2);
ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
src0->extra = src0_extra_allocator.get();
src1->extra = src1_extra_allocator.get();
dst->extra = dst_extra_allocator.get();
ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
// index
int64_t acl_index_ne[1] = {index->ne[0]};
size_t acl_index_nb[1] = {index->nb[0]};
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + i * index->nb[2] + j * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
acl_index_ne, acl_index_nb, 1);
// out
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_out_ne, acl_out_nb, 2);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnEmbeddingGetWorkspaceSize(
acl_src_tensor, acl_index, acl_out, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnEmbedding(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src_tensor));
ACL_CHECK(aclDestroyTensor(acl_index));
ACL_CHECK(aclDestroyTensor(acl_out));
}
}
}
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // src
ggml_tensor* src1 = dst->src[1]; // index
switch (src0->type) {
case GGML_TYPE_F32: {
#ifdef ASCEND_310P
// Special operation for get_row_f32 kernel of 310P: clear the
// content of dest data buffer when row is not aligned to 32 bytes
if ((src0->ne[0] % 8) != 0) {
size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] *
src0->ne[0] * ggml_type_size(GGML_TYPE_F32);
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
}
#endif
aclrtlaunch_ascendc_get_row_f32(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src0->extra)->nb,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
dst);
break;
}
case GGML_TYPE_F16: {
#ifdef ASCEND_310P
// Special operation for get_row_f16 kernel of 310P: clear the
// content of dest data buffer when row is not aligned to 32 bytes
if ((src0->ne[0] % 16) != 0) {
size_t dst_len =
src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] *
ggml_type_size(
GGML_TYPE_F32); // out is also f32, even input is f16
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
#endif
aclrtlaunch_ascendc_get_row_f16(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src0->extra)->nb,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, dst);
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
src_trans_nb, src1, dst);
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(src_trans_tensor));
break;
}
case GGML_TYPE_Q4_0:
aclrtlaunch_ascendc_get_row_q4_0(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
case GGML_TYPE_Q8_0:
aclrtlaunch_ascendc_get_row_q8_0(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
case GGML_TYPE_Q8_0: {
// add 1 dim for bcast mul.
size_t weight_nb[GGML_MAX_DIMS + 1], scale_nb[GGML_MAX_DIMS + 1],
dequant_nb[GGML_MAX_DIMS + 1];
int64_t weight_ne[GGML_MAX_DIMS + 1], scale_ne[GGML_MAX_DIMS + 1],
*dequant_ne;
int64_t scale_offset = 0;
// [3,4,5,64] -> [3,4,5,2,32]
weight_ne[0] = QK8_0;
weight_ne[1] = src0->ne[0] / QK8_0;
weight_nb[0] = sizeof(int8_t);
weight_nb[1] = weight_nb[0] * weight_ne[0];
for (int i = 2; i < GGML_MAX_DIMS + 1; i++) {
weight_ne[i] = src0->ne[i - 1];
weight_nb[i] = weight_nb[i - 1] * weight_ne[i - 1];
}
// [3,4,5,64] -> [3,4,5,2,1]
scale_ne[0] = 1;
scale_ne[1] = src0->ne[0] / QK8_0;
scale_nb[0] = sizeof(uint16_t);
scale_nb[1] = scale_nb[0] * scale_ne[0];
for (int i = 2; i < GGML_MAX_DIMS + 1; i++) {
scale_ne[i] = src0->ne[i - 1];
scale_nb[i] = scale_nb[i - 1] * scale_ne[i - 1];
}
// [3,4,5,64] -> [3,4,5,2,32]
dequant_ne = weight_ne;
dequant_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
}
scale_offset = ggml_nelements(src0) * sizeof(int8_t);
ggml_cann_pool_alloc dequant_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
GGML_MAX_DIMS + 1);
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
src0->data, ACL_FLOAT16, sizeof(float16_t), scale_ne, scale_nb,
GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
aclTensor* dequant_tensor = ggml_cann_create_tensor(
dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t),
dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);
aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
dequant_nb[0] = sizeof(float_t);
dequant_ne = src0->ne;
for (int i = 1; i < GGML_MAX_DIMS; i++) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
}
aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb, src1, dst);
ACL_CHECK(aclDestroyTensor(dequant_tensor));
break;
}
default:
GGML_ABORT("fatal error");
GGML_ABORT("Unsupported tensor type for GGML_OP_GET_ROWS");
break;
}
}
@ -2797,8 +2812,8 @@ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
nullptr, nullptr, nullptr, antiquantGroupSize, acl_output_tensor,
&workspaceSize, &executor));
nullptr, nullptr, nullptr, antiquantGroupSize,
acl_output_tensor, &workspaceSize, &executor));
if (workspaceAddr == nullptr) {
workspaceAddr = workspace_allocator.alloc(workspaceSize);
}

View File

@ -1704,7 +1704,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
return true;
default:
@ -1712,16 +1711,21 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
} break;
case GGML_OP_CPY: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
return true;
default:
return false;
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
(src->type != GGML_TYPE_F32 &&
src->type != GGML_TYPE_F16)) {
// only support F32 and F16.
return false;
}
}
if (!ggml_are_same_shape(op, src) && !ggml_is_contiguous(op)) {
// unsupport dst is not contiguous.
return false;
}
return true;
} break;
case GGML_OP_CONT: {
// TODO: support GGML_TYPE_BF16
switch (op->src[0]->type) {
@ -1762,9 +1766,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
return true;
}
case GGML_OP_DUP:
case GGML_OP_IM2COL:
case GGML_OP_CONCAT:
case GGML_OP_DUP:
case GGML_OP_REPEAT:
case GGML_OP_NONE:
case GGML_OP_RESHAPE:

View File

@ -31,6 +31,8 @@
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/ssm-conv.cuh"
#include "ggml-cuda/ssm-scan.cuh"
#include "ggml-cuda/sum.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/tsembd.cuh"
@ -2296,6 +2298,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SUM_ROWS:
ggml_cuda_op_sum_rows(ctx, dst);
break;
case GGML_OP_SSM_CONV:
ggml_cuda_op_ssm_conv(ctx, dst);
break;
case GGML_OP_SSM_SCAN:
ggml_cuda_op_ssm_scan(ctx, dst);
break;
case GGML_OP_ARGSORT:
ggml_cuda_op_argsort(ctx, dst);
break;
@ -3193,6 +3201,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_LOG:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;

View File

@ -0,0 +1,151 @@
#include "ssm-conv.cuh"
template <size_t split_d_inner, size_t d_conv>
static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1,
const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1,
float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2,
const int nc, const int ncs, const int nr, const int n_t, const int n_s) {
const int tid = threadIdx.x;
const int bidx = blockIdx.x;
const int bidy = blockIdx.y;
const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1);
const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1);
float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0);
const int stride_x = src0_nb1 / sizeof(float);
const int stride_w = src1_nb1 / sizeof(float);
const int stride_y = dst_nb1 / sizeof(float);
float x[d_conv] = { 0.0f };
float w[d_conv] = { 0.0f };
#pragma unroll
for (int j = 0; j < d_conv; j++) {
w[j] = w_block[tid * stride_w + j];
}
for (int i = 0; i < n_t; i++) {
float sumf = 0.0f;
if (i == 0) {
for (int j = 0; j < d_conv; j++) {
x[j] = x_block[tid * stride_x + j];
}
} else {
x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1];
}
#pragma unroll
for (int j = 0; j < d_conv; j++) {
sumf += x[(i + j) % d_conv] * w[j];
}
y_block[i * stride_y + tid] = sumf;
}
}
template <size_t split_d_inner, size_t d_conv, size_t split_n_t>
static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1,
const int src0_nb0, const int src0_nb1, const int src0_nb2,
const int src1_nb1, float * __restrict__ dst, const int dst_nb0,
const int dst_nb1, const int dst_nb2, const int nc, const int ncs,
const int nr, const int n_t, const int n_s) {
const int tid = threadIdx.x;
const int bidx = blockIdx.x;
const int bidy = blockIdx.y;
const int bidz = blockIdx.z;
const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 +
bidz * split_n_t * src0_nb0);
const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1);
float * y_block =
(float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0);
const int stride_x = src0_nb1 / sizeof(float);
const int stride_w = src1_nb1 / sizeof(float);
const int stride_y = dst_nb1 / sizeof(float);
float x[d_conv] = { 0.0f };
float w[d_conv] = { 0.0f };
#pragma unroll
for (int j = 0; j < d_conv; j++) {
w[j] = w_block[tid * stride_w + j];
}
#pragma unroll
for (int i = 0; i < split_n_t; i++) {
if (bidz * split_n_t + i < n_t) {
float sumf = 0.0f;
if (i == 0) {
for (int j = 0; j < d_conv; j++) {
x[j] = x_block[tid * stride_x + j];
}
} else {
x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1];
}
#pragma unroll
for (int j = 0; j < d_conv; j++) {
sumf += x[(i + j) % d_conv] * w[j];
}
y_block[i * stride_y + tid] = sumf;
}
}
}
static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1,
const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1,
const int dst_nb2, const int nc, const int ncs, const int nr, const int n_t,
const int n_s, cudaStream_t stream) {
const int threads = 128;
GGML_ASSERT(nr % threads == 0);
if (n_t <= 32) {
const dim3 blocks(n_s, (nr + threads - 1) / threads, 1);
if (nc == 4) {
ssm_conv_f32<threads, 4><<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1,
dst, dst_nb0, dst_nb1, dst_nb2, nc, ncs, nr, n_t,
n_s);
} else {
GGML_ABORT("Only support kernel size = 4 now.");
}
} else {
if (nc == 4) {
const int split_n_t = 32;
dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t);
ssm_conv_long_token_f32<threads, 4, split_n_t>
<<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0,
dst_nb1, dst_nb2, nc, ncs, nr, n_t, n_s);
} else {
GGML_ABORT("Only support kernel size = 4 right now.");
}
}
}
void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0]; // conv_x
const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
const int nc = src1->ne[0]; // d_conv
const int ncs = src0->ne[0]; // d_conv - 1 + n_t
const int nr = src0->ne[1]; // d_inner
const int n_t = dst->ne[1]; // tokens per sequence
const int n_s = dst->ne[2]; // number of sequences in the batch
GGML_ASSERT(dst->ne[0] == nr);
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1],
dst->nb[2], nc, ncs, nr, n_t, n_s, stream);
}

View File

@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -0,0 +1,155 @@
#include "ssm-scan.cuh"
// #include <cuda_runtime.h>
// static __device__ void global_to_shared(const float *src, float *dst) {
// asm volatile("cp.async.");
// }
template <size_t splitD, size_t N>
__global__ void __launch_bounds__(splitD, 2)
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2,
const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
float * __restrict__ dst, const int D, const int L, const int B) {
const int bidx = blockIdx.x; // split along B
const int bidy = blockIdx.y; // split along D
const int tid = threadIdx.x;
const int wid = tid / 32;
const int wtid = tid % 32;
extern __shared__ float smem[];
const int stride_sA = N + 1;
const int stride_ss0 = N + 1;
float * smem_A = smem;
float * smem_s0 = smem_A + splitD * stride_sA;
const float * s0_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
const float * x_block = (const float *) ((char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
const float * dt_block = (const float *) ((char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
const float * A_block = (const float *) ((char *) src3 + bidy * splitD * src3_nb1);
const float * B_block = (const float *) ((char *) src4 + (bidx * src4_nb2));
const float * C_block = (const float *) ((char *) src5 + (bidx * src5_nb2));
float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
const int stride_s0 = src0_nb1 / sizeof(float);
const int stride_x = src1_nb1 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float);
const int stride_A = src3_nb1 / sizeof(float);
const int stride_B = src4_nb1 / sizeof(float);
const int stride_C = src5_nb1 / sizeof(float);
const int stride_s = stride_s0;
const int stride_y = stride_x;
// can N not be 16? for example 32?
if (N == 16) {
#pragma unroll
for (int i = 0; i < splitD / 4; i += 2) {
float value = A_block[(wid * warpSize + i) * stride_A + wtid];
// todo: bank conflict
// I am always confused with how to use the swizzling method to solve
// bank conflit. Hoping somebody can tell me.
smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
}
#pragma unroll
for (int i = 0; i < splitD / 4; i += 2) {
float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid];
smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
}
}
__syncthreads();
for (int i = 0; i < L; i++) {
float dt_soft_plus = dt_block[i * stride_dt + tid];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(exp(dt_soft_plus));
}
float x_dt = x_block[i * stride_x + tid] * dt_soft_plus;
float sumf = 0.0f;
#pragma unroll
for (int j = 0; j < N; j++) {
float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) +
(B_block[i * stride_B + j] * x_dt);
sumf += state * C_block[i * stride_C + j];
if (i == L - 1) {
s_block[tid * stride_s + j] = state;
} else {
smem_s0[tid * stride_ss0 + j] = state;
}
}
__syncthreads();
y_block[i * stride_y + tid] = sumf;
}
}
static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
const float * src4, const float * src5, const int src0_nb1, const int src0_nb2,
const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3,
const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
float * dst, const int N, const int D, const int L, const int B, cudaStream_t stream) {
const int threads = 128;
// todo: consider D cannot be divided,does this situation exist?
GGML_ASSERT(D % threads == 0);
const dim3 blocks(B, (D + threads - 1) / threads, 1);
const int smem_size = (threads * (N + 1) * 2) * sizeof(float);
if (N == 16) {
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0,
src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B);
} else {
GGML_ABORT("doesn't support N!=16.");
}
}
void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0]; // s
const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor * src2 = dst->src[2]; // dt
const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor * src5 = dst->src[5]; // C
// const int64_t d_state = src0->ne[0];
// const int64_t d_inner = src0->ne[1];
// const int64_t l = src1->ne[1];
// const int64_t b = src0->ne[2];
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
// required for per-sequence offsets for states
GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
// required to get correct offset for state destination (i.e. src1->nb[3])
GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
const float * src2_d = (const float *) src2->data;
const float * src3_d = (const float *) src3->data;
const float * src4_d = (const float *) src4->data;
const float * src5_d = (const float *) src5->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0],
src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1],
src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
}

View File

@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -4179,7 +4179,7 @@ static void ggml_metal_encode_node(
// ne00*(nsg)
// each simdgroup has a full f16 head vector in shared mem to accumulate results
//
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 2*ncpsg*(nsg)) + ne20*(nsg))*(sizeof(float)/2), 16))
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + ne20*(nsg))*(sizeof(float)/2), 16))
int64_t nsgmax = 2;
while (true) {

View File

@ -3184,8 +3184,8 @@ kernel void kernel_flash_attn_ext(
threadgroup_barrier(mem_flags::mem_threadgroup);
{
half S[Q] = { [0 ... Q-1] = 0.0f };
half M[Q] = { [0 ... Q-1] = -__FLT16_MAX__/2 };
float S[Q] = { [0 ... Q-1] = 0.0f };
float M[Q] = { [0 ... Q-1] = -__FLT16_MAX__/2 };
// thread indices inside the simdgroup
// TODO: see if we can utilize quad-group functions for better performance
@ -3202,13 +3202,13 @@ kernel void kernel_flash_attn_ext(
const bool has_mask = mask != q;
half slope = 1.0f;
float slope = 1.0f;
// ALiBi
if (args.max_bias > 0.0f) {
const short h = iq2;
const half base = h < args.n_head_log2 ? args.m0 : args.m1;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
slope = pow(base, exph);
@ -3224,14 +3224,14 @@ kernel void kernel_flash_attn_ext(
if (has_mask) {
// used to detect blocks full of -INF
half smax = -INFINITY;
float smax = -INFINITY;
// load the mask in shared memory
#pragma unroll(Q)
for (short j = 0; j < Q; ++j) {
device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31);
const half m = pm[ic + tiisg];
const float m = pm[ic + tiisg];
ss[j*TS + C + tiisg] = m;
smax = max(smax, m);
@ -3327,10 +3327,10 @@ kernel void kernel_flash_attn_ext(
// online softmax
{
for (ushort j = 0; j < Q; ++j) {
const half m = M[j];
const float m = M[j];
// scale and apply the logitcap / mask
half s = ss[j*TS + tiisg]*args.scale;
float s = ss[j*TS + tiisg]*args.scale;
if (args.logit_softcap != 0.0f) {
s = args.logit_softcap*precise::tanh(s);
@ -3341,8 +3341,8 @@ kernel void kernel_flash_attn_ext(
M[j] = simd_max(max(M[j], s));
const half ms = exp(m - M[j]);
const half vs = exp(s - M[j]);
const float ms = exp(m - M[j]);
const float vs = exp(s - M[j]);
S[j] = S[j]*ms + simd_sum(vs);
@ -3444,8 +3444,8 @@ kernel void kernel_flash_attn_ext(
// reduce the warps sequentially
for (ushort sg = 1; sg < nsg; ++sg) {
half S = { 0.0f };
half M = { -__FLT16_MAX__/2 };
float S = { 0.0f };
float M = { -__FLT16_MAX__/2 };
threadgroup_barrier(mem_flags::mem_threadgroup);
@ -3461,16 +3461,16 @@ kernel void kernel_flash_attn_ext(
// the first simdgroup accumulates the results from the other simdgroups
if (sgitg == 0) {
for (short j = 0; j < Q; ++j) {
const half S0 = ss[j*TS + 0];
const half S1 = ss[j*TS + sg*SH + 0];
const float S0 = ss[j*TS + 0];
const float S1 = ss[j*TS + sg*SH + 0];
const half M0 = ss[j*TS + 1];
const half M1 = ss[j*TS + sg*SH + 1];
const float M0 = ss[j*TS + 1];
const float M1 = ss[j*TS + sg*SH + 1];
M = max(M0, M1);
const half ms0 = exp(M0 - M);
const half ms1 = exp(M1 - M);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
@ -3646,16 +3646,16 @@ kernel void kernel_flash_attn_ext_vec(
constexpr short DV4 = DV/4;
constexpr short NW = N_SIMDWIDTH;
constexpr short NL = NW/NE; // note: this can be adjusted to support different head sizes and simdgroup work loads
constexpr short SH = 2*C; // shared memory per simdgroup
constexpr short SH = 4*C; // shared memory per simdgroup
const short T = DK + nsg*SH; // shared memory size per query in (half)
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + C + Q*DK); // scratch buffer for mask
threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + sgitg*DV + Q*T); // scratch buffer for the results
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t
threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask
threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + sgitg*DV + Q*T); // scratch buffer for the results
// store the result for all queries in local memory (the O matrix from the paper)
o4_t lo[DV4/NL];
@ -3684,8 +3684,8 @@ kernel void kernel_flash_attn_ext_vec(
threadgroup_barrier(mem_flags::mem_threadgroup);
{
half S = 0.0f;
half M = -__FLT16_MAX__/2;
float S = 0.0f;
float M = -__FLT16_MAX__/2;
// thread indices inside the simdgroup
const short tx = tiisg%NL;
@ -3703,13 +3703,13 @@ kernel void kernel_flash_attn_ext_vec(
// pointer to the mask
device const half * pm = (device const half *) (mask + iq1*args.nb31);
half slope = 1.0f;
float slope = 1.0f;
// ALiBi
if (args.max_bias > 0.0f) {
const short h = iq2;
const half base = h < args.n_head_log2 ? args.m0 : args.m1;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
slope = pow(base, exph);
@ -3799,13 +3799,13 @@ kernel void kernel_flash_attn_ext_vec(
// online softmax
{
const half m = M;
const half s = ss[tiisg];
const float m = M;
const float s = ss[tiisg];
M = simd_max(max(M, s));
const half ms = exp(m - M);
const half vs = exp(s - M);
const float ms = exp(m - M);
const float vs = exp(s - M);
S = S*ms + simd_sum(vs);
@ -3836,7 +3836,7 @@ kernel void kernel_flash_attn_ext_vec(
v4_t mv;
deq_v_t4(pv4 + i/nl_v, i%nl_v, mv);
lo[ii/NL] += mv*ms;
lo[ii/NL] += o4_t(float4(mv)*float4(ms));
}
}
}
@ -3907,18 +3907,18 @@ kernel void kernel_flash_attn_ext_vec(
// parallel reduce
for (short r = nsg/2; r > 0; r >>= 1) {
if (sgitg < r) {
const half S0 = ss[ 0];
const half S1 = ss[r*SH + 0];
const float S0 = ss[ 0];
const float S1 = ss[r*(SH/2) + 0];
const half M0 = ss[ 1];
const half M1 = ss[r*SH + 1];
const float M0 = ss[ 1];
const float M1 = ss[r*(SH/2) + 1];
const half M = max(M0, M1);
const float M = max(M0, M1);
const half ms0 = exp(M0 - M);
const half ms1 = exp(M1 - M);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
const half S = S0*ms0 + S1*ms1;
const float S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[0] = S;
@ -3950,11 +3950,11 @@ kernel void kernel_flash_attn_ext_vec(
// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max
//
#define FA_TYPES \
half4, \
half4, \
half4, \
float, \
half, half4, \
half4, \
half4, \
half4, \
float, \
float, float4, \
half4
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;

View File

@ -921,10 +921,33 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
// TODO: fixme: these sizes are hardcoded for now.
// they should be allocated based on the model's size
// and the device's max alloc size
size_t max_alloc_size;
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_alloc_size, NULL));
// Allocate intermediate buffers and images
size_t max_A_q_d_bytes = 311164928;
size_t max_A_s_d_bytes = 38895616;
size_t max_B_d_bytes = 45088768;
size_t required_A_q_d_bytes = 311164928;
size_t required_A_s_d_bytes = 38895616;
size_t required_B_d_bytes = 45088768;
// Ensure buffer sizes do not exceed the maximum allocation size
size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, max_alloc_size);
size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, max_alloc_size);
size_t max_B_d_bytes = MIN(required_B_d_bytes, max_alloc_size);
if (required_A_q_d_bytes > max_alloc_size) {
GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
required_A_q_d_bytes, max_A_q_d_bytes);
}
if (required_A_s_d_bytes > max_alloc_size) {
GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
required_A_s_d_bytes, max_A_s_d_bytes);
}
if (required_B_d_bytes > max_alloc_size) {
GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
required_B_d_bytes, max_B_d_bytes);
}
CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));

View File

@ -23,6 +23,23 @@ ggml_add_backend_library(ggml-sycl
../../include/ggml-sycl.h
)
file(GLOB GGML_HEADERS_SYCL "*.hpp")
file(GLOB GGML_SOURCES_SYCL "*.cpp")
target_sources(ggml-sycl PRIVATE ${GGML_HEADERS_SYCL} ${GGML_SOURCES_SYCL})
find_package(IntelSYCL)
if (IntelSYCL_FOUND)
# Use oneAPI CMake when possible
target_link_libraries(ggml-sycl PRIVATE IntelSYCL::SYCL_CXX)
else()
# Fallback to the simplest way of enabling SYCL when using intel/llvm nightly for instance
target_compile_options(ggml-sycl PRIVATE "-fsycl")
target_link_options(ggml-sycl PRIVATE "-fsycl")
endif()
target_compile_options(ggml-sycl PRIVATE "-Wno-narrowing")
# Link against oneDNN
find_package(DNNL)
set(GGML_SYCL_DNNL 0)
if(DNNL_FOUND)
@ -62,8 +79,6 @@ if (GGML_SYCL_F16)
add_compile_definitions(GGML_SYCL_F16)
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
@ -76,34 +91,84 @@ else()
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
endif()
file(GLOB GGML_HEADERS_SYCL "*.hpp")
file(GLOB GGML_SOURCES_SYCL "*.cpp")
target_sources(ggml-sycl PRIVATE ${GGML_HEADERS_SYCL} ${GGML_SOURCES_SYCL})
if (GGML_SYCL_GRAPH)
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GRAPH)
endif()
if (WIN32)
find_package(IntelSYCL REQUIRED)
# Link against Intel oneMKL or oneMath
if (GGML_SYCL_TARGET STREQUAL "INTEL")
# Intel devices use Intel oneMKL directly instead of oneMath to avoid the limitation of linking Intel oneMKL statically
# See https://github.com/uxlfoundation/oneMath/issues/654
find_package(MKL REQUIRED)
target_link_libraries(ggml-sycl PRIVATE IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS)
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_USE_INTEL_ONEMKL)
else()
if (GGML_SYCL_GRAPH)
add_compile_definitions(GGML_SYCL_GRAPH)
find_package(oneMath QUIET)
if (NOT oneMath_FOUND)
message(STATUS "oneMath not found: oneMath will be automatically downloaded")
# Use FetchContent to automatically pull and build oneMath
include(FetchContent)
set(BUILD_FUNCTIONAL_TESTS False)
set(BUILD_EXAMPLES False)
set(TARGET_DOMAINS blas)
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(ENABLE_MKLCPU_BACKEND False)
set(ENABLE_MKLGPU_BACKEND False)
set(ENABLE_CUBLAS_BACKEND True)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
set(ENABLE_MKLCPU_BACKEND False)
set(ENABLE_MKLGPU_BACKEND False)
set(ENABLE_ROCBLAS_BACKEND True)
# Ensure setting a string variable here is not overriden by oneMath CACHE variables
cmake_policy(SET CMP0126 NEW)
# Setting the device architecture is only needed and useful for AMD devices in oneMath
set(HIP_TARGETS ${GGML_SYCL_DEVICE_ARCH} CACHE STRING "oneMath HIP target" FORCE)
endif()
FetchContent_Declare(
ONEMATH
GIT_REPOSITORY https://github.com/uxlfoundation/oneMath.git
GIT_TAG c255b1b4c41e2ee3059455c1f96a965d6a62568a
)
FetchContent_MakeAvailable(ONEMATH)
# Create alias to match with find_package targets name
function(onemath_alias target)
if (TARGET ${target}_obj)
# Silence verbose warnings from external libraries
target_compile_options(${target}_obj PRIVATE -w)
endif()
if (TARGET ${target})
add_library(ONEMATH::${target} ALIAS ${target})
endif()
endfunction()
onemath_alias(onemath)
onemath_alias(onemath_blas_mklcpu)
onemath_alias(onemath_blas_mklgpu)
onemath_alias(onemath_blas_cublas)
onemath_alias(onemath_blas_rocblas)
endif()
if (GGML_SYCL_TARGET STREQUAL "INTEL")
target_link_libraries(ggml-sycl PRIVATE sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
add_compile_definitions(GGML_SYCL_NVIDIA)
target_link_libraries(ggml-sycl PRIVATE sycl pthread m dl onemkl_blas_cublas)
# Below oneMath compile-time dispatching is used for better performance
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_cublas)
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda")
target_link_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda")
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
if (NOT GGML_SYCL_DEVICE_ARCH)
message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=amdgcn-amd-amdhsa")
target_link_libraries(ggml-sycl PRIVATE sycl pthread m dl onemkl)
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas)
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")
target_link_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_AMD)
else()
# Fallback to oneMath runtime dispatcher
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath)
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GENERIC)
endif()
if (GGML_SYCL_DEVICE_ARCH)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH}")
endif()
endif()
if (GGML_SYCL_DEVICE_ARCH)
target_compile_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
target_link_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
endif()

View File

@ -16,9 +16,18 @@
#include <sycl/sycl.hpp>
#include <sycl/half_type.hpp>
#include <syclcompat/math.hpp>
#include <oneapi/mkl.hpp>
#include <map>
#ifdef GGML_SYCL_USE_INTEL_ONEMKL
#include <oneapi/mkl.hpp>
// Allow to use the same namespace for Intel oneMKL and oneMath
namespace oneapi {
namespace math = mkl;
}
#else
#include <oneapi/math.hpp>
#endif
#include "ggml.h"
#if defined(__linux__)
@ -83,13 +92,32 @@ inline std::string get_device_backend_and_type(const sycl::device &device) {
}
template <typename Ts> struct matrix_info_t {
oneapi::mkl::transpose transpose_info[2];
oneapi::math::transpose transpose_info[2];
Ts value_info[2];
std::int64_t size_info[3];
std::int64_t ld_info[3];
std::int64_t groupsize_info;
};
inline auto get_onemath_backend(sycl::queue& queue)
#if defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL)
-> sycl::queue&
#endif
{
// If the backend is known at compile-time, use oneMath backend_selector to use
// compile-time dispatching and avoid the need to dlopen libraries. Otherwise
// fallback to runtime dispatching.
#if defined(GGML_SYCL_NVIDIA)
return oneapi::math::backend_selector<oneapi::math::backend::cublas>{ queue };
#elif defined(GGML_SYCL_AMD)
return oneapi::math::backend_selector<oneapi::math::backend::rocblas>{ queue };
#elif defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL)
return queue;
#else
static_assert(false, "Unsupported backend");
#endif
}
namespace dpct
{
typedef sycl::queue *queue_ptr;
@ -1686,26 +1714,18 @@ namespace dpct
namespace detail
{
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, int lda, const void *b,
int ldb, const void *beta, void *c, int ldc)
{
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
#ifdef GGML_SYCL_NVIDIA
oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ q },
a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb,
beta_value, data_c, ldc);
#else
oneapi::mkl::blas::column_major::gemm(q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb,
beta_value, data_c, ldc);
#endif
}
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a, int lda, const void * b, int ldb,
const void * beta, void * c, int ldc) {
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
oneapi::math::blas::column_major::gemm(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value, data_a,
lda, data_b, ldb, beta_value, data_c, ldc);
}
template <typename VecT, class BinaryOperation, class = void>
class vectorized_binary
@ -1735,7 +1755,7 @@ namespace dpct
};
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans,
int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b,
int ldb, const void * beta, void ** c, int ldc, int batch_size,
matrix_info_t<float> * matrix_info) {
@ -1754,48 +1774,28 @@ namespace dpct
matrix_info->ld_info[2] = ldc;
matrix_info->groupsize_info = batch_size;
#ifdef GGML_SYCL_NVIDIA
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ q }, matrix_info->transpose_info,
matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1,
matrix_info->size_info + 2, reinterpret_cast<Ts *>(matrix_info->value_info),
reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b),
matrix_info->ld_info + 1, reinterpret_cast<Ts *>(matrix_info->value_info + 1),
reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
#else
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info,
matrix_info->size_info + 1, matrix_info->size_info + 2, reinterpret_cast<Ts *>(matrix_info->value_info),
reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b),
matrix_info->ld_info + 1, reinterpret_cast<Ts *>(matrix_info->value_info + 1),
reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
#endif
sycl::event e = oneapi::math::blas::column_major::gemm_batch(
get_onemath_backend(q), matrix_info->transpose_info, matrix_info->transpose_info + 1,
matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2,
reinterpret_cast<Ts *>(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
reinterpret_cast<Ts *>(matrix_info->value_info + 1), reinterpret_cast<Tc **>(c),
matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
}
template <class Ta, class Tb, class Tc, class Ts>
inline void
gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n,
int k, const void *alpha, const void *a, int lda,
long long int stride_a, const void *b, int ldb,
long long int stride_b, const void *beta, void *c,
int ldc, long long int stride_c, int batch_size)
{
inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans,
int m, int n, int k, const void * alpha, const void * a, int lda,
long long int stride_a, const void * b, int ldb, long long int stride_b,
const void * beta, void * c, int ldc, long long int stride_c, int batch_size) {
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
#ifdef GGML_SYCL_NVIDIA
oneapi::mkl::blas::column_major::gemm_batch(
oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ q }, a_trans, b_trans, m, n, k,
alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c,
batch_size);
#else
oneapi::mkl::blas::column_major::gemm_batch(q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc,
stride_c, batch_size);
#endif
oneapi::math::blas::column_major::gemm_batch(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value,
data_a, lda, stride_a, data_b, ldb, stride_b, beta_value,
data_c, ldc, stride_c, batch_size);
}
} // namespace detail
@ -2259,13 +2259,10 @@ namespace dpct
sycl::range<3>(x, y, 1), direction);
}
inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, library_data_t a_type,
int lda, const void *b, library_data_t b_type, int ldb,
const void *beta, void *c, library_data_t c_type, int ldc,
library_data_t scaling_type)
{
inline void gemm(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, int n,
int k, const void * alpha, const void * a, library_data_t a_type, int lda, const void * b,
library_data_t b_type, int ldb, const void * beta, void * c, library_data_t c_type, int ldc,
library_data_t scaling_type) {
if (scaling_type == library_data_t::real_float &&
c_type == library_data_t::complex_float)
{
@ -2329,9 +2326,8 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
ldb, beta, c, ldc);
detail::gemm_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
@ -2369,8 +2365,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
oneapi::mkl::bfloat16, float>(
detail::gemm_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
@ -2390,7 +2385,7 @@ namespace dpct
default:
throw std::runtime_error("the combination of data type is unsupported");
}
} // gemm()
} // gemm()
/// Computes a batch of matrix-matrix product with general matrices.
/// \param [in] q The queue where the routine should be executed.
@ -2412,7 +2407,7 @@ namespace dpct
/// \param [in] ldc Leading dimension of C.
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
/// \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda,
const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[],
library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type,
@ -2450,7 +2445,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
@ -2458,7 +2453,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
@ -2534,15 +2529,11 @@ namespace dpct
/// \param [in] stride_c Stride between the different C matrices.
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
/// \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, library_data_t a_type,
int lda, long long int stride_a, const void *b,
library_data_t b_type, int ldb, long long int stride_b,
const void *beta, void *c, library_data_t c_type,
int ldc, long long int stride_c, int batch_size,
library_data_t scaling_type)
{
inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a, library_data_t a_type, int lda,
long long int stride_a, const void * b, library_data_t b_type, int ldb,
long long int stride_b, const void * beta, void * c, library_data_t c_type, int ldc,
long long int stride_c, int batch_size, library_data_t scaling_type) {
if (scaling_type == library_data_t::real_float &&
c_type == library_data_t::complex_float)
{
@ -2611,20 +2602,18 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
beta, c, ldc, stride_c, batch_size);
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
stride_a, b, ldb, stride_b, beta, c, ldc,
stride_c, batch_size);
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c,
batch_size);
break;
}
#endif

View File

@ -2059,8 +2059,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
*stream, oneapi::math::transpose::trans,
oneapi::math::transpose::nontrans, row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
dst_f16.get(), dpct::library_data_t::real_half, ldc,
@ -2097,17 +2097,10 @@ inline void ggml_sycl_op_mul_mat_sycl(
#if !GGML_SYCL_DNNL
const float alpha = 1.0f;
const float beta = 0.0f;
# ifdef GGML_SYCL_NVIDIA
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ *stream }, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i,
ne00, src1_ddf1_i, ne10, dpct::get_value(&beta, *stream), dst_dd_i, ldc)));
# else
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
*stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
dst_dd_i, ldc)));
# endif
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::math::blas::column_major::gemm(
get_onemath_backend(*stream), oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, row_diff,
src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10,
dpct::get_value(&beta, *stream), dst_dd_i, ldc)));
#else
DnnlGemmWrapper::row_gemm(ctx, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i,
DnnlGemmWrapper::to_dt<float>(), src0_ddf_i, DnnlGemmWrapper::to_dt<float>(),
@ -2836,14 +2829,10 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*main_stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
(const char *)src0_as_f16, dpct::library_data_t::real_half,
nb01 / nb00, nb02 / nb00,
(const char *)src1_f16, dpct::library_data_t::real_half,
nb11 / nb10, nb12 / nb10, beta,
(char *)dst_t, cu_data_type, ne01, nb2 / nb0,
ne12 * ne13, cu_compute_type)));
*main_stream, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
(const char *) src0_as_f16, dpct::library_data_t::real_half, nb01 / nb00, nb02 / nb00,
(const char *) src1_f16, dpct::library_data_t::real_half, nb11 / nb10, nb12 / nb10, beta, (char *) dst_t,
cu_data_type, ne01, nb2 / nb0, ne12 * ne13, cu_compute_type)));
} else {
const int ne23 = ne12*ne13;
@ -2878,7 +2867,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
});
}
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*main_stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
*main_stream, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
(const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00,
(const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, nb11 / nb10, beta,
(void **) (ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, cu_compute_type, matrix_info.get())));

View File

@ -367,7 +367,7 @@ static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
l2_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
@ -389,7 +389,7 @@ static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
l2_norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
});

View File

@ -1,8 +1,5 @@
#include <sycl/sycl.hpp>
#include <oneapi/mkl.hpp>
#include "outprod.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
@ -34,20 +31,13 @@ void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
// Handle transposition of src1
const bool src1_T = ggml_is_transposed(src1);
const oneapi::mkl::transpose src1_op =
src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
const oneapi::math::transpose src1_op = src1_T ? oneapi::math::transpose::nontrans : oneapi::math::transpose::trans;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
try {
// Perform matrix multiplication using oneMKL GEMM
#ifdef GGML_SYCL_NVIDIA
oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ *stream },
oneapi::mkl::transpose::nontrans, src1_op, ne0, ne1, ne01, alpha, src0_d,
ne00, src1_d, ldb, beta, dst_d, ne0);
#else
oneapi::mkl::blas::column_major::gemm(*stream, oneapi::mkl::transpose::nontrans, src1_op, ne0, ne1, ne01, alpha,
src0_d, ne00, src1_d, ldb, beta, dst_d, ne0);
#endif
// Perform matrix multiplication using oneMath GEMM
oneapi::math::blas::column_major::gemm(get_onemath_backend(*stream), oneapi::math::transpose::nontrans, src1_op,
ne0, ne1, ne01, alpha, src0_d, ne00, src1_d, ldb, beta, dst_d, ne0);
}
catch (sycl::exception const& exc) {
std::cerr << exc.what() << std::endl;

View File

@ -59,7 +59,6 @@ if (Vulkan_FOUND)
set(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT OFF CACHE INTERNAL "Whether coopmat2 is supported by glslc")
else()
message(STATUS "GL_NV_cooperative_matrix2 supported by glslc")
set(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT ON CACHE INTERNAL "Whether coopmat2 is supported by glslc")
endif()
else()
@ -70,6 +69,20 @@ if (Vulkan_FOUND)
add_compile_definitions(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
endif()
# Compile a test shader to determine whether GL_EXT_integer_dot_product is supported.
# If it's not, there will be an error to stderr.
# If it's supported, set a define to indicate that we should compile those shaders
execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_integer_dot_support.comp"
OUTPUT_VARIABLE glslc_output
ERROR_VARIABLE glslc_error)
if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_integer_dot_product.*")
message(STATUS "GL_EXT_integer_dot_product not supported by glslc")
else()
message(STATUS "GL_EXT_integer_dot_product supported by glslc")
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
target_include_directories(ggml-vulkan PRIVATE ${CMAKE_CURRENT_BINARY_DIR})

View File

@ -234,6 +234,8 @@ struct vk_device_struct {
bool float_controls_rte_fp16;
bool subgroup_add;
bool integer_dot_product;
bool subgroup_size_control;
uint32_t subgroup_min_size;
uint32_t subgroup_max_size;
@ -245,6 +247,12 @@ struct vk_device_struct {
uint32_t coopmat_m;
uint32_t coopmat_n;
uint32_t coopmat_k;
bool coopmat_int_support;
uint32_t coopmat_int_m;
uint32_t coopmat_int_n;
uint32_t coopmat_int_k;
bool coopmat2;
size_t idx;
@ -263,10 +271,10 @@ struct vk_device_struct {
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
vk_pipeline pipeline_matmul_split_k_reduce;
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
@ -274,6 +282,9 @@ struct vk_device_struct {
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT];
vk_pipeline pipeline_matmul_split_k_reduce;
vk_pipeline pipeline_quantize_q8_1;
vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
@ -640,6 +651,13 @@ struct vk_op_rwkv_wkv7_push_constants {
uint32_t H;
};
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
float sf0; float sf1; float sf2; float sf3;
};
// Allow pre-recording command buffers
struct vk_staging_memcpy {
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
@ -649,13 +667,6 @@ struct vk_staging_memcpy {
size_t n;
};
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
float sf0; float sf1; float sf2; float sf3;
};
struct vk_context_struct {
vk_submission * s;
std::vector<vk_sequence> seqs;
@ -1598,6 +1609,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
// mulmat
std::vector<uint32_t> l_warptile, m_warptile, s_warptile,
l_warptile_mmq, m_warptile_mmq, s_warptile_mmq,
l_warptile_mmq_int, m_warptile_mmq_int, s_warptile_mmq_int,
l_warptile_mmq_k, m_warptile_mmq_k, s_warptile_mmq_k,
l_warptile_mmqid, m_warptile_mmqid, s_warptile_mmqid;
std::array<uint32_t, 3> l_wg_denoms, m_wg_denoms, s_wg_denoms,
@ -1662,6 +1674,20 @@ static void ggml_vk_load_shaders(vk_device& device) {
m_warptile_mmq = { 128, 64, 64, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
s_warptile_mmq = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
const uint32_t tm_int_l = device->coopmat_int_support ? device->coopmat_int_m : 4;
const uint32_t tm_int_m = device->coopmat_int_support ? device->coopmat_int_m : 4;
const uint32_t tm_int_s = device->coopmat_int_support ? device->coopmat_int_m : 2;
const uint32_t tn_int_l = device->coopmat_int_support ? device->coopmat_int_n : 4;
const uint32_t tn_int_m = device->coopmat_int_support ? device->coopmat_int_n : 2;
const uint32_t tn_int_s = device->coopmat_int_support ? device->coopmat_int_n : 2;
const uint32_t tk_int_l = device->coopmat_int_support ? device->coopmat_int_k : 1;
const uint32_t tk_int_m = device->coopmat_int_support ? device->coopmat_int_k : 1;
const uint32_t tk_int_s = device->coopmat_int_support ? device->coopmat_int_k : 1;
l_warptile_mmq_int = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, tm_int_l, tn_int_l, tk_int_l, subgroup_size_8 };
m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, tm_int_m, tn_int_m, tk_int_m, subgroup_size_8 };
s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_int_s, tn_int_s, tk_int_s, subgroup_size_8 };
l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 };
s_mmq_wg_denoms = s_wg_denoms = { 32, 32, 1 };
@ -2000,6 +2026,14 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
#define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
// Create 2 variants, {f16,f32} accumulator
#define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
@ -2031,6 +2065,16 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f16acc, matmul_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_q8_1, _f16acc, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
}
#endif
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
@ -2056,6 +2100,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM2
#undef CREATE_MMQ
#undef CREATE_MM
} else {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
@ -2073,6 +2118,14 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
#define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _m[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
if (device->mul_mat ## ID ## _s[TYPE]) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
@ -2099,6 +2152,16 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_q8_1, , mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
}
#endif
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
@ -2132,7 +2195,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
uint32_t rm_stdq = 1;
uint32_t rm_kq = 2;
if (device->vendor_id == VK_VENDOR_ID_AMD) {
if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN
if (device->architecture == AMD_GCN) {
rm_stdq = 2;
rm_kq = 4;
}
@ -2266,6 +2329,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl_f32", get_rows_iq4_nl_f32_len, get_rows_iq4_nl_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_len, quantize_q8_1_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1);
for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) {
if (device->subgroup_add && device->subgroup_require_full_support) {
@ -2452,6 +2516,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
bool pipeline_robustness = false;
bool coopmat2_support = false;
device->coopmat_support = false;
device->integer_dot_product = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
@ -2477,6 +2542,11 @@ static vk_device ggml_vk_get_device(size_t idx) {
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
coopmat2_support = true;
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
} else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
device->integer_dot_product = true;
#endif
}
}
@ -2490,6 +2560,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
vk::PhysicalDeviceVulkan11Properties vk11_props;
vk::PhysicalDeviceVulkan12Properties vk12_props;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
@ -2524,6 +2595,11 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
#endif
if (device->integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_props;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
}
device->physical_device.getProperties2(&props2);
device->properties = props2.properties;
device->vendor_id = device->properties.vendorID;
@ -2570,6 +2646,8 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->coopmat_support = false;
}
device->integer_dot_product = device->integer_dot_product && shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated;
std::vector<vk::QueueFamilyProperties> queue_family_props = device->physical_device.getQueueFamilyProperties();
// Try to find a non-graphics compute queue and transfer-focused queues
@ -2662,6 +2740,14 @@ static vk_device ggml_vk_get_device(size_t idx) {
device_extensions.push_back("VK_KHR_maintenance4");
}
VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR shader_integer_dot_product_features {};
shader_integer_dot_product_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR;
if (device->integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_features;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features;
device_extensions.push_back("VK_KHR_shader_integer_dot_product");
}
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
device->fp16 = device->fp16 && vk12_features.shaderFloat16;
@ -2831,6 +2917,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->coopmat_acc_f16_support = true;
}
}
} else if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eSint8 &&
(vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eSint8 &&
(vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eSint32 &&
(vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eSint32 &&
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup &&
device->coopmat_int_m == 0
) {
device->coopmat_int_support = true;
device->coopmat_int_m = prop.MSize;
device->coopmat_int_n = prop.NSize;
device->coopmat_int_k = prop.KSize;
}
}
@ -2935,25 +3032,11 @@ static void ggml_vk_print_gpu_info(size_t idx) {
vk::PhysicalDevice physical_device = devices[dev_num];
std::vector<vk::ExtensionProperties> ext_props = physical_device.enumerateDeviceExtensionProperties();
vk::PhysicalDeviceProperties2 props2;
vk::PhysicalDeviceMaintenance3Properties props3;
vk::PhysicalDeviceSubgroupProperties subgroup_props;
vk::PhysicalDeviceDriverProperties driver_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
physical_device.getProperties2(&props2);
vk_device_architecture arch = get_device_architecture(physical_device);
uint32_t default_subgroup_size = get_subgroup_size("", arch);
const size_t subgroup_size = (default_subgroup_size != 0) ? default_subgroup_size : subgroup_props.subgroupSize;
const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
bool fp16_storage = false;
bool fp16_compute = false;
bool coopmat_support = false;
bool coopmat2_support = false;
bool integer_dot_product = false;
for (auto properties : ext_props) {
if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
@ -2969,27 +3052,44 @@ static void ggml_vk_print_gpu_info(size_t idx) {
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
coopmat2_support = true;
#endif
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
} else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
integer_dot_product = true;
#endif
}
}
const vk_device_architecture device_architecture = get_device_architecture(physical_device);
if (!ggml_vk_khr_cooperative_matrix_support(props2.properties, driver_props, device_architecture)) {
coopmat_support = false;
}
const char* GGML_VK_DISABLE_F16 = getenv("GGML_VK_DISABLE_F16");
bool force_disable_f16 = GGML_VK_DISABLE_F16 != nullptr;
bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
vk::PhysicalDeviceFeatures device_features = physical_device.getFeatures();
vk::PhysicalDeviceProperties2 props2;
vk::PhysicalDeviceMaintenance3Properties props3;
vk::PhysicalDeviceSubgroupProperties subgroup_props;
vk::PhysicalDeviceDriverProperties driver_props;
vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
// Pointer to the last chain element
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&driver_props;
if (integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_props;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
}
physical_device.getProperties2(&props2);
VkPhysicalDeviceFeatures2 device_features2;
device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
device_features2.pNext = nullptr;
device_features2.features = (VkPhysicalDeviceFeatures)device_features;
VkPhysicalDeviceVulkan11Features vk11_features;
vk11_features.pNext = nullptr;
@ -3002,7 +3102,7 @@ static void ggml_vk_print_gpu_info(size_t idx) {
vk11_features.pNext = &vk12_features;
// Pointer to the last chain element
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_features;
last_struct = (VkBaseOutStructure *)&vk12_features;
#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
@ -3014,20 +3114,39 @@ static void ggml_vk_print_gpu_info(size_t idx) {
last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
last_struct = (VkBaseOutStructure *)&coopmat_features;
}
#endif
VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR shader_integer_dot_product_features {};
shader_integer_dot_product_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR;
if (integer_dot_product) {
last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_features;
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features;
}
vkGetPhysicalDeviceFeatures2(physical_device, &device_features2);
fp16 = fp16 && vk12_features.shaderFloat16;
coopmat_support = coopmat_support && coopmat_features.cooperativeMatrix;
uint32_t default_subgroup_size = get_subgroup_size("", device_architecture);
const size_t subgroup_size = (default_subgroup_size != 0) ? default_subgroup_size : subgroup_props.subgroupSize;
const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
integer_dot_product = integer_dot_product
&& shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated
&& shader_integer_dot_product_features.shaderIntegerDotProduct;
coopmat_support = coopmat_support
#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
&& coopmat_features.cooperativeMatrix
#endif
&& ggml_vk_khr_cooperative_matrix_support(props2.properties, driver_props, device_architecture);
std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none";
std::string device_name = props2.properties.deviceName.data();
GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | warp size: %zu | shared memory: %d | matrix cores: %s\n",
GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | warp size: %zu | shared memory: %d | int dot: %d | matrix cores: %s\n",
idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, subgroup_size,
props2.properties.limits.maxComputeSharedMemorySize, matrix_cores.c_str());
props2.properties.limits.maxComputeSharedMemorySize, integer_dot_product, matrix_cores.c_str());
if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) {
GGML_LOG_DEBUG("ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want.\n");
@ -3293,6 +3412,17 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
}
}
// MMQ
if (src1_type == GGML_TYPE_Q8_1) {
vk_matmul_pipeline pipelines = ctx->device->pipeline_dequant_mul_mat_mat_q8_1[src0_type].f16acc;
if (pipelines->s == nullptr && pipelines->m == nullptr && pipelines->l == nullptr) {
return nullptr;
}
return pipelines;
}
if (src1_type != GGML_TYPE_F32 && !ctx->device->coopmat2) {
return nullptr;
}
@ -3585,8 +3715,6 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo
return s;
}
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
@ -4016,8 +4144,8 @@ static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, int m, int
return split_k;
}
static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, bool aligned, ggml_type src0_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ")");
static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type, ggml_type src1_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
if (ctx->device->coopmat2) {
// Use large shader when the N dimension is greater than the medium shader's tile size
@ -4042,9 +4170,9 @@ static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx,
return aligned ? mmp->a_l : mmp->l;
}
static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type src0_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ", " << ggml_type_name(src0_type) << ")");
return ggml_vk_guess_matmul_pipeline(ctx, mmp, m, n, true, src0_type)->align;
static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type src0_type, ggml_type src1_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
return ggml_vk_guess_matmul_pipeline(ctx, mmp, m, n, true, src0_type, src1_type)->align;
}
static void ggml_vk_matmul(
@ -4054,7 +4182,7 @@ static void ggml_vk_matmul(
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3,
uint32_t padded_n) {
VK_LOG_DEBUG("ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ")");
VK_LOG_DEBUG("ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", padded_n: " << padded_n << ")");
ggml_vk_sync_buffers(subctx);
if (split_k == 1) {
const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3, padded_n };
@ -4072,7 +4200,7 @@ static void ggml_vk_matmul(
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
}
static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, bool aligned, ggml_type src0_type) {
static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type) {
VK_LOG_DEBUG("ggml_vk_guess_matmul_id_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ")");
if (ctx->device->coopmat2) {
@ -4214,6 +4342,25 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context&
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements);
}
static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) {
switch(type) {
case GGML_TYPE_Q8_1:
return ctx->device->pipeline_quantize_q8_1;
default:
std::cerr << "Missing quantize pipeline for type: " << ggml_type_name(type) << std::endl;
GGML_ABORT("fatal error");
}
}
static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, vk_subbuffer&& in, vk_subbuffer&& out, uint32_t ne) {
VK_LOG_DEBUG("ggml_vk_quantize_q8_1(" << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ", " << ne << ")");
vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(uint32_t), &ne, { ne, 1, 1 });
}
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
@ -4265,10 +4412,19 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
// Check for mmq first
vk_matmul_pipeline mmp = quantize_y ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, GGML_TYPE_Q8_1, (ggml_prec)dst->op_params[0]) : nullptr;
if (mmp == nullptr) {
// Fall back to f16 dequant mul mat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
quantize_y = false;
}
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
@ -4278,13 +4434,13 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
const bool aligned = ne10 == kpad && ne01 > 8 && ne11 > 8;
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
const int x_ne = ne01 * ne00;
const int y_ne = padded_n * ne10;
const int d_ne = ne11 * ne01;
@ -4294,11 +4450,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
const uint64_t y_sz = quantize_y ? (y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) : (y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne);
const uint64_t d_sz = sizeof(float) * d_ne;
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
vk_pipeline to_q8_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
@ -4313,6 +4470,10 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
if (quantize_y) {
to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
}
if (dryrun) {
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
@ -4326,7 +4487,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
ctx->prealloc_size_x = x_sz_upd;
}
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz_upd) {
ctx->prealloc_size_y = y_sz_upd;
}
if (split_k > 1 && ctx->prealloc_size_split_k < split_k_size) {
@ -4341,6 +4502,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
}
if (quantize_y) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_q8_1, 1);
}
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1);
}
@ -4376,6 +4540,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (qy_needs_dequant) {
d_Y = ctx->prealloc_y;
GGML_ASSERT(d_Y->size >= y_sz * ne12 * ne13);
} else if (quantize_y) {
d_Y = ctx->prealloc_y;
GGML_ASSERT(d_Y->size >= y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1));
} else {
d_Y = d_Qy;
y_buf_offset = qy_buf_offset;
@ -4392,6 +4559,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (y_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
}
if (quantize_y) {
ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13);
}
uint32_t stride_batch_x = ne00*ne01;
uint32_t stride_batch_y = ne10*ne11;
@ -4400,7 +4570,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
}
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant && !quantize_y) {
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
}
@ -6929,6 +7099,10 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
}
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
@ -7177,6 +7351,10 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
@ -7236,66 +7414,198 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
free(x_chk);
}
static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, size_t split_k, size_t shader_size, ggml_type quant) {
// This does not work without ggml q8_1 quantization support
//
// typedef uint16_t ggml_half;
// typedef uint32_t ggml_half2;
//
// #define QK8_1 32
// typedef struct {
// union {
// struct {
// ggml_half d; // delta
// ggml_half s; // d * sum(qs[i])
// } GGML_COMMON_AGGR_S;
// ggml_half2 ds;
// } GGML_COMMON_AGGR_U;
// int8_t qs[QK8_1]; // quants
// } block_q8_1;
//
// static void ggml_vk_test_quantize(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
// VK_LOG_DEBUG("ggml_vk_test_quantize(" << ne << ")");
// GGML_ASSERT(quant == GGML_TYPE_Q8_1);
//
// const size_t x_sz = sizeof(float) * ne;
// const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
// float * x = (float *) malloc(x_sz);
// block_q8_1 * qx = (block_q8_1 *)malloc(qx_sz);
// block_q8_1 * qx_res = (block_q8_1 *)malloc(qx_sz);
// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
//
// for (size_t i = 0; i < ne; i++) {
// x[i] = rand() / (float)RAND_MAX;
// }
//
// vk_pipeline p = ggml_vk_get_quantize_pipeline(ctx, quant);
//
// ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
//
// if (ctx->device->need_compiles) {
// ggml_vk_load_shaders(ctx->device);
// }
//
// ggml_pipeline_allocate_descriptor_sets(ctx->device);
//
// ggml_vk_buffer_write(x_buf, 0, x, x_sz);
//
// vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
// ggml_vk_ctx_begin(ctx->device, subctx);
// ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(x_buf), ggml_vk_subbuffer(qx_buf), ne);
// ggml_vk_ctx_end(subctx);
//
// auto begin = std::chrono::high_resolution_clock::now();
//
// ggml_vk_submit(subctx, ctx->fence);
// VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_quantize waitForFences");
// ctx->device->device.resetFences({ ctx->fence });
//
// auto end = std::chrono::high_resolution_clock::now();
//
// double ms_quant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
// ggml_vk_buffer_read(qx_buf, 0, qx, qx_sz);
//
// ggml_vk_quantize_data(x, qx_res, ne, quant);
//
// int first_err = -1;
//
// for (size_t i = 0; i < ne / 32; i++) {
// double error = std::fabs(ggml_fp16_to_fp32(qx_res[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) - ggml_fp16_to_fp32(qx[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d));
//
// if (first_err < 0 && error > 0.1) {
// first_err = i;
// }
//
// error = std::fabs(ggml_fp16_to_fp32(qx_res[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) - ggml_fp16_to_fp32(qx[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s));
//
// if (first_err < 0 && error > 0.1) {
// first_err = i;
// }
//
// for (size_t j = 0; j < 32; j++) {
// uint64_t error = std::abs(qx_res[i].qs[j] - qx[i].qs[j]);
//
// if (first_err < 0 && error > 1) {
// first_err = i;
// }
// }
// }
//
// std::cerr << "TEST QUANTIZE " << ggml_type_name(quant) << " time=" << ms_quant << "ms " << (first_err == -1 ? "CORRECT" : "INCORRECT") << std::endl;
//
// if (first_err != -1) {
// std::cerr << "first_error = " << first_err << std::endl;
// std::cerr << "Actual result: " << std::endl << std::endl;
// std::cout << "d=" << ggml_fp16_to_fp32(qx[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) << " s=" << ggml_fp16_to_fp32(qx[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) << " ";
// for (size_t j = 0; j < 32; j++) {
// std::cout << " qs" << j << "=" << (uint32_t)qx[first_err].qs[j] << " ";
// }
// std::cerr << std::endl << std::endl << "Expected result: " << std::endl << std::endl;
// std::cout << "d=" << ggml_fp16_to_fp32(qx_res[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) << " s=" << ggml_fp16_to_fp32(qx_res[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) << " ";
// for (size_t j = 0; j < 32; j++) {
// std::cout << " qs" << j << "=" << (uint32_t)qx_res[first_err].qs[j] << " ";
// }
// std::cerr << std::endl;
// }
//
// ggml_vk_destroy_buffer(x_buf);
// ggml_vk_destroy_buffer(qx_buf);
//
// free(x);
// free(qx);
// free(qx_res);
// }
static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, size_t split_k, size_t shader_size, ggml_type quant, bool mmq = false) {
VK_LOG_DEBUG("ggml_vk_test_dequant_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << ggml_type_name(quant) << ")");
const size_t x_ne = m * k * batch;
const size_t y_ne = k * n * batch;
const size_t d_ne = m * n * batch;
vk_matmul_pipeline2 * pipelines;
if (mmq) {
pipelines = ctx->device->pipeline_dequant_mul_mat_mat_q8_1;
} else {
pipelines = ctx->device->pipeline_dequant_mul_mat_mat;
}
const bool fp16acc = ctx->device->fp16;
vk_pipeline p;
std::string shname;
if (shader_size == 0) {
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_s : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_s;
p = fp16acc ? pipelines[quant].f16acc->a_s : pipelines[quant].f32acc->a_s;
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_S";
} else if (shader_size == 1) {
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_m : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_m;
p = fp16acc ? pipelines[quant].f16acc->a_m : pipelines[quant].f32acc->a_m;
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_M";
} else if (shader_size == 2) {
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_l : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_l;
p = fp16acc ? pipelines[quant].f16acc->a_l : pipelines[quant].f32acc->a_l;
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_L";
} else {
GGML_ASSERT(0);
}
const size_t kpad = ggml_vk_align_size(k, p->align);
const size_t kpad = mmq ? 0 : ggml_vk_align_size(k, p->align);
if (k != kpad) {
if (mmq || k != kpad) {
if (shader_size == 0) {
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->s : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->s;
p = fp16acc ? pipelines[quant].f16acc->s : pipelines[quant].f32acc->s;
shname = std::string(ggml_type_name(quant)) + "_S";
} else if (shader_size == 1) {
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->m : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->m;
p = fp16acc ? pipelines[quant].f16acc->m : pipelines[quant].f32acc->m;
shname = std::string(ggml_type_name(quant)) + "_M";
} else if (shader_size == 2) {
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->l : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->l;
p = fp16acc ? pipelines[quant].f16acc->l : pipelines[quant].f32acc->l;
shname = std::string(ggml_type_name(quant)) + "_L";
} else {
GGML_ASSERT(0);
}
}
if (p == nullptr) {
std::cerr << "error: no pipeline for ggml_vk_test_dequant_matmul " << ggml_type_name(quant) << std::endl;
return;
}
const size_t x_sz = sizeof(float) * x_ne;
const size_t y_sz = sizeof(float) * y_ne;
const size_t qx_sz = x_ne * ggml_type_size(quant)/ggml_blck_size(quant);
const size_t qy_sz = mmq ? y_ne * ggml_type_size(GGML_TYPE_Q8_1)/ggml_blck_size(GGML_TYPE_Q8_1) : y_sz;
const size_t d_sz = sizeof(float) * d_ne;
float * x = (float *) malloc(x_sz);
float * y = (float *) malloc(y_sz);
void * qx = malloc(qx_sz);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
float * d = (float *) malloc(d_sz);
float * d_chk = (float *) malloc(d_sz);
for (size_t i = 0; i < x_ne; i++) {
x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
// x[i] = (i % k == i / k) ? 1.0f : 0.0f;
// x[i] = i % k;
}
ggml_vk_quantize_data(x, qx, x_ne, quant);
for (size_t i = 0; i < y_ne; i++) {
// y[i] = rand() / (float)RAND_MAX;
y[i] = (i % k == i / k) ? 1.0f : 0.0f;
y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
// y[i] = (i % k == i / k) ? 1.0f : 0.0f;
// y[i] = i % k;
}
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
@ -7310,6 +7620,13 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
}
}
if (mmq) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_quantize_q8_1, num_it);
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
@ -7318,13 +7635,25 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ggml_vk_ctx_begin(ctx->device, subctx);
for (size_t i = 0; i < num_it; i++) {
ggml_vk_matmul(
ctx, subctx, p, ggml_vk_subbuffer(qx_buf), ggml_vk_subbuffer(y_buf), ggml_vk_subbuffer(d_buf), ggml_vk_subbuffer(ctx->prealloc_split_k),
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
);
if (mmq) {
for (size_t i = 0; i < num_it; i++) {
ggml_vk_quantize_q8_1(ctx, subctx, { y_buf, 0, y_sz }, { qy_buf, 0, qy_sz }, y_ne);
ggml_vk_matmul(
ctx, subctx, p, { qx_buf, 0, qx_sz }, { qy_buf, 0, qy_sz }, { d_buf, 0, d_sz }, { ctx->prealloc_split_k, 0, ctx->prealloc_size_split_k },
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
);
}
} else {
for (size_t i = 0; i < num_it; i++) {
ggml_vk_matmul(
ctx, subctx, p, { qx_buf, 0, qx_sz }, { y_buf, 0, y_sz }, { d_buf, 0, d_sz }, { ctx->prealloc_split_k, 0, ctx->prealloc_size_split_k },
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
);
}
}
ggml_vk_ctx_end(subctx);
@ -7382,7 +7711,11 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
double tflops = 2.0*m*n*k*batch*num_it / (time_ms / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
std::cerr << "TEST MMQ " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time_ms / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
std::cerr << "TEST dequant matmul " << shname;
if (mmq) {
std::cerr << " mmq";
}
std::cerr << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time_ms / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
if (avg_err > 0.01 || std::isnan(avg_err)) {
std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
@ -7392,6 +7725,12 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
std::cerr << "Expected result: " << std::endl << std::endl;
ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
std::cerr << "src0: " << std::endl << std::endl;
ggml_vk_print_matrix_area(x, GGML_TYPE_F32, k, m, first_err_m, first_err_n, first_err_b);
std::cerr << std::endl;
std::cerr << "src1: " << std::endl << std::endl;
ggml_vk_print_matrix_area(y, GGML_TYPE_F32, k, n, first_err_m, first_err_n, first_err_b);
if (split_k > 1) {
float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
@ -7414,6 +7753,7 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
ggml_vk_destroy_buffer(qx_buf);
ggml_vk_destroy_buffer(y_buf);
ggml_vk_destroy_buffer(qy_buf);
ggml_vk_destroy_buffer(d_buf);
free(x);
@ -7446,7 +7786,25 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
128, 49, 49,
4096, 49, 4096,
};
const size_t num_it = 100;
const size_t num_it = 1;
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q4_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q4_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q4_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q4_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q8_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q8_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q8_0);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q8_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q8_0, true);
ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q8_0, true);
abort();
for (size_t i = 0; i < vals.size(); i += 3) {
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
@ -9258,7 +9616,7 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
}
if (tensor->op == GGML_OP_FLASH_ATTN_EXT) {
const float *params = (const float *)tensor->op_params;
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_flash_attn_ext(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], src_clone[3], params[0], params[1], params[2]);
} else if (tensor->op == GGML_OP_MUL_MAT) {
tensor_clone = ggml_mul_mat(ggml_ctx, src_clone[0], src_clone[1]);
@ -9275,7 +9633,8 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
} else if (tensor->op == GGML_OP_UPSCALE) {
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
} else if (tensor->op == GGML_OP_SCALE) {
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], ((float *)tensor->op_params)[0]);
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], params[0]);
} else if (tensor->op == GGML_OP_SQR) {
tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_SIN) {
@ -9283,7 +9642,8 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
} else if (tensor->op == GGML_OP_COS) {
tensor_clone = ggml_cos(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_CLAMP) {
tensor_clone = ggml_clamp(ggml_ctx, src_clone[0], ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_clamp(ggml_ctx, src_clone[0], params[0], params[1]);
} else if (tensor->op == GGML_OP_PAD) {
tensor_clone = ggml_pad(ggml_ctx, src_clone[0], tensor->ne[0] - src_clone[0]->ne[0], tensor->ne[1] - src_clone[0]->ne[1], tensor->ne[2] - src_clone[0]->ne[2], tensor->ne[3] - src_clone[0]->ne[3]);
} else if (tensor->op == GGML_OP_REPEAT) {
@ -9297,7 +9657,8 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
} else if (tensor->op == GGML_OP_NORM) {
tensor_clone = ggml_norm(ggml_ctx, src_clone[0], *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_GROUP_NORM) {
tensor_clone = ggml_group_norm(ggml_ctx, src_clone[0], *(int *)tensor->op_params, ((float *)tensor->op_params)[1]);
const float * float_params = (const float *)tensor->op_params;
tensor_clone = ggml_group_norm(ggml_ctx, src_clone[0], tensor->op_params[0], float_params[1]);
} else if (tensor->op == GGML_OP_RMS_NORM) {
tensor_clone = ggml_rms_norm(ggml_ctx, src_clone[0], *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_RMS_NORM_BACK) {
@ -9310,14 +9671,15 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
tensor_clone = ggml_l2_norm(ggml_ctx, src_clone[0], eps);
} else if (tensor->op == GGML_OP_SOFT_MAX) {
if (src1 != nullptr) {
tensor_clone = ggml_soft_max_ext(ggml_ctx, src_clone[0], src_clone[1], ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_soft_max_ext(ggml_ctx, src_clone[0], src_clone[1], params[0], params[1]);
} else {
tensor_clone = ggml_soft_max(ggml_ctx, src_clone[0]);
}
} else if (tensor->op == GGML_OP_SOFT_MAX_BACK) {
tensor_clone = ggml_soft_max_ext_back(ggml_ctx, src_clone[0], src_clone[1], ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
} else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
tensor_clone = ggml_diag_mask_inf(ggml_ctx, src_clone[0], *(int *)tensor->op_params);
tensor_clone = ggml_diag_mask_inf(ggml_ctx, src_clone[0], tensor->op_params[0]);
} else if (tensor->op == GGML_OP_ROPE || tensor->op == GGML_OP_ROPE_BACK) {
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];

View File

@ -212,7 +212,7 @@ void main() {
#else
ACC_TYPE sums[WMITER * TM * WNITER * TN];
FLOAT_TYPE cache_a[WMITER * TM];
FLOAT_TYPE cache_b[WNITER * TN];
FLOAT_TYPE cache_b[TN];
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = ACC_TYPE(0.0f);
@ -744,16 +744,14 @@ void main() {
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint j = 0; j < TN; j++) {
cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * SHMEM_STRIDE + i];
cache_b[j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * SHMEM_STRIDE + i];
}
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
const uint sums_idx = (wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr;
sums[sums_idx] = fma(ACC_TYPE(cache_a[wsir * TM + cr]), ACC_TYPE(cache_b[wsic * TN + cc]), sums[sums_idx]);
sums[sums_idx] = fma(ACC_TYPE(cache_a[wsir * TM + cr]), ACC_TYPE(cache_b[cc]), sums[sums_idx]);
}
}
}

View File

@ -0,0 +1,444 @@
#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#extension GL_EXT_integer_dot_product : require
#ifdef FLOAT16
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#endif
#ifdef COOPMAT
#extension GL_KHR_cooperative_matrix : enable
#extension GL_KHR_memory_scope_semantics : enable
#extension GL_KHR_shader_subgroup_basic : enable
#endif
#ifdef MUL_MAT_ID
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#endif
#include "types.comp"
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];};
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
layout (binding = 1) readonly buffer B {block_q8_1_packed32 data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif
layout (push_constant) uniform parameter
{
uint M;
uint N;
uint K;
uint stride_a;
uint stride_b;
uint stride_d;
uint batch_stride_a;
uint batch_stride_b;
uint batch_stride_d;
#ifdef MUL_MAT_ID
uint nei0;
uint nei1;
uint nbi1;
uint ne11;
#else
uint k_split;
uint ne02;
uint ne12;
uint broadcast2;
uint broadcast3;
#endif
} p;
layout (constant_id = 0) const uint BLOCK_SIZE = 64;
layout (constant_id = 1) const uint BM = 64;
layout (constant_id = 2) const uint BN = 64;
// layout (constant_id = 3) const uint BK = 32;
layout (constant_id = 4) const uint WM = 32;
layout (constant_id = 5) const uint WN = 32;
layout (constant_id = 6) const uint WMITER = 2;
layout (constant_id = 7) const uint TM = 4;
layout (constant_id = 8) const uint TN = 2;
layout (constant_id = 9) const uint TK = 1; // Only needed for coopmat
layout (constant_id = 10) const uint WARP = 32;
#define BK 32
#ifdef COOPMAT
#define SHMEM_STRIDE (BK / 4 + 4)
#else
#define SHMEM_STRIDE (BK / 4 + 1)
#endif
shared int32_t buf_a_qs[BM * SHMEM_STRIDE];
#ifndef COOPMAT
#if QUANT_AUXF == 1
shared FLOAT_TYPE buf_a_dm[BM];
#else
shared FLOAT_TYPE_VEC2 buf_a_dm[BM];
#endif
#endif
shared int32_t buf_b_qs[BN * SHMEM_STRIDE];
#ifndef COOPMAT
shared FLOAT_TYPE_VEC2 buf_b_ds[BN];
#endif
#define LOAD_VEC_A (4 * QUANT_R)
#define LOAD_VEC_B 4
#ifdef MUL_MAT_ID
shared u16vec2 row_ids[3072];
#endif // MUL_MAT_ID
#define NUM_WARPS (BLOCK_SIZE / WARP)
#ifdef COOPMAT
shared ACC_TYPE coopmat_stage[TM * TN * NUM_WARPS];
#endif
#include "mul_mmq_funcs.comp"
void main() {
#ifdef NEEDS_INIT_IQ_SHMEM
init_iq_shmem(gl_WorkGroupSize);
#endif
#ifdef MUL_MAT_ID
const uint expert_idx = gl_GlobalInvocationID.z;
#else
const uint batch_idx = gl_GlobalInvocationID.z;
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#endif
const uint blocks_m = (p.M + BM - 1) / BM;
const uint ir = gl_WorkGroupID.x % blocks_m;
const uint ik = gl_WorkGroupID.x / blocks_m;
const uint ic = gl_WorkGroupID.y;
const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
const uint WSUBM = WM / WMITER;
const uint WSUBN = WN / WNITER;
#ifdef COOPMAT
const uint warp_i = gl_SubgroupID;
const uint tiw = gl_SubgroupInvocationID;
const uint cms_per_row = WM / TM;
const uint cms_per_col = WN / TN;
const uint storestride = WARP / TM;
const uint store_r = tiw % TM;
const uint store_c = tiw / TM;
#else
const uint warp_i = gl_LocalInvocationID.x / WARP;
const uint tiw = gl_LocalInvocationID.x % WARP;
const uint tiwr = tiw % (WSUBM / TM);
const uint tiwc = tiw / (WSUBM / TM);
#endif
const uint warp_r = warp_i % (BM / WM);
const uint warp_c = warp_i / (BM / WM);
const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);
const uint loadstride_a = BLOCK_SIZE * LOAD_VEC_A / BK;
const uint loadstride_b = BLOCK_SIZE * LOAD_VEC_B / BK;
#ifdef MUL_MAT_ID
uint _ne1 = 0;
for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
row_ids[_ne1] = u16vec2(ii0, ii1);
_ne1++;
}
}
}
barrier();
// Workgroup has no work
if (ic * BN >= _ne1) return;
#endif
#ifdef MUL_MAT_ID
const uint start_k = 0;
const uint end_k = p.K;
#else
const uint start_k = ik * p.k_split;
const uint end_k = min(p.K, (ik + 1) * p.k_split);
#endif
uint pos_a_ib = (
#ifdef MUL_MAT_ID
expert_idx * p.batch_stride_a +
#else
batch_idx_a * p.batch_stride_a +
#endif
ir * BM * p.stride_a + start_k) / BK;
#ifdef MUL_MAT_ID
uint pos_b_ib = 0;
#else
uint pos_b_ib = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / BK;
#endif
#ifdef COOPMAT
coopmat<int8_t, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
coopmat<int8_t, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
coopmat<int32_t, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> cm_result;
coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> factors[cms_per_row * cms_per_col];
coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> sums[cms_per_row * cms_per_col];
[[unroll]] for (uint i = 0; i < cms_per_row * cms_per_col; i++) {
sums[i] = coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(0.0f);
}
#else
int32_t cache_a_qs[WMITER * TM * BK / 4];
int32_t cache_b_qs[TN * BK / 4];
ACC_TYPE sums[WMITER * TM * WNITER * TN];
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = ACC_TYPE(0.0f);
}
#endif
#if QUANT_AUXF == 1
FLOAT_TYPE cache_a_dm[TM];
#else
FLOAT_TYPE_VEC2 cache_a_dm[TM];
#endif
FLOAT_TYPE_VEC2 cache_b_ds[TN];
for (uint block = start_k; block < end_k; block += BK) {
[[unroll]] for (uint l = 0; loadc_a + l < BM; l += loadstride_a) {
const uint ib = pos_a_ib + (loadc_a + l) * p.stride_a / BK;
const uint iqs = loadr_a;
const uint buf_ib = loadc_a + l;
// Should ds be gated to a single thread?
if (iqs == 0) {
#if QUANT_AUXF == 1
buf_a_dm[buf_ib] = get_d(ib);
#else
buf_a_dm[buf_ib] = get_dm(ib);
#endif
}
#if QUANT_R == 1
buf_a_qs[buf_ib * SHMEM_STRIDE + iqs] = repack(ib, iqs);
#else
const i32vec2 vals = repack(ib, iqs);
buf_a_qs[buf_ib * SHMEM_STRIDE + iqs ] = vals.x;
buf_a_qs[buf_ib * SHMEM_STRIDE + iqs + 4] = vals.y;
#endif
}
[[unroll]] for (uint l = 0; loadc_b + l < BN; l += loadstride_b) {
#ifdef MUL_MAT_ID
const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
const uint idx = pos_b_ib + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
const uint ib = idx / 8;
const uint iqs = idx & 0x7;
#else
const uint ib = pos_b_ib + (loadc_b + l) * p.stride_b / BK;
const uint iqs = loadr_b;
#endif
const uint buf_ib = loadc_b + l;
// Should ds be gated to a single thread?
if (iqs == 0) {
buf_b_ds[buf_ib] = FLOAT_TYPE_VEC2(data_b[ib].ds);
}
buf_b_qs[buf_ib * SHMEM_STRIDE + iqs] = data_b[ib].qs[iqs];
}
barrier();
pos_a_ib += 1;
pos_b_ib += 1;
#ifdef COOPMAT
[[unroll]] for (uint cm_row = 0; cm_row < cms_per_row; cm_row++) {
const uint ib_a = warp_r * WM + cm_row * TM;
// Load from shared into cache
coopMatLoad(cache_a, buf_a_qs, ib_a * SHMEM_STRIDE, SHMEM_STRIDE, gl_CooperativeMatrixLayoutRowMajor);
// TODO: only cache values that are actually needed
[[unroll]] for (uint t_idx = 0; t_idx < TM; t_idx++) {
cache_a_dm[t_idx] = buf_a_dm[ib_a + t_idx];
}
[[unroll]] for (uint cm_col = 0; cm_col < cms_per_col; cm_col++) {
const uint ib_b = warp_c * WN + cm_col * TN;
coopMatLoad(cache_b, buf_b_qs, ib_b * SHMEM_STRIDE, SHMEM_STRIDE, gl_CooperativeMatrixLayoutColumnMajor);
// TODO: only cache values that are actually needed
[[unroll]] for (uint t_idx = 0; t_idx < TN; t_idx++) {
cache_b_dm[t_idx] = buf_b_d[ib_b + t_idx];
}
cm_result = coopmat<int32_t, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(0);
cm_result = coopMatMulAdd(cache_a, cache_b, cm_result);
[[unroll]] for (uint col = 0; col < TN; col += storestride) {
coopmat_stage[warp_i * TM * TN + (store_c + col) * TM + store_r] = ACC_TYPE(float(cache_a_d[store_r]) * float(cache_b_d[store_c + col]));
}
coopMatLoad(factors, coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);
sums[cm_col * cms_per_row + cm_row] += factors * coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(cm_result);
}
}
#else
// Load from shared into cache
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
const uint ib = warp_r * WM + wsir * WSUBM + tiwr * TM + cr;
cache_a_dm[wsir * TM + cr] = buf_a_dm[ib];
[[unroll]] for (uint idx_k = 0; idx_k < BK / 4; idx_k++) {
cache_a_qs[(wsir * TM + cr) * (BK / 4) + idx_k] = buf_a_qs[ib * SHMEM_STRIDE + idx_k];
}
}
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
const uint ib = warp_c * WN + wsic * WSUBN + tiwc * TN + cc;
cache_b_ds[cc] = buf_b_ds[ib];
[[unroll]] for (uint idx_k = 0; idx_k < BK / 4; idx_k++) {
cache_b_qs[cc * (BK / 4) + idx_k] = buf_b_qs[ib * SHMEM_STRIDE + idx_k];
}
}
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
const uint cache_a_idx = wsir * TM + cr;
const uint sums_idx = (wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr;
int32_t q_sum = 0;
[[unroll]] for (uint idx_k = 0; idx_k < BK / 4; idx_k++) {
q_sum += dotPacked4x8EXT(cache_a_qs[cache_a_idx * (BK / 4) + idx_k],
cache_b_qs[cc * (BK / 4) + idx_k]);
}
sums[sums_idx] += mul_q8_1(q_sum, cache_a_dm[cache_a_idx], cache_b_ds[cc]);
}
}
}
}
#endif
barrier();
}
const uint dr = ir * BM + warp_r * WM;
const uint dc = ic * BN + warp_c * WN;
#ifndef MUL_MAT_ID
const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
#endif
#ifdef COOPMAT
#ifdef MUL_MAT_ID
[[unroll]] for (uint cm_row = 0; cm_row < cms_per_row; cm_row++) {
[[unroll]] for (uint cm_col = 0; cm_col < cms_per_col; cm_col++) {
coopMatStore(sums[cm_col * cms_per_row + cm_row], coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);
[[unroll]] for (uint col = 0; col < BN; col += storestride) {
const uint row_i = dc + cm_col * TN + col + store_c;
if (row_i >= _ne1) break;
const u16vec2 row_idx = row_ids[row_i];
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
}
}
}
#else
const bool is_aligned = p.stride_d % 4 == 0; // Assumption: D_TYPE == float
[[unroll]] for (uint cm_row = 0; cm_row < cms_per_row; cm_row++) {
[[unroll]] for (uint cm_col = 0; cm_col < cms_per_col; cm_col++) {
const bool is_in_bounds = dr + (cm_row + 1) * TM <= p.M && dc + (cm_col + 1) * TN <= p.N;
if (is_aligned && is_in_bounds) {
// Full coopMat is within bounds and stride_d is aligned with 16B
coopmat<D_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> cm_dtype = coopmat<D_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(sums[cm_col * cms_per_row + cm_row]);
coopMatStore(cm_dtype, data_d, offsets + (dc + cm_col * TN) * p.stride_d + dr + cm_row * TM, p.stride_d, gl_CooperativeMatrixLayoutColumnMajor);
} else if (is_in_bounds) {
// Full coopMat is within bounds, but stride_d is not aligned
coopMatStore(sums[cm_col * cms_per_row + cm_row], coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);
[[unroll]] for (uint col = 0; col < TN; col += storestride) {
data_d[offsets + (dc + cm_col * TN + col + store_c) * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
}
} else if (dr + cm_row * TM < p.M && dc + cm_col * TN < p.N) {
// Partial coopMat is within bounds
coopMatStore(sums[cm_col * cms_per_row + cm_row], coopmat_stage, warp_i * TM * TN, TM, gl_CooperativeMatrixLayoutColumnMajor);
[[unroll]] for (uint col = 0; col < TN; col += storestride) {
if (dr + cm_row * TM + store_r < p.M && dc + cm_col * TN + col + store_c < p.N) {
data_d[offsets + (dc + cm_col * TN + col + store_c) * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
}
}
}
}
}
#endif // MUL_MAT_ID
#else
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
#ifdef MUL_MAT_ID
const uint row_i = dc_warp + cc;
if (row_i >= _ne1) break;
const u16vec2 row_idx = row_ids[row_i];
#endif // MUL_MAT_ID
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
#ifdef MUL_MAT_ID
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
#else
if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
}
#endif // MUL_MAT_ID
}
}
}
}
#endif // COOPMAT
}

View File

@ -0,0 +1,99 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#include "types.comp"
// Each iqs value maps to a 32-bit integer
#if defined(DATA_A_Q4_0)
i32vec2 repack(uint ib, uint iqs) {
// Use 2-byte loads since a q4_0 block (18 bytes) is not divisible by 4
const u16vec2 quants = u16vec2(data_a[ib].qs[iqs * 2 ],
data_a[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
}
ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) {
return ACC_TYPE(da * (float(q_sum) * dsb.x - 8.0 * dsb.y));
}
#endif
#if defined(DATA_A_Q4_1)
i32vec2 repack(uint ib, uint iqs) {
// Use 4-byte loads since a q4_1 block (20 bytes) is divisible by 4
const uint32_t vui = data_a_packed32[ib].qs[iqs];
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
}
ACC_TYPE mul_q8_1(int32_t q_sum, vec2 dma, vec2 dsb) {
return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y);
}
#endif
#if defined(DATA_A_Q5_0)
i32vec2 repack(uint ib, uint iqs) {
// Use 2-byte loads since a q5_0 block (22 bytes) is not divisible by 4
const u16vec2 quants = u16vec2(data_a[ib].qs[iqs * 2 ],
data_a[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
const int32_t qh = int32_t((uint32_t(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]) >> (4 * iqs));
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) {
return ACC_TYPE(da * (float(q_sum) * dsb.x - 16.0 * dsb.y));
}
#endif
#if defined(DATA_A_Q5_1)
i32vec2 repack(uint ib, uint iqs) {
// Use 4-byte loads since a q5_1 block (24 bytes) is divisible by 4
const uint32_t vui = data_a_packed32[ib].qs[iqs];
const int32_t qh = int32_t(data_a_packed32[ib].qh >> (4 * iqs));
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
ACC_TYPE mul_q8_1(int32_t q_sum, vec2 dma, vec2 dsb) {
return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y);
}
#endif
#if defined(DATA_A_Q8_0)
int32_t repack(uint ib, uint iqs) {
// Use 2-byte loads since a q8_0 block (34 bytes) is not divisible by 4
return pack32(i16vec2(data_a[ib].qs[iqs * 2 ],
data_a[ib].qs[iqs * 2 + 1]));
}
ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) {
return ACC_TYPE(float(q_sum) * da * dsb.x);
}
#endif
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q5_0) || defined(DATA_A_Q8_0) || defined(DATA_A_IQ1_S) || defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_XS) || defined(DATA_A_IQ4_NL)
FLOAT_TYPE get_d(uint ib) {
return FLOAT_TYPE(data_a[ib].d);
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm);
}
#endif

View File

@ -0,0 +1,77 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint ne;
} p;
#include "types.comp"
layout(constant_id = 0) const uint GROUP_SIZE = 32;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {vec4 data_a[];};
layout (binding = 1) writeonly buffer D {block_q8_1_packed32 data_b[];};
shared float shmem[GROUP_SIZE];
void quantize() {
const uint wgid = gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
// Each thread handles a vec4, so 8 threads handle a block
const uint blocks_per_group = GROUP_SIZE / 8;
const uint block_in_wg = tid / 8;
const uint ib = wgid * blocks_per_group + block_in_wg;
const uint iqs = tid % 8;
if (ib >= gl_NumWorkGroups.x * blocks_per_group) {
return;
}
const uint a_idx = ib * 8 + iqs;
vec4 vals = a_idx < p.ne ? data_a[a_idx] : vec4(0.0f);
const vec4 abs_vals = abs(vals);
// Find absolute max for each block
shmem[tid] = max(max(abs_vals.x, abs_vals.y), max(abs_vals.z, abs_vals.w));
barrier();
[[unroll]] for (uint s = 4; s > 0; s >>= 1) {
if (iqs < s) {
shmem[tid] = max(shmem[tid], shmem[tid + s]);
}
barrier();
}
const float amax = shmem[block_in_wg * 8];
const float d = amax / 127.0;
const float d_inv = d != 0.0 ? 1.0 / d : 0.0;
vals = round(vals * d_inv);
data_b[ib].qs[iqs] = pack32(i8vec4(round(vals)));
barrier();
// Calculate the sum for each block
shmem[tid] = vals.x + vals.y + vals.z + vals.w;
barrier();
[[unroll]] for (uint s = 4; s > 0; s >>= 1) {
if (iqs < s) {
shmem[tid] += shmem[tid + s];
}
barrier();
}
if (iqs == 0) {
const float sum = shmem[tid];
data_b[ib].ds = f16vec2(vec2(d, sum * d));
}
}
void main() {
quantize();
}

View File

@ -0,0 +1,7 @@
#version 460
#extension GL_EXT_integer_dot_product : require
void main()
{
}

View File

@ -1,4 +1,3 @@
#if !defined(GGML_TYPES_COMP)
#define GGML_TYPES_COMP
@ -51,6 +50,7 @@ struct block_q4_0_packed16
#if defined(DATA_A_Q4_0)
#define QUANT_K QUANT_K_Q4_0
#define QUANT_R QUANT_R_Q4_0
#define QUANT_AUXF 1
#define A_TYPE block_q4_0
#define A_TYPE_PACKED16 block_q4_0_packed16
#endif
@ -72,11 +72,19 @@ struct block_q4_1_packed16
uint16_t qs[16/2];
};
struct block_q4_1_packed32
{
f16vec2 dm;
uint32_t qs[16/4];
};
#if defined(DATA_A_Q4_1)
#define QUANT_K QUANT_K_Q4_1
#define QUANT_R QUANT_R_Q4_1
#define QUANT_AUXF 2
#define A_TYPE block_q4_1
#define A_TYPE_PACKED16 block_q4_1_packed16
#define A_TYPE_PACKED32 block_q4_1_packed32
#endif
#define QUANT_K_Q5_0 32
@ -99,6 +107,7 @@ struct block_q5_0_packed16
#if defined(DATA_A_Q5_0)
#define QUANT_K QUANT_K_Q5_0
#define QUANT_R QUANT_R_Q5_0
#define QUANT_AUXF 1
#define A_TYPE block_q5_0
#define A_TYPE_PACKED16 block_q5_0_packed16
#endif
@ -122,11 +131,20 @@ struct block_q5_1_packed16
uint16_t qs[16/2];
};
struct block_q5_1_packed32
{
f16vec2 dm;
uint qh;
uint32_t qs[16/4];
};
#if defined(DATA_A_Q5_1)
#define QUANT_K QUANT_K_Q5_1
#define QUANT_R QUANT_R_Q5_1
#define QUANT_AUXF 2
#define A_TYPE block_q5_1
#define A_TYPE_PACKED16 block_q5_1_packed16
#define A_TYPE_PACKED32 block_q5_1_packed32
#endif
#define QUANT_K_Q8_0 32
@ -142,14 +160,40 @@ struct block_q8_0_packed16
float16_t d;
int16_t qs[32/2];
};
struct block_q8_0_packed32
{
float16_t d;
int32_t qs[32/4];
};
#if defined(DATA_A_Q8_0)
#define QUANT_K QUANT_K_Q8_0
#define QUANT_R QUANT_R_Q8_0
#define QUANT_AUXF 1
#define A_TYPE block_q8_0
#define A_TYPE_PACKED16 block_q8_0_packed16
#define A_TYPE_PACKED32 block_q8_0_packed32
#endif
#define QUANT_K_Q8_1 32
#define QUANT_R_Q8_1 1
struct block_q8_1
{
f16vec2 ds;
int8_t qs[32];
};
struct block_q8_1_packed16
{
f16vec2 ds;
int16_t qs[16];
};
struct block_q8_1_packed32
{
f16vec2 ds;
int32_t qs[8];
};
// K-quants
#define QUANT_K_Q2_K 256

View File

@ -295,7 +295,10 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
std::string aligned_b_type_f32 = coopmat2 ? "float" : fp16 ? "mat2x4" : "vec4";
std::string aligned_b_type_f16 = coopmat2 ? "float16_t" : fp16 ? "f16mat2x4" : "f16vec4";
std::map<std::string, std::string> base_dict = {{"FLOAT_TYPE", (coopmat2 || fp16) ? "float16_t" : "float"}};
std::map<std::string, std::string> base_dict = {
{"FLOAT_TYPE", (coopmat2 || fp16) ? "float16_t" : "float"},
{"FLOAT_TYPE_VEC2", (coopmat2 || fp16) ? "f16vec2" : "vec2"},
};
std::string shader_name = "matmul";
if (matmul_id) {
@ -313,9 +316,7 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
base_dict["COOPMAT"] = "1";
}
base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float";
std::string source_name = coopmat2 ? "mul_mm_cm2.comp" : "mul_mm.comp";
const std::string source_name = coopmat2 ? "mul_mm_cm2.comp" : "mul_mm.comp";
// Shaders with f16 B_TYPE
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
@ -339,14 +340,20 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
// don't generate f32 variants for coopmat2
if (!coopmat2) {
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
if (tname != "f16" && tname != "f32") {
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (!coopmat && !coopmat2 && !matmul_id && (tname == "q4_0" || tname == "q4_1" || tname == "q5_0" || tname == "q5_1" || tname == "q8_0")) {
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
}
#endif
}
}
@ -458,6 +465,7 @@ void process_shaders() {
string_to_spv("acc_f32", "acc.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {});
string_to_spv("quantize_q8_1", "quantize_q8_1.comp", {});
string_to_spv("mul_f32", "mul.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});

View File

@ -932,6 +932,7 @@ static void gguf_check_reserved_keys(const std::string & key, const T val) {
if constexpr (std::is_same<T, uint32_t>::value) {
GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2");
} else {
GGML_UNUSED(val);
GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32");
}
}

View File

@ -12,6 +12,15 @@ from coremltools.models.neural_network.quantization_utils import quantize_weight
from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions
from whisper import load_model
# Disable PyTorch Scaled Dot-Product Attention (SDPA) to avoid compatibility issues.
# The Whisper implementation expects a specific behavior from
# torch.nn.functional.scaled_dot_product_attention that differs between PyTorch
# versions. Setting use_sdpa=False forces Whisper to use its manual attention
# implementation instead, which is more stable across different PyTorch versions
# (2.5.0 required by coremltools vs newer versions).
import whisper.model
whisper.model.MultiHeadAttention.use_sdpa = False
# Use for changing dim of input in encoder and decoder embeddings
def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
@ -260,10 +269,11 @@ def convert_decoder(hparams, model, quantize=False):
model.eval()
tokens_shape = (1, 1)
audio_shape = (1, hparams.n_audio_state, 1, 1500)
audio_shape = (1, hparams.n_audio_ctx, hparams.n_audio_state)
audio_data = torch.randn(audio_shape)
token_data = torch.randint(50257, tokens_shape).long()
token_data = torch.randint(hparams.n_vocab, tokens_shape).long()
traced_model = torch.jit.trace(model, (token_data, audio_data))
model = ct.convert(

View File

@ -5,6 +5,8 @@
# - src/coreml/whisper-decoder-impl.h and src/coreml/whisper-decoder-impl.m
#
set -e
wd=$(dirname "$0")
cd "$wd/../" || exit

View File

@ -1,4 +1,4 @@
## M1 Pro
## M1 Pro (old 22c96b4)
make -j && ./scripts/bench-all.sh 8
@ -67,202 +67,184 @@ make -j && ./scripts/bench-all.sh 8
Running memcpy benchmark
memcpy: 46.58 GB/s (heat-up)
memcpy: 54.16 GB/s ( 1 thread)
memcpy: 54.23 GB/s ( 1 thread)
memcpy: 99.63 GB/s ( 2 thread)
memcpy: 140.59 GB/s ( 3 thread)
memcpy: 176.52 GB/s ( 4 thread)
memcpy: 158.90 GB/s ( 5 thread)
memcpy: 163.00 GB/s ( 6 thread)
memcpy: 189.69 GB/s ( 7 thread)
memcpy: 197.15 GB/s ( 8 thread)
sum: -5120002007.000000
memcpy: 48.01 GB/s (heat-up)
memcpy: 56.00 GB/s ( 1 thread)
memcpy: 56.20 GB/s ( 1 thread)
memcpy: 102.69 GB/s ( 2 thread)
memcpy: 140.32 GB/s ( 3 thread)
memcpy: 179.04 GB/s ( 4 thread)
memcpy: 159.61 GB/s ( 5 thread)
memcpy: 159.02 GB/s ( 6 thread)
memcpy: 180.29 GB/s ( 7 thread)
memcpy: 198.10 GB/s ( 8 thread)
sum: -5119999345.000000
make -j && ./scripts/bench-all.sh 1
Running ggml_mul_mat benchmark with 1 threads
64 x 64: Q4_0 245.8 GFLOPS (128 runs) | Q4_1 168.6 GFLOPS (128 runs)
64 x 64: Q5_0 115.7 GFLOPS (128 runs) | Q5_1 125.9 GFLOPS (128 runs) | Q8_0 215.8 GFLOPS (128 runs)
64 x 64: F16 139.5 GFLOPS (128 runs) | F32 337.2 GFLOPS (128 runs)
128 x 128: Q4_0 494.8 GFLOPS (128 runs) | Q4_1 350.4 GFLOPS (128 runs)
128 x 128: Q5_0 257.1 GFLOPS (128 runs) | Q5_1 261.4 GFLOPS (128 runs) | Q8_0 509.4 GFLOPS (128 runs)
128 x 128: F16 302.3 GFLOPS (128 runs) | F32 672.8 GFLOPS (128 runs)
256 x 256: Q4_0 795.7 GFLOPS (128 runs) | Q4_1 663.7 GFLOPS (128 runs)
256 x 256: Q5_0 737.8 GFLOPS (128 runs) | Q5_1 757.6 GFLOPS (128 runs) | Q8_0 827.7 GFLOPS (128 runs)
256 x 256: F16 872.6 GFLOPS (128 runs) | F32 956.3 GFLOPS (128 runs)
512 x 512: Q4_0 1188.0 GFLOPS (128 runs) | Q4_1 1085.0 GFLOPS (128 runs)
512 x 512: Q5_0 1421.1 GFLOPS (128 runs) | Q5_1 1454.9 GFLOPS (128 runs) | Q8_0 1191.4 GFLOPS (128 runs)
512 x 512: F16 1577.4 GFLOPS (128 runs) | F32 1982.0 GFLOPS (128 runs)
1024 x 1024: Q4_0 2342.6 GFLOPS (128 runs) | Q4_1 1955.8 GFLOPS (128 runs)
1024 x 1024: Q5_0 2306.7 GFLOPS (128 runs) | Q5_1 2217.0 GFLOPS (128 runs) | Q8_0 2230.7 GFLOPS (128 runs)
1024 x 1024: F16 2593.8 GFLOPS (128 runs) | F32 3269.0 GFLOPS (128 runs)
2048 x 2048: Q4_0 3735.7 GFLOPS (128 runs) | Q4_1 3205.3 GFLOPS (128 runs)
2048 x 2048: Q5_0 3584.5 GFLOPS (128 runs) | Q5_1 3621.7 GFLOPS (128 runs) | Q8_0 3622.3 GFLOPS (128 runs)
2048 x 2048: F16 3763.6 GFLOPS (128 runs) | F32 4153.3 GFLOPS (128 runs)
4096 x 4096: Q4_0 3891.1 GFLOPS ( 29 runs) | Q4_1 3554.0 GFLOPS ( 26 runs)
4096 x 4096: Q5_0 3753.1 GFLOPS ( 28 runs) | Q5_1 3750.1 GFLOPS ( 28 runs) | Q8_0 3768.5 GFLOPS ( 28 runs)
4096 x 4096: F16 3864.2 GFLOPS ( 29 runs) | F32 3970.5 GFLOPS ( 29 runs)
64 x 64: Q4_0 37.7 GFLOPS (128 runs) | Q4_1 36.0 GFLOPS (128 runs)
64 x 64: Q5_0 20.1 GFLOPS (128 runs) | Q5_1 19.8 GFLOPS (128 runs) | Q8_0 39.5 GFLOPS (128 runs)
64 x 64: F16 29.9 GFLOPS (128 runs) | F32 22.6 GFLOPS (128 runs)
128 x 128: Q4_0 71.0 GFLOPS (128 runs) | Q4_1 62.2 GFLOPS (128 runs)
128 x 128: Q5_0 33.4 GFLOPS (128 runs) | Q5_1 31.6 GFLOPS (128 runs) | Q8_0 79.8 GFLOPS (128 runs)
128 x 128: F16 52.4 GFLOPS (128 runs) | F32 32.7 GFLOPS (128 runs)
256 x 256: Q4_0 88.6 GFLOPS (128 runs) | Q4_1 77.2 GFLOPS (128 runs)
256 x 256: Q5_0 40.3 GFLOPS (128 runs) | Q5_1 36.8 GFLOPS (128 runs) | Q8_0 102.5 GFLOPS (128 runs)
256 x 256: F16 64.6 GFLOPS (128 runs) | F32 36.4 GFLOPS (128 runs)
512 x 512: Q4_0 94.7 GFLOPS (128 runs) | Q4_1 83.6 GFLOPS (128 runs)
512 x 512: Q5_0 45.9 GFLOPS (128 runs) | Q5_1 41.3 GFLOPS (128 runs) | Q8_0 112.8 GFLOPS (128 runs)
512 x 512: F16 72.3 GFLOPS (128 runs) | F32 37.7 GFLOPS (128 runs)
1024 x 1024: Q4_0 98.9 GFLOPS ( 47 runs) | Q4_1 88.2 GFLOPS ( 42 runs)
1024 x 1024: Q5_0 49.0 GFLOPS ( 23 runs) | Q5_1 43.9 GFLOPS ( 21 runs) | Q8_0 121.0 GFLOPS ( 57 runs)
1024 x 1024: F16 72.6 GFLOPS ( 34 runs) | F32 36.0 GFLOPS ( 17 runs)
2048 x 2048: Q4_0 101.3 GFLOPS ( 6 runs) | Q4_1 90.0 GFLOPS ( 6 runs)
2048 x 2048: Q5_0 50.8 GFLOPS ( 3 runs) | Q5_1 45.3 GFLOPS ( 3 runs) | Q8_0 124.1 GFLOPS ( 8 runs)
2048 x 2048: F16 70.7 GFLOPS ( 5 runs) | F32 30.4 GFLOPS ( 3 runs)
4096 x 4096: Q4_0 101.7 GFLOPS ( 3 runs) | Q4_1 90.3 GFLOPS ( 3 runs)
4096 x 4096: Q5_0 52.2 GFLOPS ( 3 runs) | Q5_1 45.7 GFLOPS ( 3 runs) | Q8_0 123.0 GFLOPS ( 3 runs)
4096 x 4096: F16 60.3 GFLOPS ( 3 runs) | F32 29.8 GFLOPS ( 3 runs)
make -j && ./scripts/bench-all.sh 1 1 0
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| M2 ULTRA | METAL | tiny | 1 | 0 | 12.32 | 1.35 | 0.49 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | tiny-q5_0 | 1 | 0 | 11.65 | 1.30 | 0.51 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | tiny-q5_1 | 1 | 0 | 12.08 | 1.30 | 0.51 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | base | 1 | 0 | 17.58 | 1.90 | 0.76 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | base-q5_0 | 1 | 0 | 18.89 | 1.86 | 0.79 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | base-q5_1 | 1 | 0 | 20.69 | 1.88 | 0.79 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | small | 1 | 0 | 49.32 | 3.85 | 1.71 | 0.05 | 22c96b4 |
| M2 ULTRA | METAL | small-q5_0 | 1 | 0 | 54.91 | 3.81 | 1.82 | 0.06 | 22c96b4 |
| M2 ULTRA | METAL | small-q5_1 | 1 | 0 | 54.92 | 3.81 | 1.79 | 0.06 | 22c96b4 |
| M2 ULTRA | METAL | medium | 1 | 0 | 134.34 | 8.04 | 3.82 | 0.13 | 22c96b4 |
| M2 ULTRA | METAL | medium-q5_0 | 1 | 0 | 151.68 | 7.59 | 4.07 | 0.14 | 22c96b4 |
| M2 ULTRA | METAL | medium-q5_1 | 1 | 0 | 151.58 | 7.67 | 4.07 | 0.14 | 22c96b4 |
| M2 ULTRA | METAL | medium-dis | 1 | 0 | 120.82 | 1.07 | 0.41 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | large-v2 | 1 | 0 | 235.63 | 12.27 | 5.85 | 0.22 | 22c96b4 |
| M2 ULTRA | METAL | large-v2-q5_0 | 1 | 0 | 273.38 | 11.17 | 6.40 | 0.26 | 22c96b4 |
| M2 ULTRA | METAL | large-v2-q5_1 | 1 | 0 | 272.44 | 11.32 | 6.29 | 0.26 | 22c96b4 |
| M2 ULTRA | METAL | large-v2-dis | 1 | 0 | 212.51 | 1.20 | 0.47 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | tiny | 1 | 0 | 8.74 | 1.20 | 0.36 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | tiny-q5_0 | 1 | 0 | 10.30 | 1.15 | 0.38 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | tiny-q5_1 | 1 | 0 | 10.71 | 1.13 | 0.38 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | tiny-q8_0 | 1 | 0 | 9.97 | 1.12 | 0.37 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | base | 1 | 0 | 16.77 | 1.71 | 0.44 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | base-q5_0 | 1 | 0 | 16.92 | 1.63 | 0.44 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | base-q5_1 | 1 | 0 | 16.84 | 1.63 | 0.44 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | base-q8_0 | 1 | 0 | 16.12 | 1.63 | 0.44 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | small | 1 | 0 | 45.29 | 3.44 | 0.92 | 0.05 | ad4e350 |
| M2 ULTRA | METAL | small-q5_0 | 1 | 0 | 50.43 | 3.34 | 0.94 | 0.06 | ad4e350 |
| M2 ULTRA | METAL | small-q5_1 | 1 | 0 | 50.49 | 3.35 | 0.93 | 0.06 | ad4e350 |
| M2 ULTRA | METAL | small-q8_0 | 1 | 0 | 47.37 | 3.20 | 0.91 | 0.05 | ad4e350 |
| M2 ULTRA | METAL | medium | 1 | 0 | 122.81 | 7.39 | 1.99 | 0.12 | ad4e350 |
| M2 ULTRA | METAL | medium-q5_0 | 1 | 0 | 140.62 | 6.73 | 2.03 | 0.14 | ad4e350 |
| M2 ULTRA | METAL | medium-q5_1 | 1 | 0 | 140.44 | 6.74 | 2.04 | 0.14 | ad4e350 |
| M2 ULTRA | METAL | medium-q8_0 | 1 | 0 | 131.05 | 6.54 | 1.95 | 0.13 | ad4e350 |
| M2 ULTRA | METAL | medium-dis | 1 | 0 | 110.95 | 0.99 | 0.24 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | large-v2 | 1 | 0 | 222.19 | 10.93 | 3.01 | 0.21 | ad4e350 |
| M2 ULTRA | METAL | large-v2-q5_0 | 1 | 0 | 258.47 | 9.75 | 3.01 | 0.25 | ad4e350 |
| M2 ULTRA | METAL | large-v2-q5_1 | 1 | 0 | 258.40 | 9.85 | 3.01 | 0.24 | ad4e350 |
| M2 ULTRA | METAL | large-v2-q8_0 | 1 | 0 | 236.68 | 9.61 | 2.85 | 0.23 | ad4e350 |
| M2 ULTRA | METAL | large-v2-dis | 1 | 0 | 199.28 | 1.12 | 0.27 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | large-v3-turbo | 1 | 0 | 201.49 | 1.76 | 0.45 | 0.03 | ad4e350 |
| M2 ULTRA | METAL | large-v3-turbo-q5_0 | 1 | 0 | 233.70 | 1.55 | 0.46 | 0.04 | ad4e350 |
| M2 ULTRA | METAL | large-v3-turbo-q8_0 | 1 | 0 | 214.20 | 1.51 | 0.44 | 0.04 | ad4e350 |
make -j && ./scripts/bench-all.sh 1 1 1
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| M2 ULTRA | METAL | tiny | 1 | 1 | 9.07 | 1.33 | 0.45 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | tiny-q5_0 | 1 | 1 | 9.74 | 1.33 | 0.47 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | tiny-q5_1 | 1 | 1 | 8.93 | 1.31 | 0.46 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | base | 1 | 1 | 15.75 | 1.87 | 0.71 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | base-q5_0 | 1 | 1 | 17.04 | 1.83 | 0.74 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | base-q5_1 | 1 | 1 | 17.17 | 1.83 | 0.74 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | small | 1 | 1 | 42.33 | 3.64 | 1.60 | 0.05 | 22c96b4 |
| M2 ULTRA | METAL | small-q5_0 | 1 | 1 | 47.61 | 3.63 | 1.70 | 0.05 | 22c96b4 |
| M2 ULTRA | METAL | small-q5_1 | 1 | 1 | 47.70 | 3.66 | 1.68 | 0.05 | 22c96b4 |
| M2 ULTRA | METAL | medium | 1 | 1 | 114.42 | 7.53 | 3.55 | 0.11 | 22c96b4 |
| M2 ULTRA | METAL | medium-q5_0 | 1 | 1 | 132.63 | 7.02 | 3.77 | 0.13 | 22c96b4 |
| M2 ULTRA | METAL | medium-q5_1 | 1 | 1 | 132.28 | 7.10 | 3.76 | 0.13 | 22c96b4 |
| M2 ULTRA | METAL | medium-dis | 1 | 1 | 102.34 | 1.01 | 0.42 | 0.01 | 22c96b4 |
| M2 ULTRA | METAL | large-v2 | 1 | 1 | 203.01 | 11.03 | 5.45 | 0.20 | 22c96b4 |
| M2 ULTRA | METAL | large-v2-q5_0 | 1 | 1 | 240.05 | 10.18 | 5.98 | 0.23 | 22c96b4 |
| M2 ULTRA | METAL | large-v2-q5_1 | 1 | 1 | 239.22 | 10.23 | 5.87 | 0.23 | 22c96b4 |
| M2 ULTRA | METAL | large-v2-dis | 1 | 1 | 181.14 | 1.14 | 0.48 | 0.02 | 22c96b4 |
| M2 ULTRA | METAL | tiny | 1 | 1 | 7.82 | 1.31 | 0.35 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | tiny-q5_0 | 1 | 1 | 8.32 | 1.28 | 0.37 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | tiny-q5_1 | 1 | 1 | 8.21 | 1.28 | 0.37 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | tiny-q8_0 | 1 | 1 | 7.97 | 1.23 | 0.36 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | base | 1 | 1 | 13.96 | 1.80 | 0.42 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | base-q5_0 | 1 | 1 | 15.19 | 1.75 | 0.42 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | base-q5_1 | 1 | 1 | 15.09 | 1.75 | 0.42 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | base-q8_0 | 1 | 1 | 14.45 | 1.70 | 0.41 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | small | 1 | 1 | 40.08 | 3.54 | 0.86 | 0.05 | ad4e350 |
| M2 ULTRA | METAL | small-q5_0 | 1 | 1 | 45.07 | 3.51 | 0.88 | 0.05 | ad4e350 |
| M2 ULTRA | METAL | small-q5_1 | 1 | 1 | 45.05 | 3.52 | 0.88 | 0.05 | ad4e350 |
| M2 ULTRA | METAL | small-q8_0 | 1 | 1 | 42.04 | 3.34 | 0.85 | 0.05 | ad4e350 |
| M2 ULTRA | METAL | medium | 1 | 1 | 107.20 | 7.28 | 1.79 | 0.11 | ad4e350 |
| M2 ULTRA | METAL | medium-q5_0 | 1 | 1 | 125.02 | 6.67 | 1.83 | 0.12 | ad4e350 |
| M2 ULTRA | METAL | medium-q5_1 | 1 | 1 | 124.83 | 6.70 | 1.84 | 0.12 | ad4e350 |
| M2 ULTRA | METAL | medium-q8_0 | 1 | 1 | 114.56 | 6.53 | 1.79 | 0.11 | ad4e350 |
| M2 ULTRA | METAL | medium-dis | 1 | 1 | 95.96 | 1.01 | 0.23 | 0.01 | ad4e350 |
| M2 ULTRA | METAL | large-v2 | 1 | 1 | 194.29 | 10.57 | 2.67 | 0.20 | ad4e350 |
| M2 ULTRA | METAL | large-v2-q5_0 | 1 | 1 | 230.74 | 9.57 | 2.73 | 0.23 | ad4e350 |
| M2 ULTRA | METAL | large-v2-q5_1 | 1 | 1 | 229.97 | 9.69 | 2.74 | 0.23 | ad4e350 |
| M2 ULTRA | METAL | large-v2-q8_0 | 1 | 1 | 208.11 | 9.37 | 2.60 | 0.21 | ad4e350 |
| M2 ULTRA | METAL | large-v2-dis | 1 | 1 | 172.72 | 1.12 | 0.26 | 0.02 | ad4e350 |
| M2 ULTRA | METAL | large-v3-turbo | 1 | 1 | 174.46 | 1.74 | 0.42 | 0.03 | ad4e350 |
| M2 ULTRA | METAL | large-v3-turbo-q5_0 | 1 | 1 | 205.78 | 1.54 | 0.42 | 0.04 | ad4e350 |
| M2 ULTRA | METAL | large-v3-turbo-q8_0 | 1 | 1 | 186.33 | 1.50 | 0.40 | 0.03 | ad4e350 |
## M4 Max
## Ryzen 9 5950X + RTX 2060
make -j && ./scripts/bench-all.sh 8 0 0
make -j && ./scripts/bench-all.sh 8
Running memcpy benchmark
memcpy: 12.36 GB/s (heat-up)
memcpy: 12.33 GB/s ( 1 thread)
memcpy: 12.38 GB/s ( 1 thread)
memcpy: 14.48 GB/s ( 2 thread)
memcpy: 15.00 GB/s ( 3 thread)
memcpy: 14.77 GB/s ( 4 thread)
memcpy: 14.60 GB/s ( 5 thread)
memcpy: 14.57 GB/s ( 6 thread)
memcpy: 14.34 GB/s ( 7 thread)
memcpy: 14.40 GB/s ( 8 thread)
sum: -5119998076.000000
Running ggml_mul_mat benchmark with 8 threads
64 x 64: Q4_0 3.1 GFLOPS (128 runs) | Q4_1 3.1 GFLOPS (128 runs)
64 x 64: Q5_0 3.0 GFLOPS (128 runs) | Q5_1 2.9 GFLOPS (128 runs) | Q8_0 3.1 GFLOPS (128 runs)
64 x 64: F16 3.0 GFLOPS (128 runs) | F32 3.0 GFLOPS (128 runs)
128 x 128: Q4_0 21.1 GFLOPS (128 runs) | Q4_1 20.3 GFLOPS (128 runs)
128 x 128: Q5_0 20.6 GFLOPS (128 runs) | Q5_1 20.4 GFLOPS (128 runs) | Q8_0 22.1 GFLOPS (128 runs)
128 x 128: F16 21.7 GFLOPS (128 runs) | F32 21.7 GFLOPS (128 runs)
256 x 256: Q4_0 105.7 GFLOPS (128 runs) | Q4_1 94.4 GFLOPS (128 runs)
256 x 256: Q5_0 94.8 GFLOPS (128 runs) | Q5_1 87.5 GFLOPS (128 runs) | Q8_0 107.2 GFLOPS (128 runs)
256 x 256: F16 95.1 GFLOPS (128 runs) | F32 94.3 GFLOPS (128 runs)
512 x 512: Q4_0 214.7 GFLOPS (128 runs) | Q4_1 189.8 GFLOPS (128 runs)
512 x 512: Q5_0 187.7 GFLOPS (128 runs) | Q5_1 176.2 GFLOPS (128 runs) | Q8_0 252.2 GFLOPS (128 runs)
512 x 512: F16 220.8 GFLOPS (128 runs) | F32 218.3 GFLOPS (128 runs)
1024 x 1024: Q4_0 333.7 GFLOPS (128 runs) | Q4_1 305.8 GFLOPS (128 runs)
1024 x 1024: Q5_0 283.2 GFLOPS (128 runs) | Q5_1 268.2 GFLOPS (125 runs) | Q8_0 394.1 GFLOPS (128 runs)
1024 x 1024: F16 355.0 GFLOPS (128 runs) | F32 313.0 GFLOPS (128 runs)
2048 x 2048: Q4_0 395.0 GFLOPS ( 23 runs) | Q4_1 380.6 GFLOPS ( 23 runs)
2048 x 2048: Q5_0 336.6 GFLOPS ( 20 runs) | Q5_1 318.4 GFLOPS ( 19 runs) | Q8_0 482.6 GFLOPS ( 29 runs)
2048 x 2048: F16 424.5 GFLOPS ( 25 runs) | F32 337.7 GFLOPS ( 20 runs)
4096 x 4096: Q4_0 412.8 GFLOPS ( 4 runs) | Q4_1 405.1 GFLOPS ( 3 runs)
4096 x 4096: Q5_0 346.0 GFLOPS ( 3 runs) | Q5_1 334.6 GFLOPS ( 3 runs) | Q8_0 502.6 GFLOPS ( 4 runs)
4096 x 4096: F16 412.5 GFLOPS ( 4 runs) | F32 274.0 GFLOPS ( 3 runs)
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Ryzen 9 5950X | AVX2 | tiny | 8 | 0 | 195.29 | 1.57 | 0.51 | 0.26 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | tiny-q5_0 | 8 | 0 | 213.33 | 1.10 | 0.50 | 0.30 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | tiny-q5_1 | 8 | 0 | 219.38 | 1.18 | 0.53 | 0.32 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | base | 8 | 0 | 424.85 | 3.71 | 1.03 | 0.46 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | base-q5_0 | 8 | 0 | 473.61 | 1.81 | 0.82 | 0.52 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | base-q5_1 | 8 | 0 | 484.14 | 1.92 | 0.85 | 0.56 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | small | 8 | 0 | 1458.32 | 12.66 | 3.09 | 1.26 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | small-q5_0 | 8 | 0 | 1673.22 | 6.42 | 2.18 | 1.45 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | small-q5_1 | 8 | 0 | 1724.78 | 6.72 | 2.32 | 1.52 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | medium | 8 | 0 | 4333.87 | 36.80 | 8.56 | 3.37 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | medium-q5_0 | 8 | 0 | 5194.09 | 19.21 | 5.71 | 3.97 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | medium-q5_1 | 8 | 0 | 5450.39 | 20.01 | 5.99 | 4.17 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | medium-dis | 8 | 0 | 3995.19 | 5.08 | 1.21 | 0.55 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | large-v2 | 8 | 0 | 8056.16 | 69.74 | 16.11 | 6.13 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | large-v2-q5_0 | 8 | 0 | 9799.58 | 35.16 | 10.49 | 7.28 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | large-v2-q5_1 | 8 | 0 | ms | 36.74 | 11.02 | 7.65 | 22c96b4 |
| Ryzen 9 5950X | AVX2 | large-v2-dis | 8 | 0 | 7490.03 | 7.40 | 1.70 | 0.72 | 22c96b4 |
memcpy: 57.23 GB/s (heat-up)
memcpy: 68.85 GB/s ( 1 thread)
memcpy: 70.00 GB/s ( 1 thread)
memcpy: 104.83 GB/s ( 2 thread)
memcpy: 124.54 GB/s ( 3 thread)
memcpy: 144.30 GB/s ( 4 thread)
memcpy: 141.24 GB/s ( 5 thread)
memcpy: 147.03 GB/s ( 6 thread)
memcpy: 147.18 GB/s ( 7 thread)
memcpy: 149.83 GB/s ( 8 thread)
sum: -5120001475.000000
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 0
make -j && ./scripts/bench-all.sh 1
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| RTX 2060 | AVX2 CUDA | tiny | 8 | 0 | 12.54 | 0.93 | 0.29 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | tiny-q5_0 | 8 | 0 | 12.73 | 0.98 | 0.24 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | tiny-q5_1 | 8 | 0 | 12.72 | 0.99 | 0.24 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | base | 8 | 0 | 24.14 | 1.28 | 0.41 | 0.03 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | base-q5_0 | 8 | 0 | 24.58 | 1.38 | 0.35 | 0.03 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | base-q5_1 | 8 | 0 | 24.58 | 1.37 | 0.35 | 0.03 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | small | 8 | 0 | 74.70 | 2.91 | 0.84 | 0.07 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | small-q5_0 | 8 | 0 | 76.12 | 2.84 | 0.77 | 0.08 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | small-q5_1 | 8 | 0 | 76.14 | 2.84 | 0.76 | 0.08 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium | 8 | 0 | 200.69 | 6.46 | 1.83 | 0.17 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium-q5_0 | 8 | 0 | 204.80 | 5.90 | 1.65 | 0.19 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium-q5_1 | 8 | 0 | 205.61 | 5.85 | 1.61 | 0.19 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium-dis | 8 | 0 | 186.17 | 0.86 | 0.24 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2 | 8 | 0 | 347.22 | 10.36 | 2.82 | 0.29 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2-q5_0 | 8 | 0 | 357.06 | 8.81 | 2.58 | 0.34 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2-q5_1 | 8 | 0 | 356.97 | 8.62 | 2.49 | 0.33 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2-dis | 8 | 0 | 318.05 | 1.03 | 0.34 | 0.04 | 22c96b4 |
Running ggml_mul_mat benchmark with 1 threads
64 x 64: Q4_0 49.6 GFLOPS (128 runs) | Q4_1 46.8 GFLOPS (128 runs)
64 x 64: Q5_0 28.1 GFLOPS (128 runs) | Q5_1 26.8 GFLOPS (128 runs) | Q8_0 52.3 GFLOPS (128 runs)
64 x 64: F16 38.1 GFLOPS (128 runs) | F32 26.0 GFLOPS (128 runs)
128 x 128: Q4_0 87.6 GFLOPS (128 runs) | Q4_1 79.9 GFLOPS (128 runs)
128 x 128: Q5_0 44.7 GFLOPS (128 runs) | Q5_1 41.6 GFLOPS (128 runs) | Q8_0 98.9 GFLOPS (128 runs)
128 x 128: F16 64.1 GFLOPS (128 runs) | F32 35.4 GFLOPS (128 runs)
256 x 256: Q4_0 104.2 GFLOPS (128 runs) | Q4_1 92.3 GFLOPS (128 runs)
256 x 256: Q5_0 57.3 GFLOPS (128 runs) | Q5_1 51.5 GFLOPS (128 runs) | Q8_0 127.7 GFLOPS (128 runs)
256 x 256: F16 71.4 GFLOPS (128 runs) | F32 40.6 GFLOPS (128 runs)
512 x 512: Q4_0 109.5 GFLOPS (128 runs) | Q4_1 98.0 GFLOPS (128 runs)
512 x 512: Q5_0 62.4 GFLOPS (128 runs) | Q5_1 54.6 GFLOPS (128 runs) | Q8_0 135.0 GFLOPS (128 runs)
512 x 512: F16 82.6 GFLOPS (128 runs) | F32 44.6 GFLOPS (128 runs)
1024 x 1024: Q4_0 112.1 GFLOPS ( 53 runs) | Q4_1 100.9 GFLOPS ( 47 runs)
1024 x 1024: Q5_0 65.4 GFLOPS ( 31 runs) | Q5_1 56.7 GFLOPS ( 27 runs) | Q8_0 140.9 GFLOPS ( 66 runs)
1024 x 1024: F16 88.0 GFLOPS ( 41 runs) | F32 43.4 GFLOPS ( 21 runs)
2048 x 2048: Q4_0 113.4 GFLOPS ( 7 runs) | Q4_1 102.0 GFLOPS ( 6 runs)
2048 x 2048: Q5_0 67.1 GFLOPS ( 4 runs) | Q5_1 57.7 GFLOPS ( 4 runs) | Q8_0 142.7 GFLOPS ( 9 runs)
2048 x 2048: F16 84.6 GFLOPS ( 5 runs) | F32 37.5 GFLOPS ( 3 runs)
4096 x 4096: Q4_0 113.8 GFLOPS ( 3 runs) | Q4_1 102.0 GFLOPS ( 3 runs)
4096 x 4096: Q5_0 67.7 GFLOPS ( 3 runs) | Q5_1 58.0 GFLOPS ( 3 runs) | Q8_0 142.9 GFLOPS ( 3 runs)
4096 x 4096: F16 73.7 GFLOPS ( 3 runs) | F32 36.1 GFLOPS ( 3 runs)
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 1
make -j && ./scripts/bench-all.sh 1 1 0
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| RTX 2060 | AVX2 CUDA | tiny | 8 | 1 | 7.21 | 0.76 | 0.29 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | tiny-q5_0 | 8 | 1 | 7.42 | 0.82 | 0.18 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | tiny-q5_1 | 8 | 1 | 7.38 | 0.82 | 0.18 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | base | 8 | 1 | 13.49 | 1.04 | 0.36 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | base-q5_0 | 8 | 1 | 13.94 | 1.13 | 0.26 | 0.03 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | base-q5_1 | 8 | 1 | 13.94 | 1.14 | 0.26 | 0.03 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | small | 8 | 1 | 42.81 | 2.33 | 0.69 | 0.05 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | small-q5_0 | 8 | 1 | 44.43 | 2.25 | 0.59 | 0.06 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | small-q5_1 | 8 | 1 | 44.11 | 2.24 | 0.58 | 0.06 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium | 8 | 1 | 115.47 | 5.17 | 1.45 | 0.11 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium-q5_0 | 8 | 1 | 120.37 | 4.63 | 1.25 | 0.13 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium-q5_1 | 8 | 1 | 120.28 | 4.55 | 1.21 | 0.13 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | medium-dis | 8 | 1 | 101.69 | 0.75 | 0.20 | 0.02 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2 | 8 | 1 | 205.67 | 8.49 | 2.19 | 0.18 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2-q5_0 | 8 | 1 | 214.07 | 6.88 | 1.94 | 0.22 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2-q5_1 | 8 | 1 | 213.98 | 6.70 | 1.86 | 0.22 | 22c96b4 |
| RTX 2060 | AVX2 CUDA | large-v2-dis | 8 | 1 | 176.71 | 0.91 | 0.31 | 0.03 | 22c96b4 |
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| M4 Max | METAL | tiny | 1 | 0 | 13.12 | 0.87 | 0.29 | 0.01 | ad4e3509 |
| M4 Max | METAL | tiny-q8_0 | 1 | 0 | 15.90 | 0.88 | 0.31 | 0.01 | ad4e3509 |
| M4 Max | METAL | base | 1 | 0 | 23.10 | 1.42 | 0.34 | 0.02 | ad4e3509 |
| M4 Max | METAL | base-q8_0 | 1 | 0 | 27.25 | 1.31 | 0.34 | 0.02 | ad4e3509 |
| M4 Max | METAL | small | 1 | 0 | 71.76 | 3.02 | 0.70 | 0.06 | ad4e3509 |
| M4 Max | METAL | small-q8_0 | 1 | 0 | 73.88 | 2.60 | 0.71 | 0.06 | ad4e3509 |
| M4 Max | METAL | medium | 1 | 0 | 208.22 | 6.94 | 1.55 | 0.16 | ad4e3509 |
| M4 Max | METAL | medium-q8_0 | 1 | 0 | 214.65 | 5.90 | 1.57 | 0.17 | ad4e3509 |
| M4 Max | METAL | large-v2 | 1 | 0 | 381.72 | 11.28 | 2.51 | 0.29 | ad4e3509 |
| M4 Max | METAL | large-v2-q8_0 | 1 | 0 | 394.97 | 8.90 | 2.45 | 0.30 | ad4e3509 |
make -j && ./scripts/bench-all.sh 1 1 1
| CPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| M4 Max | METAL | tiny | 1 | 1 | 15.22 | 0.89 | 0.26 | 0.01 | ad4e3509 |
| M4 Max | METAL | tiny-q8_0 | 1 | 1 | 14.70 | 0.86 | 0.26 | 0.01 | ad4e3509 |
| M4 Max | METAL | base | 1 | 1 | 25.33 | 1.36 | 0.30 | 0.02 | ad4e3509 |
| M4 Max | METAL | base-q8_0 | 1 | 1 | 21.27 | 1.31 | 0.30 | 0.02 | ad4e3509 |
| M4 Max | METAL | small | 1 | 1 | 58.43 | 2.78 | 0.60 | 0.05 | ad4e3509 |
| M4 Max | METAL | small-q8_0 | 1 | 1 | 60.26 | 2.39 | 0.60 | 0.05 | ad4e3509 |
| M4 Max | METAL | medium | 1 | 1 | 169.73 | 6.03 | 1.31 | 0.14 | ad4e3509 |
| M4 Max | METAL | medium-q8_0 | 1 | 1 | 176.61 | 4.99 | 1.31 | 0.14 | ad4e3509 |
| M4 Max | METAL | large-v2 | 1 | 1 | 316.18 | 9.60 | 2.08 | 0.24 | ad4e3509 |
| M4 Max | METAL | large-v2-q8_0 | 1 | 1 | 329.59 | 7.55 | 2.08 | 0.25 | ad4e3509 |
# V100
@ -271,28 +253,33 @@ WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 0
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| V100 | AVX2 CUDA | tiny | 1 | 0 | 6.21 | 1.11 | 0.30 | 0.02 | 22c96b4 |
| V100 | AVX2 CUDA | tiny-q5_1 | 1 | 0 | 5.97 | 1.10 | 0.26 | 0.02 | 22c96b4 |
| V100 | AVX2 CUDA | base | 1 | 0 | 10.95 | 1.47 | 0.42 | 0.03 | 22c96b4 |
| V100 | AVX2 CUDA | base-q5_1 | 1 | 0 | 11.13 | 1.53 | 0.36 | 0.03 | 22c96b4 |
| V100 | AVX2 CUDA | small | 1 | 0 | 31.57 | 2.96 | 0.84 | 0.05 | 22c96b4 |
| V100 | AVX2 CUDA | small-q5_1 | 1 | 0 | 32.19 | 3.14 | 0.75 | 0.05 | 22c96b4 |
| V100 | AVX2 CUDA | medium | 1 | 0 | 85.88 | 6.49 | 1.80 | 0.10 | 22c96b4 |
| V100 | AVX2 CUDA | medium-q5_0 | 1 | 0 | 87.53 | 5.82 | 1.37 | 0.10 | 22c96b4 |
| V100 | AVX2 CUDA | large-v2 | 1 | 0 | 142.23 | 8.92 | 2.62 | 0.15 | 22c96b4 |
| V100 | AVX2 CUDA | tiny | 8 | 0 | 6.15 | 1.02 | 0.30 | 0.01 | ad4e3509 |
| V100 | AVX2 CUDA | tiny-q5_1 | 8 | 0 | 5.92 | 0.96 | 0.25 | 0.01 | ad4e3509 |
| V100 | AVX2 CUDA | base | 8 | 0 | 10.60 | 1.43 | 0.43 | 0.02 | ad4e3509 |
| V100 | AVX2 CUDA | base-q5_1 | 8 | 0 | 10.80 | 1.37 | 0.36 | 0.02 | ad4e3509 |
| V100 | AVX2 CUDA | small | 8 | 0 | 31.83 | 2.82 | 0.87 | 0.04 | ad4e3509 |
| V100 | AVX2 CUDA | small-q5_1 | 8 | 0 | 31.88 | 2.68 | 0.72 | 0.04 | ad4e3509 |
| V100 | AVX2 CUDA | medium | 8 | 0 | 81.30 | 6.02 | 1.81 | 0.09 | ad4e3509 |
| V100 | AVX2 CUDA | medium-q5_0 | 8 | 0 | 83.21 | 5.44 | 1.41 | 0.10 | ad4e3509 |
| V100 | AVX2 CUDA | large-v2 | 8 | 0 | 134.81 | 8.64 | 2.69 | 0.14 | ad4e3509 |
| V100 | AVX2 CUDA | large-v2-q5_0 | 8 | 0 | 138.95 | 7.57 | 2.04 | 0.15 | ad4e3509 |
| V100 | AVX2 CUDA | large-v3-turbo | 8 | 0 | 124.42 | 1.37 | 0.43 | 0.02 | ad4e3509 |
| V100 | AVX2 CUDA | large-v3-turbo-q5_0 | 8 | 0 | 127.81 | 1.13 | 0.32 | 0.03 | ad4e3509 |
WHISPER_CUDA=1 make -j && ./scripts/bench-all.sh 8 1 1
| GPU | Config | Model | Th | FA | Enc. | Dec. | Bch5 | PP | Commit |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| V100 | AVX2 CUDA | tiny | 1 | 1 | 3.96 | 0.82 | 0.24 | 0.02 | 22c96b4 |
| V100 | AVX2 CUDA | tiny-q5_1 | 1 | 1 | 4.05 | 0.85 | 0.18 | 0.02 | 22c96b4 |
| V100 | AVX2 CUDA | base | 1 | 1 | 7.21 | 1.16 | 0.36 | 0.02 | 22c96b4 |
| V100 | AVX2 CUDA | base-q5_1 | 1 | 1 | 7.39 | 1.21 | 0.26 | 0.02 | 22c96b4 |
| V100 | AVX2 CUDA | small | 1 | 1 | 19.81 | 2.41 | 0.71 | 0.04 | 22c96b4 |
| V100 | AVX2 CUDA | small-q5_1 | 1 | 1 | 20.50 | 2.31 | 0.51 | 0.04 | 22c96b4 |
| V100 | AVX2 CUDA | medium | 1 | 1 | 56.02 | 4.89 | 1.44 | 0.07 | 22c96b4 |
| V100 | AVX2 CUDA | medium-q5_0 | 1 | 1 | 57.85 | 4.73 | 1.09 | 0.08 | 22c96b4 |
| V100 | AVX2 CUDA | large-v2 | 1 | 1 | 92.73 | 7.18 | 2.14 | 0.10 | 22c96b4 |
| V100 | AVX2 CUDA | tiny | 8 | 1 | 4.01 | 0.90 | 0.25 | 0.01 | ad4e3509 |
| V100 | AVX2 CUDA | tiny-q5_1 | 8 | 1 | 4.12 | 0.88 | 0.18 | 0.01 | ad4e3509 |
| V100 | AVX2 CUDA | base | 8 | 1 | 7.00 | 1.30 | 0.35 | 0.01 | ad4e3509 |
| V100 | AVX2 CUDA | base-q5_1 | 8 | 1 | 7.22 | 1.21 | 0.26 | 0.02 | ad4e3509 |
| V100 | AVX2 CUDA | small | 8 | 1 | 18.68 | 2.39 | 0.69 | 0.03 | ad4e3509 |
| V100 | AVX2 CUDA | small-q5_1 | 8 | 1 | 19.38 | 2.32 | 0.51 | 0.03 | ad4e3509 |
| V100 | AVX2 CUDA | medium | 8 | 1 | 53.17 | 5.15 | 1.45 | 0.06 | ad4e3509 |
| V100 | AVX2 CUDA | medium-q5_0 | 8 | 1 | 55.09 | 4.64 | 1.05 | 0.07 | ad4e3509 |
| V100 | AVX2 CUDA | large-v2 | 8 | 1 | 85.77 | 7.57 | 2.19 | 0.10 | ad4e3509 |
| V100 | AVX2 CUDA | large-v2-q5_0 | 8 | 1 | 89.24 | 6.48 | 1.48 | 0.11 | ad4e3509 |
| V100 | AVX2 CUDA | large-v3-turbo | 8 | 1 | 75.56 | 1.25 | 0.37 | 0.02 | ad4e3509 |
| V100 | AVX2 CUDA | large-v3-turbo-q5_0 | 8 | 1 | 78.48 | 1.01 | 0.24 | 0.02 | ad4e3509 |

View File

@ -1 +1 @@
ba8dccd2fd53fc9cac9afdb2f1f45deedb33c1ee
7d7aa2dee2eb55dc683af80b769b81a0642226a1

View File

@ -11,36 +11,33 @@
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_implInput : NSObject<MLFeatureProvider>
/// token_data as 1 by 1 matrix of 32-bit integers
/// token_data as 1 by 1 matrix of floats
@property (readwrite, nonatomic, strong) MLMultiArray * token_data;
/// audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats
/// audio_data as 1 × 1500 × 384 3-dimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * audio_data;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data NS_DESIGNATED_INITIALIZER;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
/// var_1346 as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * var_1346;
/// cast_76 as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * cast_76;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 NS_DESIGNATED_INITIALIZER;
- (instancetype)initWithCast_76:(MLMultiArray *)cast_76 NS_DESIGNATED_INITIALIZER;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_impl : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
@ -94,7 +91,7 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
/**
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
@ -105,7 +102,7 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
/**
Make a prediction using the standard interface
@ -124,10 +121,25 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
*/
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make an asynchronous prediction using the standard interface
@param input an instance of whisper_decoder_implInput to predict from
@param completionHandler a block that will be called upon completion of the prediction. error will be nil if no error occurred.
*/
- (void)predictionFromFeatures:(whisper_decoder_implInput *)input completionHandler:(void (^)(whisper_decoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler API_AVAILABLE(macos(14.0), ios(17.0), watchos(10.0), tvos(17.0)) __attribute__((visibility("hidden")));
/**
Make an asynchronous prediction using the standard interface
@param input an instance of whisper_decoder_implInput to predict from
@param options prediction options
@param completionHandler a block that will be called upon completion of the prediction. error will be nil if no error occurred.
*/
- (void)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options completionHandler:(void (^)(whisper_decoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler API_AVAILABLE(macos(14.0), ios(17.0), watchos(10.0), tvos(17.0)) __attribute__((visibility("hidden")));
/**
Make a prediction using the convenience interface
@param token_data as 1 by 1 matrix of 32-bit integers:
@param audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats:
@param token_data 1 by 1 matrix of floats
@param audio_data 1 × 1500 × 384 3-dimensional array of floats
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/

View File

@ -39,21 +39,21 @@
@implementation whisper_decoder_implOutput
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 {
- (instancetype)initWithCast_76:(MLMultiArray *)cast_76 {
self = [super init];
if (self) {
_var_1346 = var_1346;
_cast_76 = cast_76;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"var_1346"]];
return [NSSet setWithArray:@[@"cast_76"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"var_1346"]) {
return [MLFeatureValue featureValueWithMultiArray:self.var_1346];
if ([featureName isEqualToString:@"cast_76"]) {
return [MLFeatureValue featureValueWithMultiArray:self.cast_76];
}
return nil;
}
@ -80,10 +80,13 @@
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
if (model == nil) {
return nil;
}
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
if (self != nil) {
_model = model;
}
return self;
}
@ -177,7 +180,29 @@
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
if (!outFeatures) { return nil; }
return [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[outFeatures featureValueForName:@"var_1346"].multiArrayValue];
return [[whisper_decoder_implOutput alloc] initWithCast_76:(MLMultiArray *)[outFeatures featureValueForName:@"cast_76"].multiArrayValue];
}
- (void)predictionFromFeatures:(whisper_decoder_implInput *)input completionHandler:(void (^)(whisper_decoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler {
[self.model predictionFromFeatures:input completionHandler:^(id<MLFeatureProvider> prediction, NSError *predictionError) {
if (prediction != nil) {
whisper_decoder_implOutput *output = [[whisper_decoder_implOutput alloc] initWithCast_76:(MLMultiArray *)[prediction featureValueForName:@"cast_76"].multiArrayValue];
completionHandler(output, predictionError);
} else {
completionHandler(nil, predictionError);
}
}];
}
- (void)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options completionHandler:(void (^)(whisper_decoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler {
[self.model predictionFromFeatures:input options:options completionHandler:^(id<MLFeatureProvider> prediction, NSError *predictionError) {
if (prediction != nil) {
whisper_decoder_implOutput *output = [[whisper_decoder_implOutput alloc] initWithCast_76:(MLMultiArray *)[prediction featureValueForName:@"cast_76"].multiArrayValue];
completionHandler(output, predictionError);
} else {
completionHandler(nil, predictionError);
}
}];
}
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
@ -192,7 +217,7 @@
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
for (NSInteger i = 0; i < outBatch.count; i++) {
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[resultProvider featureValueForName:@"var_1346"].multiArrayValue];
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithCast_76:(MLMultiArray *)[resultProvider featureValueForName:@"cast_76"].multiArrayValue];
[results addObject:result];
}
return results;

View File

@ -11,9 +11,8 @@
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_implInput : NSObject<MLFeatureProvider>
/// logmel_data as 1 × 80 × 3000 3-dimensional array of floats
@ -23,9 +22,8 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_implOutput : NSObject<MLFeatureProvider>
/// output as multidimensional array of floats
@ -35,9 +33,8 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_impl : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
@ -91,7 +88,7 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
/**
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
@ -102,7 +99,7 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
/**
Make a prediction using the standard interface
@ -121,9 +118,24 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
*/
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make an asynchronous prediction using the standard interface
@param input an instance of whisper_encoder_implInput to predict from
@param completionHandler a block that will be called upon completion of the prediction. error will be nil if no error occurred.
*/
- (void)predictionFromFeatures:(whisper_encoder_implInput *)input completionHandler:(void (^)(whisper_encoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler API_AVAILABLE(macos(14.0), ios(17.0), watchos(10.0), tvos(17.0)) __attribute__((visibility("hidden")));
/**
Make an asynchronous prediction using the standard interface
@param input an instance of whisper_encoder_implInput to predict from
@param options prediction options
@param completionHandler a block that will be called upon completion of the prediction. error will be nil if no error occurred.
*/
- (void)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options completionHandler:(void (^)(whisper_encoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler API_AVAILABLE(macos(14.0), ios(17.0), watchos(10.0), tvos(17.0)) __attribute__((visibility("hidden")));
/**
Make a prediction using the convenience interface
@param logmel_data as 1 × n_mel × 3000 3-dimensional array of floats:
@param logmel_data 1 × 80 × 3000 3-dimensional array of floats
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/

View File

@ -76,10 +76,13 @@
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
if (model == nil) {
return nil;
}
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
if (self != nil) {
_model = model;
}
return self;
}
@ -176,6 +179,28 @@
return [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
}
- (void)predictionFromFeatures:(whisper_encoder_implInput *)input completionHandler:(void (^)(whisper_encoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler {
[self.model predictionFromFeatures:input completionHandler:^(id<MLFeatureProvider> prediction, NSError *predictionError) {
if (prediction != nil) {
whisper_encoder_implOutput *output = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[prediction featureValueForName:@"output"].multiArrayValue];
completionHandler(output, predictionError);
} else {
completionHandler(nil, predictionError);
}
}];
}
- (void)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options completionHandler:(void (^)(whisper_encoder_implOutput * _Nullable output, NSError * _Nullable error))completionHandler {
[self.model predictionFromFeatures:input options:options completionHandler:^(id<MLFeatureProvider> prediction, NSError *predictionError) {
if (prediction != nil) {
whisper_encoder_implOutput *output = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[prediction featureValueForName:@"output"].multiArrayValue];
completionHandler(output, predictionError);
} else {
completionHandler(nil, predictionError);
}
}];
}
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
whisper_encoder_implInput *input_ = [[whisper_encoder_implInput alloc] initWithLogmel_data:logmel_data];
return [self predictionFromFeatures:input_ error:error];

View File

@ -12,74 +12,74 @@ if (EMSCRIPTEN)
return()
endif()
set(TEST_TARGET test-main-tiny)
set(TEST_TARGET test-whisper-cli-tiny)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-tiny.bin -l fr
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "tiny;gh")
set(TEST_TARGET test-main-tiny.en)
set(TEST_TARGET test-whisper-cli-tiny.en)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-tiny.en.bin
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "tiny;en;gh")
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "tiny;en")
set(TEST_TARGET test-main-base)
set(TEST_TARGET test-whisper-cli-base)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-base.bin -l fr
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "base")
set(TEST_TARGET test-main-base.en)
set(TEST_TARGET test-whisper-cli-base.en)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-base.en.bin
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "base;en")
set(TEST_TARGET test-main-small)
set(TEST_TARGET test-whisper-cli-small)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-small.bin -l fr
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "small")
set(TEST_TARGET test-main-small.en)
set(TEST_TARGET test-whisper-cli-small.en)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-small.en.bin
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "small;en")
set(TEST_TARGET test-main-medium)
set(TEST_TARGET test-whisper-cli-medium)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-medium.bin -l fr
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "medium")
set(TEST_TARGET test-main-medium.en)
set(TEST_TARGET test-whisper-cli-medium.en)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-medium.en.bin
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "medium;en")
set(TEST_TARGET test-main-large)
set(TEST_TARGET test-whisper-cli-large)
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-large.bin
-f ${PROJECT_SOURCE_DIR}/samples/jfk.wav)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "large")
if (WHISPER_FFMPEG)
set(TEST_TARGET test-main-tiny-mp3)
set(TEST_TARGET test-whisper-cli-tiny-mp3)
# Check with reviewers: any way to check the output transcription via ctest (diff, ...)?
add_test(NAME ${TEST_TARGET}
COMMAND $<TARGET_FILE:main>
COMMAND $<TARGET_FILE:whisper-cli>
-m ${PROJECT_SOURCE_DIR}/models/for-tests-ggml-tiny.en.bin
-f ${PROJECT_SOURCE_DIR}/samples/jfk.mp3)
set_tests_properties(${TEST_TARGET} PROPERTIES LABELS "tiny;mp3")