Commit Graph

177 Commits

Author SHA1 Message Date
Jared Van Bortel
1daeffca54
ggml : use SYS_get_cpu if SYS_getcpu is not defined (llama/5906)
Fixes #5694
Fixes ggerganov/whisper.cpp#1894
2024-03-08 11:38:33 +02:00
Georgi Gerganov
edd8b38a75
ggml : fix unknown status (llama/0) 2024-03-08 11:38:32 +02:00
Michael Podvitskiy
9a0b59d990
ggml : introduce ggml_status (ggml/750)
* using enum as an exit code instead of macros

* update return type from enum to unsigned int

* indentation fix

* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast

* ggml_status to string cast

* GGML_CALL was removed

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-08 11:38:32 +02:00
leejet
8cee7c08b6
add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)
* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-03-08 11:38:31 +02:00
Kawrakow
2533305596
ggml : make i-quants work with super-blocks of 64 (CPU,Metal) (llama/5760)
* WIP: make i-quants work for QK_K = 64

* iq2_xs: attempt to fix AVX dot product for QK_K = 64

Tests pass, but I get gibberish.

* QK_K = 64 tests pass on ARM_NEON and Metal

Sadly, that does not mean it actually works.

* Make CUDA compile with QK_K = 64

Tests don't pass, plus we get misaligned access

* Q2_K: fixed bug in imatrix quantization for QK_K = 64

* iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 13:00:30 +02:00
Kawrakow
013e394a4b
IQ4_XS: a 4.25 bpw quantization (llama/5747)
* Try IQ4_NL with blocks of 64 - does not look good

* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32

* iq4_xs: CUDA works - 133.2 t/s

* iq4_xs: AVX2 dot product

* iq4_xs: ARM_NEON dot product

* iq4_nl: Metal implementation

As usual, Metal / Apple Silicon don't like my quants.

* iq3_xs: minor fix

* iq4_xs: shrink by using IQ3_S for attn_k and attn_q

* iq4_xs: revert using IQ3_S for attn_k and attn_v

PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.

* Fix CI

* iq4_xs: Added forgotten check for 256 divisibility

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 13:00:29 +02:00
Kawrakow
7b1d8ea7e0
Adding IQ2_S and IQ2_M to complete coverage of the 2-3 bit quantization range (llama/5721)
* Adding IQ2_S and IQ2_M as a single cumulative commit

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-28 13:00:29 +02:00
slaren
c19c28be71
add google magika inference example (ggml/748)
* add magika inference example

* ggml : fix unaligned accesses in custom ops

* ggml : fix FP32 GELU for values that exceed the FP16 range

* use ggml_pool_1d

* add README

* Update README.md

* pad inputs if the files are too small

* cleanup

ggml-ci
2024-02-28 13:00:28 +02:00
Georgi Gerganov
fac5b43830
code : normalize enum names (llama/5697)
* coda : normalize enum names

ggml-ci

* code : cont

* code : cont
2024-02-25 19:58:46 +02:00
Kawrakow
9e7c5212a1
IQ3_S: a much better alternative to Q3_K (llama/5676)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* Resurrecting iq3_xs

After all the experimentation, nothing was better than this.

* Minor PPL improvement via a block scale fudge factor

* Minor improvement via 3 neighbours

* iq3_xs: working scalar and AVX2 dot products

* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)

* iq3_xs: working Metal implementation

* Adding IQ3_M - IQ3_XS mix with mostly Q4_K

* iiq3_xs: a 3.4375 bpw variant

* iq3_xs: make CUDA work for new version

* iq3_xs: make scalar and AVX2 work for new version

* iq3_s: make ARM_NEON work with new version

* iq3_xs: make new version work on metal

Performance is very similar to Q3_K_S

* iq3_xs: tiny Metal speed improvement

* iq3_xs: tiny Metal speed improvement

* Fix stupid warning

* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS

* iq3_xs: rename to iq3_s

* iq3_s: make tests pass

* Move Q3_K_XS mix to 3.25 bpw

* Attempt to fix failing tests

* Another attempt to fix the Windows builds

* Attempt to fix ROCm

* ROCm again

* iq3_s: partial fix for QK_K = 64

* iq3_s: make it work on metal for QK_K = 64

Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.

* Will this fix ROCm?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-25 19:58:46 +02:00
UEXTM.com
1cb64f7368
Introduce backend GUIDs (ggml/743)
* Introduce backend GUIDs

Initial proposed implementation of backend GUIDs
(Discussed in https://github.com/ggerganov/ggml/pull/741)

Hardcoded CPU backend GUID (for now)
Change ggml_backend_is_cpu logic to use GUID

* Remove redundant functions

Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion

* Add spaces to match style

Co-authored-by: slaren <slarengh@gmail.com>

* Fix brace style to match

Co-authored-by: slaren <slarengh@gmail.com>

* Add void to () in function signature

Co-authored-by: slaren <slarengh@gmail.com>

* Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid

* add guids to all backends

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-25 19:58:45 +02:00
Georgi Gerganov
e5d06cfc0f
ggml : always define ggml_fp16_t as uint16_t (llama/5666)
* ggml : always define ggml_fp16_t as uint16_t

ggml-ci

* ggml : cont

ggml-ci

* ggml : cont

* ggml : cont

ggml-ci

* ggml : cont

ggml-ci

* cuda : no longer ggml headers last

ggml-ci

* ggml : fix q6_K FP16 -> FP32 conversion

ggml-ci

* ggml : more FP16 -> FP32 conversion fixes

ggml-ci
2024-02-22 23:25:33 +02:00
Georgi Gerganov
ce411498f6
sync : llama.cpp (ggml/0)
ggml-ci
2024-02-22 15:12:36 +02:00
Mathijs de Bruin
c6e53cfc46
Allow for Vulkan build with Accelerate.
Closes #5304
2024-02-22 15:12:35 +02:00
Siddharth Ramakrishnan
a6b0950916
ggml : compute forward no longer pass src tensors (ggml/729)
* refactored compute forward to not pass in the src tensors each time

* fix merge issues with flags

* missed one place in the last commit to fix the is_param / flags issue

* minor spacing fix

* fixed some variable assignments so all tests locally are passing

* new change after merge fix

---------

Co-authored-by: siddharthvader <siddharth@coinlist.co>
2024-02-22 15:12:35 +02:00
bssrdf
d352dbd163
ggml : fix conv_2d batch mode (ggml/737)
Co-authored-by: bssrdf <bssrdf@gmail.com>
2024-02-22 15:12:32 +02:00
bmwl
30a11b1ab8
ggml : android and old glibc NUMA incompatibility bugfixes (llama/5557)
* #ifdef out some code NUMA blocks for Android due to lack of support

* added in some __ANDROID__ if def gates around numa code and forced GLIBC prior to 2.29 to use a syscall for getcpu instead of the wrapper

* Changed gates on numa platform specific stuff to __gnu_linux__ to skip any platforms without glibc

* harmonizing #if defined blocks for numa code to __gnu_linux__ since that's the only model that's being followed anyways

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
2024-02-19 15:53:24 +02:00
Herman Semenov
7d90bb035b
ggml, common, examples, tests : fixed type arguments in printf (llama/5528) 2024-02-19 15:53:24 +02:00
Kawrakow
2c1ad21ba8
1.5 bit quantization (llama/5453)
* iq1_s: WIP basics

* iq1_s: CUDA is working

* iq1_s: scalar CPU dot product

* iq1_s: WIP AVX2 dot product - something is not right

* Fix tests

* Fix shadow warnings

* Fix after merge with latest master

* iq1_s: AVX2 finally works

* iq1_s: ARM_NEON dot product. Works, but not very fast

* iq1_s: better grid

* iq1_s: use IQ2_XXS for attn_output

At a cost of 0.04 extra bpw this gives a big improvement in PPL.

* iq1_s: Metal basics

Dequantize works, but not dot product

* iq1_s: Metal works, but quite slow

As usual, Apple Silicon does not like the code I write.

* iq1_s: Tests

* iq1_s: slightly faster dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-19 15:53:23 +02:00
Georgi Gerganov
eca5ff9868
ggml : add ALiBi support for ggml_soft_max_ext (llama/5488) 2024-02-19 15:53:23 +02:00
Ananta Bastola
1b25d2fa0a
ci : add an option to fail on compile warning (llama/3952)
* feat(ci): add an option to fail on compile warning

* Update CMakeLists.txt

* minor : fix compile warnings

ggml-ci

* ggml : fix unreachable code warnings

ggml-ci

* ci : disable fatal warnings for windows, ios and tvos

* ggml : fix strncpy warning

* ci : disable fatal warnings for MPI build

* ci : add fatal warnings to ggml-ci

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 15:53:23 +02:00
bmwl
a4ed8a0821
ggml : add numa options (llama/5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-19 15:53:23 +02:00
snadampal
b7ef178b9c
ggml : add mmla kernels for quantized GEMM (llama/4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-12 09:31:11 +02:00
slaren
1d3270cc8f
ggml-alloc : v3 (ggml/727)
* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci
2024-02-12 09:31:11 +02:00
0cc4m
ef5e6b746f
Basic Vulkan Multi-GPU implementation (llama/5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:47 +02:00
Dr. Tom Murphy VII Ph.D
55bcd62a4b
ggml : avoid duplicating function calls using MIN/MAX macros (llama/5325)
* Avoid duplicating function calls when using MIN/MAX macros.

Since these copy "a" and "b" they ask the compiler to evaluate one of them twice. The compiler doesn't have a problem with removing the duplication in something like MAX(0, x + 2), but in some cases we're calling functions, and those calls just happen twice.
By explicitly evaluating at the expression we get smaller and faster code without duplicate calls. See ggml_rope_yarn_corr_dims in Compiler Explorer:

https://godbolt.org/z/Ee4KMrvKh

Code behaves exactly the same.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-10 09:55:46 +02:00
JidongZhang-THU
12c462d656
llava : add MobileVLM support (llama/5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:46 +02:00
slaren
fc7b0e2c28
ggml : limit n_threads to the max n_tasks (llama/5238) 2024-02-10 09:55:46 +02:00
Jared Van Bortel
f850a067ed
kompute : llama-bench support and ggml_cpu_has_kompute() (llama/5226) 2024-02-10 09:55:46 +02:00
Michael Podvitskiy
f75e1197f1
ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:55:46 +02:00
Kawrakow
6adb969b09
SOTA 3-bit quants (llama/5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:27:59 +02:00
Georgi Gerganov
a2ef80d66f
gguf : fix comparison (ggml/715)
ggml-ci
2024-01-30 21:27:59 +02:00
Georgi Gerganov
8f5220d81f
gguf : add input validation, prevent integer overflows (ggml/709)
* gguf : add input validation, prevent integer overflows

ggml-ci

* gguf : fix switch default case

* gguf : sanitize info->n_dims and info->type

ggml-ci

* gguf : assert GGUF_TYPE_SIZE access

ggml-ci

* ggml : assert mallocs are successful

ggml-ci

* gguf : prevent integer overflow

* gguf : sanitize tensor info

ggml-ci

* gguf : stricter limit on the number of items

ggml-ci
2024-01-30 21:27:58 +02:00
0cc4m
23c648e98d
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
Abhilash Majumder
75ab2d06f5
ggml : add unified SYCL backend for Intel GPUs (llama/2690)
* first update for migration

* update init_cublas

* add debug functio, commit all help code

* step 1

* step 2

* step3 add fp16, slower 31->28

* add GGML_LIST_DEVICE function

* step 5 format device and print

* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue

* support main device is non-zero

* step7 add debug for code path, rm log

* step 8, rename all macro & func from cuda by sycl

* fix error of select non-zero device, format device list

* ren ggml-sycl.hpp -> ggml-sycl.h

* clear CMAKE to rm unused lib and options

* correct queue: rm dtct:get_queue

* add print tensor function to debug

* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481

* summary dpct definition in one header file to replace folder:dpct

* refactor device log

* mv dpct definition from folder dpct to ggml-sycl.h

* update readme, refactor build script

* fix build with sycl

* set nthread=1 when sycl, increase performance

* add run script, comment debug code

* add ls-sycl-device tool

* add ls-sycl-device, rm unused files

* rm rear space

* dos2unix

* Update README_sycl.md

* fix return type

* remove sycl version from include path

* restore rm code to fix hang issue

* add syc and link for sycl readme

* rm original sycl code before refactor

* fix code err

* add know issue for pvc hang issue

* enable SYCL_F16 support

* align pr4766

* check for sycl blas, better performance

* cleanup 1

* remove extra endif

* add build&run script, clean CMakefile, update guide by review comments

* rename macro to intel hardware

* editor config format

* format fixes

* format fixes

* editor format fix

* Remove unused headers

* skip build sycl tool for other code path

* replace tab by space

* fix blas matmul function

* fix mac build

* restore hip dependency

* fix conflict

* ren as review comments

* mv internal function to .cpp file

* export funciton print_sycl_devices(), mv class dpct definition to source file

* update CI/action for sycl code, fix CI error of repeat/dup

* fix action ID format issue

* rm unused strategy

* enable llama_f16 in ci

* fix conflict

* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml

* fix ci cases for unsupported data type

* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL

* revert hip cmake changes

* fix indent

* add prefix in func name

* revert no mmq

* rm cpu blas duplicate

* fix no_new_line

* fix src1->type==F16 bug.

* pass batch offset for F16 src1

* fix batch error

* fix wrong code

* revert sycl checking in test-sampling

* pass void as arguments of ggml_backend_sycl_print_sycl_devices

* remove extra blank line in test-sampling

* revert setting n_threads in sycl

* implement std::isinf for icpx with fast math.

* Update ci/run.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add copyright and MIT license declare

* update the cmd example

---------

Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
Georgi Gerganov
adc099edee
ggml : minor type fix (int64_t -> size_t) 2024-01-28 19:30:17 +02:00
0cc4m
6061241292
Add OpenCL add kernel (llama/5151)
* Add OpenCL add kernel

* Put add kernel into different string to stay within MSVC string length limit, disable float16 support due to bad results
2024-01-27 17:19:52 +02:00
snadampal
3c8d14e9c5
ggml : update softmax n_task calculation (llama/5126)
updated the n_task calculation to use max number of
threads possible. This has improved the prompt eval
performance by around 5% for DOT kernels and by
around 10% for MMLA kernels on AWS Graviton3.
2024-01-27 17:19:52 +02:00
Georgi Gerganov
9afa7ff624
minor : clean-up some warnings and style (llama/5094)
* minor : clean-up some warnings and style

ggml-ci

* ggml : add comment
2024-01-27 17:19:51 +02:00
Reinforce-II
0649289f02
ggml : parallelize FP32 conversion when using BLAS (llama/5045)
* make GGML_TASK_INIT phase can be run in multithread

* multithreaded dequantize in mul_mat when using blas library

* minor fixes

* update outdated comment
* fix coding style

* simplify code

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-27 17:19:51 +02:00
XiaotaoChen
aaeaa43878
llava : MobileVLM support (llama/4954)
* MobileVLM native implementation

* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake

* move android script to example/llava directory

* Fix the editor config checks

---------

Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
2024-01-27 17:19:51 +02:00
Judd
2d2c93a798
ggml : check ggml_add src1 type (ggml/708)
Co-authored-by: Judd <foldl@boxvest.com>
2024-01-27 17:19:50 +02:00
Georgi Gerganov
4aea058e5a
ggml : add IQ2 to test-backend-ops + refactoring (llama/4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 21:21:10 +02:00
Georgi Gerganov
fd10234363
imatrix : offload to GPU support (llama/4957)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* imatrix : offload to GPU support

* imatrix : fix ggml_mul_mat_id hanlding

ggml-ci

* ci : add imatrix test

ggml-ci

* ci : rearrange output

ggml-ci
2024-01-17 21:21:10 +02:00
Kawrakow
01637e1a4c
ggml : importance matrix support for legacy quants (llama/4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 21:21:10 +02:00
Justine Tunney
138eaebead
ggml : introduce GGML_CALL function annotation (llama/4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-17 21:21:09 +02:00
Kawrakow
f904b31a7d
Add ability to use importance matrix for all k-quants (llama/4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 21:21:09 +02:00
Kawrakow
dabc964d83
2-bit quantizations (llama/4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 10:54:09 +02:00
Johannes Gäßler
435847891c
ggml: cache sin/cos for RoPE (llama/4908) 2024-01-14 00:11:45 +02:00
texmex76
9aa9f3b84e
gguf : fix potential infinite for-loop (llama/4600)
Co-authored-by: Bernhard Gstrein <gstrein@informatik.uni-freiburg.de>
2024-01-14 00:11:44 +02:00