whisper.cpp/ggml.c

21468 lines
683 KiB
C
Raw Normal View History

#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include "ggml-impl.h"
#include "ggml-quants.h"
2023-06-25 11:22:21 +00:00
2022-10-09 14:26:37 +00:00
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
2022-10-05 18:34:41 +00:00
#include <alloca.h>
2022-10-09 14:26:37 +00:00
#endif
2022-09-25 18:23:15 +00:00
#include <assert.h>
#include <errno.h>
2022-09-25 18:23:15 +00:00
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
2022-09-25 18:23:15 +00:00
#include <stdio.h>
#include <float.h>
#include <limits.h>
2023-06-25 11:22:21 +00:00
#include <stdarg.h>
#include <signal.h>
#if defined(__gnu_linux__)
#include <syscall.h>
#endif
2023-06-25 11:22:21 +00:00
#ifdef GGML_USE_METAL
#include <unistd.h>
#endif
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnings
// these functions are never going away, anyway
#pragma warning(disable: 4996)
2023-06-25 11:22:21 +00:00
#endif
#if defined(_WIN32)
#include <windows.h>
typedef volatile LONG atomic_int;
typedef atomic_int atomic_bool;
static void atomic_store(atomic_int * ptr, LONG val) {
InterlockedExchange(ptr, val);
}
static LONG atomic_load(atomic_int * ptr) {
return InterlockedCompareExchange(ptr, 0, 0);
}
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
return InterlockedExchangeAdd(ptr, inc);
}
static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
return atomic_fetch_add(ptr, -(dec));
}
typedef HANDLE pthread_t;
typedef DWORD thread_ret_t;
static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
(void) unused;
2022-11-20 20:43:32 +00:00
HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
if (handle == NULL)
{
return EAGAIN;
}
*out = handle;
return 0;
}
static int pthread_join(pthread_t thread, void * unused) {
(void) unused;
int ret = (int) WaitForSingleObject(thread, INFINITE);
CloseHandle(thread);
return ret;
}
2022-10-30 17:19:24 +00:00
static int sched_yield (void) {
Sleep (0);
return 0;
}
2022-10-11 17:57:52 +00:00
#else
2022-09-25 18:23:15 +00:00
#include <pthread.h>
2022-10-11 17:57:52 +00:00
#include <stdatomic.h>
typedef void * thread_ret_t;
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
2022-10-11 17:57:52 +00:00
#endif
2022-09-25 18:23:15 +00:00
#if defined(__APPLE__)
#include <TargetConditionals.h>
2022-12-08 05:34:19 +00:00
#endif
#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
(!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
#include <sys/wait.h>
void ggml_print_backtrace(void) {
/*
#include <execinfo.h>
#include <dlfcn.h>
void * trace[100];
int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
*/
// backtrack_symbols does not show line numbers, use gdb instead
char attach[32];
snprintf(attach, sizeof(attach), "attach %d", getpid());
int pid = fork();
if (pid == 0) {
execlp("gdb", "gdb", "--batch",
"-ex", "set style enabled on",
"-ex", attach,
"-ex", "bt -frame-info source-and-location",
"-ex", "detach",
"-ex", "quit",
(char *) NULL);
} else {
waitpid(pid, NULL, 0);
}
}
#else
void ggml_print_backtrace(void) {
// platform not supported
}
#endif
/*#define GGML_PERF*/
2022-09-25 18:23:15 +00:00
#define GGML_DEBUG 0
#define GGML_GELU_FP16
2023-06-25 11:22:21 +00:00
#define GGML_GELU_QUICK_FP16
#define GGML_SILU_FP16
// #define GGML_CROSS_ENTROPY_EXP_FP16
// #define GGML_FLASH_ATTN_EXP_FP16
#define GGML_SOFT_MAX_UNROLL 4
#define GGML_VEC_DOT_UNROLL 2
#define GGML_VEC_MAD_UNROLL 32
//
// logging
//
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
#define GGML_PRINT(...) printf(__VA_ARGS__)
//
// end of logging block
//
#ifdef GGML_USE_ACCELERATE
// uncomment to use vDSP for soft max computation
// note: not sure if it is actually faster
//#define GGML_SOFT_MAX_ACCELERATE
#endif
2022-10-05 18:34:41 +00:00
#if defined(_MSC_VER) || defined(__MINGW32__)
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
#else
inline static void * ggml_aligned_malloc(size_t size) {
if (size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
return NULL;
}
void * aligned_memory = NULL;
#ifdef GGML_USE_CPU_HBM
int result = hbw_posix_memalign(&aligned_memory, 16, size);
#elif GGML_USE_METAL
int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
2023-06-25 11:22:21 +00:00
#else
int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
2023-06-25 11:22:21 +00:00
#endif
if (result != 0) {
// Handle allocation failure
2023-06-25 11:22:21 +00:00
const char *error_desc = "unknown allocation error";
switch (result) {
case EINVAL:
error_desc = "invalid alignment value";
break;
case ENOMEM:
error_desc = "insufficient memory";
break;
}
GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
GGML_ASSERT(false);
return NULL;
}
return aligned_memory;
}
#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
#ifdef GGML_USE_CPU_HBM
#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
#else
#define GGML_ALIGNED_FREE(ptr) free(ptr)
#endif
#endif
inline static void * ggml_malloc(size_t size) {
if (size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
return NULL;
}
void * result = malloc(size);
if (result == NULL) {
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
GGML_ASSERT(false);
}
return result;
}
// calloc
inline static void * ggml_calloc(size_t num, size_t size) {
if (num == 0 || size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
return NULL;
}
void * result = calloc(num, size);
if (result == NULL) {
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
GGML_ASSERT(false);
}
return result;
}
#define GGML_MALLOC(size) ggml_malloc(size)
#define GGML_CALLOC(num, size) ggml_calloc(num, size)
#define GGML_FREE(ptr) free(ptr)
#define UNUSED GGML_UNUSED
2022-09-25 18:23:15 +00:00
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
#if defined(GGML_USE_ACCELERATE)
2022-09-25 18:23:15 +00:00
#include <Accelerate/Accelerate.h>
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
#include "ggml-opencl.h"
#elif defined(GGML_USE_VULKAN)
#include "ggml-vulkan.h"
#endif
#elif defined(GGML_USE_OPENBLAS)
#if defined(GGML_BLAS_USE_MKL)
#include <mkl.h>
#else
#include <cblas.h>
#endif
#elif defined(GGML_USE_CUBLAS)
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#elif defined(GGML_USE_VULKAN)
#include "ggml-vulkan.h"
ggml : add unified SYCL backend for Intel GPUs (llama/2690) * first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 15:56:23 +00:00
#elif defined(GGML_USE_SYCL)
#include "ggml-sycl.h"
2022-09-25 18:23:15 +00:00
#endif
// floating point type used to accumulate sums
typedef double ggml_float;
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
//
// global data
//
// precomputed gelu table for f16 (128 KB)
static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
2023-06-25 11:22:21 +00:00
// precomputed quick gelu table for f16 (128 KB)
static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
2023-06-25 11:22:21 +00:00
// precomputed silu table for f16 (128 KB)
static ggml_fp16_t ggml_table_silu_f16[1 << 16];
// precomputed exp table for f16 (128 KB)
static ggml_fp16_t ggml_table_exp_f16[1 << 16];
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
float ggml_table_f32_f16[1 << 16];
const char * ggml_status_to_string(enum ggml_status status) {
switch (status) {
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
2024-03-04 18:53:27 +00:00
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
case GGML_STATUS_SUCCESS: return "GGML status: success";
case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
}
2024-03-04 18:53:27 +00:00
return "GGML status: unknown";
}
// note: do not use these inside ggml.c
// these are meant to be used via the ggml.h API
float ggml_fp16_to_fp32(ggml_fp16_t x) {
return GGML_FP16_TO_FP32(x);
}
ggml_fp16_t ggml_fp32_to_fp16(float x) {
return GGML_FP32_TO_FP16(x);
}
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
for (int i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
int i = 0;
#if defined(__F16C__)
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storeu_si128((__m128i *)(y + i), y_vec);
}
for(; i + 3 < n; i += 4) {
__m128 x_vec = _mm_loadu_ps(x + i);
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_FP16(x[i]);
}
}
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
}
2022-09-25 18:23:15 +00:00
//
// timing
//
#if defined(_MSC_VER) || defined(__MINGW32__)
2023-06-25 11:22:21 +00:00
static int64_t timer_freq, timer_start;
2022-10-11 17:57:52 +00:00
void ggml_time_init(void) {
2023-06-25 11:22:21 +00:00
LARGE_INTEGER t;
QueryPerformanceFrequency(&t);
timer_freq = t.QuadPart;
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
// and the uptime is high enough.
// We subtract the program start time to reduce the likelihood of that happening.
QueryPerformanceCounter(&t);
timer_start = t.QuadPart;
2022-10-11 17:57:52 +00:00
}
int64_t ggml_time_ms(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
2023-06-25 11:22:21 +00:00
return ((t.QuadPart-timer_start) * 1000) / timer_freq;
2022-10-11 17:57:52 +00:00
}
int64_t ggml_time_us(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
2023-06-25 11:22:21 +00:00
return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
2022-10-11 17:57:52 +00:00
}
#else
void ggml_time_init(void) {}
2022-09-25 18:23:15 +00:00
int64_t ggml_time_ms(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
}
int64_t ggml_time_us(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
}
2022-10-11 17:57:52 +00:00
#endif
2022-09-25 18:23:15 +00:00
int64_t ggml_cycles(void) {
return clock();
}
int64_t ggml_cycles_per_ms(void) {
return CLOCKS_PER_SEC/1000;
}
#ifdef GGML_PERF
#define ggml_perf_time_ms() ggml_time_ms()
#define ggml_perf_time_us() ggml_time_us()
#define ggml_perf_cycles() ggml_cycles()
#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
#else
#define ggml_perf_time_ms() 0
#define ggml_perf_time_us() 0
#define ggml_perf_cycles() 0
#define ggml_perf_cycles_per_ms() 0
#endif
//
// cache line
//
#if defined(__cpp_lib_hardware_interference_size)
#define CACHE_LINE_SIZE hardware_destructive_interference_size
2022-09-25 18:23:15 +00:00
#else
#if defined(__POWER9_VECTOR__)
#define CACHE_LINE_SIZE 128
#else
#define CACHE_LINE_SIZE 64
2022-09-25 18:23:15 +00:00
#endif
#endif
2022-09-25 18:23:15 +00:00
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
2022-09-25 18:23:15 +00:00
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_I8] = {
.type_name = "i8",
.blck_size = 1,
.type_size = sizeof(int8_t),
.is_quantized = false,
},
[GGML_TYPE_I16] = {
.type_name = "i16",
.blck_size = 1,
.type_size = sizeof(int16_t),
.is_quantized = false,
},
[GGML_TYPE_I32] = {
.type_name = "i32",
.blck_size = 1,
.type_size = sizeof(int32_t),
.is_quantized = false,
},
[GGML_TYPE_F32] = {
.type_name = "f32",
.blck_size = 1,
.type_size = sizeof(float),
.is_quantized = false,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
.vec_dot_type = GGML_TYPE_F32,
.nrows = 1,
},
[GGML_TYPE_F16] = {
.type_name = "f16",
.blck_size = 1,
.type_size = sizeof(ggml_fp16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
.vec_dot_type = GGML_TYPE_F16,
.nrows = 1,
},
[GGML_TYPE_Q4_0] = {
.type_name = "q4_0",
.blck_size = QK4_0,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_0,
.from_float = quantize_row_q4_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
.vec_dot = ggml_vec_dot_q4_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[GGML_TYPE_Q4_1] = {
.type_name = "q4_1",
.blck_size = QK4_1,
.type_size = sizeof(block_q4_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_1,
.from_float = quantize_row_q4_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
.vec_dot = ggml_vec_dot_q4_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[4] = { // GGML_TYPE_Q4_2
.type_name = "DEPRECATED",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
.to_float = NULL,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_COUNT,
.nrows = 1,
},
[5] = { // GGML_TYPE_Q4_3
.type_name = "DEPRECATED",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
.to_float = NULL,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_COUNT,
.nrows = 1,
},
[GGML_TYPE_Q5_0] = {
.type_name = "q5_0",
.blck_size = QK5_0,
.type_size = sizeof(block_q5_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_0,
.from_float = quantize_row_q5_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
.vec_dot = ggml_vec_dot_q5_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
},
[GGML_TYPE_Q5_1] = {
.type_name = "q5_1",
.blck_size = QK5_1,
.type_size = sizeof(block_q5_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_1,
.from_float = quantize_row_q5_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
.vec_dot = ggml_vec_dot_q5_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
.nrows = 1,
},
[GGML_TYPE_Q8_0] = {
.type_name = "q8_0",
.blck_size = QK8_0,
.type_size = sizeof(block_q8_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q8_0,
.from_float = quantize_row_q8_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
.vec_dot = ggml_vec_dot_q8_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[GGML_TYPE_Q8_1] = {
.type_name = "q8_1",
.blck_size = QK8_1,
.type_size = sizeof(block_q8_1),
.is_quantized = true,
.from_float = quantize_row_q8_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
.vec_dot_type = GGML_TYPE_Q8_1,
.nrows = 1,
},
2023-06-25 11:22:21 +00:00
[GGML_TYPE_Q2_K] = {
.type_name = "q2_K",
.blck_size = QK_K,
.type_size = sizeof(block_q2_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q2_K,
.from_float = quantize_row_q2_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
.vec_dot = ggml_vec_dot_q2_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q3_K] = {
.type_name = "q3_K",
.blck_size = QK_K,
.type_size = sizeof(block_q3_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q3_K,
.from_float = quantize_row_q3_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
.vec_dot = ggml_vec_dot_q3_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q4_K] = {
.type_name = "q4_K",
.blck_size = QK_K,
.type_size = sizeof(block_q4_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_K,
.from_float = quantize_row_q4_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
.vec_dot = ggml_vec_dot_q4_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q5_K] = {
.type_name = "q5_K",
.blck_size = QK_K,
.type_size = sizeof(block_q5_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_K,
.from_float = quantize_row_q5_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
.vec_dot = ggml_vec_dot_q5_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q6_K] = {
.type_name = "q6_K",
.blck_size = QK_K,
.type_size = sizeof(block_q6_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q6_K,
.from_float = quantize_row_q6_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
.vec_dot = ggml_vec_dot_q6_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
[GGML_TYPE_IQ2_XXS] = {
.type_name = "iq2_xxs",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
.from_float = NULL,
.from_float_reference = NULL,
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
.vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
},
[GGML_TYPE_IQ2_XS] = {
.type_name = "iq2_xs",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq2_xs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ3_XXS] = {
.type_name = "iq3_xxs",
.blck_size = QK_K,
.type_size = sizeof(block_iq3_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
.from_float = quantize_row_iq3_xxs,
.from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
.vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
[GGML_TYPE_IQ3_S] = {
.type_name = "iq3_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq3_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq3_s,
.from_float = quantize_row_iq3_s,
.from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
.vec_dot = ggml_vec_dot_iq3_s_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ2_S] = {
.type_name = "iq2_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_s,
.from_float = quantize_row_iq2_s,
.from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
.vec_dot = ggml_vec_dot_iq2_s_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ1_S] = {
.type_name = "iq1_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq1_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq1_s,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq1_s_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
2024-02-21 14:19:39 +00:00
[GGML_TYPE_IQ4_NL] = {
.type_name = "iq4_nl",
.blck_size = QK4_NL,
.type_size = sizeof(block_iq4_nl),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
.from_float = quantize_row_iq4_nl,
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
.vec_dot = ggml_vec_dot_iq4_nl_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
},
[GGML_TYPE_IQ4_XS] = {
.type_name = "iq4_xs",
#if QK_K == 64
.blck_size = QK4_NL,
#else
.blck_size = QK_K,
#endif
.type_size = sizeof(block_iq4_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
.from_float = quantize_row_iq4_xs,
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
#if QK_K == 64
.vec_dot_type = GGML_TYPE_Q8_0,
#else
.vec_dot_type = GGML_TYPE_Q8_K,
#endif
.nrows = 1,
},
[GGML_TYPE_Q8_K] = {
.type_name = "q8_K",
.blck_size = QK_K,
.type_size = sizeof(block_q8_K),
.is_quantized = true,
.from_float = quantize_row_q8_K,
}
};
// For internal test use
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
GGML_ASSERT(type < GGML_TYPE_COUNT);
return type_traits[type];
}
2022-09-25 18:23:15 +00:00
//
// simd mappings
2022-09-25 18:23:15 +00:00
//
#if defined(__ARM_NEON)
#if !defined(__aarch64__)
// 64-bit compatibility
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
#endif
#endif
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
//
// GGML_F32_STEP / GGML_F16_STEP
// number of elements to process in a single step
//
// GGML_F32_EPR / GGML_F16_EPR
// number of elements to fit in a single register
//
2022-09-25 18:23:15 +00:00
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
2022-09-25 18:23:15 +00:00
// F32 NEON
2022-09-25 18:23:15 +00:00
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
2022-09-25 18:23:15 +00:00
#define GGML_F32x4 float32x4_t
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
#define GGML_F32x4_LOAD vld1q_f32
#define GGML_F32x4_STORE vst1q_f32
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
res = GGML_F32x4_REDUCE_ONE(x[0]); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 NEON
2022-09-25 18:23:15 +00:00
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
2023-06-25 11:22:21 +00:00
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
2022-09-25 18:23:15 +00:00
#elif defined(__AVX__)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
2022-09-25 18:23:15 +00:00
// F32 AVX
2022-09-25 18:23:15 +00:00
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
2022-09-25 18:23:15 +00:00
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO _mm256_setzero_ps()
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
#define GGML_F32x8_LOAD _mm256_loadu_ps
#define GGML_F32x8_STORE _mm256_storeu_ps
#if defined(__FMA__)
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
#else
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
#endif
#define GGML_F32x8_ADD _mm256_add_ps
#define GGML_F32x8_MUL _mm256_mul_ps
#define GGML_F32x8_REDUCE(res, x) \
do { \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
_mm256_extractf128_ps(x[0], 1)); \
const __m128 t1 = _mm_hadd_ps(t0, t0); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 AVX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
#if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
float arr[8];
_mm256_storeu_ps(arr, y);
for (int i = 0; i < 8; i++)
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
#endif
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD _mm256_add_ps
#define GGML_F32Cx8_MUL _mm256_mul_ps
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
2022-09-25 18:23:15 +00:00
#elif defined(__POWER9_VECTOR__)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
// F32 POWER9
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 vector float
#define GGML_F32x4_ZERO 0.0f
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
res = vec_extract(x[0], 0) + \
vec_extract(x[0], 1) + \
vec_extract(x[0], 2) + \
vec_extract(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 POWER9
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
// Use vec_xl, not vec_ld, in case the load address is not aligned.
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
vec_extract_fp32_from_shortl(vec_xl(0, p))
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
r[i - GGML_ENDIAN_BYTE(0)]), \
0, p - GGML_F16_EPR)
2022-09-25 18:23:15 +00:00
#elif defined(__wasm_simd128__)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
// F32 WASM
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 v128_t
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F32x4_LOAD wasm_v128_load
#define GGML_F32x4_STORE wasm_v128_store
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
#define GGML_F32x4_ADD wasm_f32x4_add
#define GGML_F32x4_MUL wasm_f32x4_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 WASM
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(p[0]);
tmp[1] = GGML_FP16_TO_FP32(p[1]);
tmp[2] = GGML_FP16_TO_FP32(p[2]);
tmp[3] = GGML_FP16_TO_FP32(p[3]);
return wasm_v128_load(tmp);
}
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
float tmp[4];
wasm_v128_store(tmp, x);
p[0] = GGML_FP32_TO_FP16(tmp[0]);
p[1] = GGML_FP32_TO_FP16(tmp[1]);
p[2] = GGML_FP32_TO_FP16(tmp[2]);
p[3] = GGML_FP32_TO_FP16(tmp[3]);
}
#define GGML_F16x4 v128_t
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
#define GGML_F16x4_FMA GGML_F32x4_FMA
#define GGML_F16x4_ADD wasm_f32x4_add
#define GGML_F16x4_MUL wasm_f32x4_mul
#define GGML_F16x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F16_VEC GGML_F16x4
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
2022-11-23 11:23:24 +00:00
#elif defined(__SSE3__)
#define GGML_SIMD
// F32 SSE
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO _mm_setzero_ps()
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
#define GGML_F32x4_LOAD _mm_loadu_ps
#define GGML_F32x4_STORE _mm_storeu_ps
#if defined(__FMA__)
// TODO: Does this work?
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
#else
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
#endif
#define GGML_F32x4_ADD _mm_add_ps
#define GGML_F32x4_MUL _mm_mul_ps
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
}
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 SSE
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
tmp[1] = GGML_FP16_TO_FP32(x[1]);
tmp[2] = GGML_FP16_TO_FP32(x[2]);
tmp[3] = GGML_FP16_TO_FP32(x[3]);
return _mm_loadu_ps(tmp);
}
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
float arr[4];
_mm_storeu_ps(arr, y);
x[0] = GGML_FP32_TO_FP16(arr[0]);
x[1] = GGML_FP32_TO_FP16(arr[1]);
x[2] = GGML_FP32_TO_FP16(arr[2]);
x[3] = GGML_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD _mm_add_ps
#define GGML_F32Cx4_MUL _mm_mul_ps
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR
// number of registers to use per step
#ifdef GGML_SIMD
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif
//
// fundamental operations
//
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
#ifdef GGML_SIMD
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
#else
// scalar
ggml_float sumf = 0.0;
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(x[i]*y[i]);
}
#endif
*s = sumf;
}
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#endif
*s = sumf;
}
// compute GGML_VEC_DOT_UNROLL dot products at once
// xs - x row stride in bytes
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#endif
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
s[i] = sumf[i];
}
}
inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
}
// xs and vs are byte strides of x and v
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
const float * restrict x[GGML_VEC_MAD_UNROLL];
const float * restrict v[GGML_VEC_MAD_UNROLL];
for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
x[i] = (const float *) ((const char *) xv + i*xs);
v[i] = (const float *) ((const char *) vv + i*vs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#else
// scalar
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#endif
}
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] *= v;
}
#endif
}
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
// TODO: optimize performance
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
2022-09-25 18:23:15 +00:00
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
2022-09-25 18:23:15 +00:00
inline static float ggml_gelu_f32(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
2022-09-25 18:23:15 +00:00
for (int i = 0; i < n; ++i) {
y[i] = ggml_table_gelu_f16[i16[i]];
}
}
#ifdef GGML_GELU_FP16
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
if (x[i] <= -10.0f) {
y[i] = 0.0f;
} else if (x[i] >= 10.0f) {
y[i] = x[i];
} else {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
}
}
}
#else
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_f32(x[i]);
}
}
#endif
2023-06-25 11:22:21 +00:00
inline static float ggml_gelu_quick_f32(float x) {
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
}
//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
// const uint16_t * i16 = (const uint16_t *) x;
// for (int i = 0; i < n; ++i) {
// y[i] = ggml_table_gelu_quick_f16[i16[i]];
2023-06-25 11:22:21 +00:00
// }
//}
#ifdef GGML_GELU_QUICK_FP16
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
2023-06-25 11:22:21 +00:00
}
}
#else
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_quick_f32(x[i]);
}
}
#endif
// Sigmoid Linear Unit (SiLU) function
inline static float ggml_silu_f32(float x) {
return x/(1.0f + expf(-x));
}
//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
// const uint16_t * i16 = (const uint16_t *) x;
// for (int i = 0; i < n; ++i) {
// y[i] = ggml_table_silu_f16[i16[i]];
// }
//}
#ifdef GGML_SILU_FP16
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
}
}
#else
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]);
}
}
#endif
inline static float ggml_silu_backward_f32(float x, float dy) {
const float s = 1.0f/(1.0f + expf(-x));
return dy*s*(1.0f + x*(1.0f - s));
}
#ifdef GGML_SILU_FP16
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
for (int i = 0; i < n; ++i) {
// we did not use x[i] to compute forward silu but its f16 equivalent
// take derivative at f16 of x[i]:
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
float usedx = GGML_FP16_TO_FP32(fp16);
dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
}
}
#else
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
for (int i = 0; i < n; ++i) {
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
}
}
#endif
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
#else
vDSP_sve(x, 1, s, n);
#endif
}
inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
}
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
float sum = 0.0f;
for (int i = 0; i < n; ++i) {
sum += GGML_FP16_TO_FP32(x[i]);
}
*s = sum;
}
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
float max = -INFINITY;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
*s = max;
#else
vDSP_maxv(x, 1, s, n);
#endif
}
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
ggml_vec_norm_f32(n, s, x);
*s = 1.f/(*s);
}
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
float max = -INFINITY;
int idx = 0;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
if (max == x[i]) { idx = i; }
}
*s = idx;
}
2022-09-25 18:23:15 +00:00
//
// data types
//
2023-06-25 11:22:21 +00:00
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
2022-09-25 18:23:15 +00:00
"NONE",
"DUP",
"ADD",
"ADD1",
"ACC",
2022-09-25 18:23:15 +00:00
"SUB",
"MUL",
"DIV",
"SQR",
"SQRT",
"LOG",
2022-09-25 18:23:15 +00:00
"SUM",
"SUM_ROWS",
2022-09-25 18:23:15 +00:00
"MEAN",
"ARGMAX",
2022-09-25 18:23:15 +00:00
"REPEAT",
2023-06-25 11:22:21 +00:00
"REPEAT_BACK",
"CONCAT",
"SILU_BACK",
2022-09-25 18:23:15 +00:00
"NORM",
"RMS_NORM",
"RMS_NORM_BACK",
"GROUP_NORM",
2022-09-25 18:23:15 +00:00
"MUL_MAT",
"MUL_MAT_ID",
2023-06-25 11:22:21 +00:00
"OUT_PROD",
2022-09-25 18:23:15 +00:00
"SCALE",
"SET",
2022-09-25 18:23:15 +00:00
"CPY",
"CONT",
2022-09-25 18:23:15 +00:00
"RESHAPE",
"VIEW",
"PERMUTE",
"TRANSPOSE",
"GET_ROWS",
"GET_ROWS_BACK",
"DIAG",
2022-09-25 18:23:15 +00:00
"DIAG_MASK_INF",
"DIAG_MASK_ZERO",
2022-09-25 18:23:15 +00:00
"SOFT_MAX",
2023-06-25 11:22:21 +00:00
"SOFT_MAX_BACK",
2022-09-25 18:23:15 +00:00
"ROPE",
"ROPE_BACK",
"ALIBI",
"CLAMP",
"CONV_TRANSPOSE_1D",
"IM2COL",
"CONV_TRANSPOSE_2D",
"POOL_1D",
"POOL_2D",
"UPSCALE",
"PAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
"LEAKY_RELU",
"FLASH_ATTN",
"FLASH_FF",
2023-06-25 11:22:21 +00:00
"FLASH_ATTN_BACK",
"WIN_PART",
"WIN_UNPART",
"GET_REL_POS",
"ADD_REL_POS",
"UNARY",
2023-04-14 16:20:39 +00:00
"MAP_UNARY",
"MAP_BINARY",
2022-09-25 18:23:15 +00:00
"MAP_CUSTOM1_F32",
"MAP_CUSTOM2_F32",
"MAP_CUSTOM3_F32",
2023-06-25 11:22:21 +00:00
"MAP_CUSTOM1",
"MAP_CUSTOM2",
"MAP_CUSTOM3",
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
2022-09-25 18:23:15 +00:00
"none",
"x",
"x+y",
"x+y",
"view(x,nb,offset)+=y->x",
2022-09-25 18:23:15 +00:00
"x-y",
"x*y",
"x/y",
"x^2",
"√x",
"log(x)",
2022-09-25 18:23:15 +00:00
"Σx",
"Σx_k",
2022-09-25 18:23:15 +00:00
"Σx/n",
"argmax(x)",
2022-09-25 18:23:15 +00:00
"repeat(x)",
2023-06-25 11:22:21 +00:00
"repeat_back(x)",
"concat(x, y)",
"silu_back(x)",
2022-09-25 18:23:15 +00:00
"norm(x)",
"rms_norm(x)",
"rms_norm_back(x)",
"group_norm(x)",
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
"X*Y",
"X[i]*Y",
2022-09-25 18:23:15 +00:00
"X*Y",
"x*v",
"y-\\>view(x)",
2022-09-25 18:23:15 +00:00
"x-\\>y",
"cont(x)",
2022-09-25 18:23:15 +00:00
"reshape(x)",
"view(x)",
"permute(x)",
"transpose(x)",
"get_rows(x)",
"get_rows_back(x)",
"diag(x)",
2022-09-25 18:23:15 +00:00
"diag_mask_inf(x)",
"diag_mask_zero(x)",
2022-09-25 18:23:15 +00:00
"soft_max(x)",
2023-06-25 11:22:21 +00:00
"soft_max_back(x)",
2022-09-25 18:23:15 +00:00
"rope(x)",
"rope_back(x)",
"alibi(x)",
"clamp(x)",
"conv_transpose_1d(x)",
"im2col(x)",
"conv_transpose_2d(x)",
"pool_1d(x)",
"pool_2d(x)",
"upscale(x)",
"pad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
"leaky_relu(x)",
"flash_attn(x)",
"flash_ff(x)",
2023-06-25 11:22:21 +00:00
"flash_attn_back(x)",
"win_part(x)",
"win_unpart(x)",
"get_rel_pos(x)",
"add_rel_pos(x)",
"unary(x)",
2023-04-14 16:20:39 +00:00
"f(x)",
"f(x,y)",
2023-06-25 11:22:21 +00:00
"custom_f32(x)",
"custom_f32(x,y)",
"custom_f32(x,y,z)",
2023-06-25 11:22:21 +00:00
"custom(x)",
"custom(x,y)",
"custom(x,y,z)",
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
2022-09-25 18:23:15 +00:00
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
2022-09-25 18:23:15 +00:00
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"ABS",
"SGN",
"NEG",
"STEP",
"TANH",
"ELU",
"RELU",
"GELU",
"GELU_QUICK",
"SILU",
"HARDSWISH",
"HARDSIGMOID",
};
static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
2022-09-25 18:23:15 +00:00
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
// WARN:
// Mis-configuration can lead to problem that's hard to reason about:
// * At best it crash or talks nosense.
// * At worst it talks slightly difference but hard to perceive.
//
// An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
// Take care about compile options (e.g., GGML_USE_xxx).
static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
static void ggml_setup_op_has_task_pass(void) {
{ // INIT
bool * p = GGML_OP_HAS_INIT;
p[GGML_OP_ACC ] = true;
p[GGML_OP_MUL_MAT ] = true;
p[GGML_OP_MUL_MAT_ID ] = true;
p[GGML_OP_OUT_PROD ] = true;
p[GGML_OP_SET ] = true;
p[GGML_OP_GET_ROWS_BACK ] = true;
p[GGML_OP_DIAG_MASK_INF ] = true;
p[GGML_OP_DIAG_MASK_ZERO ] = true;
p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
p[GGML_OP_FLASH_ATTN_BACK ] = true;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
p[GGML_OP_ADD_REL_POS ] = true;
}
{ // FINALIZE
bool * p = GGML_OP_HAS_FINALIZE;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
}
}
2022-09-25 18:23:15 +00:00
//
// ggml context
//
struct ggml_context {
size_t mem_size;
void * mem_buffer;
bool mem_buffer_owned;
bool no_alloc;
2023-06-25 11:22:21 +00:00
bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
2022-09-25 18:23:15 +00:00
int n_objects;
2022-09-25 18:23:15 +00:00
struct ggml_object * objects_begin;
struct ggml_object * objects_end;
struct ggml_scratch scratch;
struct ggml_scratch scratch_save;
2022-09-25 18:23:15 +00:00
};
struct ggml_context_container {
bool used;
struct ggml_context context;
};
//
// NUMA support
//
#define GGML_NUMA_MAX_NODES 8
#define GGML_NUMA_MAX_CPUS 512
struct ggml_numa_node {
uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
uint32_t n_cpus;
};
struct ggml_numa_nodes {
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
enum ggml_numa_strategy numa_strategy;
struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
uint32_t n_nodes;
uint32_t total_cpus; // hardware threads on system
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
uint32_t current_node; // node on which main process is execting
#if defined(__gnu_linux__)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
cpu_set_t cpuset; // cpuset from numactl
#else
uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
#endif
};
2022-09-25 18:23:15 +00:00
//
// ggml state
//
struct ggml_state {
struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
struct ggml_numa_nodes numa;
2022-09-25 18:23:15 +00:00
};
// global state
static struct ggml_state g_state;
static atomic_int g_state_barrier = 0;
2022-09-25 18:23:15 +00:00
// barrier via spin lock
inline static void ggml_critical_section_start(void) {
int processing = atomic_fetch_add(&g_state_barrier, 1);
while (processing > 0) {
// wait for other threads to finish
atomic_fetch_sub(&g_state_barrier, 1);
sched_yield(); // TODO: reconsider this
processing = atomic_fetch_add(&g_state_barrier, 1);
}
}
// TODO: make this somehow automatically executed
// some sort of "sentry" mechanism
inline static void ggml_critical_section_end(void) {
atomic_fetch_sub(&g_state_barrier, 1);
}
#if defined(__gnu_linux__)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
static cpu_set_t ggml_get_numa_affinity(void) {
cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
CPU_ZERO(&cpuset);
pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
return cpuset;
}
#else
static uint32_t ggml_get_numa_affinity(void) {
return 0; // no NUMA support
}
#endif
void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
if (g_state.numa.n_nodes > 0) {
fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
return;
}
#if defined(__gnu_linux__)
struct stat st;
char path[256];
int rv;
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
// set numa scheme
g_state.numa.numa_strategy = numa_flag;
GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
g_state.numa.cpuset = ggml_get_numa_affinity();
// enumerate nodes
while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) != 0) { break; }
++g_state.numa.n_nodes;
}
// enumerate CPUs
while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) != 0) { break; }
++g_state.numa.total_cpus;
}
GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
// figure out which node we're on
uint current_cpu;
int getcpu_ret = 0;
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
#else
// old glibc doesn't have a wrapper for this call. Fall back on direct syscall
# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
# endif
getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
#endif
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
g_state.numa.n_nodes = 0;
return;
}
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
struct ggml_numa_node * node = &g_state.numa.nodes[n];
GGML_PRINT_DEBUG("CPUs on node %u:", n);
node->n_cpus = 0;
for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) == 0) {
node->cpus[node->n_cpus++] = c;
GGML_PRINT_DEBUG(" %u", c);
}
}
GGML_PRINT_DEBUG("\n");
}
if (ggml_is_numa()) {
FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
if (fptr != NULL) {
char buf[42];
if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
}
fclose(fptr);
}
}
#else
GGML_UNUSED(numa_flag);
// TODO
#endif
}
bool ggml_is_numa(void) {
return g_state.numa.n_nodes > 1;
}
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
void ggml_print_object(const struct ggml_object * obj) {
GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
obj->type, obj->offs, obj->size, (const void *) obj->next);
2022-09-25 18:23:15 +00:00
}
void ggml_print_objects(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
while (obj != NULL) {
ggml_print_object(obj);
obj = obj->next;
}
GGML_PRINT("%s: --- end ---\n", __func__);
}
GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
size_t nbytes;
size_t blck_size = ggml_blck_size(tensor->type);
if (blck_size == 1) {
nbytes = ggml_type_size(tensor->type);
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
else {
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
return nbytes;
}
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
2023-06-25 11:22:21 +00:00
}
GGML_CALL int ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
2022-09-25 18:23:15 +00:00
}
GGML_CALL size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
2022-09-25 18:23:15 +00:00
}
GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
assert(ne % ggml_blck_size(type) == 0);
return ggml_type_size(type)*ne/ggml_blck_size(type);
}
double ggml_type_sizef(enum ggml_type type) {
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
GGML_CALL const char * ggml_type_name(enum ggml_type type) {
return type_traits[type].type_name;
}
GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
}
GGML_CALL const char * ggml_op_name(enum ggml_op op) {
2023-06-25 11:22:21 +00:00
return GGML_OP_NAME[op];
}
const char * ggml_op_symbol(enum ggml_op op) {
return GGML_OP_SYMBOL[op];
}
const char * ggml_unary_op_name(enum ggml_unary_op op) {
return GGML_UNARY_OP_NAME[op];
}
GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
if (t->op == GGML_OP_UNARY) {
enum ggml_unary_op uop = ggml_get_unary_op(t);
return ggml_unary_op_name(uop);
}
else {
return ggml_op_name(t->op);
}
}
GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
2022-09-25 18:23:15 +00:00
}
bool ggml_is_scalar(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_vector(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_matrix(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_3d(const struct ggml_tensor * tensor) {
return tensor->ne[3] == 1;
}
int ggml_n_dims(const struct ggml_tensor * tensor) {
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
if (tensor->ne[i] > 1) {
return i + 1;
}
}
return 1;
}
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
}
2023-06-25 11:22:21 +00:00
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[1] == t1->ne[1]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
2023-06-25 11:22:21 +00:00
}
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
enum ggml_type wtype = GGML_TYPE_COUNT;
switch (ftype) {
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
2023-06-25 11:22:21 +00:00
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
2024-02-21 14:19:39 +00:00
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
}
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
return wtype;
}
2023-06-25 11:22:21 +00:00
size_t ggml_tensor_overhead(void) {
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
2023-06-25 11:22:21 +00:00
}
GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
2022-09-25 18:23:15 +00:00
}
GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
2022-09-25 18:23:15 +00:00
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
2023-06-25 11:22:21 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
}
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
2022-09-25 18:23:15 +00:00
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
2022-09-25 18:23:15 +00:00
}
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->ne[0] == t1->ne[0] ) &&
(t0->ne[1] == t1->ne[1] ) &&
(t0->ne[2] == t1->ne[2] ) &&
(t0->ne[3] == t1->ne[3] );
}
// check if t1 can be represented as a repeatition of t0
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t1->ne[0]%t0->ne[0] == 0) &&
(t1->ne[1]%t0->ne[1] == 0) &&
(t1->ne[2]%t0->ne[2] == 0) &&
(t1->ne[3]%t0->ne[3] == 0);
}
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
}
static inline int ggml_up32(int n) {
2022-09-25 18:23:15 +00:00
return (n + 31) & ~31;
}
//static inline int ggml_up64(int n) {
// return (n + 63) & ~63;
//}
2022-09-25 18:23:15 +00:00
static inline int ggml_up(int n, int m) {
// assert m is a power of 2
GGML_ASSERT((m & (m - 1)) == 0);
return (n + m - 1) & ~(m - 1);
}
2022-09-25 18:23:15 +00:00
// assert that pointer is aligned to GGML_MEM_ALIGN
#define ggml_assert_aligned(ptr) \
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) {
// make this function thread safe
ggml_critical_section_start();
static bool is_first_call = true;
if (is_first_call) {
// initialize time system (required on Windows)
ggml_time_init();
2023-06-25 11:22:21 +00:00
// initialize GELU, Quick GELU, SILU and EXP F32 tables
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
ggml_fp16_t ii;
for (int i = 0; i < (1 << 16); ++i) {
uint16_t ui = i;
memcpy(&ii, &ui, sizeof(ii));
const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
2023-06-25 11:22:21 +00:00
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
// initialize g_state
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
g_state = (struct ggml_state) {
2023-01-07 07:34:39 +00:00
/*.contexts =*/ { { 0 } },
/*.numa =*/ {
.n_nodes = 0,
.total_cpus = 0,
},
};
for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
g_state.contexts[i].used = false;
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
#if defined(GGML_USE_CUBLAS)
ggml_init_cublas();
#elif defined(GGML_USE_CLBLAST)
ggml_cl_init();
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#elif defined(GGML_USE_VULKAN)
ggml_vk_init_cpu_assist();
ggml : add unified SYCL backend for Intel GPUs (llama/2690) * first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 15:56:23 +00:00
#elif defined(GGML_USE_SYCL)
ggml_init_sycl();
#endif
ggml_setup_op_has_task_pass();
is_first_call = false;
}
2022-09-25 18:23:15 +00:00
// find non-used context in g_state
struct ggml_context * ctx = NULL;
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (!g_state.contexts[i].used) {
g_state.contexts[i].used = true;
ctx = &g_state.contexts[i].context;
GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
break;
}
}
if (ctx == NULL) {
GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
ggml_critical_section_end();
2022-09-25 18:23:15 +00:00
return NULL;
}
// allow to call ggml_init with 0 size
if (params.mem_size == 0) {
params.mem_size = GGML_MEM_ALIGN;
}
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
2023-04-14 16:20:39 +00:00
2022-09-25 18:23:15 +00:00
*ctx = (struct ggml_context) {
2023-04-14 16:20:39 +00:00
/*.mem_size =*/ mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.no_alloc =*/ params.no_alloc,
2023-06-25 11:22:21 +00:00
/*.no_alloc_save =*/ params.no_alloc,
/*.n_objects =*/ 0,
/*.objects_begin =*/ NULL,
/*.objects_end =*/ NULL,
/*.scratch =*/ { 0, 0, NULL, },
/*.scratch_save =*/ { 0, 0, NULL, },
2022-09-25 18:23:15 +00:00
};
2023-04-14 16:20:39 +00:00
GGML_ASSERT(ctx->mem_buffer != NULL);
2022-09-25 18:23:15 +00:00
ggml_assert_aligned(ctx->mem_buffer);
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
ggml_critical_section_end();
2022-09-25 18:23:15 +00:00
return ctx;
}
void ggml_free(struct ggml_context * ctx) {
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
if (ctx == NULL) {
return;
}
// make this function thread safe
ggml_critical_section_start();
bool found = false;
2022-09-25 18:23:15 +00:00
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false;
GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
__func__, i, ggml_used_mem(ctx));
2022-09-25 18:23:15 +00:00
if (ctx->mem_buffer_owned) {
GGML_ALIGNED_FREE(ctx->mem_buffer);
2022-09-25 18:23:15 +00:00
}
found = true;
break;
2022-09-25 18:23:15 +00:00
}
}
if (!found) {
GGML_PRINT_DEBUG("%s: context not found\n", __func__);
}
ggml_critical_section_end();
2022-09-25 18:23:15 +00:00
}
size_t ggml_used_mem(const struct ggml_context * ctx) {
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
}
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
ctx->scratch = scratch;
return result;
2022-09-25 18:23:15 +00:00
}
bool ggml_get_no_alloc(struct ggml_context * ctx) {
return ctx->no_alloc;
}
2023-06-25 11:22:21 +00:00
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
ctx->no_alloc = no_alloc;
}
void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
return ctx->mem_buffer;
}
size_t ggml_get_mem_size(const struct ggml_context * ctx) {
return ctx->mem_size;
}
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0;
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
size_t bytes = ggml_nbytes(tensor);
max_size = MAX(max_size, bytes);
2023-06-25 11:22:21 +00:00
}
return max_size;
}
// IMPORTANT:
// when creating "opt" tensors, always save and load the scratch buffer
// this is an error prone process, but it is necessary to support inplace
// operators when using scratch buffers
// TODO: implement a better way
static void ggml_scratch_save(struct ggml_context * ctx) {
2023-06-25 11:22:21 +00:00
// this is needed to allow opt tensors to store their data
// TODO: again, need to find a better way
ctx->no_alloc_save = ctx->no_alloc;
ctx->no_alloc = false;
ctx->scratch_save = ctx->scratch;
ctx->scratch.data = NULL;
}
static void ggml_scratch_load(struct ggml_context * ctx) {
2023-06-25 11:22:21 +00:00
ctx->no_alloc = ctx->no_alloc_save;
ctx->scratch = ctx->scratch_save;
}
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
2022-09-25 18:23:15 +00:00
// always insert objects at the end of the context's memory pool
struct ggml_object * obj_cur = ctx->objects_end;
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offs + cur_size;
2022-09-25 18:23:15 +00:00
// align to GGML_MEM_ALIGN
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
2022-09-25 18:23:15 +00:00
char * const mem_buffer = ctx->mem_buffer;
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
__func__, cur_end + size_needed, ctx->mem_size);
assert(false);
return NULL;
}
*obj_new = (struct ggml_object) {
.offs = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
.type = type,
};
ggml_assert_aligned(mem_buffer + obj_new->offs);
if (obj_cur != NULL) {
obj_cur->next = obj_new;
} else {
// this is the first object in this context
ctx->objects_begin = obj_new;
}
ctx->objects_end = obj_new;
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
return obj_new;
}
static struct ggml_tensor * ggml_new_tensor_impl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne,
struct ggml_tensor * view_src,
size_t view_offs) {
assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
// find the base tensor and absolute offset
if (view_src != NULL && view_src->view_src != NULL) {
view_offs += view_src->view_offs;
view_src = view_src->view_src;
}
size_t data_size = ggml_row_size(type, ne[0]);
for (int i = 1; i < n_dims; i++) {
data_size *= ne[i];
}
GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
void * data = view_src != NULL ? view_src->data : NULL;
if (data != NULL) {
data = (char *) data + view_offs;
}
size_t obj_alloc_size = 0;
if (view_src == NULL && !ctx->no_alloc) {
if (ctx->scratch.data != NULL) {
// allocate tensor data in the scratch buffer
if (ctx->scratch.offs + data_size > ctx->scratch.size) {
GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
__func__, ctx->scratch.offs + data_size, ctx->scratch.size);
assert(false);
return NULL;
}
2022-09-25 18:23:15 +00:00
data = (char * const) ctx->scratch.data + ctx->scratch.offs;
ctx->scratch.offs += data_size;
} else {
// allocate tensor data in the context's memory pool
obj_alloc_size = data_size;
}
2022-09-25 18:23:15 +00:00
}
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
2022-09-25 18:23:15 +00:00
// TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
2022-09-25 18:23:15 +00:00
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
2022-09-25 18:23:15 +00:00
*result = (struct ggml_tensor) {
/*.type =*/ type,
/*.backend =*/ GGML_BACKEND_TYPE_CPU,
/*.buffer =*/ NULL,
2022-09-25 18:23:15 +00:00
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.op =*/ GGML_OP_NONE,
/*.op_params =*/ { 0 },
/*.flags =*/ 0,
2022-09-25 18:23:15 +00:00
/*.grad =*/ NULL,
/*.src =*/ { NULL },
2022-09-25 18:23:15 +00:00
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.view_src =*/ view_src,
/*.view_offs =*/ view_offs,
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
/*.name =*/ { 0 },
2023-06-25 11:22:21 +00:00
/*.extra =*/ NULL,
/*.padding =*/ { 0 },
2022-09-25 18:23:15 +00:00
};
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
//ggml_assert_aligned(result->data);
2022-09-25 18:23:15 +00:00
for (int i = 0; i < n_dims; i++) {
result->ne[i] = ne[i];
}
result->nb[0] = ggml_type_size(type);
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
for (int i = 2; i < GGML_MAX_DIMS; i++) {
2022-09-25 18:23:15 +00:00
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
}
ctx->n_objects++;
return result;
}
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0) {
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 1, &ne0);
}
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1) {
const int64_t ne[2] = { ne0, ne1 };
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 2, ne);
}
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
const int64_t ne[3] = { ne0, ne1, ne2 };
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 3, ne);
}
struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 4, ne);
}
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
ggml_scratch_save(ctx);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
ggml_scratch_load(ctx);
ggml_set_i32(result, value);
return result;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
ggml_scratch_save(ctx);
2022-09-25 18:23:15 +00:00
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_scratch_load(ctx);
2022-09-25 18:23:15 +00:00
ggml_set_f32(result, value);
return result;
}
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
}
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
assert(params_size <= GGML_MAX_OP_PARAMS);
memcpy(tensor->op_params, params, params_size);
}
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
return ((const int32_t *)(tensor->op_params))[i];
}
static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
return ((const float *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value;
2022-09-25 18:23:15 +00:00
}
static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
((float *)(tensor->op_params))[i] = value;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
memset(tensor->data, 0, ggml_nbytes(tensor));
return tensor;
}
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
const size_t n1 = tensor->nb[1];
char * const data = tensor->data;
switch (tensor->type) {
case GGML_TYPE_I8:
{
assert(tensor->nb[0] == sizeof(int8_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I16:
{
assert(tensor->nb[0] == sizeof(int16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I32:
{
assert(tensor->nb[0] == sizeof(int32_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_F16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
}
} break;
case GGML_TYPE_F32:
{
assert(tensor->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
}
} break;
default:
{
GGML_ASSERT(false);
} break;
}
return tensor;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
const size_t n1 = tensor->nb[1];
char * const data = tensor->data;
switch (tensor->type) {
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I8:
{
assert(tensor->nb[0] == sizeof(int8_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I16:
{
assert(tensor->nb[0] == sizeof(int16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I32:
{
assert(tensor->nb[0] == sizeof(int32_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_F16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_TYPE_F32:
{
assert(tensor->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
}
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
return tensor;
}
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
const int64_t ne2 = tensor->ne[2];
const int64_t ne1 = tensor->ne[1];
const int64_t ne0 = tensor->ne[0];
const int64_t i3_ = (i/(ne2*ne1*ne0));
const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
if (i0) {
* i0 = i0_;
}
if (i1) {
* i1 = i1_;
}
if (i2) {
* i2 = i2_;
}
if (i3) {
* i3 = i3_;
}
}
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
return ((int8_t *)(tensor->data))[i];
}
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
return ((int16_t *)(tensor->data))[i];
}
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
return ((int32_t *)(tensor->data))[i];
}
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
}
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
return ((float *)(tensor->data))[i];
}
default:
{
GGML_ASSERT(false);
}
}
return 0.0f;
}
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
return;
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
switch (tensor->type) {
case GGML_TYPE_I8:
return ((int8_t *) data)[0];
case GGML_TYPE_I16:
return ((int16_t *) data)[0];
case GGML_TYPE_I32:
return ((int32_t *) data)[0];
case GGML_TYPE_F16:
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
case GGML_TYPE_F32:
return ((float *) data)[0];
default:
GGML_ASSERT(false);
}
return 0.0f;
}
void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
switch (tensor->type) {
case GGML_TYPE_I8:
{
((int8_t *)(data))[0] = value;
} break;
case GGML_TYPE_I16:
{
((int16_t *)(data))[0] = value;
} break;
case GGML_TYPE_I32:
{
((int32_t *)(data))[0] = value;
} break;
case GGML_TYPE_F16:
{
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
} break;
case GGML_TYPE_F32:
{
((float *)(data))[0] = value;
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
}
2022-09-25 18:23:15 +00:00
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
2022-09-25 18:23:15 +00:00
return ((int8_t *)(tensor->data))[i];
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
2022-09-25 18:23:15 +00:00
return ((int16_t *)(tensor->data))[i];
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
2022-09-25 18:23:15 +00:00
return ((int32_t *)(tensor->data))[i];
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
return ((float *)(tensor->data))[i];
}
default:
{
GGML_ASSERT(false);
}
}
return 0.0f;
}
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
return;
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
switch (tensor->type) {
case GGML_TYPE_I8:
return ((int8_t *) data)[0];
case GGML_TYPE_I16:
return ((int16_t *) data)[0];
case GGML_TYPE_I32:
return ((int32_t *) data)[0];
case GGML_TYPE_F16:
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
case GGML_TYPE_F32:
return ((float *) data)[0];
default:
GGML_ASSERT(false);
}
2022-09-25 18:23:15 +00:00
return 0.0f;
}
void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
2022-09-25 18:23:15 +00:00
switch (tensor->type) {
case GGML_TYPE_I8:
{
((int8_t *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_I16:
{
((int16_t *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_I32:
{
((int32_t *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F16:
{
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F32:
{
((float *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
void * ggml_get_data(const struct ggml_tensor * tensor) {
return tensor->data;
}
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
assert(tensor->type == GGML_TYPE_F32);
return (float *)(tensor->data);
}
GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
const char * ggml_get_name(const struct ggml_tensor * tensor) {
return tensor->name;
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
strncpy(tensor->name, name, sizeof(tensor->name) - 1);
tensor->name[sizeof(tensor->name) - 1] = '\0';
2023-06-25 11:22:21 +00:00
return tensor;
}
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
va_end(args);
return tensor;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
struct ggml_tensor * src) {
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (view)", src->name);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = src->nb[i];
}
return result;
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
obj = obj->next;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
if (strcmp(cur->name, name) == 0) {
return cur;
}
2023-06-25 11:22:21 +00:00
}
obj = obj->next;
}
return NULL;
}
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
// ggml_dup
static struct ggml_tensor * ggml_dup_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DUP;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, false);
}
struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, true);
}
// ggml_add
static struct ggml_tensor * ggml_add_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, true);
}
// ggml_add_cast
static struct ggml_tensor * ggml_add_cast_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type) {
// TODO: support less-strict constraint
// GGML_ASSERT(ggml_can_repeat(b, a));
GGML_ASSERT(ggml_can_repeat_rows(b, a));
GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
bool is_node = false;
if (a->grad || b->grad) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_ADD;
result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type) {
return ggml_add_cast_impl(ctx, a, b, type);
}
// ggml_add1
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_add1_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_is_scalar(b));
GGML_ASSERT(ggml_is_padded_1d(a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (a->grad || b->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD1;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_add1(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_add1_inplace(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, true);
2022-09-25 18:23:15 +00:00
}
// ggml_acc
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_acc_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
2022-09-25 18:23:15 +00:00
bool inplace) {
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(a->type == GGML_TYPE_F32);
GGML_ASSERT(b->type == GGML_TYPE_F32);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ACC;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_acc(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_acc_inplace(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
2022-09-25 18:23:15 +00:00
}
// ggml_sub
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_sub_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SUB;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, true);
}
// ggml_mul
static struct ggml_tensor * ggml_mul_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
if (inplace) {
GGML_ASSERT(!is_node);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_MUL;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, true);
}
// ggml_div
static struct ggml_tensor * ggml_div_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
if (inplace) {
GGML_ASSERT(!is_node);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DIV;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, true);
}
// ggml_sqr
static struct ggml_tensor * ggml_sqr_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQR;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, true);
}
// ggml_sqrt
static struct ggml_tensor * ggml_sqrt_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQRT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, true);
}
// ggml_log
static struct ggml_tensor * ggml_log_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_LOG;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, false);
}
struct ggml_tensor * ggml_log_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, true);
}
2022-09-25 18:23:15 +00:00
// ggml_sum
struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_SUM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_sum_rows
struct ggml_tensor * ggml_sum_rows(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { 1 };
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
ne[i] = a->ne[i];
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
result->op = GGML_OP_SUM_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_mean
struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
is_node = true;
}
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_MEAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_argmax
struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(ggml_is_matrix(a));
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false);
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
result->op = GGML_OP_ARGMAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_repeat
struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(a, b));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_REPEAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_repeat_back
struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(b, a));
bool is_node = false;
if (a->grad) {
is_node = true;
}
if (ggml_are_same_shape(a, b) && !is_node) {
return a;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_REPEAT_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
// ggml_concat
struct ggml_tensor * ggml_concat(
struct ggml_context* ctx,
struct ggml_tensor* a,
struct ggml_tensor* b) {
GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_CONCAT;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_abs
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
2022-09-25 18:23:15 +00:00
}
// ggml_sgn
struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
2022-09-25 18:23:15 +00:00
}
// ggml_neg
struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
2022-09-25 18:23:15 +00:00
}
// ggml_step
struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
2022-09-25 18:23:15 +00:00
}
// ggml_tanh
struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
}
struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
}
// ggml_elu
struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
}
struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
}
2022-09-25 18:23:15 +00:00
// ggml_relu
struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
2022-09-25 18:23:15 +00:00
}
// ggml_leaky_relu
struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx,
struct ggml_tensor * a, float negative_slope, bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
result->op = GGML_OP_LEAKY_RELU;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_gelu
struct ggml_tensor * ggml_gelu(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
// ggml_gelu_quick
struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
2023-06-25 11:22:21 +00:00
}
struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
2023-06-25 11:22:21 +00:00
}
// ggml_silu
struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
}
struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
}
// ggml_silu_back
struct ggml_tensor * ggml_silu_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
bool is_node = false;
if (a->grad || b->grad) {
// TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SILU_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml hardswish
struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
}
// ggml hardsigmoid
struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
}
2022-09-25 18:23:15 +00:00
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
2022-09-25 18:23:15 +00:00
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, true);
2022-09-25 18:23:15 +00:00
}
// ggml_rms_norm
static struct ggml_tensor * ggml_rms_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, true);
}
// ggml_rms_norm_back
struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float eps) {
bool is_node = false;
if (a->grad) {
// TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_group_norm
static struct ggml_tensor * ggml_group_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op_params[0] = n_groups;
result->op = GGML_OP_GROUP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups) {
return ggml_group_norm_impl(ctx, a, n_groups, false);
}
struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups) {
return ggml_group_norm_impl(ctx, a, n_groups, true);
}
2022-09-25 18:23:15 +00:00
// ggml_mul_mat
struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_mul_mat(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_MUL_MAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 0, prec_i32);
}
// ggml_mul_mat_id
struct ggml_tensor * ggml_mul_mat_id(
struct ggml_context * ctx,
struct ggml_tensor * const as[],
int n_as,
struct ggml_tensor * ids,
int id,
struct ggml_tensor * b) {
GGML_ASSERT(ids->type == GGML_TYPE_I32);
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
GGML_ASSERT(ids->ne[1] == b->ne[1]);
GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
GGML_ASSERT(id >= 0 && id < ids->ne[0]);
bool is_node = false;
if (as[0]->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_i32(result, 0, id);
ggml_set_op_params_i32(result, 1, n_as);
result->op = GGML_OP_MUL_MAT_ID;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = ids;
result->src[1] = b;
for (int i = 0; i < n_as; i++) {
struct ggml_tensor * a = as[i];
GGML_ASSERT(ggml_are_same_shape(as[0], a));
GGML_ASSERT(ggml_can_mul_mat(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
result->src[i + 2] = a;
}
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_out_prod
struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_out_prod(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_OUT_PROD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_scale
static struct ggml_tensor * ggml_scale_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
2022-09-25 18:23:15 +00:00
bool inplace) {
GGML_ASSERT(ggml_is_padded_1d(a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2022-09-25 18:23:15 +00:00
ggml_set_op_params(result, &s, sizeof(s));
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_SCALE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, true);
2022-09-25 18:23:15 +00:00
}
// ggml_set
static struct ggml_tensor * ggml_set_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
bool inplace) {
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (a->grad || b->grad) {
is_node = true;
}
// make a view of the destination
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SET;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
struct ggml_tensor * ggml_set_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
}
struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
}
struct ggml_tensor * ggml_set_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_2d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
}
2022-09-25 18:23:15 +00:00
// ggml_cpy
static struct ggml_tensor * ggml_cpy_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
// inplace is false and either one have a grad
2022-09-25 18:23:15 +00:00
is_node = true;
}
// make a view of the destination
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
2023-06-25 11:22:21 +00:00
if (strlen(b->name) > 0) {
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
} else {
ggml_format_name(result, "%s (copy)", a->name);
}
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_cpy_impl(ctx, a, b);
2022-09-25 18:23:15 +00:00
}
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
ggml_format_name(result, "%s (copy)", a->name);
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = result;
return result;
}
// ggml_cont
static struct ggml_tensor * ggml_cont_impl(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cont_impl(ctx, a);
}
// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
}
GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
}
GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
}
struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_reshape
struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_is_contiguous(a));
// as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
if (b->grad) {
// gradient propagation is not supported
//GGML_ASSERT(false);
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_reshape_1d(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[1] = { ne0 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_reshape_2d(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[2] = { ne0, ne1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
static struct ggml_tensor * ggml_view_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_dims,
const int64_t * ne,
size_t offset) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
result->op = GGML_OP_VIEW;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_view_1d
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
2022-09-25 18:23:15 +00:00
size_t offset) {
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_view_2d
struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
2022-09-25 18:23:15 +00:00
size_t nb1,
size_t offset) {
const int64_t ne[2] = { ne0, ne1 };
2022-09-25 18:23:15 +00:00
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
2023-06-25 11:22:21 +00:00
result->nb[1] = nb1;
2022-09-25 18:23:15 +00:00
result->nb[2] = result->nb[1]*ne1;
result->nb[3] = result->nb[2];
return result;
}
// ggml_view_3d
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1,
size_t nb2,
size_t offset) {
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = result->nb[2]*ne2;
return result;
}
// ggml_view_4d
struct ggml_tensor * ggml_view_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = nb3;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_permute
struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3) {
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
GGML_ASSERT(axis0 != axis1);
GGML_ASSERT(axis0 != axis2);
GGML_ASSERT(axis0 != axis3);
GGML_ASSERT(axis1 != axis2);
GGML_ASSERT(axis1 != axis3);
GGML_ASSERT(axis2 != axis3);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (permuted)", a->name);
2022-09-25 18:23:15 +00:00
int ne[GGML_MAX_DIMS];
int nb[GGML_MAX_DIMS];
ne[axis0] = a->ne[0];
ne[axis1] = a->ne[1];
ne[axis2] = a->ne[2];
ne[axis3] = a->ne[3];
nb[axis0] = a->nb[0];
nb[axis1] = a->nb[1];
nb[axis2] = a->nb[2];
nb[axis3] = a->nb[3];
result->ne[0] = ne[0];
result->ne[1] = ne[1];
result->ne[2] = ne[2];
result->ne[3] = ne[3];
result->nb[0] = nb[0];
result->nb[1] = nb[1];
result->nb[2] = nb[2];
result->nb[3] = nb[3];
result->op = GGML_OP_PERMUTE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
int32_t params[] = { axis0, axis1, axis2, axis3 };
ggml_set_op_params(result, params, sizeof(params));
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_transpose
struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (transposed)", a->name);
2022-09-25 18:23:15 +00:00
result->ne[0] = a->ne[1];
result->ne[1] = a->ne[0];
result->nb[0] = a->nb[1];
result->nb[1] = a->nb[0];
result->op = GGML_OP_TRANSPOSE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_get_rows
struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(b->ne[3] == 1);
GGML_ASSERT(b->type == GGML_TYPE_I32);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// TODO: implement non F32 return
enum ggml_type type = GGML_TYPE_F32;
if (a->type == GGML_TYPE_I32) {
type = a->type;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_GET_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_get_rows_back
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_get_rows_back(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_GET_ROWS_BACK;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_diag
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_diag(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(a->ne[1] == 1);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_DIAG;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_diag_mask_inf
static struct ggml_tensor * ggml_diag_mask_inf_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_INF;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
}
struct ggml_tensor * ggml_diag_mask_inf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
}
// ggml_diag_mask_zero
static struct ggml_tensor * ggml_diag_mask_zero_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_ZERO;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_diag_mask_zero(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_diag_mask_zero_inplace(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
}
// ggml_soft_max
static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
struct ggml_tensor * pos,
float scale,
float max_bias,
bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a));
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(ggml_is_matrix(mask));
GGML_ASSERT(ggml_can_repeat_rows(mask, a));
}
if (pos) {
GGML_ASSERT(ggml_is_vector(pos));
GGML_ASSERT(pos->type == GGML_TYPE_F32);
GGML_ASSERT(pos->ne[0] == a->ne[0]);
}
if (max_bias > 0.0f) {
GGML_ASSERT(pos);
}
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2022-09-25 18:23:15 +00:00
float params[] = { scale, max_bias };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SOFT_MAX;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = mask;
result->src[2] = pos;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
}
struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
struct ggml_tensor * pos,
float scale,
float max_bias) {
return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
}
2023-06-25 11:22:21 +00:00
// ggml_soft_max_back
static struct ggml_tensor * ggml_soft_max_back_impl(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
bool is_node = false;
if (a->grad || b->grad) {
is_node = true; // TODO : implement backward pass
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SOFT_MAX_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, true);
}
// ggml_rope
static struct ggml_tensor * ggml_rope_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down,
bool inplace) {
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
2022-09-25 18:23:15 +00:00
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2022-09-25 18:23:15 +00:00
int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &xpos_base, sizeof(float));
memcpy(params + 12, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx) {
return ggml_rope_impl(
ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
);
}
struct ggml_tensor * ggml_rope_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx) {
return ggml_rope_impl(
ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
);
}
struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
);
}
struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
);
}
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down) {
return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
}
// ggml_rope_back
struct ggml_tensor * ggml_rope_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down) {
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
bool is_node = false;
if (a->grad) {
2023-06-25 11:22:21 +00:00
is_node = false; // TODO: implement backward
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &xpos_base, sizeof(float));
memcpy(params + 12, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_alibi
struct ggml_tensor * ggml_alibi(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_head,
float bias_max) {
GGML_ASSERT(n_past >= 0);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// TODO: when implement backward, fix this:
//struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
int32_t op_params[3] = { n_past, n_head };
memcpy(op_params + 2, &bias_max, sizeof(float));
ggml_set_op_params(result, op_params, sizeof(op_params));
result->op = GGML_OP_ALIBI;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_clamp
struct ggml_tensor * ggml_clamp(
struct ggml_context * ctx,
struct ggml_tensor * a,
float min,
float max) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// TODO: when implement backward, fix this:
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
float params[] = { min, max };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CLAMP;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_conv_1d
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OCIC, K] => [OC, IC * K]
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
return result;
}
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d) {
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
}
// ggml_conv_transpose_1d
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
}
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
GGML_ASSERT(ggml_is_matrix(b));
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(p0 == 0);
GGML_ASSERT(d0 == 1);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
a->ne[1], b->ne[2], 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_TRANSPOSE_1D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_depthwise
struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC1, KH, KW] => [1, OC, 1, KH * KW]
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
return result;
}
// ggml_conv_2d
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
// a: [OCIC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OH, OW, IC*KH*KW]
struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D,
enum ggml_type dst_type) {
if(is_2D) {
GGML_ASSERT(a->ne[2] == b->ne[2]);
} else {
GGML_ASSERT(a->ne[1] == b->ne[1]);
}
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
const int64_t ne[4] = {
is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
OW,
is_2D ? OH : b->ne[2],
is_2D ? b->ne[3] : 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_IM2COL;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
// a: [OCIC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OC, OH, OW]
struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OCIC, KH, KW] => [OC, IC * KH * KW]
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_conv_2d_sk_p0
struct ggml_tensor * ggml_conv_2d_sk_p0(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
}
// ggml_conv_2d_s1_ph
struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
}
// ggml_conv_transpose_2d_p0
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
return (ins - 1) * s - 2 * p + ks;
}
struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride) {
GGML_ASSERT(a->ne[3] == b->ne[2]);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
a->ne[2], b->ne[3],
};
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_i32(result, 0, stride);
result->op = GGML_OP_CONV_TRANSPOSE_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_pool_*
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
return (ins + 2 * p - ks) / s + 1;
}
// ggml_pool_1d
struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int s0,
int p0) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
a->ne[1],
a->ne[2],
a->ne[3],
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { op, k0, s0, p0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_1D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_pool_2d
struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result;
const int64_t ne[3] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
a->ne[2],
};
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_upscale
static struct ggml_tensor * ggml_upscale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] * scale_factor,
a->ne[1] * scale_factor,
a->ne[2], a->ne[3]);
result->op = GGML_OP_UPSCALE;
result->op_params[0] = scale_factor;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0, int p1, int p2, int p3) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] + p0,
a->ne[1] + p1,
a->ne[2] + p2,
a->ne[3] + p3);
result->op = GGML_OP_PAD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
return ggml_upscale_impl(ctx, a, scale_factor);
}
struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step) {
GGML_ASSERT(stop > start);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
result->op = GGML_OP_ARANGE;
ggml_set_op_params_f32(result, 0, start);
ggml_set_op_params_f32(result, 1, stop);
ggml_set_op_params_f32(result, 2, step);
return result;
}
struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period) {
bool is_node = false;
if (timesteps->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
int actual_dim = dim;
if (dim % 2 != 0) {
actual_dim = dim + 1;
}
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
result->op = GGML_OP_TIMESTEP_EMBEDDING;
ggml_set_op_params_i32(result, 0, dim);
ggml_set_op_params_i32(result, 1, max_period);
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = timesteps;
return result;
}
// ggml_argsort
struct ggml_tensor * ggml_argsort(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_sort_order order) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
ggml_set_op_params_i32(result, 0, (int32_t) order);
result->op = GGML_OP_ARGSORT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_top_k
struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k) {
GGML_ASSERT(a->ne[0] >= k);
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
result = ggml_view_4d(ctx, result,
k, result->ne[1], result->ne[2], result->ne[3],
result->nb[1], result->nb[2], result->nb[3],
0);
return result;
}
// ggml_flash_attn
struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
int32_t t = masked ? 1 : 0;
ggml_set_op_params(result, &t, sizeof(t));
result->op = GGML_OP_FLASH_ATTN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
return result;
}
// ggml_flash_ff
struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
struct ggml_tensor * b1,
struct ggml_tensor * c0,
struct ggml_tensor * c1) {
GGML_ASSERT(ggml_can_mul_mat(b0, a));
// TODO: more checks
bool is_node = false;
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_FLASH_FF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b0;
result->src[2] = b1;
result->src[3] = c0;
result->src[4] = c1;
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
// d shape [D,N,ne2,ne3]
// q shape [D,N,ne2,ne3]
// k shape [D,M,kvne2,ne3]
// v shape [M,D,kvne2,ne3]
2023-06-25 11:22:21 +00:00
const int64_t D = q->ne[0];
const int64_t N = q->ne[1];
const int64_t M = k->ne[1];
const int64_t ne2 = q->ne[2];
const int64_t ne3 = q->ne[3];
const int64_t kvne2 = k->ne[2];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(k->ne[0] == D);
GGML_ASSERT(v->ne[0] == M);
GGML_ASSERT(v->ne[1] == D);
GGML_ASSERT(d->ne[0] == D);
GGML_ASSERT(d->ne[1] == N);
GGML_ASSERT(k->ne[2] == kvne2);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(k->ne[3] == ne3);
GGML_ASSERT(v->ne[2] == kvne2);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(v->ne[3] == ne3);
GGML_ASSERT(d->ne[2] == ne2);
GGML_ASSERT(d->ne[3] == ne3);
GGML_ASSERT(ne2 % kvne2 == 0);
2023-06-25 11:22:21 +00:00
bool is_node = false;
if (q->grad || k->grad || v->grad) {
// when using this operation (in backwards pass) these grads are set.
// we don't want to create (big) grad of our result, so is_node is false.
is_node = false;
}
// store gradients of q, k and v as continuous tensors concatenated in result.
// note: v and gradv are actually transposed, i.e. v->ne[0] != D.
const int64_t elem_q = ggml_nelements(q);
const int64_t elem_k = ggml_nelements(k);
const int64_t elem_v = ggml_nelements(v);
2023-06-25 11:22:21 +00:00
enum ggml_type result_type = GGML_TYPE_F32;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
const size_t nelements = (end + tsize - 1)/tsize;
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
2023-06-25 11:22:21 +00:00
int32_t masked_i = masked ? 1 : 0;
ggml_set_op_params(result, &masked_i, sizeof(masked_i));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_FLASH_ATTN_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = d;
2023-06-25 11:22:21 +00:00
return result;
}
// ggml_win_part
struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w) {
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(a->type == GGML_TYPE_F32);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// padding
const int px = (w - a->ne[1]%w)%w;
const int py = (w - a->ne[2]%w)%w;
const int npx = (px + a->ne[1])/w;
const int npy = (py + a->ne[2])/w;
const int np = npx*npy;
const int64_t ne[4] = { a->ne[0], w, w, np, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { npx, npy, w };
ggml_set_op_params(result, params, sizeof(params));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_WIN_PART;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
// ggml_win_unpart
struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w) {
GGML_ASSERT(a->type == GGML_TYPE_F32);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { w };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_WIN_UNPART;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_get_rel_pos
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh) {
GGML_ASSERT(qh == kh);
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
2023-06-25 11:22:21 +00:00
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
result->op = GGML_OP_GET_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_add_rel_pos
static struct ggml_tensor * ggml_add_rel_pos_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(pw, ph));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_is_contiguous(pw));
GGML_ASSERT(ggml_is_contiguous(ph));
GGML_ASSERT(ph->type == GGML_TYPE_F32);
GGML_ASSERT(pw->type == GGML_TYPE_F32);
GGML_ASSERT(pw->ne[3] == a->ne[2]);
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
bool is_node = false;
if (!inplace && (a->grad || pw->grad || ph->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
result->op = GGML_OP_ADD_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = pw;
result->src[2] = ph;
return result;
}
struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
}
struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
}
// gmml_unary
static struct ggml_tensor * ggml_unary_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, (int32_t) op);
result->op = GGML_OP_UNARY;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, false);
}
struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, true);
}
2023-04-14 16:20:39 +00:00
// ggml_map_unary
static struct ggml_tensor * ggml_map_unary_impl_f32(
2023-04-14 16:20:39 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-04-14 16:20:39 +00:00
result->op = GGML_OP_MAP_UNARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-04-14 16:20:39 +00:00
return result;
}
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
// ggml_map_binary
static struct ggml_tensor * ggml_map_binary_impl_f32(
2023-04-14 16:20:39 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-04-14 16:20:39 +00:00
result->op = GGML_OP_MAP_BINARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-04-14 16:20:39 +00:00
return result;
}
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom1_f32
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_map_custom1_impl_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun,
bool inplace) {
bool is_node = false;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (!inplace && a->grad) {
is_node = true;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM1_F32;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
2022-09-25 18:23:15 +00:00
// ggml_map_custom2_f32
2023-06-25 11:22:21 +00:00
static struct ggml_tensor * ggml_map_custom2_impl_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_MAP_CUSTOM2_F32;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom3_f32
2023-06-25 11:22:21 +00:00
static struct ggml_tensor * ggml_map_custom3_impl_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad || b->grad || c->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_MAP_CUSTOM3_F32;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
}
struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
// ggml_map_custom1
struct ggml_map_custom1_op_params {
ggml_custom1_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom1_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
2023-06-25 11:22:21 +00:00
bool is_node = false;
if (!inplace && a->grad) {
2023-06-25 11:22:21 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
struct ggml_map_custom1_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM1;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
2023-06-25 11:22:21 +00:00
}
// ggml_map_custom2
2023-06-25 11:22:21 +00:00
struct ggml_map_custom2_op_params {
ggml_custom2_op_t fun;
int n_tasks;
void * userdata;
};
2023-06-25 11:22:21 +00:00
static struct ggml_tensor * ggml_map_custom2_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
2023-06-25 11:22:21 +00:00
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom2_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM2;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
}
// ggml_map_custom3
struct ggml_map_custom3_op_params {
ggml_custom3_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom3_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
bool is_node = false;
if (!inplace && (a->grad || b->grad || c->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom3_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM3;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
}
// ggml_cross_entropy_loss
struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_CROSS_ENTROPY_LOSS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_cross_entropy_loss_back
struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_are_same_shape(a, b));
GGML_ASSERT(ggml_is_scalar(c));
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
result->grad = NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
struct ggml_context * ctx,
struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
GGML_ASSERT(tensor->grad == NULL);
tensor->grad = ggml_dup_tensor(ctx, tensor);
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
}
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == dst->type);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const size_t nb00 = src0->nb[0];
const size_t nb0 = dst->nb[0];
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by elements
const int ne = ggml_nelements(dst);
const int dr = (ne + nth - 1) / nth;
const int ie0 = dr * ith;
const int ie1 = MIN(ie0 + dr, ne);
if (ie0 < ie1) {
memcpy(
((char *) dst->data + ie0*nb0),
((char *) src0->data + ie0*nb00),
(ie1 - ie0) * ggml_type_size(src0->type));
2023-06-25 11:22:21 +00:00
}
}
static void ggml_compute_forward_dup_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, dst);
2022-09-25 18:23:15 +00:00
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
if (ggml_is_contiguous(dst)) {
if (nb00 == sizeof(ggml_fp16_t)) {
if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
}
quantize_row_q(src0_f32, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
2022-09-25 18:23:15 +00:00
}
static void ggml_compute_forward_dup_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, dst);
2022-09-25 18:23:15 +00:00
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
2022-09-25 18:23:15 +00:00
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
// TODO: simplify
if (nb00 == sizeof(float)) {
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
2022-09-25 18:23:15 +00:00
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
2022-09-25 18:23:15 +00:00
}
id += rs * (ne01 - ir1);
2022-09-25 18:23:15 +00:00
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
2022-09-25 18:23:15 +00:00
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
2022-09-25 18:23:15 +00:00
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
2022-09-25 18:23:15 +00:00
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
id++;
}
2022-09-25 18:23:15 +00:00
}
id += ne00 * (ne01 - ir1);
2022-09-25 18:23:15 +00:00
}
}
} else {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
}
}
2022-09-25 18:23:15 +00:00
return;
}
2022-09-25 18:23:15 +00:00
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(float));
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
2022-09-25 18:23:15 +00:00
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
2022-09-25 18:23:15 +00:00
}
}
} else {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
}
}
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
static void ggml_compute_forward_dup_bytes(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(src0->type == dst->type);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
ggml_compute_forward_dup_same_cont(params, dst);
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
const size_t type_size = ggml_type_size(src0->type);
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == type_size && nb0 == type_size) {
// copy by rows
const size_t rs = ne00 * type_size;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
size_t id = 0;
char * dst_ptr = (char *) dst->data;
const size_t rs = ne00 * type_size;
if (nb00 == type_size) {
// src0 is contigous on first dimension, copy by rows
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, type_size);
id += type_size;
}
}
id += rs * (ne01 - ir1);
}
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, type_size);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
}
static void ggml_compute_forward_dup(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (src0->type == dst->type) {
ggml_compute_forward_dup_bytes(params, dst);
return;
}
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_dup_f16(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_dup_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add
static void ggml_compute_forward_add_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
#ifdef GGML_USE_CLBLAST
if (src1->backend == GGML_BACKEND_TYPE_GPU) {
// TODO: OpenCL kernel support full broadcast
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
if (ith == 0) {
ggml_cl_add(src0, src1, dst);
}
return;
}
#endif
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
const int64_t nr0 = ne00 / ne10;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
for (int64_t r = 0; r < nr0; ++r) {
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
#else
ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
#endif
}
}
} else {
// src1 is not contiguous
for (int ir = ir0; ir < ir1; ++ir) {
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int64_t i10 = i0 % ne10;
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
}
}
}
}
static void ggml_compute_forward_add_f16_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
if (dst->type == GGML_TYPE_F32) {
GGML_ASSERT( nb0 == sizeof(float));
}
else {
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
}
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
if (dst->type == GGML_TYPE_F16) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
}
}
} else {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
}
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
static void ggml_compute_forward_add_f16_f16(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
2022-09-25 18:23:15 +00:00
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(ggml_fp16_t)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
2022-09-25 18:23:15 +00:00
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
static void ggml_compute_forward_add_q_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const enum ggml_type dtype = dst->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i03 = ir/(ne02*ne01);
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
// src1 and dst are same shape as src0 => same indices
const int i13 = i03;
const int i12 = i02;
const int i11 = i01;
const int i3 = i03;
const int i2 = i02;
const int i1 = i01;
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
2023-06-25 11:22:21 +00:00
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
assert(ne00 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne00);
// add src1
ggml_vec_acc_f32(ne00, wdata, src1_row);
// quantize row to dst
if (quantize_row_q != NULL) {
quantize_row_q(wdata, dst_row, ne00);
} else {
memcpy(dst_row, wdata, ne0*nb0);
}
}
2022-09-25 18:23:15 +00:00
}
static void ggml_compute_forward_add(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add_f16_f16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add_f16_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_add_q_f32(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_add1
static void ggml_compute_forward_add1_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_add1_f32);
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) src1->data), 0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_add1_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
*(float *) src1->data);
#endif
}
}
static void ggml_compute_forward_add1_f16_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_f16_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_q_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(dst->type == src0->type);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
assert(ne0 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne0);
// add src1
ggml_vec_acc1_f32(ne0, wdata, v);
// quantize row to dst
quantize_row_q(wdata, dst_row, ne0);
}
}
static void ggml_compute_forward_add1(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add1_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add1_f16_f16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add1_f16_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_add1_q_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_acc
static void ggml_compute_forward_acc_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during acc
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
if (params->ith != 0) {
return;
}
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during acc
const size_t nb0 = ggml_element_size(src0);
const size_t nb00 = nb0;
const size_t nb01 = nb1;
const size_t nb02 = nb2;
const size_t nb03 = nb3;
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
#else
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
}
}
static void ggml_compute_forward_acc(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_acc_f32(params, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sub
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_sub_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int nr = ggml_nrows(src0);
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
vDSP_vsub(
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_sub_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
// }
// }
}
} else {
// src1 is not contiguous
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i0 = 0; i0 < ne0; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
}
}
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_sub(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sub_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_mul
static void ggml_compute_forward_mul_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#if defined(GGML_USE_CLBLAST)
if (src1->backend == GGML_BACKEND_TYPE_GPU) {
// TODO: OpenCL kernel support full broadcast
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
if (ith == 0) {
2023-06-25 11:22:21 +00:00
ggml_cl_mul(src0, src1, dst);
}
return;
}
#endif
const int64_t nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
const int64_t nr0 = ne00 / ne10;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
for (int64_t r = 0 ; r < nr0; ++r) {
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_mul_f32);
vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
#else
ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
#endif
}
}
} else {
// src1 is not contiguous
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne00; ++i0) {
const int64_t i10 = i0 % ne10;
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
}
}
}
}
static void ggml_compute_forward_mul(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mul_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_div
static void ggml_compute_forward_div_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
const int64_t nr0 = ne00 / ne10;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
for (int64_t r = 0; r < nr0; ++r) {
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_div_f32);
vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
#else
ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
#endif
}
}
} else {
// src1 is not contiguous
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne00; ++i0) {
const int64_t i10 = i0 % ne10;
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
}
}
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_div(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_div_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sqr
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_sqr_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
2022-09-25 18:23:15 +00:00
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sqr_f32(nc,
2022-09-25 18:23:15 +00:00
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_sqr(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sqr_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sqrt
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_sqrt_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
2022-09-25 18:23:15 +00:00
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sqrt_f32(nc,
2022-09-25 18:23:15 +00:00
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sqrt(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sqrt_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_log
static void ggml_compute_forward_log_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
for (int i = 0; i < n; i++) {
ggml_vec_log_f32(nc,
2022-09-25 18:23:15 +00:00
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_log(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_log_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sum
static void ggml_compute_forward_sum_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
assert(ggml_is_scalar(dst));
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
2022-09-25 18:23:15 +00:00
ggml_float sum = 0;
ggml_float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32_ggf(ne00,
&row_sum,
2022-09-25 18:23:15 +00:00
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
sum += row_sum;
2022-09-25 18:23:15 +00:00
}
}
}
((float *) dst->data)[0] = sum;
2022-09-25 18:23:15 +00:00
}
static void ggml_compute_forward_sum_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(ggml_fp16_t));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f16_ggf(ne00,
&row_sum,
(ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
sum += row_sum;
}
}
}
((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
}
static void ggml_compute_forward_sum(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_sum_f16(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sum_rows
static void ggml_compute_forward_sum_rows_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(dst->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(ne0 == 1);
GGML_ASSERT(ne1 == ne01);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
for (int64_t i3 = 0; i3 < ne03; i3++) {
for (int64_t i2 = 0; i2 < ne02; i2++) {
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
ggml_vec_sum_f32(ne00, &row_sum, src_row);
dst_row[0] = row_sum;
}
}
}
}
static void ggml_compute_forward_sum_rows(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_rows_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_mean
static void ggml_compute_forward_mean_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
assert(ne0 == 1);
assert(ne1 == ne01);
assert(ne2 == ne02);
assert(ne3 == ne03);
UNUSED(ne0);
UNUSED(ne1);
UNUSED(ne2);
UNUSED(ne3);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
2022-09-25 18:23:15 +00:00
ggml_vec_sum_f32(ne00,
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
}
}
}
}
static void ggml_compute_forward_mean(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mean_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_argmax
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_argmax_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
assert(src0->nb[0] == sizeof(float));
assert(dst->nb[0] == sizeof(float));
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src = (float *) ((char *) src0->data + i1*nb01);
int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
int v = 0;
ggml_vec_argmax_f32(ne00, &v, src);
dst_[0] = v;
}
}
static void ggml_compute_forward_argmax(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argmax_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_repeat
static void ggml_compute_forward_repeat_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
2022-09-25 18:23:15 +00:00
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
2022-09-25 18:23:15 +00:00
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_cpy_f32(ne00,
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
}
}
}
}
2022-09-25 18:23:15 +00:00
}
}
}
}
static void ggml_compute_forward_repeat_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
// ggml_vec_cpy_f16(ne00, y, x)
for (int i = 0; i < ne00; ++i) {
y[i] = x[i];
}
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
case GGML_TYPE_I16:
{
ggml_compute_forward_repeat_f16(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
case GGML_TYPE_I32:
2022-09-25 18:23:15 +00:00
{
ggml_compute_forward_repeat_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_repeat_back
static void ggml_compute_forward_repeat_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(dst, src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
2023-06-25 11:22:21 +00:00
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne00/ne0);
const int nr1 = (int)(ne01/ne1);
const int nr2 = (int)(ne02/ne2);
const int nr3 = (int)(ne03/ne3);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (ggml_is_contiguous(dst)) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
} else {
for (int k3 = 0; k3 < ne3; k3++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int k1 = 0; k1 < ne1; k1++) {
ggml_vec_set_f32(ne0,
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
0);
}
}
}
}
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne3; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne1; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_acc_f32(ne0,
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_repeat_back_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_concat
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_concat_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
2022-09-25 18:23:15 +00:00
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
if (i2 < ne02) { // src0
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
2022-09-25 18:23:15 +00:00
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
*y = *x;
}
}
} // src1
else {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
*y = *x;
}
}
}
}
}
}
static void ggml_compute_forward_concat(
const struct ggml_compute_params* params,
struct ggml_tensor* dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_concat_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_abs
static void ggml_compute_forward_abs_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_abs_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_abs(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_abs_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sgn
static void ggml_compute_forward_sgn_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sgn_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sgn(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sgn_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_neg
static void ggml_compute_forward_neg_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_neg_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_neg(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_neg_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_step
static void ggml_compute_forward_step_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_step_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_step(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_step_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_tanh
static void ggml_compute_forward_tanh_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_tanh_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_tanh(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_tanh_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_elu
static void ggml_compute_forward_elu_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_elu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_elu(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_elu_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_relu
static void ggml_compute_forward_relu_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_relu(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_relu_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_gelu
static void ggml_compute_forward_gelu_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_gelu_quick
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_gelu_quick_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
2023-06-25 11:22:21 +00:00
ggml_vec_gelu_quick_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_gelu_quick(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_quick_f32(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_silu
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_silu_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
2023-06-25 11:22:21 +00:00
ggml_vec_silu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
2023-06-25 11:22:21 +00:00
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_silu(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_leaky_relu
static void ggml_compute_forward_leaky_relu_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_leaky_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
}
}
static void ggml_compute_forward_leaky_relu(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_leaky_relu_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_silu_back
static void ggml_compute_forward_silu_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * grad = dst->src[1];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, grad));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
2023-06-25 11:22:21 +00:00
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
2023-06-25 11:22:21 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_backward_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])),
(float *) ((char *) grad->data + i1*(grad->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_back_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_hardswish_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_hardswish_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_hardswish(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_hardswish_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_hardsigmoid_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_hardsigmoid_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_hardsigmoid(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_hardsigmoid_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00];
}
float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_float sum2 = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v*v);
}
float variance = sum2/ne00;
const float scale = 1.0f/sqrtf(variance + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_norm(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_norm_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_group_rms_norm
static void ggml_compute_forward_rms_norm_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
2022-09-25 18:23:15 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
2022-09-25 18:23:15 +00:00
GGML_ASSERT(eps > 0.0f);
2022-09-25 18:23:15 +00:00
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
2022-09-25 18:23:15 +00:00
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)(x[i00] * x[i00]);
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
const float mean = sum/ne00;
2022-09-25 18:23:15 +00:00
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
// for (int i00 = 0; i00 < ne00; i00++) {
// y[i00] = x[i00];
// }
2022-09-25 18:23:15 +00:00
const float scale = 1.0f/sqrtf(mean + eps);
2022-09-25 18:23:15 +00:00
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_rms_norm(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_rms_norm_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
// src1 is same shape as src0 => same indices
const int64_t i11 = i01;
const int64_t i12 = i02;
const int64_t i13 = i03;
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
ggml_float sum_xx = 0.0;
ggml_float sum_xdz = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum_xx += (ggml_float)(x[i00] * x[i00]);
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
}
//const float mean = (float)(sum_xx)/ne00;
const float mean_eps = (float)(sum_xx)/ne00 + eps;
const float sum_eps = (float)(sum_xx) + eps*ne00;
//const float mean_xdz = (float)(sum_xdz)/ne00;
// we could cache rms from forward pass to improve performance.
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
//const float rms = sqrtf(mean_eps);
const float rrms = 1.0f / sqrtf(mean_eps);
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
{
// z = rms_norm(x)
//
// rms_norm(src0) =
// scale(
// src0,
// div(
// 1,
// sqrt(
// add(
// scale(
// sum(
// sqr(
// src0)),
// (1.0/N)),
// eps))));
// postorder:
// ## op args grad
// 00 param src0 grad[#00]
// 01 const 1
// 02 sqr (#00) grad[#02]
// 03 sum (#02) grad[#03]
// 04 const 1/N
// 05 scale (#03, #04) grad[#05]
// 06 const eps
// 07 add (#05, #06) grad[#07]
// 08 sqrt (#07) grad[#08]
// 09 div (#01,#08) grad[#09]
// 10 scale (#00,#09) grad[#10]
//
// backward pass, given grad[#10]
// #10: scale
// grad[#00] += scale(grad[#10],#09)
// grad[#09] += sum(mul(grad[#10],#00))
// #09: div
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
// #08: sqrt
// grad[#07] += mul(grad[#08], div(0.5, #08))
// #07: add
// grad[#05] += grad[#07]
// #05: scale
// grad[#03] += scale(grad[#05],#04)
// #03: sum
// grad[#02] += repeat(grad[#03], #02)
// #02:
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
//
// substitute and simplify:
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#02] = repeat(grad[#03], #02)
// grad[#02] = repeat(scale(grad[#05],#04), #02)
// grad[#02] = repeat(scale(grad[#07],#04), #02)
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
// a = b*c + d*e
// a = b*c*f/f + d*e*f/f
// a = (b*c*f + d*e*f)*(1/f)
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
// a = (b + d*e/c)*c
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
}
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// post-order:
// dx := x
// dx := scale(dx,-mean_xdz/mean_eps)
// dx := add(dx, dz)
// dx := scale(dx, rrms)
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_vec_cpy_f32 (ne00, dx, x);
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
ggml_vec_acc_f32 (ne00, dx, dz);
ggml_vec_scale_f32(ne00, dx, rrms);
}
}
}
}
static void ggml_compute_forward_rms_norm_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_back_f32(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_group_norm
static void ggml_compute_forward_group_norm_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const float eps = 1e-6f; // TODO: make this a parameter
// TODO: optimize
int n_channels = src0->ne[2];
int n_groups = dst->op_params[0];
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
for (int i = ith; i < n_groups; i += nth) {
int start = i * n_channels_per_group;
int end = start + n_channels_per_group;
if (end > n_channels) {
end = n_channels;
}
int step = end - start;
for (int64_t i03 = 0; i03 < ne03; i03++) {
ggml_float sum = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sumr += (ggml_float)x[i00];
}
sum += sumr;
}
}
const float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sumr += (ggml_float)(v * v);
}
sum2 += sumr;
}
}
const float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
}
static void ggml_compute_forward_group_norm(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_group_norm_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_mul_mat
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
//const int64_t ne00 = src0->ne[0];
//const int64_t ne01 = src0->ne[1];
2022-09-25 18:23:15 +00:00
const int64_t ne10 = src1->ne[0];
2022-09-25 18:23:15 +00:00
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
// all the experts for each batch element and the processing would become incredibly slow
// TODO: find the optimal values for these
if (dst->op != GGML_OP_MUL_MAT_ID &&
ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
//src0->type == GGML_TYPE_F32 &&
src1->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
}
return false;
}
#endif
static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
int64_t const vec_dot_num_rows = type_traits[type].nrows;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
2023-06-25 11:22:21 +00:00
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
const int64_t ne_plane = ne01*ne00;
const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
UNUSED(desired_wsize);
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT) {
if (type != GGML_TYPE_F32) {
assert(params->wsize >= desired_wsize);
// parallelize by src0 rows
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
// broadcast src0 into src1 across 2nd,3rd dimension
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
ggml_to_float_t const to_float = type_traits[type].to_float;
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
}
}
}
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
2022-09-25 18:23:15 +00:00
// perform sgemm, parallelization controlled by blas lib
if (ith != 0) {
return;
}
//const int64_t tgemm0 = ggml_perf_time_us();
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne1, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
//printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
return;
2022-09-25 18:23:15 +00:00
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = ne1*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
// threads with no work simply yield (not sure if it helps)
if (ir010 >= ir011 || ir110 >= ir111) {
sched_yield();
return;
}
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
int64_t nrc = vec_dot_num_rows;
// TODO: currently the mmla kernels support only even numbered rows/cols.
// this check can be removed once they are extended to support odd numbered rows/cols too
if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
nrc = 1;
}
const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
// attempt to reduce false-sharing (does not seem to make a difference)
// 16 * 2, accounting for mmla kernels
float tmp[32];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
const int64_t i13 = (ir1/(ne12*ne1));
const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
}
for (int cn = 0; cn < nrc; ++cn) {
memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
}
// ggml_compute_forward_mul_mat_id
static void ggml_compute_forward_mul_mat_id(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * ids = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
// row groups
const int id = ggml_get_op_params_i32(dst, 0);
const int n_as = ggml_get_op_params_i32(dst, 1);
char * wdata_src1_end = (src1->type == vec_dot_type) ?
(char *) params->wdata :
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
char * wdata = params->wdata;
if (src1->type != vec_dot_type) {
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
// initialize matrix_row_counts
GGML_ASSERT(wdata == wdata_src1_end);
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
// group rows by src0 matrix
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
matrix_row_counts[row_id] += 1;
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// compute each matrix multiplication in sequence
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
const int64_t cne1 = matrix_row_counts[cur_a];
if (cne1 == 0) {
continue;
}
const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
// threads with no work simply yield (not sure if it helps)
if (ir010 >= ir011 || ir110 >= ir111) {
sched_yield();
continue;
}
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
#undef MMID_MATRIX_ROW
}
// ggml_compute_forward_out_prod
static void ggml_compute_forward_out_prod_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
// int64_t t0 = ggml_perf_time_us();
// UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
// TODO: #if defined(GGML_USE_CLBLAST)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
bool use_blas = ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
(ggml_is_contiguous(src1) || ggml_is_transposed(src1));
#endif
if (params->type == GGML_TASK_TYPE_INIT) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
if (use_blas) {
return;
}
#endif
if (ith != 0) {
return;
}
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (use_blas) {
if (params->ith != 0) { // All threads other than the first do no work.
return;
}
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
// src0: (k,n)
// src1: (k,m)
// dst: (m,n)
//
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
// Also expressed as (major,minor)
// a: (m,k): so src1 transposed
// b: (k,n): so src0
// c: (m,n)
//
// However, if ggml_is_transposed(src1) is true, then
// src1->data already contains a transposed version, so sgemm mustn't
// transpose it further.
int n = src0->ne[0];
int k = src0->ne[1];
int m = src1->ne[0];
int transposeA, lda;
if (!ggml_is_transposed(src1)) {
transposeA = CblasTrans;
lda = m;
} else {
transposeA = CblasNoTrans;
lda = k;
}
float * a = (float *) ((char *) src1->data);
float * b = (float *) ((char *) src0->data);
float * c = (float *) ((char *) dst->data);
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
return;
}
#endif
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
// parallelize by last three dimensions
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
// block-tiling attempt
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
const int64_t blck_1 = 16;
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
const int64_t bir1 = MIN(bir + blck_1, ir1);
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
const int64_t bne01 = MIN(bi01 + blck_0, ne01);
for (int64_t ir = bir; ir < bir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2;
const int64_t i03 = i3;
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
#if GGML_VEC_MAD_UNROLL > 2
const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
}
for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}
#else
for (int64_t i01 = bi01; i01 < bne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}
#endif
}
}
}
//int64_t t1 = ggml_perf_time_us();
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_out_prod_q_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
// int64_t t0 = ggml_perf_time_us();
// UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 dim0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst dim0 cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by last three dimensions
2022-09-25 18:23:15 +00:00
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
2022-09-25 18:23:15 +00:00
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
2022-09-25 18:23:15 +00:00
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
2022-09-25 18:23:15 +00:00
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
2022-09-25 18:23:15 +00:00
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int64_t ir = ir0; ir < ir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
2022-09-25 18:23:15 +00:00
const int64_t i02 = i2;
const int64_t i03 = i3;
2022-09-25 18:23:15 +00:00
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
2022-09-25 18:23:15 +00:00
for (int64_t i01 = 0; i01 < ne01; ++i01) {
const int64_t i11 = i01;
2022-09-25 18:23:15 +00:00
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
2022-09-25 18:23:15 +00:00
dequantize_row_q(s0, wdata, ne0);
ggml_vec_mad_f32(ne0, d, wdata, *s1);
2022-09-25 18:23:15 +00:00
}
}
//int64_t t1 = ggml_perf_time_us();
2022-09-25 18:23:15 +00:00
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
2022-09-25 18:23:15 +00:00
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_out_prod(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_out_prod_q_f32(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F16:
{
GGML_ASSERT(false); // todo
// ggml_compute_forward_out_prod_f16_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_out_prod_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_scale
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_scale_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const size_t nb01 = src0->nb[1];
const size_t nb1 = dst->nb[1];
2022-09-25 18:23:15 +00:00
for (int i1 = ir0; i1 < ir1; i1++) {
if (dst->data != src0->data) {
// src0 is same shape as dst => same indices
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
}
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_scale(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_scale_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_set
static void ggml_compute_forward_set_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during set
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
if (params->ith != 0) {
return;
}
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during set
const size_t nb0 = ggml_element_size(src0);
const int im0 = (ne10 == 0 ? 0 : ne10-1);
const int im1 = (ne11 == 0 ? 0 : ne11-1);
const int im2 = (ne12 == 0 ? 0 : ne12-1);
const int im3 = (ne13 == 0 ? 0 : ne13-1);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
}
}
static void ggml_compute_forward_set(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_set_f32(params, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_cpy
static void ggml_compute_forward_cpy(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
ggml_compute_forward_dup(params, dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_cont
static void ggml_compute_forward_cont(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
ggml_compute_forward_dup(params, dst);
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_reshape
static void ggml_compute_forward_reshape(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
// NOP
UNUSED(params);
UNUSED(dst);
}
// ggml_compute_forward_view
static void ggml_compute_forward_view(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
const struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
// NOP
UNUSED(params);
UNUSED(dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_permute
static void ggml_compute_forward_permute(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
const struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
// NOP
UNUSED(params);
UNUSED(dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_transpose
static void ggml_compute_forward_transpose(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
const struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
// NOP
UNUSED(params);
UNUSED(dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_get_rows
static void ggml_compute_forward_get_rows_q(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == ggml_type_size(type));
assert(ggml_nrows(dst) == nr);
// TODO: multi-thread
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
dequantize_row_q(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
}
}
static void ggml_compute_forward_get_rows_f16(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
2022-09-25 18:23:15 +00:00
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_fp16_t));
assert(ggml_nrows(dst) == nr);
2022-09-25 18:23:15 +00:00
// TODO: multi-thread
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_fp16_to_fp32_row(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
2022-09-25 18:23:15 +00:00
}
}
}
static void ggml_compute_forward_get_rows_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
2022-09-25 18:23:15 +00:00
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(float));
assert(ggml_nrows(dst) == nr);
2022-09-25 18:23:15 +00:00
// TODO: multi-thread
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
}
}
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_get_rows(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_get_rows_q(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
2022-09-25 18:23:15 +00:00
{
ggml_compute_forward_get_rows_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_get_rows_back
static void ggml_compute_forward_get_rows_back_f32_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_is_contiguous(dst));
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_TYPE_INIT) {
if (params->ith != 0) {
return;
}
memset(dst->data, 0, ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
}
}
}
static void ggml_compute_forward_get_rows_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_is_contiguous(dst));
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_TYPE_INIT) {
if (params->ith != 0) {
return;
}
2023-06-25 11:22:21 +00:00
memset(dst->data, 0, ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) src0->data + i*src0->nb[1]));
}
}
static void ggml_compute_forward_get_rows_back(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_back_f32_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_back_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
// ggml_compute_forward_diag
static void ggml_compute_forward_diag_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// TODO: handle transposed/permuted matrices
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(ne00 == ne0);
GGML_ASSERT(ne00 == ne1);
GGML_ASSERT(ne01 == 1);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne3);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = 0; i2 < ne2; i2++) {
for (int i1 = 0; i1 < ne1; i1++) {
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
for (int i0 = 0; i0 < i1; i0++) {
d[i0] = 0;
}
d[i1] = s[i1];
for (int i0 = i1+1; i0 < ne0; i0++) {
d[i0] = 0;
}
}
}
}
}
static void ggml_compute_forward_diag(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_diag_mask_inf
static void ggml_compute_forward_diag_mask_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const float value) {
const struct ggml_tensor * src0 = dst->src[0];
const int ith = params->ith;
const int nth = params->nth;
const int n_past = ((int32_t *) dst->op_params)[0];
const bool inplace = src0->data == dst->data;
2023-06-25 11:22:21 +00:00
GGML_ASSERT(n_past >= 0);
2022-09-25 18:23:15 +00:00
if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
if (ith != 0) {
return;
}
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
2022-09-25 18:23:15 +00:00
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
2022-09-25 18:23:15 +00:00
// TODO: handle transposed/permuted matrices
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const int nr = src0->ne[1];
const int nz = n/nr;
2023-06-25 11:22:21 +00:00
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
for (int k = 0; k < nz; k++) {
for (int j = ith; j < nr; j += nth) {
2022-09-25 18:23:15 +00:00
for (int i = n_past; i < nc; i++) {
if (i > n_past + j) {
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
2022-09-25 18:23:15 +00:00
}
}
}
}
}
static void ggml_compute_forward_diag_mask_inf(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_diag_mask_zero(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, dst, 0);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_soft_max
static void ggml_compute_forward_soft_max_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src2 = dst->src[2];
assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int64_t ne11 = src1 ? src1->ne[1] : 1;
// TODO: is this supposed to be ceil instead of floor?
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
const uint32_t n_head_kv = ne02;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
// when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
float * pos = src2 ? (float *) src2->data : src0->data;
for (int i1 = ir0; i1 < ir1; i1++) {
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows
float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale);
if (mp) {
ggml_vec_acc_f32(nc, wp, mp);
}
// ALiBi bias
if (max_bias > 0.0f) {
const uint32_t h = (i1/ne01)%ne02; // head
const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
for (int i = 0; i < nc; i++) {
wp[i] = wp[i] + slope*pos[i];
}
}
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(wp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, wp);
ggml_float sum = 0.0;
uint16_t scvt;
for (int i = 0; i < nc; i++) {
if (wp[i] == -INFINITY) {
dp[i] = 0.0f;
} else {
// const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
sum += (ggml_float)val;
dp[i] = val;
}
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(nc, dp, sum);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dp[i]));
assert(!isinf(dp[i]));
}
#endif
}
}
static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_soft_max_back
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_soft_max_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src1, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
2023-06-25 11:22:21 +00:00
// TODO: handle transposed/permuted matrices
2023-06-25 11:22:21 +00:00
const int ith = params->ith;
const int nth = params->nth;
2023-06-25 11:22:21 +00:00
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
2023-06-25 11:22:21 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(dy[i]));
assert(!isnan(y[i]));
}
#endif
// Jii = yi - yi*yi
// Jij = -yi*yj
// J = diag(y)-y.T*y
// dx = J * dy
// dxk = sum_i(Jki * dyi)
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
// dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
2023-06-25 11:22:21 +00:00
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
// dxk = -yk * dot(y, dy) + yk*dyk
// dxk = yk * (- dot(y, dy) + dyk)
// dxk = yk * (dyk - dot(y, dy))
//
// post-order:
// dot_y_dy := dot(y, dy)
// dx := dy
// dx := dx - dot_y_dy
// dx := dx * y
// linear runtime, no additional memory
float dot_y_dy = 0;
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
2023-06-25 11:22:21 +00:00
ggml_vec_cpy_f32 (nc, dx, dy);
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
ggml_vec_mul_f32 (nc, dx, dx, y);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dx[i]));
assert(!isinf(dx[i]));
}
#endif
}
}
static void ggml_compute_forward_soft_max_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_back_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_alibi
static void ggml_compute_forward_alibi_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
2023-06-25 11:22:21 +00:00
const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
const int64_t ne1 = src0->ne[1]; // seq_len_without_past
const int64_t ne2 = src0->ne[2]; // n_head -> this is k
//const int64_t ne3 = src0->ne[3]; // 1 -> bsz
2023-06-25 11:22:21 +00:00
const int64_t n = ggml_nrows(src0);
const int64_t ne2_ne3 = n/ne1; // ne2*ne3
2023-06-25 11:22:21 +00:00
const size_t nb0 = src0->nb[0];
const size_t nb1 = src0->nb[1];
const size_t nb2 = src0->nb[2];
2023-06-25 11:22:21 +00:00
//const int nb3 = src0->nb[3];
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(n_head == ne2);
// add alibi to src0 (KQ_scaled)
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int64_t k = 0; k < ne2_ne3; k++) {
// TODO: k*nb2 or k*nb3
float m_k;
if (k < n_heads_log2_floor) {
m_k = powf(m0, k + 1);
} else {
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
for (int64_t i = 0; i < ne0; i++) {
for (int64_t j = 0; j < ne1; j++) {
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
pdst[0] = i * m_k + src[0];
}
}
}
}
static void ggml_compute_forward_alibi_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
2022-09-25 18:23:15 +00:00
const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
const int ne1 = src0->ne[1]; // seq_len_without_past
const int ne2 = src0->ne[2]; // n_head -> this is k
//const int ne3 = src0->ne[3]; // 1 -> bsz
2022-09-25 18:23:15 +00:00
const int n = ggml_nrows(src0);
const int ne2_ne3 = n/ne1; // ne2*ne3
2022-09-25 18:23:15 +00:00
const int nb0 = src0->nb[0];
const int nb1 = src0->nb[1];
const int nb2 = src0->nb[2];
//const int nb3 = src0->nb[3];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
//GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
GGML_ASSERT(n_head == ne2);
2022-09-25 18:23:15 +00:00
// add alibi to src0 (KQ_scaled)
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
2022-09-25 18:23:15 +00:00
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
2022-09-25 18:23:15 +00:00
for (int k = 0; k < ne2_ne3; k++) {
// TODO: k*nb2 or k*nb3
float m_k;
2022-09-25 18:23:15 +00:00
if (k < n_heads_log2_floor) {
m_k = powf(m0, k + 1);
} else {
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
2022-09-25 18:23:15 +00:00
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
2022-09-25 18:23:15 +00:00
// we return F32
pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
}
2022-09-25 18:23:15 +00:00
}
}
}
static void ggml_compute_forward_alibi(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_alibi_f16(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
ggml_compute_forward_alibi_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q8_K:
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_clamp
static void ggml_compute_forward_clamp_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
float min;
float max;
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
for (int j = ith; j < n; j += nth) {
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
for (int i = 0; i < nc; i++) {
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
}
}
}
static void ggml_compute_forward_clamp(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_clamp_f32(params, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q8_K:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_rope
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
return 1 - MIN(1, MAX(0, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
*cos_theta = cosf(theta) * mscale;
*sin_theta = sinf(theta) * mscale;
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
}
static void ggml_rope_cache_init(
float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale
) {
float theta = theta_base;
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
rope_yarn(
theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
);
cache[i0 + 1] *= sin_sign;
theta *= theta_scale;
}
}
GGML_CALL void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
dims[0] = MAX(0, start);
dims[1] = MIN(n_dims - 1, end);
}
static void ggml_compute_forward_rope_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const bool forward) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
// these two only relevant for xPos RoPE:
float xpos_base;
bool xpos_down;
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
2022-09-25 18:23:15 +00:00
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
2022-09-25 18:23:15 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb00 == sizeof(float));
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.f/n_dims;
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
2023-04-14 16:20:39 +00:00
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
// backward process uses inverse rotation by cos and sin.
// cos and sin build a rotation matrix, where the inverse is the transpose.
// this essentially just switches the sign of sin.
const float sin_sign = forward ? 1.0f : -1.0f;
const int32_t * pos = (const int32_t *) src1->data;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
const int64_t p = pos[i2];
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta_base = (float)p;
2023-04-14 16:20:39 +00:00
if (is_glm) {
theta_base = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta_base);
const float sin_theta = sinf(theta_base) * sin_sign;
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
block_theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
const float x2 = src[n_dims];
const float x3 = src[n_dims/2*3];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
// zeta scaling for xPos only:
float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
if (xpos_down) zeta = 1.0f / zeta;
2022-09-25 18:23:15 +00:00
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
2023-06-25 11:22:21 +00:00
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[1];
2022-09-25 18:23:15 +00:00
dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
theta_base *= freq_scale;
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
float cos_theta, sin_theta;
rope_yarn(
theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;
2022-09-25 18:23:15 +00:00
theta_base *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
2023-06-25 11:22:21 +00:00
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
2022-09-25 18:23:15 +00:00
}
}
}
}
}
static void ggml_compute_forward_rope_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const bool forward) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.f/n_dims;
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
// backward process uses inverse rotation by cos and sin.
// cos and sin build a rotation matrix, where the inverse is the transpose.
// this essentially just switches the sign of sin.
const float sin_sign = forward ? 1.0f : -1.0f;
const int32_t * pos = (const int32_t *) src1->data;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
const int64_t p = pos[i2];
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta_base = (float)p;
if (is_glm) {
theta_base = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta_base);
const float sin_theta = sinf(theta_base) * sin_sign;
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
block_theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[1]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
theta_base *= freq_scale;
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
float cos_theta, sin_theta;
rope_yarn(
theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;
theta_base *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
} else {
const int64_t i0 = ic;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
}
}
}
static void ggml_compute_forward_rope(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, dst, true);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, dst, true);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_rope_back
static void ggml_compute_forward_rope_back(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, dst, false);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, dst, false);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_conv_transpose_1d
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02;
2022-09-25 18:23:15 +00:00
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
2022-09-25 18:23:15 +00:00
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
2022-09-25 18:23:15 +00:00
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ne02 + i02] = src[i00];
}
}
}
}
2022-09-25 18:23:15 +00:00
// permute source data (src1) from (L x Cin) to (Cin x L)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
ggml_fp16_t * dst_data = wdata;
2022-09-25 18:23:15 +00:00
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
2022-09-25 18:23:15 +00:00
}
}
}
// need to zero dst since we are accumulating into it
memset(dst->data, 0, ggml_nbytes(dst));
2022-09-25 18:23:15 +00:00
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
2022-09-25 18:23:15 +00:00
// total rows in dst
const int nr = ne1;
2022-09-25 18:23:15 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i10*ne11;
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne02, &v, 0,
(ggml_fp16_t *) wdata_src + i1n, 0,
(ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
dst_data[i10*s0 + i00] += v;
2022-09-25 18:23:15 +00:00
}
}
}
}
static void ggml_compute_forward_conv_transpose_1d_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02;
2022-09-25 18:23:15 +00:00
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
2022-09-25 18:23:15 +00:00
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
{
float * const wdata = (float *) params->wdata + 0;
2022-09-25 18:23:15 +00:00
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
float * dst_data = wdata + i01*ne00*ne02;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ne02 + i02] = src[i00];
}
}
}
}
// prepare source data (src1)
{
float * const wdata = (float *) params->wdata + nk;
float * dst_data = wdata;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne11 + i11] = src[i10];
2022-09-25 18:23:15 +00:00
}
}
}
// need to zero dst since we are accumulating into it
memset(dst->data, 0, ggml_nbytes(dst));
return;
}
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
// total rows in dst
const int nr = ne1;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * const wdata = (float *) params->wdata + 0;
float * const wdata_src = wdata + nk;
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
float * wdata_kernel = wdata + i1*ne02*ne00;
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i10*ne11;
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f32(ne02, &v, 0,
wdata_src + i1n, 0,
wdata_kernel + i00*ne02, 0, 1);
dst_data[i10*s0 + i00] += v;
}
}
}
}
static void ggml_compute_forward_conv_transpose_1d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_conv_transpose_1d_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
static void ggml_compute_forward_im2col_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
int ofs0 = is_2D ? nb13 : nb12;
int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
} else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
}
}
}
}
}
}
}
}
}
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
static void ggml_compute_forward_im2col_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
int ofs0 = is_2D ? nb13 : nb12;
int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
} else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
}
}
}
}
2022-09-25 18:23:15 +00:00
}
}
}
}
}
static void ggml_compute_forward_im2col(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_im2col_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_im2col_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_conv_transpose_2d
static void ggml_compute_forward_conv_transpose_2d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02*ne03;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
}
}
}
}
}
// permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
for (int i12 = 0; i12 < ne12; i12++) {
for (int i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
for (int i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
}
}
}
}
memset(dst->data, 0, ggml_nbytes(dst));
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int32_t stride = ggml_get_op_params_i32(dst, 0);
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
float * dst_data = (float *)((char *) dst->data + i2*nb2);
ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
for (int i11 = 0; i11 < ne11; i11++) {
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i11*ne10*ne12 + i10*ne12;
for (int i01 = 0; i01 < ne01; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne03, &v, 0,
wdata_src + i1n, 0,
wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
}
}
}
}
}
}
// ggml_compute_forward_pool_1d_sk_p0
static void ggml_compute_forward_pool_1d_sk_p0(
const struct ggml_compute_params * params,
const enum ggml_op_pool op,
const int k,
struct ggml_tensor * dst) {
const struct ggml_tensor * src = dst->src[0];
assert(src->type == GGML_TYPE_F32);
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const char * cdata = (const char *)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
float * drow = (float *)dst->data;
const int64_t rs = dst->ne[0];
while (cdata < data_end) {
const float * const srow = (const float *)cdata;
int j = 0;
for (int64_t i = 0; i < rs; ++i) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] = 0; break;
case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
for (int ki = 0; ki < k; ++ki) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
++j;
}
switch (op) {
case GGML_OP_POOL_AVG: drow[i] /= k; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
cdata += src->nb[1];
drow += rs;
}
}
// ggml_compute_forward_pool_1d
static void ggml_compute_forward_pool_1d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int s0 = opts[2];
const int p0 = opts[3];
GGML_ASSERT(p0 == 0); // padding not supported
GGML_ASSERT(k0 == s0); // only s = k supported
ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
}
// ggml_compute_forward_pool_2d
static void ggml_compute_forward_pool_2d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
const char * cdata = (const char*)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
const int64_t px = dst->ne[0];
const int64_t py = dst->ne[1];
const int64_t pa = px * py;
float * dplane = (float *)dst->data;
const int ka = k0 * k1;
const int offset0 = -p0;
const int offset1 = -p1;
while (cdata < data_end) {
for (int oy = 0; oy < py; ++oy) {
float * const drow = dplane + oy * px;
for (int ox = 0; ox < px; ++ox) {
float * const out = drow + ox;
switch (op) {
case GGML_OP_POOL_AVG: *out = 0; break;
case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
const int ix = offset0 + ox * s0;
const int iy = offset1 + oy * s1;
for (int ky = 0; ky < k1; ++ky) {
if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
for (int kx = 0; kx < k0; ++kx) {
int j = ix + kx;
if (j < 0 || j >= src->ne[0]) continue;
switch (op) {
case GGML_OP_POOL_AVG: *out += srow[j]; break;
case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
}
switch (op) {
case GGML_OP_POOL_AVG: *out /= ka; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
}
cdata += src->nb[2];
dplane += pa;
}
}
// ggml_compute_forward_upscale
static void ggml_compute_forward_upscale_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int scale_factor = dst->op_params[0];
// TODO: optimize
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i01 = i1 / scale_factor;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const int64_t i00 = i0 / scale_factor;
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_upscale(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_upscale_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_pad
static void ggml_compute_forward_pad_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT( dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
// TODO: optimize
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
}
}
}
}
}
}
static void ggml_compute_forward_pad(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_pad_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const float start = ggml_get_op_params_f32(dst, 0);
const float stop = ggml_get_op_params_f32(dst, 1);
const float step = ggml_get_op_params_f32(dst, 2);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
for (int64_t i = ith; i < steps; i+= nth) {
float value = start + step * i;
((float *)dst->data)[i] = value;
}
}
static void ggml_compute_forward_arange(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_arange_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_timestep_embedding_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int dim = ggml_get_op_params_i32(dst, 0);
const int max_period = ggml_get_op_params_i32(dst, 1);
int half = dim / 2;
for (int64_t i = 0; i < ne00; i++) {
float * embed_data = (float *)((char *) dst->data + i*nb1);
for (int64_t j = ith; j < half; j += nth) {
float timestep = ((float *)src0->data)[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
}
}
}
static void ggml_compute_forward_timestep_embedding(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_timestep_embedding_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb0 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
for (int64_t i = ith; i < nr; i += nth) {
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
const float * src_data = (float *)((char *) src0->data + i*nb01);
for (int64_t j = 0; j < ne0; j++) {
dst_data[j] = j;
}
// C doesn't have a functional sort, so we do a bubble sort instead
for (int64_t j = 0; j < ne0; j++) {
for (int64_t k = j + 1; k < ne0; k++) {
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
int32_t tmp = dst_data[j];
dst_data[j] = dst_data[k];
dst_data[k] = tmp;
}
}
}
}
}
static void ggml_compute_forward_argsort(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argsort_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn
static void ggml_compute_forward_flash_attn_f32(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
for (int64_t ic = 0; ic < masked_begin; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f32(neq0,
S + i1, 0,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
// scale
ggml_vec_scale_f32(masked_begin, S, scale);
for (int64_t i = masked_begin; i < M; i++) {
S[i] = -INFINITY;
}
// softmax
// exclude known -INF S[..] values from max and loop
// dont forget to set their SW values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(masked_begin, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
if (i >= masked_begin) {
break;
}
float * SS = S + i;
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
if (i + j >= masked_begin) {
break;
} else if (SS[j] == -INFINITY) {
SS[j] = 0.0f;
} else {
#ifndef GGML_FLASH_ATTN_EXP_FP16
const float val = expf(SS[j] - max);
#else
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
memcpy(&scvt[j], &s, sizeof(uint16_t));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
#endif
sump[j] += (ggml_float)val;
SS[j] = val;
}
}
}
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
sum += sump[i];
}
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(masked_begin, S, sum);
#ifndef NDEBUG
for (int i = 0; i < masked_begin; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f32(masked_begin,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
S, 0, 1);
}
}
}
static void ggml_compute_forward_flash_attn_f16(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
for (int64_t ic = 0; ic < nek1; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16(neq0,
S + i1, 0,
(ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
} else {
for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16_unroll(neq0, nbk1,
S + i1,
((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
}
// scale
ggml_vec_scale_f32(nek1, S, scale);
if (masked) {
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = -INFINITY;
}
}
}
// softmax
// todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
// dont forget to set their S values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(M, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
uint16_t scvt[GGML_SOFT_MAX_UNROLL];
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
float * SS = S + i;
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
if (SS[j] == -INFINITY) {
SS[j] = 0.0f;
} else {
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
memcpy(&scvt[j], &s, sizeof(uint16_t));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
sump[j] += (ggml_float)val;
SS[j] = val;
}
}
}
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
sum += sump[i];
}
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(M, S, sum);
#ifndef NDEBUG
for (int i = 0; i < M; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
// todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f16(nev0,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
S16, 0, 1);
}
} else {
for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f16_unroll(nev0, nbv1,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
S16);
}
}
}
}
static void ggml_compute_forward_flash_attn(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
switch (q->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_attn_f16(params, masked, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_f32(params, masked, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_ff
static void ggml_compute_forward_flash_ff_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0]; // F16
const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
GGML_TENSOR_LOCALS(size_t, nba, a, nb)
GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = nea0;
//const int64_t N = nea1;
const int64_t M = neb01;
GGML_ASSERT(ne0 == nea0);
GGML_ASSERT(ne1 == nea1);
GGML_ASSERT(ne2 == nea2);
GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb10 == sizeof(float));
GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbc10 == sizeof(float));
GGML_ASSERT(neb00 == D);
GGML_ASSERT(neb01 == M);
GGML_ASSERT(neb10 == M);
GGML_ASSERT(neb11 == 1);
GGML_ASSERT(nec00 == M);
GGML_ASSERT(nec01 == D);
GGML_ASSERT(nec10 == D);
GGML_ASSERT(nec11 == 1);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by a rows using ggml_vec_dot_f32
// total rows in a
const int nr = nea1*nea2*nea3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// a indices
const int ia3 = ir/(nea2*nea1);
const int ia2 = (ir - ia3*nea2*nea1)/nea1;
const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
for (int64_t ic = 0; ic < neb01; ++ic) {
// b0 indices
const int ib03 = ia3;
const int ib02 = ia2;
const int ib01 = ic;
// S indices
const int i1 = ib01;
ggml_vec_dot_f16(nea0,
S + i1, 0,
(ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
(ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
}
ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
//ggml_vec_gelu_f32(neb01, S, S);
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
ggml_vec_gelu_f16(neb01, S16, S16);
{
// dst indices
const int i1 = ia1;
const int i2 = ia2;
const int i3 = ia3;
for (int64_t ic = 0; ic < nec01; ++ic) {
ggml_vec_dot_f16(neb01,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
S16, 0, 1);
}
ggml_vec_add_f32(nec01,
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) c1->data);
}
}
}
static void ggml_compute_forward_flash_ff(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * b0 = dst->src[1];
switch (b0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_ff_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(false); // TODO
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_flash_attn_back
2023-04-14 16:20:39 +00:00
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_flash_attn_back_f32(
2023-04-14 16:20:39 +00:00
const struct ggml_compute_params * params,
2023-06-25 11:22:21 +00:00
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
const struct ggml_tensor * d = dst->src[3];
2023-06-25 11:22:21 +00:00
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
2023-04-14 16:20:39 +00:00
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
2023-06-25 11:22:21 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
const int mxDM = MAX(D, Mup);
// GGML_ASSERT(ne0 == D);
// GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned1 == N);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
2023-06-25 11:22:21 +00:00
if (ith == 0) {
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const int64_t elem_q = ggml_nelements(q);
const int64_t elem_k = ggml_nelements(k);
2023-06-25 11:22:21 +00:00
enum ggml_type result_type = dst->type;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
void * grad_q = (char *) dst->data;
void * grad_k = (char *) dst->data + offs_k;
void * grad_v = (char *) dst->data + offs_v;
const size_t nbgq1 = nb0*neq0;
const size_t nbgq2 = nb0*neq0*neq1;
const size_t nbgq3 = nb0*neq0*neq1*neq2;
const size_t nbgk1 = nb0*nek0;
const size_t nbgk2 = nb0*nek0*nek1;
const size_t nbgk3 = nb0*nek0*nek1*neq2;
const size_t nbgv1 = nb0*nev0;
const size_t nbgv2 = nb0*nev0*nev1;
const size_t nbgv3 = nb0*nev0*nev1*neq2;
// parallelize by k rows using ggml_vec_dot_f32
// total rows in k
const int nr = nek2*nek3;
2023-06-25 11:22:21 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
// how often k2 (and v2) is repeated in q2
int nrep = neq2/nek2;
2023-06-25 11:22:21 +00:00
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int ik3 = ir/(nek2);
const int ik2 = ir - ik3*nek2;
2023-06-25 11:22:21 +00:00
const int iq3 = ik3;
const int id3 = ik3;
const int iv3 = ik3;
const int iv2 = ik2;
2023-06-25 11:22:21 +00:00
for (int irep = 0; irep < nrep; ++irep) {
const int iq2 = ik2 + irep*nek2;
const int id2 = iq2;
2023-06-25 11:22:21 +00:00
// (ik2 + irep*nek2) % nek2 == ik2
for (int iq1 = 0; iq1 < neq1; ++iq1) {
const int id1 = iq1;
2023-06-25 11:22:21 +00:00
// not sure about CACHE_LINE_SIZE_F32..
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
2023-06-25 11:22:21 +00:00
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
2023-06-25 11:22:21 +00:00
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
for (int64_t ic = 0; ic < masked_begin; ++ic) {
// k indices
const int ik1 = ic;
2023-06-25 11:22:21 +00:00
// S indices
const int i1 = ik1;
2023-06-25 11:22:21 +00:00
ggml_vec_dot_f32(neq0,
S + i1, 0,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
2023-06-25 11:22:21 +00:00
}
// scale
ggml_vec_scale_f32(masked_begin, S, scale);
2023-06-25 11:22:21 +00:00
for (int64_t i = masked_begin; i < M; i++) {
S[i] = -INFINITY;
}
// softmax
// exclude known -INF S[..] values from max and loop
// dont forget to set their SM values to zero
2023-06-25 11:22:21 +00:00
{
float max = -INFINITY;
ggml_vec_max_f32(masked_begin, &max, S);
ggml_float sum = 0.0;
{
2023-06-25 11:22:21 +00:00
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
vvexpf(SM, SM, &Mup);
ggml_vec_sum_f32(Mup, &sum, SM);
2023-06-25 11:22:21 +00:00
#else
uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
2023-06-25 11:22:21 +00:00
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
if (i >= masked_begin) {
break;
}
float * SR = S + i;
float * SW = SM + i;
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
if (i + j >= masked_begin) {
break;
} else if (SR[j] == -INFINITY) {
SW[j] = 0.0f;
} else {
#ifndef GGML_FLASH_ATTN_EXP_FP16
const float val = expf(SR[j] - max);
#else
ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
memcpy(&scvt[j], &s, sizeof(uint16_t));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
#endif
sump[j] += (ggml_float)val;
SW[j] = val;
}
2023-06-25 11:22:21 +00:00
}
}
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
sum += sump[i];
}
2023-06-25 11:22:21 +00:00
#endif
}
2023-06-25 11:22:21 +00:00
assert(sum > 0.0);
2023-06-25 11:22:21 +00:00
sum = 1.0/sum;
ggml_vec_scale_f32(masked_begin, SM, sum);
2023-06-25 11:22:21 +00:00
}
// step-by-step explanation
{
// forward-process shape grads from backward process
// parallel_for ik2,ik3:
// for irep:
// iq2 = ik2 + irep*nek2
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
// for iq1:
// kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
// vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
// S0 = -Inf [D,1,1,1]
// ~S1[i] = dot(kcur[:D,i], qcur)
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
// ~S5[i] = dot(vcur[:,i], S4)
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
// dst backward-/ grad[dst] = d
//
// output gradients with their dependencies:
//
// grad[kcur] = grad[S1].T @ qcur
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S4] = grad[S5] @ vcur
// grad[S4] = d[:D,id1,id2,id3] @ vcur
// grad[qcur] = grad[S1] @ kcur
// grad[vcur] = grad[S5].T @ S4
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
//
// in post-order:
//
// S1 = qcur @ kcur.T
// S2 = S1 * scale
// S3 = diag_mask_inf(S2, P)
// S4 = softmax(S3)
// grad[S4] = d[:D,id1,id2,id3] @ vcur
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[qcur] = grad[S1] @ kcur
// grad[kcur] = grad[S1].T @ qcur
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
//
// using less variables (SM=S4):
//
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
// SM = softmax(S)
// S = d[:D,iq1,iq2,iq3] @ vcur
// dot_SM_gradSM = dot(SM, S)
// S = SM * (S - dot(SM, S))
// S = diag_mask_zero(S, P) * scale
//
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[k][:D,:M,ik2,ik3] += S.T @ qcur
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
}
2023-06-25 11:22:21 +00:00
// S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
// S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
// for ic:
// S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
// exclude known future zero S[..] values from operation
ggml_vec_set_f32(masked_begin, S, 0);
for (int64_t ic = 0; ic < D; ++ic) {
ggml_vec_mad_f32(masked_begin,
S,
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
}
2023-06-25 11:22:21 +00:00
// S = SM * (S - dot(SM, S))
float dot_SM_gradSM = 0;
ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
ggml_vec_mul_f32 (masked_begin, S, S, SM);
// S = diag_mask_zero(S, P) * scale
// already done by above ggml_vec_set_f32
// exclude known zero S[..] values from operation
ggml_vec_scale_f32(masked_begin, S, scale);
// S shape [M,1]
// SM shape [M,1]
// kcur shape [D,M]
// qcur shape [D,1]
// vcur shape [M,D]
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
// for ic:
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
// exclude known zero S[..] values from loop
for (int64_t ic = 0; ic < masked_begin; ++ic) {
ggml_vec_mad_f32(D,
(float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
(float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
S[ic]);
}
2023-06-25 11:22:21 +00:00
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
// for ic:
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
// exclude known zero S[..] values from loop
for (int64_t ic = 0; ic < masked_begin; ++ic) {
ggml_vec_mad_f32(D,
(float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
S[ic]);
}
2023-06-25 11:22:21 +00:00
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
// for ic:
// grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
// grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
// exclude known zero SM[..] values from mad
for (int64_t ic = 0; ic < D; ++ic) {
ggml_vec_mad_f32(masked_begin,
(float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
SM,
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
}
2023-06-25 11:22:21 +00:00
}
}
}
}
static void ggml_compute_forward_flash_attn_back(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (q->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_win_part
static void ggml_compute_forward_win_part_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
2023-06-25 11:22:21 +00:00
const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
const int32_t w = ((const int32_t *)(dst->op_params))[2];
2023-06-25 11:22:21 +00:00
assert(ne00 == ne0);
assert(ne3 == nep0*nep1);
// TODO: optimize / multi-thread
for (int py = 0; py < nep1; ++py) {
for (int px = 0; px < nep0; ++px) {
const int64_t i3 = py*nep0 + px;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int64_t i02 = py*w + i2;
const int64_t i01 = px*w + i1;
const int64_t i00 = i0;
const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
((float *) dst->data)[i] = 0.0f;
} else {
((float *) dst->data)[i] = ((float *) src0->data)[j];
}
}
}
}
}
}
}
static void ggml_compute_forward_win_part(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_part_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_win_unpart
static void ggml_compute_forward_win_unpart_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
2023-06-25 11:22:21 +00:00
const int32_t w = ((const int32_t *)(dst->op_params))[0];
2023-06-25 11:22:21 +00:00
// padding
const int px = (w - ne1%w)%w;
//const int py = (w - ne2%w)%w;
const int npx = (px + ne1)/w;
//const int npy = (py + ne2)/w;
assert(ne0 == ne00);
// TODO: optimize / multi-thread
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int ip2 = i2/w;
const int ip1 = i1/w;
const int64_t i02 = i2%w;
const int64_t i01 = i1%w;
const int64_t i00 = i0;
const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
((float *) dst->data)[j] = ((float *) src0->data)[i];
}
}
}
}
static void ggml_compute_forward_win_unpart(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_unpart_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
//gmml_compute_forward_unary
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_unary(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const enum ggml_unary_op op = ggml_get_unary_op(dst);
switch (op) {
case GGML_UNARY_OP_ABS:
{
ggml_compute_forward_abs(params, dst);
} break;
case GGML_UNARY_OP_SGN:
{
ggml_compute_forward_sgn(params, dst);
} break;
case GGML_UNARY_OP_NEG:
{
ggml_compute_forward_neg(params, dst);
} break;
case GGML_UNARY_OP_STEP:
{
ggml_compute_forward_step(params, dst);
} break;
case GGML_UNARY_OP_TANH:
{
ggml_compute_forward_tanh(params, dst);
} break;
case GGML_UNARY_OP_ELU:
{
ggml_compute_forward_elu(params, dst);
} break;
case GGML_UNARY_OP_RELU:
{
ggml_compute_forward_relu(params, dst);
} break;
case GGML_UNARY_OP_GELU:
{
ggml_compute_forward_gelu(params, dst);
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
ggml_compute_forward_gelu_quick(params, dst);
} break;
case GGML_UNARY_OP_SILU:
{
ggml_compute_forward_silu(params, dst);
} break;
case GGML_UNARY_OP_HARDSWISH:
{
ggml_compute_forward_hardswish(params, dst);
} break;
case GGML_UNARY_OP_HARDSIGMOID:
{
ggml_compute_forward_hardsigmoid(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_get_rel_pos
static void ggml_compute_forward_get_rel_pos_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
2023-06-25 11:22:21 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
2023-06-25 11:22:21 +00:00
const int64_t w = ne1;
ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
const int64_t pos = (w - i1 - 1) + i2;
for (int64_t i0 = 0; i0 < ne0; ++i0) {
dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
}
}
2023-06-25 11:22:21 +00:00
}
}
static void ggml_compute_forward_get_rel_pos(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
2023-06-25 11:22:21 +00:00
{
ggml_compute_forward_get_rel_pos_f16(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add_rel_pos
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_add_rel_pos_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src2 = dst->src[2];
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
if (params->ith != 0) {
return;
}
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
return;
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
float * src1_data = (float *) src1->data;
float * src2_data = (float *) src2->data;
float * dst_data = (float *) dst->data;
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int ith = params->ith;
const int nth = params->nth;
// total patches in dst
const int np = ne13;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
for (int64_t i13 = ip0; i13 < ip1; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t jp0 = jp1 + i10;
const float src1_e = src1_data[jp0];
const float src2_e = src2_data[jp0];
const int64_t jdh = jp0 * ne10;
const int64_t jdw = jdh - (ne10 - 1) * i10;
for (int64_t j = 0; j < ne10; ++j) {
dst_data[jdh + j ] += src2_e;
dst_data[jdw + j*ne10] += src1_e;
}
}
}
}
}
}
static void ggml_compute_forward_add_rel_pos(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_rel_pos_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
2023-04-14 16:20:39 +00:00
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
2023-06-25 11:22:21 +00:00
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
2023-06-25 11:22:21 +00:00
}
}
static void ggml_compute_forward_map_unary(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_unary_f32(params, dst, fun);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_binary
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_binary_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
assert(src1->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])),
(float *) ((char *) src1->data + i*(src1->nb[1])));
}
2023-06-25 11:22:21 +00:00
}
static void ggml_compute_forward_map_binary(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
2023-06-25 11:22:21 +00:00
case GGML_TYPE_F32:
{
ggml_compute_forward_map_binary_f32(params, dst, fun);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_custom1
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_custom1_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom1_op_f32_t fun) {
const struct ggml_tensor * a = dst->src[0];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
fun(dst, a);
2023-06-25 11:22:21 +00:00
}
// ggml_compute_forward_map_custom2
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_custom2_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom2_op_f32_t fun) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
2023-06-25 11:22:21 +00:00
}
fun(dst, a, b);
2023-06-25 11:22:21 +00:00
}
// ggml_compute_forward_map_custom3
static void ggml_compute_forward_map_custom3_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom3_op_f32_t fun) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
const struct ggml_tensor * c = dst->src[1];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
fun(dst, a, b, c);
}
// ggml_compute_forward_map_custom1
static void ggml_compute_forward_map_custom1(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
struct ggml_map_custom1_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_map_custom2
static void ggml_compute_forward_map_custom2(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
struct ggml_map_custom2_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, b, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_map_custom3
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_custom3(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
const struct ggml_tensor * c = dst->src[2];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
2023-06-25 11:22:21 +00:00
}
struct ggml_map_custom3_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
2023-06-25 11:22:21 +00:00
}
// ggml_compute_forward_cross_entropy_loss
static void ggml_compute_forward_cross_entropy_loss_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_scalar(dst));
GGML_ASSERT(ggml_are_same_shape(src0, src1));
const int ith = params->ith;
const int nth = params->nth;
float * sums = (float *) params->wdata;
// TODO: handle transposed/permuted matrices
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
if (params->type == GGML_TASK_TYPE_INIT) {
2023-06-25 11:22:21 +00:00
if (ith == 0) {
memset(sums, 0, sizeof(float) * (nth + nth * nc));
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
if (ith == 0) {
float * dp = (float *) dst->data;
ggml_vec_sum_f32(nth, dp, sums);
dp[0] *= -1.0f / (float) nr;
2023-06-25 11:22:21 +00:00
}
return;
}
const double eps = 1e-9;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
float * st = ((float *) params->wdata) + nth + ith*nc;
2023-06-25 11:22:21 +00:00
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
ggml_float sum = 0.0;
{
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
uint16_t scvt; UNUSED(scvt);
2023-06-25 11:22:21 +00:00
for (int i = 0; i < nc; i++) {
if (s0[i] == -INFINITY) {
st[i] = 0.0f;
} else {
#ifndef GGML_CROSS_ENTROPY_EXP_FP16
const float s = s0[i] - max;
const float val = expf(s);
#else
2023-06-25 11:22:21 +00:00
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
#endif
2023-06-25 11:22:21 +00:00
sum += (ggml_float)val;
st[i] = val;
}
}
assert(sum > 0.0);
// sum = 1.0/sum;
}
// avoid log(0) by rescaling from [0..1] to [eps..1]
sum = (1.0 - eps) / sum;
ggml_vec_scale_f32(nc, st, sum);
ggml_vec_add1_f32(nc, st, st, eps);
ggml_vec_log_f32(nc, st, st);
ggml_vec_mul_f32(nc, st, st, s1);
float st_sum = 0;
ggml_vec_sum_f32(nc, &st_sum, st);
sums[ith] += st_sum;
2023-06-25 11:22:21 +00:00
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(st[i]));
assert(!isinf(st[i]));
}
#endif
}
}
static void ggml_compute_forward_cross_entropy_loss(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
2023-04-14 16:20:39 +00:00
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_cross_entropy_loss_back
2023-04-14 16:20:39 +00:00
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_cross_entropy_loss_back_f32(
2023-04-14 16:20:39 +00:00
const struct ggml_compute_params * params,
2023-06-25 11:22:21 +00:00
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * opt0 = dst->src[2];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
const int64_t ith = params->ith;
const int64_t nth = params->nth;
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const double eps = 1e-9;
2023-06-25 11:22:21 +00:00
// TODO: handle transposed/permuted matrices
const int64_t nc = src0->ne[0];
const int64_t nr = ggml_nrows(src0);
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
float * d = (float *) opt0->data;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
ggml_float sum = 0.0;
{
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
uint16_t scvt; UNUSED(scvt);
2023-06-25 11:22:21 +00:00
for (int i = 0; i < nc; i++) {
if (s0[i] == -INFINITY) {
ds0[i] = 0.0f;
2023-06-25 11:22:21 +00:00
} else {
#ifndef GGML_CROSS_ENTROPY_EXP_FP16
const float s = s0[i] - max;
const float val = expf(s);
#else
2023-06-25 11:22:21 +00:00
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
#endif
2023-06-25 11:22:21 +00:00
sum += (ggml_float)val;
ds0[i] = val;
2023-06-25 11:22:21 +00:00
}
}
assert(sum > 0.0);
sum = (1.0 - eps)/sum;
2023-06-25 11:22:21 +00:00
}
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
ggml_vec_scale_f32(nc, ds0, sum);
ggml_vec_add1_f32(nc, ds0, ds0, eps);
ggml_vec_sub_f32(nc, ds0, ds0, s1);
ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
2023-06-25 11:22:21 +00:00
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(ds0[i]));
assert(!isinf(ds0[i]));
}
#endif
}
}
static void ggml_compute_forward_cross_entropy_loss_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-04-14 16:20:39 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
2023-04-14 16:20:39 +00:00
} break;
default:
2023-04-14 16:20:39 +00:00
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
GGML_ASSERT(params);
2022-09-25 18:23:15 +00:00
if (tensor->op == GGML_OP_NONE) {
return;
}
2023-06-25 11:22:21 +00:00
#ifdef GGML_USE_CUBLAS
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
if (skip_cpu) {
return;
}
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#elif defined(GGML_USE_VULKAN)
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#ifdef GGML_VULKAN_CHECK_RESULTS
if (skip_cpu) {
ggml_vk_check_results_1_cpu_assist(params, tensor);
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
}
#endif
if (skip_cpu) {
return;
}
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
2023-06-25 11:22:21 +00:00
#endif // GGML_USE_CUBLAS
ggml : add unified SYCL backend for Intel GPUs (llama/2690) * first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 15:56:23 +00:00
#ifdef GGML_USE_SYCL
bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
if (skip_cpu) {
return;
}
#endif // GGML_USE_SYCL
2022-09-25 18:23:15 +00:00
switch (tensor->op) {
case GGML_OP_DUP:
{
ggml_compute_forward_dup(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ADD:
{
ggml_compute_forward_add(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ADD1:
{
ggml_compute_forward_add1(params, tensor);
} break;
case GGML_OP_ACC:
{
ggml_compute_forward_acc(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SUB:
{
ggml_compute_forward_sub(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_MUL:
{
ggml_compute_forward_mul(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_DIV:
{
ggml_compute_forward_div(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SQR:
{
ggml_compute_forward_sqr(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SQRT:
{
ggml_compute_forward_sqrt(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_LOG:
{
ggml_compute_forward_log(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SUM:
{
ggml_compute_forward_sum(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SUM_ROWS:
{
ggml_compute_forward_sum_rows(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_MEAN:
{
ggml_compute_forward_mean(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ARGMAX:
{
ggml_compute_forward_argmax(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_REPEAT:
{
ggml_compute_forward_repeat(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_REPEAT_BACK:
{
ggml_compute_forward_repeat_back(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_CONCAT:
{
ggml_compute_forward_concat(params, tensor);
} break;
case GGML_OP_SILU_BACK:
{
ggml_compute_forward_silu_back(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_NORM:
{
ggml_compute_forward_norm(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_RMS_NORM:
{
ggml_compute_forward_rms_norm(params, tensor);
} break;
case GGML_OP_RMS_NORM_BACK:
{
ggml_compute_forward_rms_norm_back(params, tensor);
} break;
case GGML_OP_GROUP_NORM:
{
ggml_compute_forward_group_norm(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_MUL_MAT:
{
ggml_compute_forward_mul_mat(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_MUL_MAT_ID:
{
ggml_compute_forward_mul_mat_id(params, tensor);
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_OUT_PROD:
{
ggml_compute_forward_out_prod(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SCALE:
{
ggml_compute_forward_scale(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SET:
{
ggml_compute_forward_set(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_CPY:
{
ggml_compute_forward_cpy(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CONT:
{
ggml_compute_forward_cont(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_RESHAPE:
{
ggml_compute_forward_reshape(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_VIEW:
{
ggml_compute_forward_view(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_PERMUTE:
{
ggml_compute_forward_permute(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_TRANSPOSE:
{
ggml_compute_forward_transpose(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_GET_ROWS:
{
ggml_compute_forward_get_rows(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_GET_ROWS_BACK:
{
ggml_compute_forward_get_rows_back(params, tensor);
} break;
case GGML_OP_DIAG:
{
ggml_compute_forward_diag(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_DIAG_MASK_INF:
{
ggml_compute_forward_diag_mask_inf(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_DIAG_MASK_ZERO:
{
ggml_compute_forward_diag_mask_zero(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SOFT_MAX:
{
ggml_compute_forward_soft_max(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_SOFT_MAX_BACK:
{
ggml_compute_forward_soft_max_back(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_ROPE:
{
ggml_compute_forward_rope(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ROPE_BACK:
{
ggml_compute_forward_rope_back(params, tensor);
} break;
case GGML_OP_ALIBI:
{
ggml_compute_forward_alibi(params, tensor);
} break;
case GGML_OP_CLAMP:
{
ggml_compute_forward_clamp(params, tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
ggml_compute_forward_conv_transpose_1d(params, tensor);
} break;
case GGML_OP_IM2COL:
{
ggml_compute_forward_im2col(params, tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
ggml_compute_forward_conv_transpose_2d(params, tensor);
} break;
case GGML_OP_POOL_1D:
{
ggml_compute_forward_pool_1d(params, tensor);
} break;
case GGML_OP_POOL_2D:
{
ggml_compute_forward_pool_2d(params, tensor);
} break;
case GGML_OP_UPSCALE:
{
ggml_compute_forward_upscale(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_PAD:
{
ggml_compute_forward_pad(params, tensor);
} break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
ggml_compute_forward_timestep_embedding(params, tensor);
} break;
case GGML_OP_ARGSORT:
{
ggml_compute_forward_argsort(params, tensor);
} break;
case GGML_OP_LEAKY_RELU:
{
ggml_compute_forward_leaky_relu(params, tensor);
} break;
case GGML_OP_FLASH_ATTN:
{
const int32_t t = ggml_get_op_params_i32(tensor, 0);
GGML_ASSERT(t == 0 || t == 1);
2023-06-25 11:22:21 +00:00
const bool masked = t != 0;
ggml_compute_forward_flash_attn(params, masked, tensor);
} break;
case GGML_OP_FLASH_FF:
{
ggml_compute_forward_flash_ff(params, tensor);
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_FLASH_ATTN_BACK:
{
int32_t t = ggml_get_op_params_i32(tensor, 0);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(t == 0 || t == 1);
bool masked = t != 0;
ggml_compute_forward_flash_attn_back(params, masked, tensor);
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_WIN_PART:
{
ggml_compute_forward_win_part(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_WIN_UNPART:
{
ggml_compute_forward_win_unpart(params, tensor);
} break;
case GGML_OP_UNARY:
{
ggml_compute_forward_unary(params, tensor);
} break;
case GGML_OP_GET_REL_POS:
{
ggml_compute_forward_get_rel_pos(params, tensor);
} break;
case GGML_OP_ADD_REL_POS:
{
ggml_compute_forward_add_rel_pos(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
2023-04-14 16:20:39 +00:00
case GGML_OP_MAP_UNARY:
{
ggml_unary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_unary(params, tensor, fun);
2023-04-14 16:20:39 +00:00
}
break;
case GGML_OP_MAP_BINARY:
{
ggml_binary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_binary(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM1_F32:
{
ggml_custom1_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom1_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM2_F32:
{
ggml_custom2_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom2_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM3_F32:
{
ggml_custom3_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom3_f32(params, tensor, fun);
2023-04-14 16:20:39 +00:00
}
break;
2023-06-25 11:22:21 +00:00
case GGML_OP_MAP_CUSTOM1:
{
ggml_compute_forward_map_custom1(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_MAP_CUSTOM2:
{
ggml_compute_forward_map_custom2(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_MAP_CUSTOM3:
{
ggml_compute_forward_map_custom3(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
ggml_compute_forward_cross_entropy_loss(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
ggml_compute_forward_cross_entropy_loss_back(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
2022-09-25 18:23:15 +00:00
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
2022-09-25 18:23:15 +00:00
}
////////////////////////////////////////////////////////////////////////////////
static size_t ggml_hash_size(size_t min_sz) {
// next primes after powers of two
static const size_t primes[] = {
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
2053, 4099, 8209, 16411, 32771, 65537, 131101,
262147, 524309, 1048583, 2097169, 4194319, 8388617,
16777259, 33554467, 67108879, 134217757, 268435459,
536870923, 1073741827, 2147483659
};
static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
// find the smallest prime that is larger or equal to min_sz
size_t l = 0;
size_t r = n_primes;
while (l < r) {
size_t m = (l + r)/2;
if (primes[m] < min_sz) {
l = m + 1;
} else {
r = m;
}
}
size_t sz = l < n_primes ? primes[l] : min_sz | 1;
return sz;
}
static size_t ggml_hash(const void * p) {
return (size_t)p;
}
size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set.size;
// linear probing
size_t i = h;
while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
i = (i + 1) % hash_set.size;
if (i == h) {
// visited all hash table entries -> not found
return GGML_HASHTABLE_FULL;
}
}
return i;
}
bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
}
size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
GGML_ASSERT(i != GGML_HASHTABLE_FULL);
if (hash_set.keys[i] == key) {
return GGML_HASHTABLE_ALREADY_EXISTS;
}
// insert
GGML_ASSERT(hash_set.keys[i] == NULL);
hash_set.keys[i] = key;
return i;
}
size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
GGML_ASSERT(i != GGML_HASHTABLE_FULL);
hash_set.keys[i] = key;
return i;
}
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
struct ggml_hash_set ggml_hash_set_new(size_t size) {
size = ggml_hash_size(size);
struct ggml_hash_set result;
result.size = size;
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
return result;
}
static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
GGML_FREE(hash_set.keys);
}
struct hash_map {
struct ggml_hash_set set;
struct ggml_tensor ** vals;
};
static struct hash_map * ggml_new_hash_map(size_t size) {
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
result->set = ggml_hash_set_new(size);
result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
return result;
}
static void ggml_hash_map_free(struct hash_map * map) {
ggml_hash_set_free(map->set);
GGML_FREE(map->vals);
GGML_FREE(map);
}
// gradient checkpointing
static struct ggml_tensor * ggml_recompute_graph_node(
struct ggml_context * ctx,
struct ggml_cgraph * graph,
struct hash_map * replacements,
struct ggml_tensor * node) {
if (node == NULL) {
return NULL;
}
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
return node;
}
if (!ggml_hash_contains(graph->visited_hash_table, node)) {
return node;
}
int count_children = 0;
for (int k = 0; k < GGML_MAX_SRC; ++k) {
if (node->src[k]) {
++count_children;
}
}
if (count_children == 0) {
return node;
}
size_t i = ggml_hash_find(replacements->set, node);
GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
if (replacements->set.keys[i] == node) {
return replacements->vals[i];
}
struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
// insert clone into replacements
GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
replacements->set.keys[i] = node;
replacements->vals[i] = clone;
clone->op = node->op;
clone->grad = node->grad;
clone->flags = node->flags;
clone->extra = node->extra;
for (int k = 0; k < GGML_MAX_DIMS; ++k) {
clone->nb[k] = node->nb[k];
}
for (int k = 0; k < GGML_MAX_SRC; ++k) {
clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
}
if (node->view_src != NULL) {
clone->data = (node->view_src->data == NULL)
? NULL // view_src not yet allocated
: (char *) node->view_src->data // view_src already allocated
+ node->view_offs;
clone->view_src = node->view_src;
clone->view_offs = node->view_offs;
}
GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
return clone;
}
void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints) {
ggml_graph_cpy(gf, gb_tmp);
ggml_build_backward_expand(ctx, gf, gb_tmp, true);
if (n_checkpoints <= 0) {
ggml_graph_cpy(gb_tmp, gb);
return;
}
struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
// insert checkpoints in replacements
for (int i = 0; i < n_checkpoints; ++i) {
size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
replacements->set.keys[k] = checkpoints[i];
replacements->vals[k] = checkpoints[i];
}
ggml_graph_cpy(gf, gb);
// rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
// replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
// by recomputing them from checkpoints
for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
struct ggml_tensor * node = gb_tmp->nodes[i];
for (int k = 0; k < GGML_MAX_SRC; ++k) {
// insert new tensors recomputing src, reusing already made replacements,
// remember replacements: remember new tensors with mapping from corresponding gf nodes
// recurse for input tensors,
// unless (i.e. terminating when) input tensors are replacements (like checkpoints)
node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
}
// insert rewritten backward node with replacements made into resulting backward graph gb
ggml_build_forward_expand(gb, node);
}
ggml_hash_map_free(replacements);
}
// functions to change gradients considering the case that input a might be initial gradient with zero value
static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
return b;
} else {
return ggml_add_impl(ctx, a, b, false);
}
}
static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
} else {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
}
static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
return ggml_repeat(ctx, b, a);
} else {
return ggml_add1_impl(ctx, a, b, false);
}
}
static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
return ggml_neg(ctx, b);
} else {
return ggml_sub_impl(ctx, a, b, false);
}
}
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
struct ggml_tensor * src0 = tensor->src[0];
struct ggml_tensor * src1 = tensor->src[1];
2022-09-25 18:23:15 +00:00
switch (tensor->op) {
case GGML_OP_DUP:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_ADD:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_ADD1:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
if (src1->grad) {
src1->grad = ggml_add_or_set(ctx,
src1->grad,
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
zero_table);
}
} break;
case GGML_OP_ACC:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
if (src1->grad) {
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
tensor->grad,
src1->grad->ne[0],
src1->grad->ne[1],
src1->grad->ne[2],
src1->grad->ne[3],
nb1, nb2, nb3, offset);
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
zero_table);
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SUB:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_MUL:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_mul(ctx, src1, tensor->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src1->grad,
ggml_mul(ctx, src0, tensor->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_DIV:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_div(ctx, tensor->grad, src1),
zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad =
ggml_sub_or_set(ctx,
2022-09-25 18:23:15 +00:00
src1->grad,
ggml_mul(ctx,
tensor->grad,
ggml_div(ctx, tensor, src1)),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_SQR:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_scale(ctx,
2022-09-25 18:23:15 +00:00
ggml_mul(ctx, src0, tensor->grad),
2.0f),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_SQRT:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
2023-06-25 11:22:21 +00:00
ggml_scale(ctx,
ggml_div(ctx,
2023-06-25 11:22:21 +00:00
tensor->grad,
tensor),
0.5f),
zero_table);
}
} break;
case GGML_OP_LOG:
2022-09-25 18:23:15 +00:00
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_div(ctx,
tensor->grad,
src0),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_SUM:
{
if (src0->grad) {
src0->grad =
ggml_add1_or_set(ctx,
src0->grad,
tensor->grad,
zero_table);
}
} break;
case GGML_OP_SUM_ROWS:
2022-09-25 18:23:15 +00:00
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_repeat(ctx,
tensor->grad,
src0->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_REPEAT:
{
// necessary for llama
2022-09-25 18:23:15 +00:00
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
ggml_repeat_back(ctx, tensor->grad, src0->grad),
zero_table);
2023-06-25 11:22:21 +00:00
}
} break;
case GGML_OP_REPEAT_BACK:
{
if (src0->grad) {
// TODO: test this
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
ggml_repeat(ctx, tensor->grad, src0->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_CONCAT:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SILU_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_NORM:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_RMS_NORM:
2022-09-25 18:23:15 +00:00
{
// necessary for llama
2022-09-25 18:23:15 +00:00
if (src0->grad) {
float eps;
memcpy(&eps, tensor->op_params, sizeof(float));
src0->grad = ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_RMS_NORM_BACK:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_GROUP_NORM:
2023-06-25 11:22:21 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_MUL_MAT:
2022-09-25 18:23:15 +00:00
{
// https://cs231n.github.io/optimization-2/#staged
// # forward pass
// s0 = np.random.randn(5, 10)
// s1 = np.random.randn(10, 3)
// t = s0.dot(s1)
// # now suppose we had the gradient on t from above in the circuit
// dt = np.random.randn(*t.shape) # same shape as t
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
// ds1 = t.T.dot(dt)
// tensor.shape [m,p,qq,rr]
// src0.shape [n,m,q1,r1]
// src1.shape [n,p,qq,rr]
// necessary for llama
2022-09-25 18:23:15 +00:00
if (src0->grad) {
struct ggml_tensor * s1_tg =
ggml_out_prod(ctx, // [n,m,qq,rr]
src1, // [n,p,qq,rr]
tensor->grad); // [m,p,qq,rr]
const int64_t qq = s1_tg->ne[2];
const int64_t rr = s1_tg->ne[3];
const int64_t q1 = src0->ne[2];
const int64_t r1 = src0->ne[3];
const bool ne2_broadcasted = qq > q1;
const bool ne3_broadcasted = rr > r1;
if (ne2_broadcasted || ne3_broadcasted) {
// sum broadcast repetitions of s1_tg into shape of src0
s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
}
src0->grad =
ggml_add_or_set(ctx,
src0->grad, // [n,m,q1,r1]
s1_tg, // [n,m,q1,r1]
zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad, // [n,p,qq,rr]
// ggml_mul_mat(ctx, // [n,p,qq,rr]
// ggml_cont(ctx, // [m,n,q1,r1]
// ggml_transpose(ctx, src0)), // [m,n,q1,r1]
// tensor->grad), // [m,p,qq,rr]
2023-06-25 11:22:21 +00:00
// // when src0 is bigger than tensor->grad (this is mostly the case in llama),
// // avoid transpose of src0, rather transpose smaller tensor->grad
// // and then use ggml_out_prod
ggml_out_prod(ctx, // [n,p,qq,rr]
src0, // [n,m,q1,r1]
ggml_transpose(ctx, // [p,m,qq,rr]
tensor->grad)), // [m,p,qq,rr]
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_MUL_MAT_ID:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_OUT_PROD:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SCALE:
{
// necessary for llama
if (src0->grad) {
float s;
memcpy(&s, tensor->op_params, sizeof(float));
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
ggml_scale_impl(ctx, tensor->grad, s, false),
zero_table);
}
} break;
case GGML_OP_SET:
{
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = NULL;
if (src0->grad || src1->grad) {
GGML_ASSERT(src0->type == tensor->type);
GGML_ASSERT(tensor->grad->type == tensor->type);
GGML_ASSERT(tensor->grad->type == src1->grad->type);
tensor_grad_view = ggml_view_4d(ctx,
tensor->grad,
src1->grad->ne[0],
src1->grad->ne[1],
src1->grad->ne[2],
src1->grad->ne[3],
nb1, nb2, nb3, offset);
}
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_acc_impl(ctx,
tensor->grad,
ggml_neg(ctx, tensor_grad_view),
nb1, nb2, nb3, offset, false),
zero_table);
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CPY:
{
// necessary for llama
// cpy overwrites value of src1 by src0 and returns view(src1)
// the overwriting is mathematically equivalent to:
// tensor = src0 * 1 + src1 * 0
if (src0->grad) {
// dsrc0 = dtensor * 1
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
if (src1->grad) {
// dsrc1 = dtensor * 0 -> noop
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CONT:
{
// same as cpy
if (src0->grad) {
GGML_ASSERT(ggml_is_contiguous(src0->grad));
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_RESHAPE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_reshape(ctx,
ggml_is_contiguous(tensor->grad)
? tensor->grad
: ggml_cont(ctx, tensor->grad),
src0->grad),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_VIEW:
{
// necessary for llama
if (src0->grad) {
size_t offset;
2023-06-25 11:22:21 +00:00
memcpy(&offset, tensor->op_params, sizeof(offset));
size_t nb1 = tensor->nb[1];
size_t nb2 = tensor->nb[2];
size_t nb3 = tensor->nb[3];
if (src0->type != src0->grad->type) {
// gradient is typically F32, but src0 could be other type
size_t ng = ggml_element_size(src0->grad);
size_t n0 = ggml_element_size(src0);
GGML_ASSERT(offset % n0 == 0);
GGML_ASSERT(nb1 % n0 == 0);
GGML_ASSERT(nb2 % n0 == 0);
GGML_ASSERT(nb3 % n0 == 0);
offset = (offset / n0) * ng;
nb1 = (nb1 / n0) * ng;
nb2 = (nb2 / n0) * ng;
nb3 = (nb3 / n0) * ng;
}
src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_PERMUTE:
{
// necessary for llama
if (src0->grad) {
int32_t * axes = (int32_t *) tensor->op_params;
2023-06-25 11:22:21 +00:00
int axis0 = axes[0] & 0x3;
int axis1 = axes[1] & 0x3;
int axis2 = axes[2] & 0x3;
int axis3 = axes[3] & 0x3;
int axes_backward[4] = {0,0,0,0};
axes_backward[axis0] = 0;
axes_backward[axis1] = 1;
axes_backward[axis2] = 2;
axes_backward[axis3] = 3;
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_permute(ctx,
tensor->grad,
axes_backward[0],
axes_backward[1],
axes_backward[2],
axes_backward[3]),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_TRANSPOSE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_transpose(ctx, tensor->grad),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_GET_ROWS:
{
// necessary for llama (only for tokenizer)
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
// last ggml_get_rows_back argument src0->grad is only
// necessary to setup correct output shape
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
zero_table);
}
if (src1->grad) {
// noop
}
} break;
case GGML_OP_GET_ROWS_BACK:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG_MASK_INF:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_or_set(ctx, src0->grad,
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
}
} break;
case GGML_OP_DIAG_MASK_ZERO:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SOFT_MAX:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
2023-06-25 11:22:21 +00:00
ggml_soft_max_back(ctx, tensor->grad, tensor),
zero_table);
}
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_SOFT_MAX_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ROPE:
{
// necessary for llama
if (src0->grad) {
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_rope_back(ctx,
tensor->grad,
src1,
n_dims,
mode,
n_ctx,
n_orig_ctx,
freq_base,
freq_scale,
ext_factor,
attn_factor,
beta_fast,
beta_slow,
xpos_base,
xpos_down),
zero_table);
}
} break;
case GGML_OP_ROPE_BACK:
{
if (src0->grad) {
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_rope_impl(ctx,
tensor->grad,
src1,
n_dims,
mode,
n_ctx,
n_orig_ctx,
freq_base,
freq_scale,
ext_factor,
attn_factor,
beta_fast,
beta_slow,
xpos_base,
xpos_down,
false),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ALIBI:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CLAMP:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_IM2COL:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_POOL_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_POOL_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_UPSCALE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_PAD:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_LEAKY_RELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_FLASH_ATTN:
{
2023-06-25 11:22:21 +00:00
struct ggml_tensor * flash_grad = NULL;
if (src0->grad || src1->grad || tensor->src[2]->grad) {
int32_t t = ggml_get_op_params_i32(tensor, 0);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(t == 0 || t == 1);
bool masked = t != 0;
flash_grad =
ggml_flash_attn_back(ctx,
src0,
src1,
tensor->src[2],
2023-06-25 11:22:21 +00:00
tensor->grad,
masked);
}
struct ggml_tensor * src2 = tensor->src[2];
const int64_t elem_q = ggml_nelements(src0);
const int64_t elem_k = ggml_nelements(src1);
const int64_t elem_v = ggml_nelements(src2);
enum ggml_type result_type = flash_grad->type;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
2023-06-25 11:22:21 +00:00
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
if (src0->grad) {
struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
grad_q,
zero_table);
2023-06-25 11:22:21 +00:00
}
if (src1->grad) {
struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
src1->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src1->grad,
grad_k,
zero_table);
2023-06-25 11:22:21 +00:00
}
if (src2->grad) {
struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
src2->grad = ggml_add_or_set(ctx,
src2->grad,
2023-06-25 11:22:21 +00:00
grad_v,
zero_table);
2023-06-25 11:22:21 +00:00
}
} break;
case GGML_OP_FLASH_FF:
{
GGML_ASSERT(false); // not supported
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_FLASH_ATTN_BACK:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_UNARY:
{
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_ABS:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx,
ggml_sgn(ctx, src0),
tensor->grad),
zero_table);
}
} break;
case GGML_UNARY_OP_SGN:
{
if (src0->grad) {
// noop
}
} break;
case GGML_UNARY_OP_NEG:
{
if (src0->grad) {
src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
} break;
case GGML_UNARY_OP_STEP:
{
if (src0->grad) {
// noop
}
} break;
case GGML_UNARY_OP_TANH:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_ELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_RELU:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx,
ggml_step(ctx, src0),
tensor->grad),
zero_table);
}
} break;
case GGML_UNARY_OP_GELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_SILU:
{
// necessary for llama
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_silu_back(ctx, src0, tensor->grad),
zero_table);
}
} break;
default:
GGML_ASSERT(false);
}
} break;
case GGML_OP_GET_REL_POS:
case GGML_OP_ADD_REL_POS:
2023-04-14 16:20:39 +00:00
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
2023-06-25 11:22:21 +00:00
case GGML_OP_MAP_CUSTOM1:
case GGML_OP_MAP_CUSTOM2:
case GGML_OP_MAP_CUSTOM3:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
ggml_cross_entropy_loss_back(ctx,
src0,
src1,
tensor->grad),
zero_table);
2023-06-25 11:22:21 +00:00
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
2023-04-14 16:20:39 +00:00
{
GGML_ASSERT(false); // not supported
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
if (tensor->src[i] && tensor->src[i]->grad) {
GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
}
}
}
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
2022-09-25 18:23:15 +00:00
if (node->grad == NULL) {
// this usually happens when we generate intermediate nodes from constants in the backward pass
// it can also happen during forward pass, if the user performs computations with constants
if (node->op != GGML_OP_NONE) {
//GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
}
}
// check if already visited
if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
return;
2022-09-25 18:23:15 +00:00
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
const int k =
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
/* unknown order, just fall back to using i*/ i;
if (node->src[k]) {
ggml_visit_parents(cgraph, node->src[k]);
}
}
2022-09-25 18:23:15 +00:00
if (node->op == GGML_OP_NONE && node->grad == NULL) {
// reached a leaf node, not part of the gradient graph (e.g. a constant)
GGML_ASSERT(cgraph->n_leafs < cgraph->size);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (strlen(node->name) == 0) {
ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
}
2022-09-25 18:23:15 +00:00
cgraph->leafs[cgraph->n_leafs] = node;
cgraph->n_leafs++;
} else {
GGML_ASSERT(cgraph->n_nodes < cgraph->size);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (strlen(node->name) == 0) {
ggml_format_name(node, "node_%d", cgraph->n_nodes);
}
2022-09-25 18:23:15 +00:00
cgraph->nodes[cgraph->n_nodes] = node;
if (cgraph->grads) {
cgraph->grads[cgraph->n_nodes] = node->grad;
}
2022-09-25 18:23:15 +00:00
cgraph->n_nodes++;
}
}
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
2022-09-25 18:23:15 +00:00
if (!expand) {
// TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
ggml_graph_clear(cgraph);
2022-09-25 18:23:15 +00:00
}
const int n0 = cgraph->n_nodes;
UNUSED(n0);
ggml_visit_parents(cgraph, tensor);
const int n_new = cgraph->n_nodes - n0;
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
if (n_new > 0) {
// the last added node should always be starting point
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
2022-09-25 18:23:15 +00:00
}
}
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
ggml_build_forward_impl(cgraph, tensor, true);
}
void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
GGML_ASSERT(gf->n_nodes > 0);
2022-09-25 18:23:15 +00:00
// if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
if (keep) {
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (node->grad) {
node->grad = ggml_dup_tensor(ctx, node);
gf->grads[i] = node->grad;
}
}
}
// remember original gradients which start with zero values
struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
for (int i = 0; i < gf->n_nodes; i++) {
if (gf->grads[i]) {
ggml_hash_insert(zero_table, gf->grads[i]);
}
}
2022-09-25 18:23:15 +00:00
for (int i = gf->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = gf->nodes[i];
// inplace operations to add gradients are not created by ggml_compute_backward
// use allocator to automatically make inplace operations
2022-09-25 18:23:15 +00:00
if (node->grad) {
ggml_compute_backward(ctx, node, zero_table);
2022-09-25 18:23:15 +00:00
}
}
for (int i = 0; i < gf->n_nodes; i++) {
2022-09-25 18:23:15 +00:00
struct ggml_tensor * node = gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
ggml_build_forward_expand(gb, node->grad);
2022-09-25 18:23:15 +00:00
}
}
ggml_hash_set_free(zero_table);
}
2022-09-25 18:23:15 +00:00
static size_t ggml_graph_nbytes(size_t size, bool grads) {
size_t nbytes = sizeof(struct ggml_cgraph);
nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
if (grads) {
nbytes += size * sizeof(struct ggml_tensor *); // grads
}
nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
return nbytes;
2022-09-25 18:23:15 +00:00
}
size_t ggml_graph_overhead_custom(size_t size, bool grads) {
return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
}
size_t ggml_graph_overhead(void) {
return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
}
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
const size_t obj_size = ggml_graph_nbytes(size, grads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
size_t hash_size = ggml_hash_size(size * 2);
struct ggml_tensor ** nodes_ptr = data_start;
struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
// check that we allocated the correct amount of memory
assert(obj_size == (size_t) (
(grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
*cgraph = (struct ggml_cgraph) {
/*.size =*/ size,
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
/*.nodes =*/ nodes_ptr,
/*.grads =*/ grads_ptr,
/*.leafs =*/ leafs_ptr,
/*.hash_table =*/ { hash_size, hash_keys_ptr },
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
};
return cgraph;
}
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
}
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
struct ggml_cgraph cgraph = {
/*.size =*/ 0,
/*.n_nodes =*/ i1 - i0,
/*.n_leafs =*/ 0,
/*.nodes =*/ cgraph0->nodes + i0,
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
/*.leafs =*/ NULL,
/*.hash_table =*/ { 0, NULL },
/*.order =*/ cgraph0->order,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
};
return cgraph;
}
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
GGML_ASSERT(dst->size >= src->n_leafs);
GGML_ASSERT(dst->size >= src->n_nodes);
GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
dst->n_leafs = src->n_leafs;
dst->n_nodes = src->n_nodes;
dst->order = src->order;
for (int i = 0; i < src->n_leafs; ++i) {
dst->leafs[i] = src->leafs[i];
}
for (int i = 0; i < src->n_nodes; ++i) {
dst->nodes[i] = src->nodes[i];
}
if (src->grads) {
GGML_ASSERT(dst->grads != NULL);
for (int i = 0; i < src->n_nodes; ++i) {
dst->grads[i] = src->grads[i];
}
}
for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
if (src->visited_hash_table.keys[i]) {
ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
}
}
}
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
ggml_graph_cpy(cgraph, result);
return result;
}
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
GGML_ASSERT(cgraph->grads != NULL);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * grad = cgraph->grads[i];
if (grad) {
ggml_set_zero(grad);
}
}
}
void ggml_graph_clear(struct ggml_cgraph * cgraph) {
cgraph->n_leafs = 0;
cgraph->n_nodes = 0;
memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
}
2022-09-25 18:23:15 +00:00
//
// thread data
//
// synchronization is done via busy loops
// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
//
#ifdef __APPLE__
//#include <os/lock.h>
//
2022-09-25 18:23:15 +00:00
//typedef os_unfair_lock ggml_lock_t;
//
//#define ggml_lock_init(x) UNUSED(x)
//#define ggml_lock_destroy(x) UNUSED(x)
//#define ggml_lock_lock os_unfair_lock_lock
//#define ggml_lock_unlock os_unfair_lock_unlock
//
//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
typedef int ggml_lock_t;
#define ggml_lock_init(x) UNUSED(x)
#define ggml_lock_destroy(x) UNUSED(x)
#define ggml_lock_lock(x) UNUSED(x)
#define ggml_lock_unlock(x) UNUSED(x)
#define GGML_LOCK_INITIALIZER 0
typedef pthread_t ggml_thread_t;
#define ggml_thread_create pthread_create
#define ggml_thread_join pthread_join
2022-09-25 18:23:15 +00:00
#else
//typedef pthread_spinlock_t ggml_lock_t;
//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
//#define ggml_lock_destroy pthread_spin_destroy
//#define ggml_lock_lock pthread_spin_lock
//#define ggml_lock_unlock pthread_spin_unlock
typedef int ggml_lock_t;
#define ggml_lock_init(x) UNUSED(x)
#define ggml_lock_destroy(x) UNUSED(x)
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
#define ggml_lock_lock(x) _mm_pause()
#else
2022-09-25 18:23:15 +00:00
#define ggml_lock_lock(x) UNUSED(x)
#endif
2022-09-25 18:23:15 +00:00
#define ggml_lock_unlock(x) UNUSED(x)
#define GGML_LOCK_INITIALIZER 0
typedef pthread_t ggml_thread_t;
#define ggml_thread_create pthread_create
#define ggml_thread_join pthread_join
2022-09-25 18:23:15 +00:00
#endif
// Android's libc implementation "bionic" does not support setting affinity
#if defined(__gnu_linux__)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
static void set_numa_thread_affinity(int thread_n) {
if (!ggml_is_numa()) {
return;
}
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
int node_num;
int rv;
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
switch(g_state.numa.numa_strategy) {
case GGML_NUMA_STRATEGY_DISTRIBUTE:
// run thread on node_num thread_n / (threads per node)
node_num = thread_n % g_state.numa.n_nodes;
break;
case GGML_NUMA_STRATEGY_ISOLATE:
// run thread on current_node
node_num = g_state.numa.current_node;
break;
case GGML_NUMA_STRATEGY_NUMACTL:
// use the cpuset that numactl gave us
rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
if (rv) {
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
}
return;
default:
return;
}
struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
CPU_ZERO_S(setsize, cpus);
for (size_t i = 0; i < node->n_cpus; ++i) {
CPU_SET_S(node->cpus[i], setsize, cpus);
}
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
if (rv) {
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
}
CPU_FREE(cpus);
}
static void clear_numa_thread_affinity(void) {
if (!ggml_is_numa()) {
return;
}
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
CPU_ZERO_S(setsize, cpus);
for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
CPU_SET_S(i, setsize, cpus);
}
int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
if (rv) {
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
}
CPU_FREE(cpus);
}
#else
// TODO: Windows etc.
// (the linux implementation may also work on BSD, someone should test)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
static void clear_numa_thread_affinity(void) {}
#endif
2022-09-25 18:23:15 +00:00
struct ggml_compute_state_shared {
const struct ggml_cgraph * cgraph;
const struct ggml_cplan * cplan;
int64_t perf_node_start_cycles;
int64_t perf_node_start_time_us;
2022-09-25 18:23:15 +00:00
const int n_threads;
2022-09-25 18:23:15 +00:00
// synchronization primitives
atomic_int n_active; // num active threads
atomic_int node_n; // active graph node
atomic_int node_task; // active graph node task phase
ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
void * abort_callback_data;
2022-09-25 18:23:15 +00:00
};
struct ggml_compute_state {
ggml_thread_t thrd;
int ith;
2022-09-25 18:23:15 +00:00
struct ggml_compute_state_shared * shared;
enum ggml_status ec;
2022-09-25 18:23:15 +00:00
};
static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
node->perf_runs++;
node->perf_cycles += cycles_cur;
node->perf_time_us += time_us_cur;
}
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
int n_tasks = 0;
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_ACC:
{
n_tasks = n_threads;
} break;
case GGML_OP_SUB:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_LEAKY_RELU:
{
n_tasks = 1;
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
{
n_tasks = 1;
} break;
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
{
n_tasks = n_threads;
} break;
default:
GGML_ASSERT(false);
}
break;
case GGML_OP_SILU_BACK:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_GROUP_NORM:
case GGML_OP_CONCAT:
{
n_tasks = n_threads;
} break;
case GGML_OP_MUL_MAT:
{
n_tasks = n_threads;
// TODO: use different scheduling for different matrix sizes
//const int nr0 = ggml_nrows(node->src[0]);
//const int nr1 = ggml_nrows(node->src[1]);
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
} break;
case GGML_OP_MUL_MAT_ID:
{
n_tasks = n_threads;
} break;
case GGML_OP_OUT_PROD:
{
n_tasks = n_threads;
} break;
case GGML_OP_SCALE:
case GGML_OP_SET:
case GGML_OP_CONT:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG:
{
n_tasks = 1;
} break;
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_ADD_REL_POS:
{
n_tasks = n_threads;
} break;
case GGML_OP_ALIBI:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_CLAMP:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_SOFT_MAX:
{
n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
n_tasks = n_threads;
} break;
case GGML_OP_IM2COL:
{
n_tasks = n_threads;
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
n_tasks = n_threads;
} break;
case GGML_OP_POOL_1D:
case GGML_OP_POOL_2D:
{
n_tasks = 1;
} break;
case GGML_OP_UPSCALE:
{
n_tasks = n_threads;
} break;
case GGML_OP_PAD:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARANGE:
{
n_tasks = n_threads;
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARGSORT:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_FF:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
n_tasks = n_threads;
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
{
n_tasks = 1;
} break;
case GGML_OP_MAP_CUSTOM1:
{
struct ggml_map_custom1_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_MAP_CUSTOM2:
{
struct ggml_map_custom2_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_MAP_CUSTOM3:
{
struct ggml_map_custom3_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
n_tasks = n_threads;
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
n_tasks = n_threads;
} break;
case GGML_OP_NONE:
{
n_tasks = 1;
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
default:
{
fprintf(stderr, "%s: op not implemented: ", __func__);
if (node->op < GGML_OP_COUNT) {
fprintf(stderr, "%s\n", ggml_op_name(node->op));
} else {
fprintf(stderr, "%d\n", node->op);
}
GGML_ASSERT(false);
} break;
}
assert(n_tasks > 0);
return n_tasks;
}
static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
// wait for other threads to finish
const int last_node_n = * node_n;
while (true) {
if (do_yield) {
sched_yield();
}
* node_n = atomic_load(&state->shared->node_n);
if (* node_n != last_node_n) break;
}
}
static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
// wait for other threads to finish
const int last_task_phase = * task_phase;
while (true) {
if (do_yield) {
sched_yield();
}
* task_phase = atomic_load(&state->shared->node_task);
if (* task_phase != last_task_phase) break;
}
}
static thread_ret_t ggml_graph_compute_thread(void * data) {
2022-09-25 18:23:15 +00:00
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
const struct ggml_cgraph * cgraph = state->shared->cgraph;
const struct ggml_cplan * cplan = state->shared->cplan;
const int n_threads = state->shared->n_threads;
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
set_numa_thread_affinity(state->ith);
int node_n = -1;
int task_phase = GGML_TASK_TYPE_FINALIZE;
2022-09-25 18:23:15 +00:00
while (true) {
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
state->shared->node_n += 1;
state->ec = GGML_STATUS_ABORTED;
return 0;
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
// all other threads are finished and spinning
// do finalize and init here so we don't have synchronize again
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_TYPE_FINALIZE,
/*.ith =*/ 0,
/*.nth =*/ 0,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
};
if (node_n != -1) {
/* FINALIZE */
struct ggml_tensor * node = cgraph->nodes[node_n];
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.nth = ggml_get_n_tasks(node, n_threads);
ggml_compute_forward(&params, node);
2022-09-25 18:23:15 +00:00
}
ggml_graph_compute_perf_stats_node(node, state->shared);
2022-09-25 18:23:15 +00:00
}
// distribute new work or execute it direct if 1T
while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
state->shared->perf_node_start_cycles = ggml_perf_cycles();
state->shared->perf_node_start_time_us = ggml_perf_time_us();
params.nth = n_tasks;
2022-09-25 18:23:15 +00:00
if (n_tasks == 1) {
/* INIT */
if (GGML_OP_HAS_INIT[node->op]) {
params.type = GGML_TASK_TYPE_INIT;
ggml_compute_forward(&params, node);
}
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
// they do something more efficient than spinning (?)
params.type = GGML_TASK_TYPE_COMPUTE;
ggml_compute_forward(&params, node);
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.type = GGML_TASK_TYPE_FINALIZE;
ggml_compute_forward(&params, node);
}
ggml_graph_compute_perf_stats_node(node, state->shared);
} else {
break;
}
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
break;
}
2022-09-25 18:23:15 +00:00
}
task_phase = GGML_TASK_TYPE_INIT;
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_n, node_n);
atomic_store(&state->shared->node_task, task_phase);
} else {
ggml_graph_compute_thread_sync_node(&node_n, state, false);
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
2022-09-25 18:23:15 +00:00
}
// check if we should stop
if (node_n >= cgraph->n_nodes) break;
2022-09-25 18:23:15 +00:00
/* INIT & COMPUTE */
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_TYPE_INIT,
/*.ith =*/ state->ith,
/*.nth =*/ n_tasks,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
};
if (state->ith < n_tasks) {
if (GGML_OP_HAS_INIT[node->op]) {
ggml_compute_forward(&params, node);
}
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
task_phase = GGML_TASK_TYPE_COMPUTE;
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_task, task_phase);
}
else {
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
// depending on the workload and the operating system.
// since it is not clear what is the best approach, it should potentially become user-configurable
// ref: https://github.com/ggerganov/ggml/issues/291
// UPD: adding the do_yield flag seems to resolve the issue universally
const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
}
if (state->ith < n_tasks) {
params.type = GGML_TASK_TYPE_COMPUTE;
ggml_compute_forward(&params, node);
2022-09-25 18:23:15 +00:00
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
task_phase = GGML_TASK_TYPE_FINALIZE;
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_task, task_phase);
}
else {
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
}
2022-09-25 18:23:15 +00:00
}
return 0;
2022-09-25 18:23:15 +00:00
}
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
if (n_threads <= 0) {
n_threads = GGML_DEFAULT_N_THREADS;
}
2022-09-25 18:23:15 +00:00
size_t work_size = 0;
2022-09-25 18:23:15 +00:00
struct ggml_cplan cplan;
memset(&cplan, 0, sizeof(struct ggml_cplan));
2022-09-25 18:23:15 +00:00
int max_tasks = 1;
// thread scheduling for the different operations + work buffer size estimation
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
max_tasks = MAX(max_tasks, n_tasks);
size_t cur = 0;
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
if (ggml_is_quantized(node->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_ACC:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
}
} break;
case GGML_OP_MUL_MAT:
{
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
2022-09-25 18:23:15 +00:00
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
} else
#endif
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node)) {
if (node->src[0]->type != GGML_TYPE_F32) {
// here we need memory for fully dequantized matrix from src0
// take into account that src0 can be broadcasted into src1[2,3]
cur = ggml_type_size(GGML_TYPE_F32)
* node->src[0]->ne[0]*node->src[0]->ne[1]
* node->src[1]->ne[2]*node->src[1]->ne[3];
2022-09-25 18:23:15 +00:00
}
} else
#endif
if (node->src[1]->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
}
} break;
case GGML_OP_MUL_MAT_ID:
{
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
cur = 0;
const struct ggml_tensor * src0 = node->src[2];
const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
}
const int n_as = ggml_get_op_params_i32(node, 1);
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
} break;
case GGML_OP_OUT_PROD:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
{
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(node->src[0]->ne[3] == 1);
GGML_ASSERT(node->src[1]->ne[2] == 1);
GGML_ASSERT(node->src[1]->ne[3] == 1);
2023-06-25 11:22:21 +00:00
const int64_t ne00 = node->src[0]->ne[0]; // K
const int64_t ne01 = node->src[0]->ne[1]; // Cout
const int64_t ne02 = node->src[0]->ne[2]; // Cin
const int64_t ne10 = node->src[1]->ne[0]; // L
const int64_t ne11 = node->src[1]->ne[1]; // Cin
if (node->src[0]->type == GGML_TYPE_F16 &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
cur += sizeof(ggml_fp16_t)*ne10*ne11;
} else if (node->src[0]->type == GGML_TYPE_F32 &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(float)*ne00*ne01*ne02;
cur += sizeof(float)*ne10*ne11;
} else {
GGML_ASSERT(false);
}
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
const int64_t ne00 = node->src[0]->ne[0]; // W
const int64_t ne01 = node->src[0]->ne[1]; // H
const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
const int64_t ne03 = node->src[0]->ne[3]; // Channels In
2023-06-25 11:22:21 +00:00
const int64_t ne10 = node->src[1]->ne[0]; // W
const int64_t ne11 = node->src[1]->ne[1]; // H
const int64_t ne12 = node->src[1]->ne[2]; // Channels In
2023-06-25 11:22:21 +00:00
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break;
case GGML_OP_FLASH_ATTN:
{
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_FLASH_FF:
{
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
const int64_t D = node->src[0]->ne[0];
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
default:
break;
2022-09-25 18:23:15 +00:00
}
work_size = MAX(work_size, cur);
}
if (work_size > 0) {
work_size += CACHE_LINE_SIZE*(n_threads - 1);
}
cplan.n_threads = MIN(max_tasks, n_threads);
cplan.work_size = work_size;
cplan.work_data = NULL;
2022-09-25 18:23:15 +00:00
return cplan;
}
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
{
GGML_ASSERT(cplan);
GGML_ASSERT(cplan->n_threads > 0);
if (cplan->work_size > 0) {
GGML_ASSERT(cplan->work_data);
}
2022-09-25 18:23:15 +00:00
}
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#ifdef GGML_USE_VULKAN
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
}
ggml_vk_preallocate_buffers_cpu_assist();
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
}
#endif
const int n_threads = cplan->n_threads;
struct ggml_compute_state_shared state_shared = {
/*.cgraph =*/ cgraph,
/*.cgraph_plan =*/ cplan,
/*.perf_node_start_cycles =*/ 0,
/*.perf_node_start_time_us =*/ 0,
/*.n_threads =*/ n_threads,
/*.n_active =*/ n_threads,
/*.node_n =*/ -1,
/*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
/*.abort_callback =*/ NULL,
/*.abort_callback_data =*/ NULL,
};
struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
// create thread pool
if (n_threads > 1) {
for (int j = 1; j < n_threads; ++j) {
workers[j] = (struct ggml_compute_state) {
.thrd = 0,
.ith = j,
.shared = &state_shared,
.ec = GGML_STATUS_SUCCESS,
};
2023-06-25 11:22:21 +00:00
const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
GGML_ASSERT(rc == 0);
UNUSED(rc);
2023-06-25 11:22:21 +00:00
}
}
workers[0].ith = 0;
workers[0].shared = &state_shared;
workers[0].ec = GGML_STATUS_SUCCESS;
2023-06-25 11:22:21 +00:00
const int64_t perf_start_cycles = ggml_perf_cycles();
const int64_t perf_start_time_us = ggml_perf_time_us();
2023-06-25 11:22:21 +00:00
// this is a work thread too
ggml_graph_compute_thread(&workers[0]);
enum ggml_status compute_status = workers[0].ec;
2023-06-25 11:22:21 +00:00
// don't leave affinity set on the main thread
clear_numa_thread_affinity();
2023-06-25 11:22:21 +00:00
// join or kill thread pool
2023-06-25 11:22:21 +00:00
if (n_threads > 1) {
for (int j = 1; j < n_threads; j++) {
const int rc = ggml_thread_join(workers[j].thrd, NULL);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(rc == 0);
if (workers[j].ec != GGML_STATUS_SUCCESS)
compute_status = workers[j].ec;
2023-06-25 11:22:21 +00:00
}
}
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#ifdef GGML_USE_VULKAN
ggml_vk_graph_cleanup_cpu_assist();
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#endif
2023-06-25 11:22:21 +00:00
// performance stats (graph)
{
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
cgraph->perf_runs++;
cgraph->perf_cycles += perf_cycles_cur;
cgraph->perf_time_us += perf_time_us_cur;
GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
__func__, cgraph->perf_runs,
(double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
(double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
(double) perf_time_us_cur / 1000.0,
(double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
}
return compute_status;
2023-06-25 11:22:21 +00:00
}
enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
return ggml_graph_compute(cgraph, &cplan);
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * leaf = cgraph->leafs[i];
if (strcmp(leaf->name, name) == 0) {
return leaf;
}
}
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
if (strcmp(node->name, name) == 0) {
return node;
}
}
return NULL;
}
static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
ggml_n_dims(tensor),
2023-06-25 11:22:21 +00:00
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
tensor->name);
}
static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
2023-06-25 11:22:21 +00:00
arg,
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
ggml_n_dims(tensor),
2023-06-25 11:22:21 +00:00
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
tensor->name);
}
void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
uint64_t size_eval = 0;
// compute size of intermediate results
// TODO: does not take into account scratch buffers !!!!
for (int i = 0; i < cgraph->n_nodes; ++i) {
size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
2023-06-25 11:22:21 +00:00
}
// print
{
FILE * fout = stdout;
fprintf(fout, "\n");
fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
// header
fprintf(fout, "\n");
fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
"TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
for (int i = 0; i < cgraph->n_leafs; ++i) {
ggml_graph_export_leaf(cgraph->leafs[i], fout);
GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
2023-06-25 11:22:21 +00:00
}
// header
fprintf(fout, "\n");
fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
"ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
for (int i = 0; i < cgraph->n_nodes; ++i) {
ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
for (int j = 0; j < GGML_MAX_SRC; ++j) {
if (cgraph->nodes[i]->src[j]) {
ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
2023-06-25 11:22:21 +00:00
}
}
fprintf(fout, "\n");
}
fprintf(fout, "\n");
}
// write binary data
{
FILE * fout = fopen(fname, "wb");
if (!fout) {
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
return;
}
// header
{
const uint32_t magic = GGML_FILE_MAGIC;
const uint32_t version = GGML_FILE_VERSION;
const uint32_t n_leafs = cgraph->n_leafs;
const uint32_t n_nodes = cgraph->n_nodes;
2023-06-25 11:22:21 +00:00
fwrite(&magic, sizeof(uint32_t), 1, fout);
fwrite(&version, sizeof(uint32_t), 1, fout);
fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
2023-06-25 11:22:21 +00:00
fwrite(&size_eval, sizeof(uint64_t), 1, fout);
}
// leafs
{
for (int i = 0; i < cgraph->n_leafs; ++i) {
const struct ggml_tensor * tensor = cgraph->leafs[i];
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
const uint64_t nb = tensor->nb[j];
fwrite(&ne, sizeof(uint64_t), 1, fout);
fwrite(&nb, sizeof(uint64_t), 1, fout);
}
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
2023-06-25 11:22:21 +00:00
// dump the data
// TODO: pad this to 32 byte boundary
{
const size_t size = ggml_nbytes(tensor);
fwrite(tensor->data, sizeof(char), size, fout);
}
}
}
// nodes
{
for (int i = 0; i < cgraph->n_nodes; ++i) {
const struct ggml_tensor * tensor = cgraph->nodes[i];
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
const uint64_t nb = tensor->nb[j];
fwrite(&ne, sizeof(uint64_t), 1, fout);
fwrite(&nb, sizeof(uint64_t), 1, fout);
}
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
2023-06-25 11:22:21 +00:00
// output the op arguments
{
struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_SRC; ++j) {
args[j] = tensor->src[j];
2023-06-25 11:22:21 +00:00
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
2023-06-25 11:22:21 +00:00
if (args[j]) {
int32_t idx = -1;
// check if leaf
{
for (int k = 0; k < cgraph->n_leafs; ++k) {
if (args[j] == cgraph->leafs[k]) {
idx = k;
break;
}
}
}
// check if node
if (idx == -1) {
for (int k = 0; k < cgraph->n_nodes; ++k) {
if (args[j] == cgraph->nodes[k]) {
idx = cgraph->n_leafs + k;
2023-06-25 11:22:21 +00:00
break;
}
}
}
if (idx == -1) {
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
fclose(fout);
2023-06-25 11:22:21 +00:00
return;
}
fwrite(&idx, sizeof(int32_t), 1, fout);
} else {
const int32_t nul = -1;
fwrite(&nul, sizeof(int32_t), 1, fout);
}
}
}
}
}
fclose(fout);
}
}
struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
2023-06-25 11:22:21 +00:00
assert(*ctx_data == NULL);
assert(*ctx_eval == NULL);
struct ggml_cgraph * result = NULL;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
struct ggml_tensor * data = NULL;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// read file into data
{
FILE * fin = fopen(fname, "rb");
if (!fin) {
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
return result;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
size_t fsize = 0;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
fseek(fin, 0, SEEK_END);
fsize = ftell(fin);
fseek(fin, 0, SEEK_SET);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// create the data context
{
const size_t overhead = 1*ggml_tensor_overhead();
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
struct ggml_init_params params = {
.mem_size = fsize + overhead,
.mem_buffer = NULL,
.no_alloc = false,
};
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
*ctx_data = ggml_init(params);
if (!*ctx_data) {
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
fclose(fin);
return result;
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
{
const size_t ret = fread(data->data, sizeof(char), fsize, fin);
if (ret != fsize) {
fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
fclose(fin);
return result;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
fclose(fin);
}
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// populate result
{
char * ptr = (char *) data->data;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
return result;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (version != GGML_FILE_VERSION) {
fprintf(stderr, "%s: invalid version number\n", __func__);
return result;
}
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
const int graph_size = MAX(n_leafs, n_nodes);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// create the data context
{
const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
2023-06-25 11:22:21 +00:00
struct ggml_init_params params = {
.mem_size = size_eval + overhead,
.mem_buffer = NULL,
.no_alloc = true,
};
*ctx_eval = ggml_init(params);
if (!*ctx_eval) {
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
return result;
2022-09-25 18:23:15 +00:00
}
}
result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
result->n_leafs = n_leafs;
result->n_nodes = n_nodes;
2023-06-25 11:22:21 +00:00
// leafs
2022-09-25 18:23:15 +00:00
{
2023-06-25 11:22:21 +00:00
uint32_t type;
uint32_t op;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (uint32_t i = 0; i < n_leafs; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
uint64_t ne_cur;
uint64_t nb_cur;
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
ne[j] = ne_cur;
nb[j] = nb_cur;
}
struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
2023-06-25 11:22:21 +00:00
tensor->op = (enum ggml_op) op;
memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
2023-06-25 11:22:21 +00:00
tensor->data = (void *) ptr;
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
tensor->nb[j] = nb[j];
}
result->leafs[i] = tensor;
2023-06-25 11:22:21 +00:00
ptr += ggml_nbytes(tensor);
fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
ggml_set_no_alloc(*ctx_eval, false);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// nodes
{
uint32_t type;
uint32_t op;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (uint32_t i = 0; i < n_nodes; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
enum ggml_op eop = (enum ggml_op) op;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
uint64_t ne_cur;
uint64_t nb_cur;
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
ne[j] = ne_cur;
nb[j] = nb_cur;
}
const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
2023-06-25 11:22:21 +00:00
const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
2023-06-25 11:22:21 +00:00
struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
2023-06-25 11:22:21 +00:00
// parse args
for (int j = 0; j < GGML_MAX_SRC; ++j) {
2023-06-25 11:22:21 +00:00
const int32_t arg_idx = ptr_arg_idx[j];
if (arg_idx == -1) {
continue;
}
if (arg_idx < result->n_leafs) {
args[j] = result->leafs[arg_idx];
2023-06-25 11:22:21 +00:00
} else {
args[j] = result->nodes[arg_idx - result->n_leafs];
2023-06-25 11:22:21 +00:00
}
}
// create the tensor
// "view" operations are handled differently
// TODO: handle inplace ops - currently a copy is always made
struct ggml_tensor * tensor = NULL;
switch (eop) {
// TODO: implement other view ops
case GGML_OP_RESHAPE:
{
tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
} break;
case GGML_OP_VIEW:
{
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
size_t offs;
memcpy(&offs, ptr_op_params, sizeof(offs));
2023-06-25 11:22:21 +00:00
tensor->data = ((char *) tensor->data) + offs;
} break;
case GGML_OP_TRANSPOSE:
{
tensor = ggml_transpose(*ctx_eval, args[0]);
} break;
case GGML_OP_PERMUTE:
{
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
} break;
default:
{
tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
2023-06-25 11:22:21 +00:00
tensor->op = eop;
} break;
}
memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
tensor->nb[j] = nb[j];
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
tensor->src[j] = args[j];
2023-06-25 11:22:21 +00:00
}
result->nodes[i] = tensor;
2023-06-25 11:22:21 +00:00
fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
return result;
2022-09-25 18:23:15 +00:00
}
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
GGML_PRINT("=== GRAPH ===\n");
GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
2022-09-25 18:23:15 +00:00
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
2022-09-25 18:23:15 +00:00
i,
node->ne[0], node->ne[1], node->ne[2],
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
2022-09-25 18:23:15 +00:00
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
(double) node->perf_time_us / 1000.0,
(double) node->perf_time_us / 1000.0 / node->perf_runs);
}
GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * node = cgraph->leafs[i];
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
2022-09-25 18:23:15 +00:00
i,
node->ne[0], node->ne[1],
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
ggml_op_name(node->op),
ggml_get_name(node));
2022-09-25 18:23:15 +00:00
}
for (int i = 0; i < GGML_OP_COUNT; i++) {
if (perf_total_per_op_us[i] == 0) {
continue;
}
GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
2022-09-25 18:23:15 +00:00
}
GGML_PRINT("========================================\n");
}
// check if node is part of the graph
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
2022-09-25 18:23:15 +00:00
if (cgraph == NULL) {
return true;
}
for (int i = 0; i < cgraph->n_nodes; i++) {
if (cgraph->nodes[i] == node) {
return true;
}
}
return false;
}
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
2022-09-25 18:23:15 +00:00
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * parent = cgraph->nodes[i];
if (parent->grad == node) {
return parent;
}
}
return NULL;
}
2023-06-25 11:22:21 +00:00
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
gparent0 ? (void *) gparent0 : (void *) parent,
gparent0 ? "g" : "x",
gparent ? (void *) gparent : (void *) node,
gparent ? "g" : "x",
gparent ? "empty" : "vee",
gparent ? "dashed" : "solid",
label);
}
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
(void *) parent, "x",
(void *) node, "x",
label);
}
2022-09-25 18:23:15 +00:00
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
char color[16];
FILE * fp = fopen(filename, "w");
GGML_ASSERT(fp);
2022-09-25 18:23:15 +00:00
fprintf(fp, "digraph G {\n");
fprintf(fp, " newrank = true;\n");
fprintf(fp, " rankdir = LR;\n");
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
if (ggml_graph_get_parent(gb, node) != NULL) {
continue;
}
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
snprintf(color, sizeof(color), "yellow");
} else if (node->grad) {
if (ggml_graph_find(gf, node)) {
snprintf(color, sizeof(color), "green");
} else {
snprintf(color, sizeof(color), "lightblue");
}
} else {
snprintf(color, sizeof(color), "white");
}
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"",
(void *) node, color);
if (strlen(node->name) > 0) {
2023-06-25 11:22:21 +00:00
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
if (ggml_is_matrix(node)) {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
2023-06-25 11:22:21 +00:00
} else {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
if (node->grad) {
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
2022-09-25 18:23:15 +00:00
} else {
fprintf(fp, "\"; ]\n");
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
snprintf(color, sizeof(color), "pink");
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"<x>",
(void *) node, color);
if (strlen(node->name) > 0) {
2023-06-25 11:22:21 +00:00
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
2023-06-25 11:22:21 +00:00
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
if (ggml_nelements(node) < 5) {
fprintf(fp, " | (");
for (int j = 0; j < ggml_nelements(node); j++) {
if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
fprintf(fp, "%d", ggml_get_i32_1d(node, j));
}
else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
}
else {
fprintf(fp, "#");
}
if (j < ggml_nelements(node) - 1) {
fprintf(fp, ", ");
}
}
2023-06-25 11:22:21 +00:00
fprintf(fp, ")");
2022-09-25 18:23:15 +00:00
}
fprintf(fp, "\"; ]\n");
2022-09-25 18:23:15 +00:00
}
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
2023-06-25 11:22:21 +00:00
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
2023-06-25 11:22:21 +00:00
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
}
fprintf(fp, "}\n");
fclose(fp);
GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
}
////////////////////////////////////////////////////////////////////////////////
static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
2022-09-25 18:23:15 +00:00
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
2022-09-25 18:23:15 +00:00
// TODO: add function to set tensor from array
for (int64_t j = 0; j < ne; ++j) {
2022-09-25 18:23:15 +00:00
ggml_set_f32_1d(ps[p], j, x[i++]);
}
}
}
static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
2022-09-25 18:23:15 +00:00
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
2022-09-25 18:23:15 +00:00
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
2022-09-25 18:23:15 +00:00
x[i++] = ggml_get_f32_1d(ps[p], j);
}
}
}
static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
int64_t i = 0;
2022-09-25 18:23:15 +00:00
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
2022-09-25 18:23:15 +00:00
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
2022-09-25 18:23:15 +00:00
g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
}
}
}
static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
}
}
}
2022-09-25 18:23:15 +00:00
//
// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
2022-09-25 18:23:15 +00:00
//
// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
2022-09-25 18:23:15 +00:00
//
static enum ggml_opt_result ggml_opt_adam(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
2023-06-25 11:22:21 +00:00
struct ggml_opt_context * opt,
2022-09-25 18:23:15 +00:00
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
GGML_ASSERT(ggml_is_scalar(f));
2022-09-25 18:23:15 +00:00
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
int np = 0;
int64_t nx = 0;
2022-09-25 18:23:15 +00:00
for (int i = 0; i < gf->n_nodes; ++i) {
if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
GGML_ASSERT(np < GGML_MAX_PARAMS);
2022-09-25 18:23:15 +00:00
ps[np++] = gf->nodes[i];
nx += ggml_nelements(gf->nodes[i]);
}
}
2023-06-25 11:22:21 +00:00
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
int iter = opt->iter;
ggml_opt_init(opt->ctx, opt, params, nx);
opt->iter = iter;
}
2022-09-25 18:23:15 +00:00
// constants
float sched = params.adam.sched;
const float alpha = params.adam.alpha;
const float decay = params.adam.decay * alpha;
2022-09-25 18:23:15 +00:00
const float beta1 = params.adam.beta1;
const float beta2 = params.adam.beta2;
const float eps = params.adam.eps;
const float gclip = params.adam.gclip;
const int decay_min_ndim = params.adam.decay_min_ndim;
const int n_accum = MAX(1, params.n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
2022-09-25 18:23:15 +00:00
float * g = opt->adam.g->data; // gradients
2023-06-25 11:22:21 +00:00
float * m = opt->adam.m->data; // first moment
float * v = opt->adam.v->data; // second moment
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
2022-09-25 18:23:15 +00:00
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
2022-09-25 18:23:15 +00:00
bool cancel = false;
// compute the function value
float fx = 0;
ggml_set_zero(opt->adam.g);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
callback(callback_data, accum_step, &sched, &cancel);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
}
fx *= accum_norm;
opt->adam.fx_prev = fx;
2023-06-25 11:22:21 +00:00
opt->adam.fx_best = opt->adam.fx_prev;
2022-09-25 18:23:15 +00:00
if (pf) {
2023-06-25 11:22:21 +00:00
pf[opt->iter % params.past] = opt->adam.fx_prev;
}
opt->loss_before = opt->adam.fx_prev;
opt->loss_after = opt->adam.fx_prev;
2023-06-25 11:22:21 +00:00
// initialize
if (opt->just_initialized) {
opt->adam.n_no_improvement = 0;
opt->just_initialized = false;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
float * fx_best = &opt->adam.fx_best;
float * fx_prev = &opt->adam.fx_prev;
int * n_no_improvement = &opt->adam.n_no_improvement;
int iter0 = opt->iter;
2022-09-25 18:23:15 +00:00
// run the optimizer
for (int t = 0; t < params.adam.n_iter; ++t) {
2023-06-25 11:22:21 +00:00
opt->iter = iter0 + t + 1;
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
for (int i = 0; i < np; ++i) {
GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
}
const int64_t t_start_wall = ggml_time_us();
const int64_t t_start_cpu = ggml_cycles();
UNUSED(t_start_wall);
UNUSED(t_start_cpu);
{
float gnorm = 1.0f;
if (gclip > 0.0f) {
// gradient clipping
ggml_float sum = 0.0;
for (int64_t i = 0; i < nx; ++i) {
sum += (ggml_float)(g[i]*g[i]);
}
ggml_float norm = sqrt(sum);
if (norm > (ggml_float) gclip) {
gnorm = (float) ((ggml_float) gclip / norm);
}
}
const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]);
const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
for (int64_t j = 0; j < ne; ++j) {
float x = ggml_get_f32_1d(ps[p], j);
float g_ = g[i]*gnorm;
m[i] = m[i]*beta1 + g_*(1.0f - beta1);
v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
float mh = m[i]*beta1h;
float vh = v[i]*beta2h;
vh = sqrtf(vh) + eps;
x = x*(1.0f - p_decay) - mh/vh;
ggml_set_f32_1d(ps[p], j, x);
++i;
}
}
}
2022-09-25 18:23:15 +00:00
fx = 0;
ggml_set_zero(opt->adam.g);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
callback(callback_data, accum_step, &sched, &cancel);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
2022-09-25 18:23:15 +00:00
}
fx *= accum_norm;
2022-09-25 18:23:15 +00:00
opt->loss_after = fx;
2022-09-25 18:23:15 +00:00
// check convergence
2023-06-25 11:22:21 +00:00
if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("converged\n");
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
2023-06-25 11:22:21 +00:00
if (params.past <= iter0 + t) {
const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
2022-09-25 18:23:15 +00:00
if (fabsf(rate) < params.delta) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
pf[(iter0 + t)%params.past] = fx;
2022-09-25 18:23:15 +00:00
}
// check for improvement
if (params.max_no_improvement > 0) {
2023-06-25 11:22:21 +00:00
if (fx_best[0] > fx) {
fx_best[0] = fx;
n_no_improvement[0] = 0;
2022-09-25 18:23:15 +00:00
} else {
2023-06-25 11:22:21 +00:00
++n_no_improvement[0];
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
}
2023-06-25 11:22:21 +00:00
fx_prev[0] = fx;
2022-09-25 18:23:15 +00:00
{
const int64_t t_end_cpu = ggml_cycles();
GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
2022-09-25 18:23:15 +00:00
UNUSED(t_end_cpu);
const int64_t t_end_wall = ggml_time_us();
GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
UNUSED(t_end_wall);
}
}
return GGML_OPT_RESULT_DID_NOT_CONVERGE;
2022-09-25 18:23:15 +00:00
}
//
// L-BFGS
//
// the L-BFGS implementation below is based on the following implementation:
//
// https://github.com/chokkan/liblbfgs
//
struct ggml_lbfgs_iteration_data {
float alpha;
float ys;
float * s;
float * y;
};
static enum ggml_opt_result linesearch_backtracking(
const struct ggml_opt_params * params,
int nx,
float * x,
float * fx,
float * g,
float * d,
float * step,
const float * xp,
struct ggml_tensor * f,
struct ggml_cgraph * gb,
struct ggml_cplan * cplan,
2022-09-25 18:23:15 +00:00
const int np,
struct ggml_tensor * ps[],
bool * cancel,
ggml_opt_callback callback,
void * callback_data) {
2022-09-25 18:23:15 +00:00
int count = 0;
float width = 0.0f;
float dg = 0.0f;
float finit = 0.0f;
float dginit = 0.0f;
float dgtest = 0.0f;
const float dec = 0.5f;
const float inc = 2.1f;
const int n_accum = MAX(1, params->n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
if (*step <= 0.f) {
2022-09-25 18:23:15 +00:00
return GGML_LINESEARCH_INVALID_PARAMETERS;
}
// compute the initial gradient in the search direction
ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
2022-09-25 18:23:15 +00:00
// make sure that d points to a descent direction
if (0 < dginit) {
return GGML_LINESEARCH_FAIL;
}
// initialize local variables
finit = *fx;
dgtest = params->lbfgs.ftol*dginit;
while (true) {
ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_mad_f32(nx, x, d, *step);
// evaluate the function and gradient values
{
ggml_opt_set_params(np, ps, x);
*fx = 0;
memset(g, 0, sizeof(float)*nx);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, accum_step, &sched, cancel);
if (*cancel) {
return GGML_OPT_RESULT_CANCEL;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
*fx += ggml_get_f32_1d(f, 0);
}
*fx *= accum_norm;
2022-09-25 18:23:15 +00:00
}
++count;
if (*fx > finit + (*step)*dgtest) {
width = dec;
} else {
// Armijo condition is satisfied
if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
return count;
}
ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
2022-09-25 18:23:15 +00:00
// check the Wolfe condition
if (dg < params->lbfgs.wolfe * dginit) {
width = inc;
} else {
if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
// regular Wolfe conditions
return count;
}
if(dg > -params->lbfgs.wolfe*dginit) {
width = dec;
} else {
// strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
return count;
}
}
}
if (*step < params->lbfgs.min_step) {
return GGML_LINESEARCH_MINIMUM_STEP;
}
if (*step > params->lbfgs.max_step) {
return GGML_LINESEARCH_MAXIMUM_STEP;
}
if (params->lbfgs.max_linesearch <= count) {
return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
}
(*step) *= width;
}
GGML_ASSERT(false && "line search failed");
return GGML_LINESEARCH_FAIL;
2022-09-25 18:23:15 +00:00
}
static enum ggml_opt_result ggml_opt_lbfgs(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
2023-06-25 11:22:21 +00:00
struct ggml_opt_context * opt,
2022-09-25 18:23:15 +00:00
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
2022-09-25 18:23:15 +00:00
if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
return GGML_OPT_RESULT_INVALID_WOLFE;
2022-09-25 18:23:15 +00:00
}
}
const int m = params.lbfgs.m;
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
int np = 0;
int nx = 0;
for (int i = 0; i < gf->n_nodes; ++i) {
if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
GGML_ASSERT(np < GGML_MAX_PARAMS);
2022-09-25 18:23:15 +00:00
ps[np++] = gf->nodes[i];
nx += ggml_nelements(gf->nodes[i]);
}
}
2023-06-25 11:22:21 +00:00
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
int iter = opt->iter;
ggml_opt_init(ctx, opt, params, nx);
opt->iter = iter;
}
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
2023-06-25 11:22:21 +00:00
float * x = opt->lbfgs.x->data; // current parameters
float * xp = opt->lbfgs.xp->data; // previous parameters
float * g = opt->lbfgs.g->data; // current gradient
float * gp = opt->lbfgs.gp->data; // previous gradient
float * d = opt->lbfgs.d->data; // search direction
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
2022-09-25 18:23:15 +00:00
const int n_accum = MAX(1, params.n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
2022-09-25 18:23:15 +00:00
float fx = 0.0f; // cost function value
float xnorm = 0.0f; // ||x||
float gnorm = 0.0f; // ||g||
// initialize x from the graph nodes
ggml_opt_get_params(np, ps, x);
// the L-BFGS memory
2023-06-25 11:22:21 +00:00
float * lm_alpha = opt->lbfgs.lmal->data;
float * lm_ys = opt->lbfgs.lmys->data;
float * lm_s = opt->lbfgs.lms->data;
float * lm_y = opt->lbfgs.lmy->data;
2022-09-25 18:23:15 +00:00
bool cancel = false;
2022-09-25 18:23:15 +00:00
// evaluate the function value and its gradient
{
ggml_opt_set_params(np, ps, x);
fx = 0;
memset(g, 0, sizeof(float)*nx);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, accum_step, &sched, &cancel);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
}
fx *= accum_norm;
opt->loss_before = fx;
opt->loss_after = fx;
2022-09-25 18:23:15 +00:00
}
// search direction = -gradient
ggml_vec_neg_f32(nx, d, g);
// ||x||, ||g||
ggml_vec_norm_f32(nx, &xnorm, x);
ggml_vec_norm_f32(nx, &gnorm, g);
if (xnorm < 1.0f) {
xnorm = 1.0f;
}
// already optimized
if (gnorm/xnorm <= params.lbfgs.eps) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
if (opt->just_initialized) {
if (pf) {
pf[0] = fx;
}
opt->lbfgs.fx_best = fx;
// initial step
ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
opt->lbfgs.j = 0;
opt->lbfgs.k = 1;
opt->lbfgs.end = 0;
opt->lbfgs.n_no_improvement = 0;
opt->just_initialized = false;
}
float * fx_best = &opt->lbfgs.fx_best;
float * step = &opt->lbfgs.step;
int * j = &opt->lbfgs.j;
int * k = &opt->lbfgs.k;
int * end = &opt->lbfgs.end;
int * n_no_improvement = &opt->lbfgs.n_no_improvement;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
int ls = 0;
int bound = 0;
2022-09-25 18:23:15 +00:00
float ys = 0.0f;
float yy = 0.0f;
float beta = 0.0f;
2023-06-25 11:22:21 +00:00
int it = 0;
2022-09-25 18:23:15 +00:00
while (true) {
// store the current position and gradient vectors
ggml_vec_cpy_f32(nx, xp, x);
ggml_vec_cpy_f32(nx, gp, g);
// TODO: instead of passing &cancel here, use the return code of the linesearch
// to determine if the optimization should be cancelled
// this is a simple change, but not doing this atm, since I don't have a nice
// way to test and don't want to break something with so many changes lined up
ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;
}
2022-09-25 18:23:15 +00:00
if (ls < 0) {
// linesearch failed - go back to the previous point and return
ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_cpy_f32(nx, g, gp);
return ls;
}
opt->loss_after = fx;
2022-09-25 18:23:15 +00:00
ggml_vec_norm_f32(nx, &xnorm, x);
ggml_vec_norm_f32(nx, &gnorm, g);
GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
if (xnorm < 1.0f) {
xnorm = 1.0f;
2022-09-25 18:23:15 +00:00
}
if (gnorm/xnorm <= params.lbfgs.eps) {
// converged
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
2023-06-25 11:22:21 +00:00
if (params.past <= k[0]) {
const float rate = (pf[k[0]%params.past] - fx)/fx;
2022-09-25 18:23:15 +00:00
if (fabsf(rate) < params.delta) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
pf[k[0]%params.past] = fx;
2022-09-25 18:23:15 +00:00
}
// check for improvement
if (params.max_no_improvement > 0) {
2023-06-25 11:22:21 +00:00
if (fx < fx_best[0]) {
fx_best[0] = fx;
n_no_improvement[0] = 0;
2022-09-25 18:23:15 +00:00
} else {
2023-06-25 11:22:21 +00:00
n_no_improvement[0]++;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
}
2023-06-25 11:22:21 +00:00
if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
2022-09-25 18:23:15 +00:00
// reached the maximum number of iterations
return GGML_OPT_RESULT_DID_NOT_CONVERGE;
2022-09-25 18:23:15 +00:00
}
// update vectors s and y:
// s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
// y_{k+1} = g_{k+1} - g_{k}.
//
2023-06-25 11:22:21 +00:00
ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
2022-09-25 18:23:15 +00:00
// compute scalars ys and yy:
// ys = y^t \cdot s -> 1 / \rho.
// yy = y^t \cdot y.
//
ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
lm_ys[end[0]] = ys;
2022-09-25 18:23:15 +00:00
// find new search direction
// ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
2023-06-25 11:22:21 +00:00
bound = (m <= k[0]) ? m : k[0];
k[0]++;
it++;
end[0] = (end[0] + 1)%m;
2022-09-25 18:23:15 +00:00
// initialize search direction with -g
ggml_vec_neg_f32(nx, d, g);
2023-06-25 11:22:21 +00:00
j[0] = end[0];
2022-09-25 18:23:15 +00:00
for (int i = 0; i < bound; ++i) {
2023-06-25 11:22:21 +00:00
j[0] = (j[0] + m - 1) % m;
2022-09-25 18:23:15 +00:00
// \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
2023-06-25 11:22:21 +00:00
lm_alpha[j[0]] /= lm_ys[j[0]];
2022-09-25 18:23:15 +00:00
// q_{i} = q_{i+1} - \alpha_{i} y_{i}
2023-06-25 11:22:21 +00:00
ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
2022-09-25 18:23:15 +00:00
}
ggml_vec_scale_f32(nx, d, ys/yy);
for (int i = 0; i < bound; ++i) {
// \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
2023-06-25 11:22:21 +00:00
beta /= lm_ys[j[0]];
2022-09-25 18:23:15 +00:00
// \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
2023-06-25 11:22:21 +00:00
ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
j[0] = (j[0] + 1)%m;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
step[0] = 1.0;
2022-09-25 18:23:15 +00:00
}
GGML_ASSERT(false && "lbfgs failed");
return GGML_OPT_RESULT_DID_NOT_CONVERGE;
2022-09-25 18:23:15 +00:00
}
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
struct ggml_opt_params result;
switch (type) {
case GGML_OPT_TYPE_ADAM:
2022-09-25 18:23:15 +00:00
{
result = (struct ggml_opt_params) {
.type = GGML_OPT_TYPE_ADAM,
.graph_size = GGML_DEFAULT_GRAPH_SIZE,
.n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
.past = 0,
.delta = 1e-5f,
2022-09-25 18:23:15 +00:00
.max_no_improvement = 100,
.print_forward_graph = true,
.print_backward_graph = true,
.n_gradient_accumulation = 1,
2022-09-25 18:23:15 +00:00
.adam = {
.n_iter = 10000,
2023-06-25 11:22:21 +00:00
.sched = 1.000f,
.decay = 0.0f,
.decay_min_ndim = 2,
2022-09-25 18:23:15 +00:00
.alpha = 0.001f,
.beta1 = 0.9f,
.beta2 = 0.999f,
.eps = 1e-8f,
.eps_f = 1e-5f,
.eps_g = 1e-3f,
.gclip = 0.0f,
2022-09-25 18:23:15 +00:00
},
};
} break;
case GGML_OPT_TYPE_LBFGS:
2022-09-25 18:23:15 +00:00
{
result = (struct ggml_opt_params) {
.type = GGML_OPT_TYPE_LBFGS,
.graph_size = GGML_DEFAULT_GRAPH_SIZE,
.n_threads = 1,
.past = 0,
.delta = 1e-5f,
2022-09-25 18:23:15 +00:00
.max_no_improvement = 0,
.print_forward_graph = true,
.print_backward_graph = true,
.n_gradient_accumulation = 1,
2022-09-25 18:23:15 +00:00
.lbfgs = {
.m = 6,
.n_iter = 100,
.max_linesearch = 20,
.eps = 1e-5f,
.ftol = 1e-4f,
.wolfe = 0.9f,
.min_step = 1e-20f,
.max_step = 1e+20f,
.linesearch = GGML_LINESEARCH_DEFAULT,
},
};
} break;
}
return result;
}
2023-06-25 11:22:21 +00:00
GGML_API void ggml_opt_init(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
int64_t nx) {
opt->ctx = ctx;
opt->params = params;
opt->iter = 0;
opt->nx = nx;
opt->just_initialized = true;
if (opt->ctx == NULL) {
struct ggml_init_params ctx_opt_params;
if (opt->params.type == GGML_OPT_TYPE_ADAM) {
ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
if (opt->params.past > 0) {
ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
}
} else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
if (opt->params.past > 0) {
ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
}
}
ctx_opt_params.mem_buffer = NULL;
ctx_opt_params.no_alloc = false;
opt->ctx = ggml_init(ctx_opt_params);
}
2023-06-25 11:22:21 +00:00
switch (opt->params.type) {
case GGML_OPT_TYPE_ADAM:
2023-06-25 11:22:21 +00:00
{
opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
2023-06-25 11:22:21 +00:00
opt->adam.pf = params.past > 0
? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
2023-06-25 11:22:21 +00:00
: NULL;
ggml_set_zero(opt->adam.m);
ggml_set_zero(opt->adam.v);
if (opt->adam.pf) {
ggml_set_zero(opt->adam.pf);
}
} break;
case GGML_OPT_TYPE_LBFGS:
2023-06-25 11:22:21 +00:00
{
opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
2023-06-25 11:22:21 +00:00
opt->lbfgs.pf = params.past > 0
? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
2023-06-25 11:22:21 +00:00
: NULL;
opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
2023-06-25 11:22:21 +00:00
ggml_set_zero(opt->lbfgs.x);
ggml_set_zero(opt->lbfgs.xp);
ggml_set_zero(opt->lbfgs.g);
ggml_set_zero(opt->lbfgs.gp);
ggml_set_zero(opt->lbfgs.d);
if (opt->lbfgs.pf) {
ggml_set_zero(opt->lbfgs.pf);
}
ggml_set_zero(opt->lbfgs.lmal);
ggml_set_zero(opt->lbfgs.lmys);
ggml_set_zero(opt->lbfgs.lms);
ggml_set_zero(opt->lbfgs.lmy);
} break;
}
}
2022-09-25 18:23:15 +00:00
enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
struct ggml_tensor * f) {
bool free_ctx = false;
if (ctx == NULL) {
struct ggml_init_params params_ctx = {
.mem_size = 16*1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
2022-09-25 18:23:15 +00:00
};
ctx = ggml_init(params_ctx);
if (ctx == NULL) {
return GGML_OPT_RESULT_NO_CONTEXT;
2022-09-25 18:23:15 +00:00
}
free_ctx = true;
}
enum ggml_opt_result result = GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
ggml_opt_init(ctx, opt, params, 0);
result = ggml_opt_resume(ctx, opt, f);
if (free_ctx) {
ggml_free(ctx);
}
return result;
}
enum ggml_opt_result ggml_opt_resume(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f) {
// build forward + backward compute graphs
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
ggml_build_forward_expand(gf, f);
struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
ggml_build_backward_expand(ctx, gf, gb, true);
return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
}
enum ggml_opt_result ggml_opt_resume_g(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
// build forward + backward compute graphs
enum ggml_opt_result result = GGML_OPT_RESULT_OK;
switch (opt->params.type) {
case GGML_OPT_TYPE_ADAM:
{
result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
} break;
case GGML_OPT_TYPE_LBFGS:
{
result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
} break;
}
if (opt->params.print_forward_graph) {
ggml_graph_print (gf);
ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
}
if (opt->params.print_backward_graph) {
ggml_graph_print (gb);
ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_input(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_INPUT;
}
void ggml_set_output(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_quantize_init(enum ggml_type type) {
ggml_critical_section_start();
switch (type) {
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
default: // nothing
break;
}
ggml_critical_section_end();
}
void ggml_quantize_free(void) {
ggml_critical_section_start();
iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
iq2xs_free_impl(GGML_TYPE_IQ2_XS);
iq2xs_free_impl(GGML_TYPE_IQ1_S);
iq3xs_free_impl(256);
ggml_critical_section_end();
}
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK4_0 == 0);
const int nb = k / QK4_0;
for (int b = 0; b < n; b += k) {
block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
quantize_row_q4_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK4_0; j += 2) {
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
const uint8_t vi1 = y[i].qs[j/2] >> 4;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK4_0*sizeof(block_q4_0));
}
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK4_1 == 0);
const int nb = k / QK4_1;
for (int b = 0; b < n; b += k) {
block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
quantize_row_q4_1_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK4_1; j += 2) {
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
const uint8_t vi1 = y[i].qs[j/2] >> 4;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK4_1*sizeof(block_q4_1));
}
size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
for (int b = 0; b < n; b += k) {
block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
quantize_row_q5_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
uint32_t qh;
memcpy(&qh, &y[i].qh, sizeof(qh));
for (int j = 0; j < QK5_0; j += 2) {
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
// cast to 16 bins
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK5_0*sizeof(block_q5_0));
}
size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK5_1 == 0);
const int nb = k / QK5_1;
for (int b = 0; b < n; b += k) {
block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
quantize_row_q5_1_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
uint32_t qh;
memcpy(&qh, &y[i].qh, sizeof(qh));
for (int j = 0; j < QK5_1; j += 2) {
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
// cast to 16 bins
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK5_1*sizeof(block_q5_1));
}
size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
for (int b = 0; b < n; b += k) {
block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
quantize_row_q8_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK8_0; ++j) {
const int8_t vi = y[i].qs[j];
hist[vi/16 + 8]++;
}
}
}
return (n/QK8_0*sizeof(block_q8_0));
}
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
return
type == GGML_TYPE_IQ2_XXS ||
type == GGML_TYPE_IQ2_XS ||
type == GGML_TYPE_IQ1_S;
}
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
ggml_quantize_init(type); // this is noop if already initialized
size_t result = 0;
int n = nrows * n_per_row;
switch (type) {
case GGML_TYPE_Q4_0:
{
GGML_ASSERT(start % QK4_0 == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q4_1:
{
GGML_ASSERT(start % QK4_1 == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q5_0:
{
GGML_ASSERT(start % QK5_0 == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q5_1:
{
GGML_ASSERT(start % QK5_1 == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q8_0:
{
GGML_ASSERT(start % QK8_0 == 0);
block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
result = ggml_quantize_q8_0(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q2_K:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q3_K:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q4_K:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q5_K:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
} break;
case GGML_TYPE_IQ2_XXS:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
GGML_ASSERT(imatrix);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_IQ2_XS:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
GGML_ASSERT(imatrix);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_IQ3_XXS:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_IQ2_S:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_IQ1_S:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
2024-02-21 14:19:39 +00:00
} break;
case GGML_TYPE_IQ4_NL:
#if QK_K == 64
case GGML_TYPE_IQ4_XS:
#endif
2024-02-21 14:19:39 +00:00
{
GGML_ASSERT(start % QK4_NL == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
#if QK_K != 64
case GGML_TYPE_IQ4_XS:
{
GGML_ASSERT(start % QK_K == 0);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
#endif
case GGML_TYPE_F16:
{
size_t elemsize = sizeof(ggml_fp16_t);
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
result = n * elemsize;
} break;
case GGML_TYPE_F32:
{
size_t elemsize = sizeof(float);
result = n * elemsize;
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
} break;
default:
assert(false);
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
struct gguf_str {
uint64_t n; // GGUFv2
char * data;
};
static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = sizeof(uint8_t),
[GGUF_TYPE_INT8] = sizeof(int8_t),
[GGUF_TYPE_UINT16] = sizeof(uint16_t),
[GGUF_TYPE_INT16] = sizeof(int16_t),
[GGUF_TYPE_UINT32] = sizeof(uint32_t),
[GGUF_TYPE_INT32] = sizeof(int32_t),
[GGUF_TYPE_FLOAT32] = sizeof(float),
[GGUF_TYPE_BOOL] = sizeof(bool),
[GGUF_TYPE_STRING] = sizeof(struct gguf_str),
[GGUF_TYPE_UINT64] = sizeof(uint64_t),
[GGUF_TYPE_INT64] = sizeof(int64_t),
[GGUF_TYPE_FLOAT64] = sizeof(double),
[GGUF_TYPE_ARRAY] = 0, // undefined
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = "u8",
[GGUF_TYPE_INT8] = "i8",
[GGUF_TYPE_UINT16] = "u16",
[GGUF_TYPE_INT16] = "i16",
[GGUF_TYPE_UINT32] = "u32",
[GGUF_TYPE_INT32] = "i32",
[GGUF_TYPE_FLOAT32] = "f32",
[GGUF_TYPE_BOOL] = "bool",
[GGUF_TYPE_STRING] = "str",
[GGUF_TYPE_ARRAY] = "arr",
[GGUF_TYPE_UINT64] = "u64",
[GGUF_TYPE_INT64] = "i64",
[GGUF_TYPE_FLOAT64] = "f64",
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
union gguf_value {
uint8_t uint8;
int8_t int8;
uint16_t uint16;
int16_t int16;
uint32_t uint32;
int32_t int32;
float float32;
uint64_t uint64;
int64_t int64;
double float64;
bool bool_;
struct gguf_str str;
struct {
enum gguf_type type;
uint64_t n; // GGUFv2
void * data;
} arr;
};
struct gguf_kv {
struct gguf_str key;
enum gguf_type type;
union gguf_value value;
};
struct gguf_header {
char magic[4];
uint32_t version;
uint64_t n_tensors; // GGUFv2
uint64_t n_kv; // GGUFv2
};
struct gguf_tensor_info {
struct gguf_str name;
uint32_t n_dims;
uint64_t ne[GGML_MAX_DIMS];
enum ggml_type type;
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
// for writing API
const void * data;
size_t size;
};
struct gguf_context {
struct gguf_header header;
struct gguf_kv * kv;
struct gguf_tensor_info * infos;
size_t alignment;
size_t offset; // offset of `data` from beginning of file
size_t size; // size of `data` in bytes
//uint8_t * padding;
void * data;
};
static size_t gguf_type_size(enum gguf_type type) {
GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
return GGUF_TYPE_SIZE[type];
}
static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
for (uint32_t i = 0; i < info->n_dims; ++i) {
GGML_ASSERT(info->ne[i] > 0);
}
// prevent overflow for total number of elements
GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
}
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
const size_t n = fread(dst, 1, size, file);
*offset += n;
return n == size;
}
static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
p->n = 0;
p->data = NULL;
bool ok = true;
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
// early exit if string length is invalid, prevents from integer overflow
if (p->n == SIZE_MAX) {
fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
return false;
}
p->data = GGML_CALLOC(p->n + 1, 1);
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
return ok;
}
struct gguf_context * gguf_init_empty(void) {
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
ctx->header.version = GGUF_VERSION;
ctx->header.n_tensors = 0;
ctx->header.n_kv = 0;
ctx->kv = NULL;
ctx->infos = NULL;
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
ctx->offset = 0;
ctx->size = 0;
ctx->data = NULL;
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = fopen(fname, "rb");
if (!file) {
return NULL;
}
// offset from start of file
size_t offset = 0;
char magic[4];
// check the magic before making allocations
{
gguf_fread_el(file, &magic, sizeof(magic), &offset);
for (uint32_t i = 0; i < sizeof(magic); i++) {
if (magic[i] != GGUF_MAGIC[i]) {
fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
fclose(file);
return NULL;
}
}
}
bool ok = true;
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
// read the header
{
strncpy(ctx->header.magic, magic, 4);
ctx->kv = NULL;
ctx->infos = NULL;
ctx->data = NULL;
ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
if (ctx->header.version == 1) {
fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
// sanity-checks to prevent from integer/buffer overflows
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
// read the kv pairs
{
ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
ok = ok && gguf_fread_str(file, &kv->key, &offset);
ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
//fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
switch (kv->type) {
case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
case GGUF_TYPE_ARRAY:
{
ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL:
{
// prevent from integer overflow in the malloc below
if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
fclose(file);
gguf_free(ctx);
return NULL;
}
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
} break;
case GGUF_TYPE_STRING:
{
// prevent from integer overflow in the malloc below
if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
fclose(file);
gguf_free(ctx);
return NULL;
}
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
}
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ASSERT(false && "invalid type"); break;
}
} break;
default: GGML_ASSERT(false && "invalid type");
}
if (!ok) {
break;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
// read the tensor infos
{
ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
info->ne[j] = 1;
}
ok = ok && gguf_fread_str(file, &info->name, &offset);
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
ok = ok && (info->n_dims <= GGML_MAX_DIMS);
for (uint32_t j = 0; j < info->n_dims; ++j) {
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
}
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
gguf_tensor_info_sanitize(info);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
}
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
int alignment_idx = gguf_find_key(ctx, "general.alignment");
if (alignment_idx != -1) {
ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
}
// we require the data section to be aligned, so take into account any padding
{
const size_t offset_pad = offset % ctx->alignment;
if (offset_pad != 0) {
offset += ctx->alignment - offset_pad;
fseek(file, offset, SEEK_SET);
}
}
// store the current file offset - this is where the data section starts
ctx->offset = offset;
// compute the total size of the data section, taking into account the alignment
{
ctx->size = 0;
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const int64_t ne =
(int64_t) info->ne[0] *
(int64_t) info->ne[1] *
(int64_t) info->ne[2] *
(int64_t) info->ne[3];
if (ne % ggml_blck_size(info->type) != 0) {
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
__func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
fclose(file);
gguf_free(ctx);
return NULL;
}
const size_t size_cur = ggml_row_size(info->type, ne);
ctx->size += GGML_PAD(size_cur, ctx->alignment);
}
}
// load the tensor data only if requested
if (params.ctx != NULL) {
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
// the ggml_tensor structs to the appropriate locations in the binary blob
// compute the exact size needed for the new ggml_context
const size_t mem_size =
params.no_alloc ?
(ctx->header.n_tensors )*ggml_tensor_overhead() :
(ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
struct ggml_init_params pdata = {
.mem_size = mem_size,
.mem_buffer = NULL,
.no_alloc = params.no_alloc,
};
*params.ctx = ggml_init(pdata);
struct ggml_context * ctx_data = *params.ctx;
struct ggml_tensor * data = NULL;
if (!params.no_alloc) {
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
ok = ok && data != NULL;
// read the binary blob with the tensor data
ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
}
ctx->data = data->data;
}
ggml_set_no_alloc(ctx_data, true);
// create the tensors
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
const int64_t ne[GGML_MAX_DIMS] = {
ctx->infos[i].ne[0],
ctx->infos[i].ne[1],
ctx->infos[i].ne[2],
ctx->infos[i].ne[3],
};
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
ok = ok && cur != NULL;
ggml_set_name(cur, ctx->infos[i].name.data);
if (!ok) {
break;
}
// point the data member to the appropriate location in the binary blob using the tensor infos
if (!params.no_alloc) {
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
}
ggml_set_no_alloc(ctx_data, params.no_alloc);
}
fclose(file);
return ctx;
}
void gguf_free(struct gguf_context * ctx) {
if (ctx == NULL) {
return;
}
if (ctx->kv) {
// free string memory - not great..
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
if (kv->key.data) {
GGML_FREE(kv->key.data);
}
if (kv->type == GGUF_TYPE_STRING) {
if (kv->value.str.data) {
GGML_FREE(kv->value.str.data);
}
}
if (kv->type == GGUF_TYPE_ARRAY) {
if (kv->value.arr.data) {
if (kv->value.arr.type == GGUF_TYPE_STRING) {
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
if (str->data) {
GGML_FREE(str->data);
}
}
}
GGML_FREE(kv->value.arr.data);
}
}
}
GGML_FREE(ctx->kv);
}
if (ctx->infos) {
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
if (info->name.data) {
GGML_FREE(info->name.data);
}
}
GGML_FREE(ctx->infos);
}
GGML_ALIGNED_FREE(ctx);
}
const char * gguf_type_name(enum gguf_type type) {
return GGUF_TYPE_NAME[type];
}
2023-09-15 11:49:56 +00:00
int gguf_get_version(const struct gguf_context * ctx) {
return ctx->header.version;
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_alignment(const struct gguf_context * ctx) {
return ctx->alignment;
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
return ctx->offset;
}
2023-09-15 11:49:56 +00:00
void * gguf_get_data(const struct gguf_context * ctx) {
return ctx->data;
}
2023-09-15 11:49:56 +00:00
int gguf_get_n_kv(const struct gguf_context * ctx) {
return ctx->header.n_kv;
}
2023-09-15 11:49:56 +00:00
int gguf_find_key(const struct gguf_context * ctx, const char * key) {
// return -1 if key not found
int keyfound = -1;
const int n_kv = gguf_get_n_kv(ctx);
for (int i = 0; i < n_kv; ++i) {
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
keyfound = i;
break;
}
}
return keyfound;
}
const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].key.data;
}
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].type;
}
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.type;
}
const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.data;
}
2023-09-15 11:49:56 +00:00
const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
struct gguf_kv * kv = &ctx->kv[key_id];
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
return str->data;
}
int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.n;
}
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
return ctx->kv[key_id].value.uint8;
}
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
return ctx->kv[key_id].value.int8;
}
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
return ctx->kv[key_id].value.uint16;
}
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
return ctx->kv[key_id].value.int16;
}
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
return ctx->kv[key_id].value.uint32;
}
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
return ctx->kv[key_id].value.int32;
}
float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
return ctx->kv[key_id].value.float32;
}
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
return ctx->kv[key_id].value.uint64;
}
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
return ctx->kv[key_id].value.int64;
}
double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
return ctx->kv[key_id].value.float64;
}
bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
return ctx->kv[key_id].value.bool_;
}
const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
return ctx->kv[key_id].value.str.data;
}
const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
return &ctx->kv[key_id].value;
}
2023-09-15 11:49:56 +00:00
int gguf_get_n_tensors(const struct gguf_context * ctx) {
return ctx->header.n_tensors;
}
2023-09-15 11:49:56 +00:00
int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
// return -1 if tensor not found
int tensorfound = -1;
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
tensorfound = i;
break;
}
}
return tensorfound;
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
return ctx->infos[i].offset;
}
2023-09-15 11:49:56 +00:00
char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
return ctx->infos[i].name.data;
}
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
return ctx->infos[i].type;
}
// returns the index
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
const int idx = gguf_find_key(ctx, key);
if (idx >= 0) {
return idx;
}
const int n_kv = gguf_get_n_kv(ctx);
ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
ctx->kv[n_kv].key.n = strlen(key);
ctx->kv[n_kv].key.data = strdup(key);
ctx->header.n_kv++;
return n_kv;
}
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT8;
ctx->kv[idx].value.uint8 = val;
}
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT8;
ctx->kv[idx].value.int8 = val;
}
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT16;
ctx->kv[idx].value.uint16 = val;
}
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT16;
ctx->kv[idx].value.int16 = val;
}
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT32;
ctx->kv[idx].value.uint32 = val;
}
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT32;
ctx->kv[idx].value.int32 = val;
}
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
ctx->kv[idx].value.float32 = val;
}
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT64;
ctx->kv[idx].value.uint64 = val;
}
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT64;
ctx->kv[idx].value.int64 = val;
}
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
ctx->kv[idx].value.float64 = val;
}
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_BOOL;
ctx->kv[idx].value.bool_ = val;
2023-06-25 11:22:21 +00:00
}
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
const int idx = gguf_get_or_add_key(ctx, key);
2023-06-25 11:22:21 +00:00
ctx->kv[idx].type = GGUF_TYPE_STRING;
ctx->kv[idx].value.str.n = strlen(val);
ctx->kv[idx].value.str.data = strdup(val);
}
2023-06-25 11:22:21 +00:00
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
const int idx = gguf_get_or_add_key(ctx, key);
2023-06-25 11:22:21 +00:00
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = type;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
}
2023-06-25 11:22:21 +00:00
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
for (int i = 0; i < n; i++) {
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
str->n = strlen(data[i]);
str->data = strdup(data[i]);
}
}
// set or add KV pairs from another context
void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
for (uint32_t i = 0; i < src->header.n_kv; i++) {
switch (src->kv[i].type) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
case GGUF_TYPE_ARRAY:
{
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
}
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
GGML_FREE((void *)data);
} else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
GGML_ASSERT(false && "nested arrays not supported");
} else {
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
}
} break;
default: GGML_ASSERT(false && "invalid type"); break;
}
}
2023-06-25 11:22:21 +00:00
}
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
const int idx = ctx->header.n_tensors;
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
2023-06-25 11:22:21 +00:00
ctx->infos[idx].name.n = strlen(tensor->name);
ctx->infos[idx].name.data = strdup(tensor->name);
2022-09-25 18:23:15 +00:00
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
ctx->infos[idx].ne[i] = 1;
2022-09-25 18:23:15 +00:00
}
ctx->infos[idx].n_dims = ggml_n_dims(tensor);
for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
ctx->infos[idx].ne[i] = tensor->ne[i];
2022-09-25 18:23:15 +00:00
}
ctx->infos[idx].type = tensor->type;
ctx->infos[idx].offset = 0;
ctx->infos[idx].data = tensor->data;
ctx->infos[idx].size = ggml_nbytes(tensor);
if (ctx->header.n_tensors > 0) {
ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
2022-09-25 18:23:15 +00:00
}
ctx->header.n_tensors++;
2022-09-25 18:23:15 +00:00
}
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
const int idx = gguf_find_tensor(ctx, name);
if (idx < 0) {
GGML_ASSERT(false && "tensor not found");
}
ctx->infos[idx].type = type;
}
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
const int idx = gguf_find_tensor(ctx, name);
if (idx < 0) {
GGML_ASSERT(false && "tensor not found");
}
ctx->infos[idx].data = data;
ctx->infos[idx].size = size;
// update offsets
for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
}
}
//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
// fwrite(&val->n, sizeof(val->n), 1, file);
// fwrite(val->data, sizeof(char), val->n, file);
//}
//
//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
// fwrite(val, sizeof(char), size, file);
//}
struct gguf_buf {
void * data;
size_t size;
size_t offset;
};
static struct gguf_buf gguf_buf_init(size_t size) {
struct gguf_buf buf = {
/*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
/*buf.size =*/ size,
/*buf.offset =*/ 0,
};
return buf;
}
static void gguf_buf_free(struct gguf_buf buf) {
if (buf.data) {
GGML_FREE(buf.data);
}
}
static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
if (buf->offset + size > buf->size) {
buf->size = 1.5*(buf->offset + size);
if (buf->data) {
buf->data = realloc(buf->data, buf->size);
}
}
}
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
gguf_buf_grow(buf, sizeof(val->n) + val->n);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
}
buf->offset += sizeof(val->n);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, val->data, val->n);
}
buf->offset += val->n;
}
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
gguf_buf_grow(buf, el_size);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, val, el_size);
}
buf->offset += el_size;
}
2023-09-15 11:49:56 +00:00
static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
// write header
gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
// write key-value pairs
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
gguf_bwrite_str(buf, &kv->key);
gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
switch (kv->type) {
case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
case GGUF_TYPE_ARRAY:
{
gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL:
{
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
} break;
case GGUF_TYPE_STRING:
{
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
}
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ASSERT(false && "invalid type"); break;
}
} break;
default: GGML_ASSERT(false && "invalid type");
}
}
// write tensor infos
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
gguf_bwrite_str(buf, &info->name);
gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
for (uint32_t j = 0; j < info->n_dims; ++j) {
gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
}
gguf_bwrite_el(buf, &info->type, sizeof(info->type));
gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
}
// we require the data section to be aligned, so take into account any padding
{
const size_t offset = buf->offset;
const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
if (offset_pad != offset) {
uint8_t pad = 0;
for (size_t i = 0; i < offset_pad - offset; ++i) {
gguf_bwrite_el(buf, &pad, sizeof(pad));
}
}
}
if (only_meta) {
return;
}
size_t offset = 0;
// write tensor data
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const size_t size = info->size;
const size_t size_pad = GGML_PAD(size, ctx->alignment);
gguf_bwrite_el(buf, info->data, size);
if (size_pad != size) {
uint8_t pad = 0;
for (size_t j = 0; j < size_pad - size; ++j) {
gguf_bwrite_el(buf, &pad, sizeof(pad));
}
}
GGML_ASSERT(offset == info->offset);
offset += size_pad;
}
}
2023-09-15 11:49:56 +00:00
void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
FILE * file = fopen(fname, "wb");
if (!file) {
GGML_ASSERT(false && "failed to open file for writing");
}
struct gguf_buf buf = gguf_buf_init(16*1024);
gguf_write_to_buf(ctx, &buf, only_meta);
fwrite(buf.data, 1, buf.offset, file);
gguf_buf_free(buf);
fclose(file);
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
// no allocs - only compute size
struct gguf_buf buf = gguf_buf_init(0);
gguf_write_to_buf(ctx, &buf, true);
return buf.offset;
}
2023-09-15 11:49:56 +00:00
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
struct gguf_buf buf = gguf_buf_init(16*1024);
gguf_write_to_buf(ctx, &buf, true);
memcpy(data, buf.data, buf.offset);
gguf_buf_free(buf);
}
////////////////////////////////////////////////////////////////////////////////
2022-11-23 11:23:24 +00:00
int ggml_cpu_has_avx(void) {
#if defined(__AVX__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx_vnni(void) {
#if defined(__AVXVNNI__)
return 1;
#else
return 0;
2022-11-23 11:23:24 +00:00
#endif
}
2022-10-25 17:18:26 +00:00
int ggml_cpu_has_avx2(void) {
#if defined(__AVX2__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512(void) {
#if defined(__AVX512F__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_vbmi(void) {
#if defined(__AVX512VBMI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_vnni(void) {
#if defined(__AVX512VNNI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_fma(void) {
#if defined(__FMA__)
return 1;
#else
return 0;
#endif
}
2022-10-25 17:18:26 +00:00
int ggml_cpu_has_neon(void) {
#if defined(__ARM_NEON)
2022-10-25 17:18:26 +00:00
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_arm_fma(void) {
#if defined(__ARM_FEATURE_FMA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_metal(void) {
#if defined(GGML_USE_METAL)
return 1;
#else
return 0;
#endif
}
2022-12-06 19:56:56 +00:00
int ggml_cpu_has_f16c(void) {
#if defined(__F16C__)
return 1;
#else
return 0;
#endif
}
2022-10-25 17:18:26 +00:00
int ggml_cpu_has_fp16_va(void) {
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_wasm_simd(void) {
#if defined(__wasm_simd128__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_blas(void) {
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_cublas(void) {
#if defined(GGML_USE_CUBLAS)
2022-10-25 17:18:26 +00:00
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_clblast(void) {
#if defined(GGML_USE_CLBLAST)
return 1;
#else
return 0;
#endif
}
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
int ggml_cpu_has_vulkan(void) {
#if defined(GGML_USE_VULKAN)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_kompute(void) {
#if defined(GGML_USE_KOMPUTE)
return 1;
#else
return 0;
#endif
}
ggml : add unified SYCL backend for Intel GPUs (llama/2690) * first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 15:56:23 +00:00
int ggml_cpu_has_sycl(void) {
#if defined(GGML_USE_SYCL)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_gpublas(void) {
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
ggml_cpu_has_sycl();
}
int ggml_cpu_has_sse3(void) {
#if defined(__SSE3__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_ssse3(void) {
#if defined(__SSSE3__)
return 1;
#else
return 0;
#endif
}
2023-01-05 04:00:30 +00:00
int ggml_cpu_has_vsx(void) {
#if defined(__POWER9_VECTOR__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_matmul_int8(void) {
#if defined(__ARM_FEATURE_MATMUL_INT8)
return 1;
#else
return 0;
#endif
}
2022-10-25 17:18:26 +00:00
////////////////////////////////////////////////////////////////////////////////