ukhas-superpressure/a-quick-guide.tex
2024-12-10 11:26:30 -06:00

367 lines
9.4 KiB
TeX

\documentclass{beamer}
\usepackage[latin1]{inputenc}
\usepackage{hyperref}
\title[Small superpressure]{A quick guide to small superpressure}
\subtitle{\url{https://github.com/richardeoin/a-quick-guide}}
\author{Richard Meadows}
\institute{UKHAS Conference 2016}
\date{}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Superpressure is.. }
\begin{columns}
\begin{column}{0.6\textwidth}
\begin{itemize}
\item Gas sealed within the envelope.
%% if the balloon is to do anything useful, this gas will end
%% up at a higher pressure than the surrounding air - hence
%% the name
\item Envelope is intended to be inelastic.
%% that is, the envelope will stop stretching and become
%% stable, The resut of this is that the balloon remains at a
%% particular density-altitude.
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}[!ht]
%% image of lally balloon
\includegraphics[width=1\textwidth]{lally_1967_balloon.png}
\caption{GHOST Balloon, Lally 1967}
%% this image is from when first
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Can Amateurs do this too?}
\begin{itemize}
\item Yes!
\item See also Dan Bowen at \href{https://ukhas.org.uk/general:ukhasconference}{UKHAS 2011}.
\end{itemize}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{figure}[!ht]
%% ubseds6
\includegraphics[width=1\textwidth]{ubseds6_altitude_plot.png}
\caption{UBSEDS6, 7th June 2015}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}[!ht]
%% image of b-64
\includegraphics[width=1\textwidth]{B-64-all.jpg}
\caption{B-64, Leo Bodnar 2014}
\end{figure}
\end{column}
\end{columns}
% Multi-day flights with small envelopes (1-2 meters on the longest axis).
% Leo flight -- 134 days
%% go back and check Dan's presentation too - I haven't got time to
%% return to everything he discussed.
\end{frame}
%% What does one look like in flight?
\begin{frame}{In Flight}
\begin{figure}[!ht]
%% image of ubseds20
\centering
\includegraphics[width=0.8\textwidth]{UBSEDL_2016-08-29T10-24-37_3.png}
\caption{UBSEDS20 balloon at 12.5km float, 29th August 2016}
\end{figure}
%% lots of people here contributed to this image..
\end{frame}
\begin{frame}{Floating}
% Floating - what does this mean?
% calcualate density
Float when:
\[
\text{Atmospheric Density} = \text{System Density} = {\frac{\Sigma{m}}{V}}
\]
%% we can assume that the payload has no volume, and the same for
%% the material that makes the balloon.
However, the balloon envelope stretches somewhat:
% Envelope isn't perfectly inelastic
\[
V = V_{initial}\times\Gamma
\]
%% introduce gamma as ratio Vfloat / Vbuilt
%% atmospheric density profile
\begin{figure}[!ht]
\centering
\includegraphics[width=0.8\textwidth]{isa_density_profile.png}
\caption{Density in the International Standard Atmosphere}
\end{figure}
\end{frame}
\begin{frame}{The Origins of Superpressure}
%% Superpressure - where does this come from?
\begin{itemize}
\item Free lift
%% more mols of gas inside than displaced outside
\item Supertemperature
%% aka. superheat, initial studies tend to use supertemperature,
%% so we'll stick with that. Floating greenhouse.
\item Vertical Air Currents (Lally 1967, VI. D. p.31)
%% less significant, < 10%
\end{itemize}
\end{frame}
\begin{frame}{Calculating Superpressure 1}
Ideal gas law $PV = nRT$
\begin{columns}
\begin{column}{0.5\textwidth}
% gas
\begin{figure}[!ht]
\centering
\includegraphics[width=0.6\textwidth]{circle_gas.png}
\end{figure}
\[
P_{gas}V = {m_{gas}\over{M_{gas}}} R T_{gas}
\]
\end{column}
\begin{column}{0.5\textwidth}
% displaced air
\begin{figure}[!ht]
\centering
\includegraphics[width=0.6\textwidth]{circle_air_displaced.png}
\end{figure}
\[
P_{air}V = {m_{system}\over{M_{air}}} R T_{air}
\]
% can say this because we're floating
\end{column}
\end{columns}
% now make volumes equal, and cancel R
\end{frame}
\begin{frame}{Calculating Superpressure 2}
Definitions of Superpressure and Supertemperature:
% aka. superheat
\[
P_{super} = P_{gas} - P_{air}
\]
\[
T_{super} = T_{gas} - T_{air}
\]
Assuming volumes are equal:
% taking the equation on the previous page, and after some algebra..
% algebra is available as a separate document
\[
P_{super} = { {R\over{V}} \bigg[ \Big( {m_{gas}\over{M_{gas}}} - {m_{system}\over{M_{air}}} \Big)T_{air} + {{m_{gas}}\over{M_{gas}}}T_{super} \bigg]}
\]
% first term is due to extra gas - free lift, second due to supertemperature
The second term dominates, so:
\[
{P_{super}\over{T_{super}}} \approx {{m_{gas}}\over{M_{gas}}}{R\over{V}}
\]
% So superpressure and supertemperature are proportional - this is
% well known (Lally etc.) - and we want to minimise the constant of
% proportionality.
\end{frame}
% \item Effects of changing gamma.
\begin{frame}{Supertemperature}
\begin{figure}[!ht]
%% lally table
\centering
\includegraphics[width=0.8\textwidth]{lally_19_table_9.png}
\caption{Lally 1967, Table 9 p.24 (edited)}
\end{figure}
% this gives us a useful guesstimate at the supertemperature
\end{frame}
% I noted earlier that amateur balloons aren't spherical. Instead
% they're make flat and then inflated. Bristol SEDS, Leo, Qualatex
% are all essentially this shape. It's easy to make.
\begin{frame}{Mylar Balloon Shape 1}
% This is the "mylar balloon".
% shape. So called because mathematicians found this shape "in the
% wild" and named it after the object that took this shape - namely
% party balloons made from mylar.
\begin{figure}[!ht]
%% mylar balloon shape
\centering
\includegraphics[width=0.7\textwidth]{paulsen_1994_figure_1.png}
\caption{Paulsen 1994, Figure 1}
\end{figure}
\[
\int_{0}^{a} \sqrt {1 + f'(x)^2}\ dx = r
\]
% When you inflate it, the radius that the 2D shape had still
% exists. So it limits the shape
% This is a well defined shape, can calcuate volume and so on - for
% instance the area of this cross section is 2 a^2
\end{frame}
\begin{frame}{Mylar Balloon Shape}
\begin{figure}[!ht]
\centering
\includegraphics[width=1\textwidth]{mylar_balloon_crimping_hot.png}
\caption{Crimping means a small area the in centre is stressed. }
\end{figure}
%% The size of the area that's stressed is related to the
%% elasticisty of the material, which probably is quite low at
%% stratospheric temperatures.
%% So this design doesn't appear to be much better than the tetroon,
%% where stress is concentrated at the corners.
%% But we've got a trick...
\end{frame}
\begin{frame}{The Magic of Pre-stretch}
%% Major step in making these balloons work - attributed to whom??
\begin{itemize}
\item Minimise Creep and relieve manufacturing stresses (Lally 1967, VI. C. p.28)
%% Lally knew about this
\item Increases $\Gamma$, leading to higher float and lower superpressure.
% our equation for density has volume on the bottom - we increase
% volume, get less dense and go higher. Same for pressure-thermal ratio
% Gamma ~1.7 for latest flights
\item Re-distributes stresses around mylar balloon shape.
%% When first built the stress is concentrated in the middle of each gore.
%% Pre-stretching equalises the stress over a much greater proportion of the gore.
%% Pre-stretch generally good, as long as your material
%% mantains its properties. We haven't explored gamma > 2 regime
%% however.
\end{itemize}
\end{frame}
\begin{frame}{Envelope Construction}
\begin{figure}[!ht]
\centering
\includegraphics[width=0.9\textwidth]{bristol_seds_balloon_1_9m.png}
\caption{Drawing for 1.9m balloon}
\end{figure}
\end{frame}
\begin{frame}{Envelope Construction}
\begin{figure}[!ht]
\centering
\includegraphics[width=1\textwidth]{bristol_seds_balloon_1_9m_film.png}
\caption{50$\mu$m film cross section}
\end{figure}
Thanks to Exploratory Ideas grant from CEOI.
%% Paid for the lab time to take a look at this
\end{frame}
\begin{frame}{Further Work}
\begin{itemize}
\item Web based calcuator - like the Burst Calculator.
\item Numerical analysis of previous flights.
\item Guidelines for minimum free lift.
%% drag equation
\item Modelling and measuring supertemperature.
%% not so easy, but do-able
\item Model for mylar tube shape.
%% bit of geometry
\item Explore $\Gamma > 2$
%% the limit of pre-stretch
\item Measuring strain on the ground (Angell and Pack, Apr. 1960).
%% no specilist tools needed
\item Relationship between stress and strain.
%% in non-linear region - okay this is hard
\end{itemize}
\end{frame}
\begin{frame}{Further Work}
\begin{itemize}
\item Have fun flying round the world...
\end{itemize}
\begin{figure}[!ht]
\centering
\includegraphics[width=0.6\textwidth]{pico-pi-logo.png}
\end{figure}
\end{frame}
\begin{frame}{Meridional Hoop}
\begin{figure}[!ht]
\centering
\includegraphics[width=1\textwidth]{mylar_balloon_meridianal_hoop.png}
\caption{Meridional Hoop of a Mylar Balloon }
\end{figure}
\end{frame}
\end{document}