whisper.cpp/ggml/include/ggml.h

2255 lines
85 KiB
C
Raw Normal View History

2022-09-25 18:23:15 +00:00
#pragma once
//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
// - a set of tensor operations
// - automatic differentiation
// - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
// - linear regression
// - support vector machines
// - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
// {
// struct ggml_init_params params = {
// .mem_size = 16*1024*1024,
// .mem_buffer = NULL,
// };
//
// // memory allocation happens here
// struct ggml_context * ctx = ggml_init(params);
//
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
//
// ggml_set_param(ctx, x); // x is an input variable
//
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
//
// ...
// }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
// {
// ...
//
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
// ggml_build_forward_expand(gf, f);
//
// // set the input variable and parameter values
// ggml_set_f32(x, 2.0f);
// ggml_set_f32(a, 3.0f);
// ggml_set_f32(b, 4.0f);
//
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
//
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
//
// ...
// }
//
// The actual computation is performed in the ggml_graph_compute() function.
//
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
// - ggml_permute()
// - ggml_conv_1d_1s()
// - ggml_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
// What is Automatic Differentiation?
// https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_tensor)
//
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
// {
// struct ggml_tensor * c = ggml_add(ctx, a, b);
//
// assert(c->src[0] == a);
// assert(c->src[1] == b);
// }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
// {
// const int nx = 2;
// const int ny = 3;
//
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
//
// for (int y = 0; y < ny; y++) {
// for (int x = 0; x < nx; x++) {
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
// }
// }
//
// ...
// }
//
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//
#ifdef GGML_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_BUILD
# define GGML_API __declspec(dllexport) extern
# else
# define GGML_API __declspec(dllimport) extern
# endif
# else
# define GGML_API __attribute__ ((visibility ("default"))) extern
# endif
#else
# define GGML_API extern
2022-09-25 18:23:15 +00:00
#endif
// TODO: support for clang
#ifdef __GNUC__
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define GGML_DEPRECATED(func, hint) func
#endif
2023-09-15 11:49:56 +00:00
#ifndef __GNUC__
# define GGML_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
2022-09-25 18:23:15 +00:00
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
2022-09-25 18:23:15 +00:00
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_FILE_VERSION 2
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
#define GGML_MAX_DIMS 4
#define GGML_MAX_PARAMS 2048
#define GGML_MAX_SRC 10
Threadpool: take 2 (llama/8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
#define GGML_MAX_N_THREADS 512
#define GGML_MAX_OP_PARAMS 64
Threadpool: take 2 (llama/8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-08-29 23:20:53 +00:00
#ifndef GGML_MAX_NAME
# define GGML_MAX_NAME 64
#endif
#define GGML_DEFAULT_N_THREADS 4
#define GGML_DEFAULT_GRAPH_SIZE 2048
#if UINTPTR_MAX == 0xFFFFFFFF
#define GGML_MEM_ALIGN 4
#else
#define GGML_MEM_ALIGN 16
#endif
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
ggml : move rope type enum to ggml.h (llama/8949) * ggml : move rope type enum to ggml.h This commit moves the `llama_rope_type` enum from `llama.h` to `ggml.h` and changes its name to `ggml_rope_type`. The motivation for this change is to address the TODO in `llama.h` and use the enum in ggml. Note: This commit does not change the `mode` parameter to be of type `enum ggml_rope_type`. The name `mode` and its usage suggest that it might be more generic and possibly used as a bit field for multiple flags. Further investigation/discussion may be needed to determine if `mode` should be restricted to RoPE types. * squash! ggml : move rope type enum to ggml.h This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from ggml.h, and back the llama_rope_type enum. I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is safe to remove it yet. * squash! ggml : move rope type enum to ggml.h This commit removes the enum ggml_rope_type from ggml.h and replaces it with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has been updated to reflect this change. * squash! ggml : move rope type enum to ggml.h This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX macro/define to be passed to the shader compiler. * squash! ggml : move rope type enum to ggml.h This commit fixes the editorconfig-checker warnings. * squash! ggml : move rope type enum to ggml.h Update comment for ggml_rope function. * Revert "squash! ggml : move rope type enum to ggml.h" This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6. * squash! ggml : move rope type enum to ggml.h Add GGML_ROPE_TYPE_NEOX to rope_common.comp. * remove extra line --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-08-13 19:13:15 +00:00
#define GGML_ROPE_TYPE_NEOX 2
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
#define GGUF_DEFAULT_ALIGNMENT 32
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#ifndef NDEBUG
# define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
#elif defined(__GNUC__)
# define GGML_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
# define GGML_UNREACHABLE() __assume(0)
#else
# define GGML_UNREACHABLE() ((void) 0)
#endif
#ifdef __cplusplus
# define GGML_NORETURN [[noreturn]]
#elif defined(_MSC_VER)
# define GGML_NORETURN __declspec(noreturn)
#else
# define GGML_NORETURN _Noreturn
#endif
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
// used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability.
//
// example:
//
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
//
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
const type prefix##0 = (pointer)->array[0]; \
GGML_UNUSED(prefix##0);
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
const type prefix##1 = (pointer)->array[1]; \
GGML_UNUSED(prefix##1);
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
const type prefix##2 = (pointer)->array[2]; \
GGML_UNUSED(prefix##2);
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
const type prefix##3 = (pointer)->array[3]; \
GGML_UNUSED(prefix##3);
#define GGML_TENSOR_UNARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_BINARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
#ifdef __cplusplus
extern "C" {
#endif
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
enum ggml_status {
GGML_STATUS_ALLOC_FAILED = -2,
GGML_STATUS_FAILED = -1,
GGML_STATUS_SUCCESS = 0,
GGML_STATUS_ABORTED = 1,
};
// get ggml_status name string
GGML_API const char * ggml_status_to_string(enum ggml_status status);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
// ieee 754-2008 half-precision float16
// todo: make this not an integral type
typedef uint16_t ggml_fp16_t;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
// google brain half-precision bfloat16
typedef struct { uint16_t bits; } ggml_bf16_t;
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
struct ggml_object;
struct ggml_context;
struct ggml_cgraph;
// NOTE: always add types at the end of the enum to keep backward compatibility
enum ggml_type {
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
// GGML_TYPE_Q4_2 = 4, support has been removed
// GGML_TYPE_Q4_3 = 5, support has been removed
GGML_TYPE_Q5_0 = 6,
GGML_TYPE_Q5_1 = 7,
GGML_TYPE_Q8_0 = 8,
GGML_TYPE_Q8_1 = 9,
GGML_TYPE_Q2_K = 10,
GGML_TYPE_Q3_K = 11,
GGML_TYPE_Q4_K = 12,
GGML_TYPE_Q5_K = 13,
GGML_TYPE_Q6_K = 14,
GGML_TYPE_Q8_K = 15,
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
GGML_TYPE_IQ2_XXS = 16,
GGML_TYPE_IQ2_XS = 17,
GGML_TYPE_IQ3_XXS = 18,
GGML_TYPE_IQ1_S = 19,
2024-02-21 14:19:39 +00:00
GGML_TYPE_IQ4_NL = 20,
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
GGML_TYPE_IQ3_S = 21,
GGML_TYPE_IQ2_S = 22,
GGML_TYPE_IQ4_XS = 23,
GGML_TYPE_I8 = 24,
GGML_TYPE_I16 = 25,
GGML_TYPE_I32 = 26,
GGML_TYPE_I64 = 27,
GGML_TYPE_F64 = 28,
GGML_TYPE_IQ1_M = 29,
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_TYPE_BF16 = 30,
ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (llama/5780) * Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files * Arm AArch64: minor code refactoring for rebase * Arm AArch64: minor code refactoring for resolving a build issue with cmake * Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code change for resolving a build issue with server-windows * retrigger checks * Arm AArch64: minor code changes for rebase * Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits * Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig * Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code refactoring * Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat * Arm AArch64: minimize changes in ggml_compute_forward_mul_mat * Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * rebase on the latest master commit 3fd62a6 and adapt to the new directory structure * Arm AArch64: remove a redundant comment * Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off * Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels * Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-07-10 12:14:51 +00:00
GGML_TYPE_Q4_0_4_4 = 31,
GGML_TYPE_Q4_0_4_8 = 32,
GGML_TYPE_Q4_0_8_8 = 33,
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (llama/8151) * ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2024-09-06 01:48:47 +00:00
GGML_TYPE_TQ1_0 = 34,
GGML_TYPE_TQ2_0 = 35,
GGML_TYPE_IQ4_NL_4_4 = 36,
// GGML_TYPE_IQ4_NL_4_8 = 37,
// GGML_TYPE_IQ4_NL_8_8 = 38,
GGML_TYPE_COUNT,
};
// precision
enum ggml_prec {
GGML_PREC_DEFAULT,
GGML_PREC_F32,
};
enum ggml_backend_type {
GGML_BACKEND_TYPE_CPU = 0,
GGML_BACKEND_TYPE_GPU = 10,
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
};
// model file types
enum ggml_ftype {
GGML_FTYPE_UNKNOWN = -1,
GGML_FTYPE_ALL_F32 = 0,
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
2024-02-21 14:19:39 +00:00
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (llama/5780) * Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions * Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files * Arm AArch64: minor code refactoring for rebase * Arm AArch64: minor code refactoring for resolving a build issue with cmake * Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code change for resolving a build issue with server-windows * retrigger checks * Arm AArch64: minor code changes for rebase * Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits * Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig * Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8 * Arm AArch64: minor code refactoring * Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat * Arm AArch64: minimize changes in ggml_compute_forward_mul_mat * Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * Arm AArch64: minor code refactoring * rebase on the latest master commit 3fd62a6 and adapt to the new directory structure * Arm AArch64: remove a redundant comment * Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off * Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels * Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-07-10 12:14:51 +00:00
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
};
// available tensor operations:
enum ggml_op {
GGML_OP_NONE = 0,
GGML_OP_DUP,
GGML_OP_ADD,
GGML_OP_ADD1,
GGML_OP_ACC,
GGML_OP_SUB,
GGML_OP_MUL,
GGML_OP_DIV,
GGML_OP_SQR,
GGML_OP_SQRT,
GGML_OP_LOG,
GGML_OP_SIN,
GGML_OP_COS,
GGML_OP_SUM,
GGML_OP_SUM_ROWS,
GGML_OP_MEAN,
GGML_OP_ARGMAX,
GGML_OP_COUNT_EQUAL,
GGML_OP_REPEAT,
2023-06-25 11:22:21 +00:00
GGML_OP_REPEAT_BACK,
GGML_OP_CONCAT,
GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM,
GGML_OP_RMS_NORM_BACK,
GGML_OP_GROUP_NORM,
GGML_OP_MUL_MAT,
GGML_OP_MUL_MAT_ID,
2023-06-25 11:22:21 +00:00
GGML_OP_OUT_PROD,
GGML_OP_SCALE,
GGML_OP_SET,
GGML_OP_CPY,
GGML_OP_CONT,
GGML_OP_RESHAPE,
GGML_OP_VIEW,
GGML_OP_PERMUTE,
GGML_OP_TRANSPOSE,
GGML_OP_GET_ROWS,
GGML_OP_GET_ROWS_BACK,
GGML_OP_DIAG,
GGML_OP_DIAG_MASK_INF,
GGML_OP_DIAG_MASK_ZERO,
GGML_OP_SOFT_MAX,
2023-06-25 11:22:21 +00:00
GGML_OP_SOFT_MAX_BACK,
GGML_OP_ROPE,
GGML_OP_ROPE_BACK,
GGML_OP_CLAMP,
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_POOL_2D_BACK,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU,
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_OP_FLASH_ATTN_EXT,
2023-06-25 11:22:21 +00:00
GGML_OP_FLASH_ATTN_BACK,
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
GGML_OP_SSM_CONV,
GGML_OP_SSM_SCAN,
2023-06-25 11:22:21 +00:00
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV6,
GGML_OP_UNARY,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_MAP_CUSTOM1_F32,
GGML_OP_MAP_CUSTOM2_F32,
GGML_OP_MAP_CUSTOM3_F32,
2023-06-25 11:22:21 +00:00
GGML_OP_MAP_CUSTOM1,
GGML_OP_MAP_CUSTOM2,
GGML_OP_MAP_CUSTOM3,
GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
2024-09-20 12:36:38 +00:00
GGML_OP_OPT_STEP_ADAMW,
2023-06-25 11:22:21 +00:00
GGML_OP_COUNT,
};
enum ggml_unary_op {
GGML_UNARY_OP_ABS,
GGML_UNARY_OP_SGN,
GGML_UNARY_OP_NEG,
GGML_UNARY_OP_STEP,
GGML_UNARY_OP_TANH,
GGML_UNARY_OP_ELU,
GGML_UNARY_OP_RELU,
GGML_UNARY_OP_SIGMOID,
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
llama : support RWKV v6 models (llama/8980) * convert_hf_to_gguf: Add support for RWKV v6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add RWKV tokenization * Fix build Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Do not use special tokens when matching in RWKV tokenizer * Fix model loading * Add (broken) placeholder graph builder for RWKV * Add workaround for kv cache * Add logits conversion to rwkv5 * Add rwkv5 layer norms * Add time mix KVRG & correct merge mistake * Add remaining time mix parameters * Add time mix output loading * Add placeholder llm_build_time_mix * Fix build Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Load more tensors for rwkv v6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix rwkv tokenizer Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * ggml: Add unary operator Exp Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * RWKV v6 graph building Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add ``rescale_every_n_layers`` parameter Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add ``wkv.head_size`` key for RWKV so it doesn't reuse Mamba ssm parameters Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix offloading layers to CUDA Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix parallel inferencing for RWKV Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Remove trailing whitespaces Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * build_rwkv: Avoid using inplace operations Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * convert_hf_to_gguf: rwkv: Avoid using ``eval`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * ggml: Add backward computation for unary op ``exp`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * build_rwkv6: Simplify graph Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Detect model.type Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Fix tensor loading for 7B/14B models Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Fix group_norm assertion failure with Metal Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Clean up Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add quantization tensor exclusion Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Use the new advanced batch splits Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update src/llama.cpp Co-authored-by: compilade <git@compilade.net> * llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm`` Co-authored-by: compilade <git@compilade.net> * llama: rwkv6: Apply code style and misc changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * converter: Use class name ``Rwkv6Model`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Make use of key ``feed_forward_length`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Keep ``time_mix_w1/w2`` as F32 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Remove unused nodes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Apply code format changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add lora for some supported tensors Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * rwkv : speed-up tokenization using trie * minor : style + indentation * llama: rwkv6: Avoid division by zero Co-authored-by: compilade <git@compilade.net> * ggml: rwkv_wkv: Avoid copying the state Signed-off-by: Molly Sophia <mollysophia379@gmail.com> --------- Signed-off-by: Molly Sophia <mollysophia379@gmail.com> Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com> Co-authored-by: compilade <git@compilade.net> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 14:38:17 +00:00
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_COUNT,
};
enum ggml_object_type {
GGML_OBJECT_TYPE_TENSOR,
GGML_OBJECT_TYPE_GRAPH,
GGML_OBJECT_TYPE_WORK_BUFFER
};
enum ggml_log_level {
GGML_LOG_LEVEL_NONE = 0,
GGML_LOG_LEVEL_DEBUG = 1,
GGML_LOG_LEVEL_INFO = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_ERROR = 4,
GGML_LOG_LEVEL_CONT = 5, // continue previous log
};
2024-09-20 12:36:38 +00:00
// this tensor...
enum ggml_tensor_flag {
GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
struct ggml_backend_buffer * buffer;
int64_t ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = ggml_type_size(type)
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_op op;
// op params - allocated as int32_t for alignment
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
struct ggml_tensor * src[GGML_MAX_SRC];
// source tensor and offset for views
struct ggml_tensor * view_src;
size_t view_offs;
void * data;
2023-06-25 11:22:21 +00:00
char name[GGML_MAX_NAME];
void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8];
};
2023-06-25 11:22:21 +00:00
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
// Abort callback
// If not NULL, called before ggml computation
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
//
// GUID
//
// GUID types
typedef uint8_t ggml_guid[16];
typedef ggml_guid * ggml_guid_t;
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
// misc
2022-09-25 18:23:15 +00:00
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
GGML_API int64_t ggml_time_ms(void);
GGML_API int64_t ggml_time_us(void);
GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void);
// accepts a UTF-8 path, even on Windows
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
2022-09-25 18:23:15 +00:00
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
2022-09-25 18:23:15 +00:00
GGML_API int64_t ggml_blck_size(enum ggml_type type);
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_DEPRECATED(
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
"use ggml_row_size() instead");
2022-09-25 18:23:15 +00:00
GGML_API const char * ggml_type_name(enum ggml_type type);
GGML_API const char * ggml_op_name (enum ggml_op op);
GGML_API const char * ggml_op_symbol(enum ggml_op op);
2022-09-25 18:23:15 +00:00
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_quantized(enum ggml_type type);
// TODO: temporary until model loading of ggml examples is refactored
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
2023-06-25 11:22:21 +00:00
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
2023-06-25 11:22:21 +00:00
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
// main
GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
GGML_API void ggml_reset(struct ggml_context * ctx);
GGML_API void ggml_free (struct ggml_context * ctx);
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
2023-06-25 11:22:21 +00:00
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t *ne);
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0);
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1);
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
// Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
// Converts a flat index into coordinates
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
2022-09-25 18:23:15 +00:00
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
2023-09-15 11:49:56 +00:00
GGML_ATTRIBUTE_FORMAT(2, 3)
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
// Tensor flags
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
2022-09-25 18:23:15 +00:00
//
// operations on tensors with backpropagation
2022-09-25 18:23:15 +00:00
//
GGML_API struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_add_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type);
GGML_API struct ggml_tensor * ggml_add1(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_add1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// dst = a
// view(dst, nb1, nb2, nb3, offset) += b
// return dst
GGML_API struct ggml_tensor * ggml_acc(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_acc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_log_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cos(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return scalar
GGML_API struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a);
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
GGML_API struct ggml_tensor * ggml_sum_rows(
struct ggml_context * ctx,
struct ggml_tensor * a);
// mean along rows
GGML_API struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a);
// argmax along rows
GGML_API struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a);
// count number of equal elements in a and b
GGML_API struct ggml_tensor * ggml_count_equal(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
GGML_API struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// sums repetitions in a into shape of b
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// concat a and b along dim
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_concat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int dim);
GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx,
struct ggml_tensor * a, float negative_slope, bool inplace);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_silu_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// hardswish(x) = x * relu6(x + 3) / 6
GGML_API struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a);
// hardsigmoid(x) = relu6(x + 3) / 6
GGML_API struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a);
llama : support RWKV v6 models (llama/8980) * convert_hf_to_gguf: Add support for RWKV v6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add RWKV tokenization * Fix build Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Do not use special tokens when matching in RWKV tokenizer * Fix model loading * Add (broken) placeholder graph builder for RWKV * Add workaround for kv cache * Add logits conversion to rwkv5 * Add rwkv5 layer norms * Add time mix KVRG & correct merge mistake * Add remaining time mix parameters * Add time mix output loading * Add placeholder llm_build_time_mix * Fix build Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Load more tensors for rwkv v6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix rwkv tokenizer Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * ggml: Add unary operator Exp Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * RWKV v6 graph building Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add ``rescale_every_n_layers`` parameter Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add ``wkv.head_size`` key for RWKV so it doesn't reuse Mamba ssm parameters Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix offloading layers to CUDA Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix parallel inferencing for RWKV Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Remove trailing whitespaces Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * build_rwkv: Avoid using inplace operations Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * convert_hf_to_gguf: rwkv: Avoid using ``eval`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * ggml: Add backward computation for unary op ``exp`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * build_rwkv6: Simplify graph Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Detect model.type Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Fix tensor loading for 7B/14B models Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Fix group_norm assertion failure with Metal Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Clean up Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add quantization tensor exclusion Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Use the new advanced batch splits Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update src/llama.cpp Co-authored-by: compilade <git@compilade.net> * llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm`` Co-authored-by: compilade <git@compilade.net> * llama: rwkv6: Apply code style and misc changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * converter: Use class name ``Rwkv6Model`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Make use of key ``feed_forward_length`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Keep ``time_mix_w1/w2`` as F32 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Remove unused nodes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Apply code format changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add lora for some supported tensors Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * rwkv : speed-up tokenization using trie * minor : style + indentation * llama: rwkv6: Avoid division by zero Co-authored-by: compilade <git@compilade.net> * ggml: rwkv_wkv: Avoid copying the state Signed-off-by: Molly Sophia <mollysophia379@gmail.com> --------- Signed-off-by: Molly Sophia <mollysophia379@gmail.com> Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com> Co-authored-by: compilade <git@compilade.net> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 14:38:17 +00:00
GGML_API struct ggml_tensor * ggml_exp(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_exp_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
// group normalize along ne0*ne1*n_groups
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
float eps);
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
float eps);
2023-06-25 11:22:21 +00:00
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float eps);
// A: k columns, n rows => [ne03, ne02, n, k]
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
GGML_API struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// change the precision of a matrix multiplication
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
GGML_API void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
// indirect matrix multiplication
GGML_API struct ggml_tensor * ggml_mul_mat_id(
struct ggml_context * ctx,
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
struct ggml_tensor * as,
struct ggml_tensor * b,
struct ggml_tensor * ids);
2023-06-25 11:22:21 +00:00
// A: m columns, n rows,
// B: p columns, n rows,
// result is m columns, p rows
GGML_API struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
2022-09-25 18:23:15 +00:00
//
// operations on tensors without backpropagation
2022-09-25 18:23:15 +00:00
//
GGML_API struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset); // in bytes
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_API struct ggml_tensor * ggml_set_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset); // in bytes
GGML_API struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset); // in bytes
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset); // in bytes
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset); // in bytes
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset); // in bytes
// a -> b, return view(b)
GGML_API struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
GGML_API struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type);
// make contiguous
GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a);
// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0);
GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);
GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_API struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0);
GGML_API struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_API struct ggml_tensor * ggml_reshape_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// offset in bytes
GGML_API struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
size_t offset);
GGML_API struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
size_t nb1, // row stride in bytes
size_t offset);
GGML_API struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
GGML_API struct ggml_tensor * ggml_view_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3);
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
GGML_API struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a);
// supports 3D: a->ne[2] == b->ne[1]
GGML_API struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a, // data
struct ggml_tensor * b); // row indices
GGML_API struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // gradients of ggml_get_rows result
struct ggml_tensor * b, // row indices
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
GGML_API struct ggml_tensor * ggml_diag(
struct ggml_context * ctx,
struct ggml_tensor * a);
// set elements above the diagonal to -INF
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// set elements above the diagonal to 0
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
GGML_API struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// fused soft_max(a*scale + mask*(ALiBi slope))
// mask is optional
// max_bias = 0.0f for no ALiBi
GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias);
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// rotary position embedding
ggml : move rope type enum to ggml.h (llama/8949) * ggml : move rope type enum to ggml.h This commit moves the `llama_rope_type` enum from `llama.h` to `ggml.h` and changes its name to `ggml_rope_type`. The motivation for this change is to address the TODO in `llama.h` and use the enum in ggml. Note: This commit does not change the `mode` parameter to be of type `enum ggml_rope_type`. The name `mode` and its usage suggest that it might be more generic and possibly used as a bit field for multiple flags. Further investigation/discussion may be needed to determine if `mode` should be restricted to RoPE types. * squash! ggml : move rope type enum to ggml.h This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from ggml.h, and back the llama_rope_type enum. I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is safe to remove it yet. * squash! ggml : move rope type enum to ggml.h This commit removes the enum ggml_rope_type from ggml.h and replaces it with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has been updated to reflect this change. * squash! ggml : move rope type enum to ggml.h This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX macro/define to be passed to the shader compiler. * squash! ggml : move rope type enum to ggml.h This commit fixes the editorconfig-checker warnings. * squash! ggml : move rope type enum to ggml.h Update comment for ggml_rope function. * Revert "squash! ggml : move rope type enum to ggml.h" This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6. * squash! ggml : move rope type enum to ggml.h Add GGML_ROPE_TYPE_NEOX to rope_common.comp. * remove extra line --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-08-13 19:13:15 +00:00
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
// if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
//
// b is an int32 vector with size a->ne[2], it contains the positions
GGML_API struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode);
// custom RoPE
// c is freq factors (e.g. phi3-128k), (optional)
GGML_API struct ggml_tensor * ggml_rope_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow),
"use ggml_rope_ext instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow),
"use ggml_rope_ext_inplace instead");
// compute correction dims for YaRN RoPE scaling
GGML_API void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
GGML_API struct ggml_tensor * ggml_rope_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // gradients of ggml_rope result
struct ggml_tensor * b, // positions
struct ggml_tensor * c, // freq factors
int n_dims,
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// clamp
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_clamp(
struct ggml_context * ctx,
struct ggml_tensor * a,
float min,
float max);
// im2col
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
GGML_API struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1, // dilation dimension 1
bool is_2D,
enum ggml_type dst_type);
GGML_API struct ggml_tensor * ggml_im2col_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // gradient of im2col output
int64_t * ne, // shape of im2col input
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1, // dilation dimension 1
bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
// conv_1d with padding = half
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s, // stride
int d); // dilation
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
GGML_API struct ggml_tensor * ggml_conv_2d(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
2023-06-25 11:22:21 +00:00
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
// example:
// a: 16 16 3 768
// b: 1024 1024 3 1
// res: 64 64 768 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// kernel size is a->ne[0] x a->ne[1]
// stride is 1
// padding is half
// example:
// a: 3 3 256 256
// b: 64 64 256 1
// res: 64 64 256 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride);
enum ggml_op_pool {
GGML_OP_POOL_MAX,
GGML_OP_POOL_AVG,
GGML_OP_POOL_COUNT,
};
GGML_API struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0, // kernel size
int s0, // stride
int p0); // padding
// the result will have 2*p0 padding for the first dimension
// and 2*p1 padding for the second dimension
GGML_API struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1);
GGML_API struct ggml_tensor * ggml_pool_2d_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * af, // "a"/input used in forward pass
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1);
// nearest interpolate
// multiplies ne0 and ne1 by scale factor
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor);
// nearest interpolate
// nearest interpolate to specified dimensions
// used in tortoise.cpp
GGML_API struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3);
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_API struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0,
int p1,
int p2,
int p3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]
GGML_API struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period);
// sort rows
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
GGML_API struct ggml_tensor * ggml_argsort(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_sort_order order);
GGML_API struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step);
// top k elements per row
GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
#define GGML_KQ_MASK_PAD 32
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias,
float logit_softcap);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a);
// TODO: needs to be adapted to ggml_flash_attn_ext
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked);
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
GGML_API struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
2024-08-21 21:58:11 +00:00
struct ggml_tensor * sx,
struct ggml_tensor * c);
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
GGML_API struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
2024-08-21 21:58:11 +00:00
struct ggml_tensor * C);
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
2023-06-25 11:22:21 +00:00
// partition into non-overlapping windows with padding if needed
// example:
// a: 768 64 64 1
// w: 14
// res: 768 14 14 25
// used in sam
GGML_API struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w);
// reverse of ggml_win_part
// used in sam
GGML_API struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w);
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
// used in sam
GGML_API struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh);
// used in sam
GGML_API struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
llama : support RWKV v6 models (llama/8980) * convert_hf_to_gguf: Add support for RWKV v6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add RWKV tokenization * Fix build Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Do not use special tokens when matching in RWKV tokenizer * Fix model loading * Add (broken) placeholder graph builder for RWKV * Add workaround for kv cache * Add logits conversion to rwkv5 * Add rwkv5 layer norms * Add time mix KVRG & correct merge mistake * Add remaining time mix parameters * Add time mix output loading * Add placeholder llm_build_time_mix * Fix build Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Load more tensors for rwkv v6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix rwkv tokenizer Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * ggml: Add unary operator Exp Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * RWKV v6 graph building Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add ``rescale_every_n_layers`` parameter Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add ``wkv.head_size`` key for RWKV so it doesn't reuse Mamba ssm parameters Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix offloading layers to CUDA Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix parallel inferencing for RWKV Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Remove trailing whitespaces Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * build_rwkv: Avoid using inplace operations Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * convert_hf_to_gguf: rwkv: Avoid using ``eval`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * ggml: Add backward computation for unary op ``exp`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * build_rwkv6: Simplify graph Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Detect model.type Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Fix tensor loading for 7B/14B models Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Fix group_norm assertion failure with Metal Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Clean up Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add quantization tensor exclusion Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Use the new advanced batch splits Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update src/llama.cpp Co-authored-by: compilade <git@compilade.net> * llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm`` Co-authored-by: compilade <git@compilade.net> * llama: rwkv6: Apply code style and misc changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * converter: Use class name ``Rwkv6Model`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Make use of key ``feed_forward_length`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim`` Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Keep ``time_mix_w1/w2`` as F32 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Remove unused nodes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Apply code format changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * llama: rwkv6: Add lora for some supported tensors Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * rwkv : speed-up tokenization using trie * minor : style + indentation * llama: rwkv6: Avoid division by zero Co-authored-by: compilade <git@compilade.net> * ggml: rwkv_wkv: Avoid copying the state Signed-off-by: Molly Sophia <mollysophia379@gmail.com> --------- Signed-off-by: Molly Sophia <mollysophia379@gmail.com> Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com> Co-authored-by: compilade <git@compilade.net> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 14:38:17 +00:00
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * r,
struct ggml_tensor * tf,
struct ggml_tensor * td,
struct ggml_tensor * state);
2023-06-25 11:22:21 +00:00
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
2023-06-25 11:22:21 +00:00
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2 instead");
2022-09-25 18:23:15 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1 instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2 instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3 instead");
2023-06-25 11:22:21 +00:00
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3_inplace instead");
// custom operators v2
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
#define GGML_N_TASKS_MAX (-1)
// n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
GGML_API struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_t fun,
int n_tasks,
void * userdata);
2023-06-25 11:22:21 +00:00
// loss function
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a, // logits
struct ggml_tensor * b); // labels
2023-06-25 11:22:21 +00:00
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // logits
struct ggml_tensor * b, // labels
struct ggml_tensor * c); // gradients of cross_entropy_loss result
2023-06-25 11:22:21 +00:00
2024-09-20 12:36:38 +00:00
// AdamW optimizer step
// Paper: https://arxiv.org/pdf/1711.05101v3.pdf
// PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
GGML_API struct ggml_tensor * ggml_opt_step_adamw(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * grad,
struct ggml_tensor * m,
struct ggml_tensor * v,
struct ggml_tensor * adamw_params); // parameters such a the learning rate
2024-09-20 12:36:38 +00:00
//
// automatic differentiation
//
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
struct ggml_context * ctx_compute, // context for gradient computation
struct ggml_cgraph * cgraph,
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
2023-06-25 11:22:21 +00:00
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
2023-06-25 11:22:21 +00:00
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
2022-09-25 18:23:15 +00:00
// dump the graph into a file using the dot format
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
2022-09-25 18:23:15 +00:00
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
//
// quantization
//
2022-10-25 17:18:26 +00:00
// - ggml_quantize_init can be called multiple times with the same type
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
// automatically called by ggml_quantize_chunk for convenience
//
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
// call this at the end of the program to avoid memory leaks
//
// note: these are thread-safe
//
GGML_API void ggml_quantize_init(enum ggml_type type);
GGML_API void ggml_quantize_free(void);
// some quantization type cannot be used without an importance matrix
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
// calls ggml_quantize_init internally (i.e. can allocate memory)
GGML_API size_t ggml_quantize_chunk(
enum ggml_type type,
const float * src,
void * dst,
int64_t start,
int64_t nrows,
int64_t n_per_row,
const float * imatrix);
//
// gguf
//
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
2023-09-15 11:49:56 +00:00
GGML_API int gguf_get_version (const struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
2023-09-15 11:49:56 +00:00
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
// will abort if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
2023-09-15 11:49:56 +00:00
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
// removes key if it exists
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
// manage tensor info
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
2023-09-15 11:49:56 +00:00
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
2023-09-15 11:49:56 +00:00
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
#else
#define GGML_RESTRICT restrict
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
struct ggml_type_traits {
const char * type_name;
int64_t blck_size;
int64_t blck_size_interleave; // interleave elements in blocks
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float;
ggml_from_float_t from_float_ref;
};
GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
// ggml threadpool
// TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
// the goal should be to create an API that other backends can use move everything to the ggml base
// scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
2022-09-25 18:23:15 +00:00
#ifdef __cplusplus
}
#endif