Commit Graph

387 Commits

Author SHA1 Message Date
Johannes Gäßler
c7515b0995 ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works

* stochastic gradient descent op

* Adam except decay

* CUDA CROSS_ENTROPY_LOSS_BACK

* CUDA mnist-fc training works

* backend CLI arg

* refactor gguf load

* remove sched from opt_step_adam

* implement l1 regularization (weight decay)

* extra call to add optimizer

* initialize gradients with ggml_graph_reset

* gradient accumulation

* increment iter per eval instead of epoch

* adjust backend interfaces

* fix ggml_graph_reset without backend

* fix ggml graph export/import

* fixup

* rename

* revert ggml_opt changes

* more general CUDA repeat_back

* update documentation, fix CNN

* validation split

* add clarifying comment

* optimize PyTorch training

* adjust buffer size, thread count

* fix 0.0f validation split

* Update examples/mnist/mnist-common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix gradient accumulation

* tensor flag for accumulators -> tensor hash set

* Update include/ggml.h

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* fix test prints

* Update src/ggml-backend.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better CUDA support for noncontiguous out_prod

* add comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
Georgi Gerganov
253ce30004 examples : add null threadpool args where needed (ggml/0)
ggml-ci
2024-09-24 19:45:08 +03:00
Georgi Gerganov
03a6fae484 metal : update support condition for im2col + fix warning (llama/0) 2024-09-24 19:45:08 +03:00
slaren
d37fd275fd ggml : always check bounds on get_rows operations (llama/9354) 2024-09-24 19:45:08 +03:00
Xuan Son Nguyen
195877fd72 ggml : fix missing cpu_set_t on emscripten (llama/9336)
* ggml : fix missing cpu_set_t on emscripten

* better version

* bring back android part
2024-09-24 19:45:08 +03:00
Markus Tavenrath
9e715e1b96 Improve Vulkan shader build system (llama/9239)
* Improve Vulkan shader builds system

- Add dependency to vulkan-shaders-gen to rebuild shaders when changing the shader compilation utility.
- Add option to generate debug info for Vulkan shaders to provide shader source to Vulkan shader profiling tools

* remove not required self dependency
2024-09-24 19:45:08 +03:00
compilade
6f5514b6e2 ggml-quants : ternary packing for TriLMs and BitNet b1.58 (llama/8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-24 19:45:08 +03:00
slaren
709a22b92d cuda : fix defrag with quantized KV (llama/9319) 2024-09-24 19:45:08 +03:00
Srihari-mcw
01e214a1d7 ggml : AVX2 support for Q4_0_8_8 (llama/8713)
* Add AVX2 based implementations for quantize_q8_0_4x8, ggml_gemv_q4_0_8x8_q8_0 and ggml_gemm_q4_0_8x8_q8_0 functions

* Update code to fix issues occuring due to non alignment of elements to be processed as multiple of 16 in MSVC

* Update comments and indentation

* Make updates to reduce number of load instructions
2024-09-24 19:45:08 +03:00
Ouadie EL FAROUKI
1cecfe6a02 Fix DMMV dequantization (llama/9279)
Fixed dmmv dequant for ncols== GGML_SYCL_DMMV_X
2024-09-24 19:45:08 +03:00
yuri@FreeBSD
3764bc974c ggml : add pthread includes on FreeBSD (llama/9258) 2024-09-24 19:45:08 +03:00
Molly Sophia
fcffc912a9 llama : support RWKV v6 models (llama/8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-24 19:45:08 +03:00
Faisal Zaghloul
38d40b9972 Threadpool: take 2 (llama/8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
Salvatore Mesoraca
09149ee0ae vulkan: fix compilation with GGML_VULKAN_DEBUG=ON (ggml/948)
the old code was trying to print a non-existent field (size)
and the struct as a whole (which doesn't have a operator<<
override defined).
Probably a typo happened during refactoring.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-09-24 19:45:08 +03:00
Salvatore Mesoraca
6b7f37dd5c vulkan: add dryrun support to sin and cos ops (ggml/947)
sin and cos failed test-backend-ops because they
tried to dereference a context pointer that is null
on dry runs.

This commit prevents that segfault.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-09-24 19:45:08 +03:00
Salvatore Mesoraca
791812fb54 vulkan: correctly report support for OP_CONT (ggml/946)
test-backend-ops fails because ggml_cont aborts
when invoked passing an unsupported type.

This commit makes ggml_cont tests pass

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-09-24 19:45:08 +03:00
Johannes Gäßler
5d6dc19f04 tests: add gradient tests for all backends (ggml/932)
* tests: add gradient checking to test-backend-ops

* remove old comment

* reorder includes

* adjust SIN/COS parameters

* add documentation, use supports_op if possible
2024-09-24 19:45:08 +03:00
Johannes Gäßler
6eb7a0ffbd ggml: fix ggml_graph_cpy undefined behavior (ggml/943) 2024-09-02 15:24:50 +03:00
Georgi Gerganov
e8f0f9b5f0 cann : fix doxy (ggml/0) 2024-09-02 15:24:50 +03:00
Georgi Gerganov
d8e24b877d vulkan : fix build (llama/0)
ggml-ci
2024-09-02 15:24:50 +03:00
Georgi Gerganov
cc68f31577 cuda : mark BF16 CONT as unsupported 2024-09-02 15:24:50 +03:00
Salvatore Mesoraca
4a4a52bf98 ggml : fix cont with transposed tensors when one dimension is 1 (ggml/934)
* ggml_cont: fix issue with transposed tensors when one dimension is 1

when using multiple threads, it is not enough
to check for the tensors to be contiguous for
ggml_compute_forward_dup_same_cont to work correctly.
The tensors strides also need to match.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Add ggml_cont tests

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Remove dead code

it isn't possible to reach this code because
all these functions are invoked by ggml_compute_forward_dup
if and only if src0->type != dst->type

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Make ggml_compute_forward_dup_same_cont work with contiguous tensors

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-02 15:24:50 +03:00
Georgi Gerganov
82b5c56f63 sync : vulkan (skip) (llama/0) 2024-08-28 13:22:20 +03:00
slaren
b2ad484c89 ggml : do not crash when quantizing q4_x_x with an imatrix (llama/9192) 2024-08-28 13:22:20 +03:00
Georgi Gerganov
d96a17848f metal : separate scale and mask from QKT in FA kernel (llama/9189)
* metal : separate scale and mask from QKT in FA kernel

* metal : ne01 check no longer necessary

* metal : keep data in local memory
2024-08-28 13:22:20 +03:00
Georgi Gerganov
0e7798677a ggml : add SSM Metal kernels (llama/8546)
* ggml : add ggml_ssm_conv metal impl

* ggml : add ssm_scan metal impl

ggml-ci
2024-08-28 13:22:20 +03:00
slaren
58a36d2e3b metal : gemma2 flash attention support (llama/9159) 2024-08-28 13:22:20 +03:00
Johannes Gäßler
24d8534bd8 CPU/CUDA: Gemma 2 FlashAttention support (llama/8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-28 13:22:20 +03:00
Akarshan Biswas
9b16ddd3a5 Add a space to supress a cmake warning (llama/9133) 2024-08-28 13:22:20 +03:00
luoyu-intel
32f88af17b Add oneDNN primitive support (llama/9091)
* add onednn

* add sycl_f16

* add dnnl stream

* add engine map

* use dnnl for intel only

* use fp16fp16fp16

* update doc
2024-08-28 13:22:20 +03:00
compilade
9bf7250bf9 llama : simplify Mamba with advanced batch splits (llama/8526)
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-28 13:22:20 +03:00
Meng, Hengyu
17e49d3ab2 fallback mmvq (llama/9088)
* fallback mmvq to mul_mat

* mmvq in cuda path

* Update ggml/src/ggml-sycl.cpp

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>

---------

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
2024-08-28 13:22:20 +03:00
zhentaoyu
58b725282a Fix SYCL im2col and convert Overflow with Large Dims (llama/9052)
* sycl: fix im2col overflow and sync with cuda

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix convert overflow

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix convert and dequantize

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix ib in dmmv

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl:refine convert

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: move downsample global_range into common

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: add im2col and convert test cases

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: make new cases only in sycl

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: comment new test_cases for only local testing

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

---------

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-08-28 13:22:20 +03:00
Radoslav Gerganov
7e59afa1e0 rpc : print error message when failed to connect endpoint (llama/9042) 2024-08-28 13:22:20 +03:00
Radoslav Gerganov
5ac022140e rpc : prevent crashes on invalid input (llama/9040)
Add more checks which prevent RPC server from crashing if invalid input
is received from client
2024-08-28 13:22:20 +03:00
Nico Bosshard
0eaa67280c ggml : dynamic ggml_sched_max_splits based on graph_size (llama/9047)
* ggml : Dynamic ggml_sched_max_splits based on graph_size

* Fixed and readded debug code for causes
2024-08-28 13:22:20 +03:00
Georgi Gerganov
5a62fdb735 cmake : remove unused option GGML_CURL (llama/9011) 2024-08-28 13:22:20 +03:00
Daniel Bevenius
60098d6204 ggml : move rope type enum to ggml.h (llama/8949)
* ggml : move rope type enum to ggml.h

This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.

The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.

Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.

* squash! ggml : move rope type enum to ggml.h

This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.

I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.

* squash! ggml : move rope type enum to ggml.h

This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.

* squash! ggml : move rope type enum to ggml.h

This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.

* squash! ggml : move rope type enum to ggml.h

This commit fixes the editorconfig-checker warnings.

* squash! ggml : move rope type enum to ggml.h

Update comment for ggml_rope function.

* Revert "squash! ggml : move rope type enum to ggml.h"

This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6.

* squash! ggml : move rope type enum to ggml.h

Add GGML_ROPE_TYPE_NEOX to rope_common.comp.

* remove extra line

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-28 13:22:20 +03:00
DavidKorczynski
317293e6a7 ggml: fix div-by-zero (llama/9003)
Fixes: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=70724

In order to access the above bug you need to login using one of the
emails in
https://github.com/google/oss-fuzz/blob/master/projects/llamacpp/project.yaml#L3-L5

Signed-off-by: David Korczynski <david@adalogics.com>
2024-08-28 13:22:20 +03:00
Markus Tavenrath
488a966c07 Optimize Vulkan backend for better CPU performance and less GPU synchronization overhead. (llama/8943)
* Optimize Vulkan backend for better CPU performance and less GPU synchronization overhead.

- Allocation overhead for the temporary std::vectors was easily detectable with a sampling profiler and simple to remove.
- ggml_vk_sync_buffer introduce a full pipeline sync which has a significant cost on the GPU side, sometimes larger than the actual kernel execution. Adding only barriers for shader read/writes and transfers seems to be sufficient looking at the code which either launches compute kernels or copies tensors.

* Fix small typo

---------

Co-authored-by: 0cc4m <picard12@live.de>
2024-08-28 13:22:20 +03:00
Johannes Gäßler
8954769aa2 feat: ref. cross entropy, add CUDA, fix grad test (ggml/929) 2024-08-28 13:22:20 +03:00
Johannes Gäßler
df06468d9e ggml: remove bad assert (ggml/928) 2024-08-28 13:22:20 +03:00
Johannes Gäßler
1fbd828a5d examples: add MNIST training + missing ops 2024-08-28 13:22:20 +03:00
Georgi Gerganov
9e3c5345cd sync : ggml vulkan (ggml/0)
ggml-ci
2024-08-21 11:07:13 +03:00
Radoslav Gerganov
b6c05ce82f yolo : add backend support (ggml/924)
* yolo : add backend support

* metal : add sub and sqrt kernels

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 11:07:13 +03:00
Daniel Bevenius
52c80cac00 ggml : fix typo in ggml-quants.c comment (ggml/922) 2024-08-21 11:07:13 +03:00
Ronsor
3643120690 feat: add new sin and cos operators (ggml/919)
* ggml : add sin/cos operators

* ggml-cuda : add sin/cos operators

* ggml : add corresponding tests for sin/cos

* ggml : add backward computation for sin/cos operators

* ggml-vulkan : add sin/cos operators

* ggml-vulkan : add sin/cos shader source

* metal : add sin, cos

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 11:07:13 +03:00
Salvatore Mesoraca
993f0df419
ggml : support forward pass broadcasting in ggml_sub (ggml/914)
* ggml: support forward pass broadcasting in ggml_sub

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Use assert instead of GGML_ASSERT in ggml_compute_forward_sub_f32

The check is already performed in ggml_sub_impl

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-08-12 11:58:49 +03:00
slaren
9b1788483c
metal : fix uninitialized abort_callback (llama/8968) 2024-08-12 11:58:49 +03:00
Georgi Gerganov
ad37d26983
rpc : sanitize tensor data + warnings (llama/0)
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-12 11:58:46 +03:00
Mengqing Cao
81c999fe0a
cann : add Ascend NPU support (#2336)
* enable Ascend NPU in src/whisper.cpp
  * sync test-backend-ops with llama.cpp
2024-08-09 15:21:56 +03:00
hipudding
be88ee1d75 ggml : add CANN backend (llama/0)
ggml-ci
2024-08-09 09:58:16 +03:00
slaren
ee14c02365 ggml-backend : fix async copy from CPU (llama/8897)
* ggml-backend : fix async copy from CPU

* cuda : more reliable async copy, fix stream used when the devices are the same
2024-08-08 22:48:46 +03:00
Ouadie EL FAROUKI
ab39dd34e1 Updated SYCL device filtering (llama/8901)
* Updated device filter to depend on default_selector (fixes non-intel device issues)
* Small related update to example/sycl Readme
2024-08-08 22:48:46 +03:00
Johannes Gäßler
b1348d3530 CUDA/HIP: fix tests/test-backend-ops (llama/8896) 2024-08-08 22:48:46 +03:00
Johannes Gäßler
90641b5cf4 CUDA: fix padding logic for FP16/FP32 (llama/8884) 2024-08-08 22:48:46 +03:00
Molly Sophia
4160b930f1 ggml : add epsilon as a parameter for group_norm (llama/8818)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-08-08 22:48:46 +03:00
Justine Tunney
7a96e661e4 ggml : fix overflows in elu function (llama/8866)
It's helpful to use expm1f(x), because expf(x)-1 will result in overflow
for 25% of single-precision floating point numbers.
2024-08-08 22:48:46 +03:00
jdomke
a902fb4ab2 ggml : reading the runtime sve config of the cpu (llama/8709)
* ggml : reading the runtime sve config of the cpu

* change to one time init to prevent performance drop

* prefix variable to avoid possible conflicts

* revert xxhash fix and add brackets

---------

Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
2024-08-08 22:48:46 +03:00
Sigbjørn Skjæret
6cb38c3673 Fix conversion of unnormalized BF16->BF16 weights (llama/7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-08 22:48:46 +03:00
Ouadie EL FAROUKI
9cf14ebcbc Fixing wrong VDR iq4nl value (llama/8812) 2024-08-08 22:48:46 +03:00
matteo
8e39ee171f ggml-cuda: Adding support for unified memory (llama/8035)
* Adding support for unified memory

* adding again the documentation about unified memory

* refactoring: Moved the unified memory code in the correct location.

* Fixed compilation error when using hipblas

* cleaning up the documentation

* Updating the documentation

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* adding one more case where the PR should not be enabled

---------

Co-authored-by: matteo serva <matteo.serva@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-08-08 22:48:46 +03:00
Alex O'Connell
d26250f78c Build: Only include execinfo.h on linux systems that support it (llama/8783)
* Only enable backtrace on GLIBC linux systems

* fix missing file from copy

* use glibc macro instead of defining a custom one
2024-08-08 22:48:46 +03:00
slaren
5218ea21b8 cuda : fix dmmv cols requirement to 2*GGML_CUDA_DMMV_X (llama/8800)
* cuda : fix dmmv cols requirement to 2*GGML_CUDA_DMMV_X

* update asserts

* only use dmmv for supported types

* add test
2024-08-08 22:48:46 +03:00
l3utterfly
e60be821ce added android implementation of ggml_print_backtrace_symbols (llama/8751)
* added android implementation of ggml_print_backtrace_symbols

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-08 22:48:46 +03:00
wangshuai09
19708df884 cann: update cmake (llama/8765) 2024-08-08 22:48:46 +03:00
zhentaoyu
3f190addda Add TIMESTEP_EMBEDDING OP (llama/8707)
Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-08-08 22:48:46 +03:00
CarterLi999
b355ee7cfa ggml: bugfix: fix the inactive elements is agnostic for risc-v vector (llama/8748)
In these codes, we want to retain the value that they previously held
when mask[i] is false. So we should use undisturbed. With the default
agnostic policy of rvv intrinsic, these values can be held or be
written with 1s.

Co-authored-by: carter.li <carter.li@starfivetech.com>
2024-08-08 22:48:46 +03:00
R0CKSTAR
49ac8872b4 cuda : organize vendor-specific headers into vendors directory (llama/8746)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-08-08 22:48:46 +03:00
Meng, Hengyu
8ef98ae7e3 add conv support (llama/8688) 2024-08-08 22:48:46 +03:00
R0CKSTAR
e471adcfa5 feat: Support Moore Threads GPU (llama/8383)
* Update doc for MUSA

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add GGML_MUSA in Makefile

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add GGML_MUSA in CMake

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* CUDA => MUSA

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* MUSA adds support for __vsubss4

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix CI build failure

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-08-08 22:48:46 +03:00
Borislav Stanimirov
aa816c922c ggml : ignore more msvc warnings (ggml/906) 2024-08-08 22:48:46 +03:00
Georgi Gerganov
b3264eb266 metal : fix struct name (ggml/912)
ggml-ci
2024-08-08 22:48:46 +03:00
Conrad Kramer
eb2eb87a58 metal : add abort callback (ggml/905) 2024-08-08 22:48:46 +03:00
0cc4m
83fcb0e486 vulkan : implement Stable Diffusion operators (ggml/904)
* Fix Vulkan repeat op

* Implement Vulkan concat op

* Delete old Vulkan shader generator

* Implement Vulkan im2col op

* Implement Vulkan unary gelu_quick op

* Implement Vulkan group_norm op

* Implement Vulkan timestep_embedding op

* Implement Vulkan upscale op

* Fix Vulkan vk_context tensor extra index issue

* Fix Vulkan matmul shader parameter bug

* Properly fix Vulkan matmul shader parameter bug

* Add Vulkan ADD f16 + f32 -> f16 operator support

* Implement Vulkan tanh op

* Fix Vulkan group count too large Validation error on non-Nvidia GPUs

* Throw error when too much memory is requested

* Fix another Vulkan group count too large Validation error on non-Nvidia GPUs

* Fix matmul MMQ condition

* Implement Vulkan pad op

* Fix Vulkan crash when tensor is used multiple times in a compute graph

* Add Vulkan CONCAT f16 + f16 -> f16 op

* Add Vulkan LEAKY_RELU op
2024-08-08 22:48:46 +03:00
Daniel Bevenius
f7bb412878 ggml : move c parameter comment to ggml_rope_ext (ggml/901)
This commit moves the comment for the c parameter from ggml_rope to
ggml_rope_ext. The comment is currently incorrect as ggml_rope does not
have a c parameter (freq_factors tensor).

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-08-08 22:48:46 +03:00
Georgi Gerganov
ef6dcf0d0c ggml : resolve sync conflicst (ggml/0)
ggml-ci
2024-08-08 22:48:46 +03:00
Dibakar Gope
525f190917 ggml : add ggml-aarch64 (ggml/0) 2024-08-08 22:48:46 +03:00
slaren
dd916a2852 ggml : reduce hash table reset cost (llama/8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-08-08 22:48:46 +03:00
DavidKorczynski
0620fe00ec ggml: handle ggml_init failure to fix NULL pointer deref (llama/8692)
`ggml_init` can fail if no unused context is found. In that case, a NULL-pointer deref will happen later in the code during a call to `ggml_set_on_alloc`.

This fixes it by bailing out if no context is found.
2024-08-08 22:48:46 +03:00
Chen Xi
31d0a9a14f fix multi-gpu issue on sycl (llama/8554)
---------

Signed-off-by: Chen Xi <xi2chen@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
2024-08-08 22:48:46 +03:00
Georgi Gerganov
c06970dd72 ggml : add and use ggml_cpu_has_llamafile() (llama/8664) 2024-08-08 22:48:46 +03:00
Joe Todd
7598acf525 Re-add erroneously removed -fsycl from GGML_EXTRA_LIBS (llama/8667) 2024-08-08 22:48:46 +03:00
Joe Todd
43ddfce969 sycl : Add support for non-release DPC++ & oneMKL (llama/8644)
* Update cmake to support nvidia hardware & open-source compiler
---------
Signed-off-by: Joe Todd <joe.todd@codeplay.com>
2024-08-08 22:48:46 +03:00
0cc4m
a7e6d2cd9c Vulkan IQ4_NL Support (llama/8613)
* Fix Vulkan matmul tests compile errors

* Add Vulkan IQ4_NL support

* Fix Vulkan DeepSeek-Coder-V2-Lite MoE support
2024-08-08 22:48:46 +03:00
Jeroen Mostert
86506b0c5c Allow all RDNA2 archs to use sdot4 intrinsic (llama/8629)
The check gating the use of `__builtin_amdgc_sdot4` specifically checks for gfx1030. This causes a severe perf regression for anything gfx103? that's not gfx1030 and not using `HSA_OVERRIDE_GFX_VERSION` (if you've built ROCm to support it). We already have a generic RDNA2 define, let's use it.
2024-08-08 22:48:46 +03:00
luoyu-intel
11182fae34 fix scratch size of softmax (llama/8642) 2024-08-08 22:48:46 +03:00
Mark Zhuang
0bc8bffe1d ggml: fix compile error for RISC-V (llama/8623) 2024-08-08 22:48:46 +03:00
Johannes Gäßler
8c4f30497a CUDA: MMQ code deduplication + iquant support (llama/8495)
* CUDA: MMQ code deduplication + iquant support

* 1 less parallel job for CI build
2024-08-08 22:48:46 +03:00
Georgi Gerganov
b1ee3a8444 gguf : handle null name during init (llama/8587) 2024-08-08 22:48:46 +03:00
slaren
be9a16fd3f ggml : fix quant dot product with odd number of blocks (llama/8549)
* ggml : fix iq4_nl dot product with odd number of blocks

* ggml : fix odd blocks for ARM_NEON (llama/8556)

* ggml : fix iq4_nl dot product with odd number of blocks

* ggml : fix q4_1

* ggml : fix q5_0

* ggml : fix q5_1

* ggml : fix iq4_nl metal

ggml-ci

* ggml : fix q4_0

* ggml : fix q8_0

ggml-ci

* ggml : remove special Q4_0 code for first 2 blocks

* ggml : fix sumf redefinition

---------

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-08 22:48:46 +03:00
Clint Herron
f4d9a95b0f ggml : add friendlier error message to fopen errors (llama/8575)
* Add additional error information when model files fail to load.

* Adding additional error information to most instances of fopen.
2024-08-08 22:48:46 +03:00
Johannes Gäßler
a8ab3abe09 CUDA: fix partial offloading for ne0 % 256 != 0 (llama/8572) 2024-08-08 22:48:46 +03:00
65a
fb6a835938 cmake : install all ggml public headers (llama/8480)
Co-authored-by: 65a <65a@65a.invalid>
2024-08-08 22:48:46 +03:00
hipudding
8923bb4292 Add Ascend NPU backend (llama/6035)
* [CANN] Add Ascend NPU backend

Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.

CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.

Co-authored-by: wangshuai09 <391746016@qq.com>

* delete trailing whitespaces

* Modify the code based on review comment

* Rename LLAMA_CANN to GGML_CANN

* Make ggml-common.h private

* add ggml_cann prefix for acl funcs

* Add logging for CANN backend

* Delete Trailing whitespace

---------

Co-authored-by: wangshuai09 <391746016@qq.com>
2024-08-08 22:48:46 +03:00
Johannes Gäßler
fcba6aa352 make/cmake: add missing force MMQ/cuBLAS for HIP (llama/8515) 2024-08-08 22:48:46 +03:00
Xuan Son Nguyen
8807fe608b Refactor lora adapter support (llama/8332)
* lora: load to devide buft

* add patch tensor function

* correct tensor patch

* llama_lora_adapter_apply

* correct ggml_backend_tensor_copy

* add llm_build_mm

* fix auto merge

* update based on review comments

* add convert script

* no more transpose A

* add f16 convert

* add metadata check

* add sanity check

* fix ftype

* add requirements

* fix requirements

* fix outfile

* conversion: only allow selected models

* fix types

* cuda : do not use dmmv if the tensor does not have enough cols

* llama : lora fixes

* do not disable mmap with lora

Co-authored-by: slaren <slarengh@gmail.com>

* llm_build_lora_mm_id

* convert_lora : MoE LoRA conversion support

* convert_lora : prefer safetensors, similarly to convert_hf

* convert_hf : simplify modify_tensors for InternLM2

* convert_lora : lazy conversion

* llama : load and use alpha from LoRA adapters

* llama : use llm_build_lora_mm in most model graphs

* auto scale

* Revert "auto scale"

This reverts commit 42415a4874e0f963e4aca6796ea5dfb97cd17464.

* remove redundant params

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* change kv metadata

* move add_type to __init__

* convert_hf : move add_type to main()

* convert_lora : use the GGUFWriter from Model instead of overwriting it

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-08 22:48:46 +03:00
Meng, Hengyu
3e94c7a81d add concat through dim 1/2 (llama/8483)
* add concat through dim 1/2
2024-08-08 22:48:46 +03:00
0cc4m
77af3254e1 Vulkan MMQ Fix (llama/8479)
* Fix incoherence by adding missing LOAD_VEC_A parameter

* Fix Vulkan op result checker build error
2024-08-08 22:48:46 +03:00
bandoti
d4b3cffec4 vulkan : cmake integration (llama/8119)
* Add Vulkan to CMake pkg

* Add Sycl to CMake pkg

* Add OpenMP to CMake pkg

* Split generated shader file into separate translation unit

* Add CMake target for Vulkan shaders

* Update README.md

* Add make target for Vulkan shaders

* Use pkg-config to locate vulkan library

* Add vulkan SDK dep to ubuntu-22-cmake-vulkan workflow

* Clean up tabs

* Move sudo to apt-key invocation

* Forward GGML_EXTRA_LIBS to CMake config pkg

* Update vulkan obj file paths

* Add shaderc to nix pkg

* Add python3 to Vulkan nix build

* Link against ggml in cmake pkg

* Remove Python dependency from Vulkan build

* code review changes

* Remove trailing newline

* Add cflags from pkg-config to fix w64devkit build

* Update README.md

* Remove trailing whitespace

* Update README.md

* Remove trailing whitespace

* Fix doc heading

* Make glslc required Vulkan component

* remove clblast from nix pkg
2024-08-08 22:48:46 +03:00
Georgi Gerganov
b852a4c5ca metal : template-ify some of the kernels (llama/8447)
ggml-ci
2024-08-08 22:48:46 +03:00
Georgi Gerganov
2157abaab4 ggml : minor naming changes (llama/8433)
* ggml : minor naming changes

ggml-ci

* ggml : use PRId64 [no ci]

* ggml : revert FA K/Q names
2024-08-08 22:48:46 +03:00
Chen Xi
68d609a12c fix the mul_mat_id ut issues (llama/8427)
* fix part of mul_mat_id

* skip the bfloat 16 sycl ut

Signed-off-by: Chen Xi <xi2chen@intel.com>

---------

Signed-off-by: Chen Xi <xi2chen@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Chen Xi <xi2chen@intel.com>
2024-08-08 22:48:46 +03:00
Nicholai Tukanov
5a8ae474f0 ggml : add NVPL BLAS support (ggml/8329) (llama/8425)
* ggml : add NVPL BLAS support

* ggml : replace `<BLASLIB>_ENABLE_CBLAS` with `GGML_BLAS_USE_<BLASLIB>`

---------

Co-authored-by: ntukanov <ntukanov@nvidia.com>
2024-08-08 22:48:46 +03:00
Daniel Bevenius
84493d7f3e cuda : suppress 'noreturn' warn in no_device_code (llama/8414)
* cuda : suppress 'noreturn' warn in no_device_code

This commit adds a while(true) loop to the no_device_code function in
common.cuh. This is done to suppress the warning:

```console
/src/ggml-cuda/template-instances/../common.cuh:346:1: warning:
function declared 'noreturn' should not return [-Winvalid-noreturn]
  346 | }
      | ^
```

The motivation for this is to reduce the number of warnings when
compilng with GGML_HIPBLAS=ON.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! cuda : suppress 'noreturn' warn in no_device_code

Update __trap macro instead of using a while loop to suppress the
warning.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-08-08 22:48:46 +03:00
Johannes Gäßler
15d71189e9 CUDA: optimize and refactor MMQ (llama/8416)
* CUDA: optimize and refactor MMQ

* explicit q8_1 memory layouts, add documentation
2024-08-08 22:48:46 +03:00
AidanBeltonS
37e962580f Use multi_ptr to clean up deprecated warnings (llama/8256) 2024-08-08 22:48:46 +03:00
Georgi Gerganov
db0ea7a2f2 ggml : move sgemm sources to llamafile subfolder (llama/8394)
ggml-ci
2024-08-08 22:48:46 +03:00
Dibakar Gope
5498b0e6c0 ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (llama/5780)
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files

* Arm AArch64: minor code refactoring for rebase

* Arm AArch64: minor code refactoring for resolving a build issue with cmake

* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: minor code change for resolving a build issue with server-windows

* retrigger checks

* Arm AArch64: minor code changes for rebase

* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits

* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig

* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: minor code refactoring

* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat

* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat

* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types

* Arm AArch64: minor code refactoring

* Arm AArch64: minor code refactoring

* Arm AArch64: minor code refactoring

* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure

* Arm AArch64: remove a redundant comment

* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off

* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels

* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-08-08 22:48:46 +03:00
Alberto Cabrera Pérez
2af4a52c39 sycl : Reenabled mmvq path for the SYCL Nvidia Backend (llama/8372)
* SYCL : Reenabled mmvq path for the SYCL Nvidia Backend

* Reduced verbosity of comment
2024-08-08 22:48:46 +03:00
Alberto Cabrera Pérez
eee2fe882e sycl : fix powf call in device code (llama/8368) 2024-08-08 22:48:46 +03:00
Mahesh Madhav
0d1a11e5e2 ggml : loop tiling optimizations for scalar path (ggml/898)
Apply a loop tiling technique to the generic path, which provides
performance upside for ISAs with enough registers to take advantage
of it. Also helps the compiler optimize this path.
2024-08-08 22:48:46 +03:00
Ivan Filipov
b2ead7d6f4 ggml: add support for float16 input tensors in pooling operations (ggml/895)
* Add support for float16 tensors in 1d pooling operations

* Add support for float16 input tensors in 2d pooling operations

* code cleanup

remove unnecessary casting during srow ptr initialization

---------

Co-authored-by: vanaka11 <vanaka1189@gmail.com>
2024-08-08 22:48:46 +03:00
Tony Wasserka
8da6fd4dff vulkan : initialize vk_buffer_struct members to VK_NULL_HANDLE (ggml/893)
This prevents invalid frees when destroying a partially initialized
vk_buffer_struct. For example, this could happen in ggml_vk_create_buffer
when running out of device memory.

Co-authored-by: Tony Wasserka <neobrain@users.noreply.github.com>
2024-08-08 22:48:46 +03:00
Borislav Stanimirov
ab8ec9e940 cmake : only enable GGML_NATIVE and x86 flags if not crosscompiling (ggml/885) 2024-08-08 22:48:46 +03:00
Matt Stephenson
f68298ce06
whisper : use vulkan as gpu backend when available (#2302)
* ggml: use vulkan as gpu backend when available

Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>

* whisper: enable using vk as default buffer type

Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>

---------

Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>
2024-07-16 10:21:09 +03:00
Georgi Gerganov
49868aa851 ggml : sync sycl (skip) (#0) 2024-07-08 14:53:55 +03:00
Daniel Bevenius
95f2a191c0 ggml : remove unnecessary UNUSED macro call (ggml/880)
This commit removes an UNUSED macro call that is not needed as the
variable n0 is used in the code and will not produce a warning.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-07-08 14:53:55 +03:00
Natsu
00422ec3cf cmake : add GGML_BUILD and GGML_SHARED macro definitions (llama/8281) 2024-07-08 14:53:55 +03:00
Ouadie EL FAROUKI
c5b05321e9 Enabled more data types for oneMKL gemm_batch (llama/8236) 2024-07-08 14:53:55 +03:00
Johannes Gäßler
5dc636a65a CUDA: MMQ support for iq4_nl, iq4_xs (llama/8278) 2024-07-08 14:53:55 +03:00
Daniele
73703a144f CUDA: revert part of the RDNA1 optimizations (llama/8309)
The change on the launch_bounds was causing a small performance drop in perplexity of 25 t/s
2024-07-08 14:53:55 +03:00
Johannes Gäßler
e89fdceec2 CUDA: fix MMQ stream-k rounding if ne00 % 128 != 0 (llama/8311) 2024-07-08 14:53:55 +03:00
luoyu-intel
29a2739d27 Fix WARP_SIZE=16 bug of Intel GPU (llama/8266)
* fix group_norm ut

* split softmax

* fix softmax

* add concat support condition

* revert debug code

* move QK_WARP_SIZE to presets.hpp
2024-07-08 14:53:55 +03:00
Neo Zhang Jianyu
ee6d17f6b4 rm get_work_group_size() by local cache for performance (llama/8286)
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-07-08 14:53:55 +03:00
Daniele
95e90823d9 Define and optimize RDNA1 (llama/8085) 2024-07-08 14:53:55 +03:00
Judd
005cc45df3 fix typo (llama/8267)
Co-authored-by: Judd <foldl@boxvest.com>
2024-07-08 14:53:55 +03:00
Clint Herron
c2c60dc9ba Removes multiple newlines at the end of files that is breaking the editorconfig step of CI. (llama/8258) 2024-07-08 14:53:55 +03:00
slaren
4af3194b7c cuda : update supports_op for matrix multiplication (llama/8245) 2024-07-08 14:53:55 +03:00
luoyu-intel
4a2ba1a065 Fix win build conflict of math library (llama/8230)
* fix win build conflict of math library

* fix the condition: !(win32 & SYCL)

* revert warp_size=16
2024-07-08 14:53:55 +03:00
luoyu-intel
f096cc6807 Fix the sub group size of Intel (llama/8106)
* use warp_size macro for all sycl kernels

* fix mask of permute_sub_group_by_xor

* fix rms_norm with correct warp number

* fix rms_norm_f32/group_norm_f32

* move norm to norm.cpp file

* fix quantize bug

* fix mmvq's batch size
2024-07-08 14:53:55 +03:00
Johannes Gäßler
e4bc83ab47 CUDA: refactor and optimize IQ MMVQ (llama/8215)
* CUDA: refactor and optimize IQ MMVQ

* uint -> uint32_t

* __dp4a -> ggml_cuda_dp4a

* remove MIN_CC_DP4A checks

* change default

* try CI fix
2024-07-08 14:53:55 +03:00
zhentaoyu
db7e0dbe6e Update SYCL-Rope op and Refactor (llama/8157)
* align with rope.cu and move sycl-op to a single file
2024-07-08 14:53:55 +03:00
Johannes Gäßler
bf88c94da9 CUDA: fix MMQ stream-k for --split-mode row (llama/8167) 2024-07-08 14:53:55 +03:00
John Balis
3eea171cab feat: cuda implementation for ggml_conv_transpose_1d (ggml/854)
* conv transpose 1d passing test for 1d input and kernel

* working for different input and output channel counts, added test for variable stride

* initial draft appears to work with stride other than 1

* working with all old and new conv1d  tests

* added a test for large tensors

* removed use cuda hardcoding

* restored test-conv-transpose.c

* removed unused arugments, and fixed bug where test failure would cause subsequent tests to fail

* fixed accumulator bug

* added test to test-backend-ops

* fixed mistake

* addressed review

* fixed includes

* removed blank lines

* style and warning fixes

* return failure when test fails

* fix supports_op

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-07-08 14:53:55 +03:00
slaren
04e7fa6f4f
ggml : add GGML_CUDA_USE_GRAPHS option, restore GGML_CUDA_FORCE_CUBLAS (cmake) (llama/8140) 2024-06-26 23:18:11 +03:00
Georgi Gerganov
e30c679928
whisper : reorganize source code + improve CMake (#2256)
* scripts : update sync [no ci]

* files : reorganize [no ci]

* sync : llama.cpp

* cmake : link math library

* cmake : build normal ggml library

* files : move headers to include

* objc : fix path to ggml-metal.h

* ci : fix WHISPER_CUDA -> GGML_CUDA

* scripts : sync LICENSE [no ci]
2024-06-26 19:34:09 +03:00