\documentclass{beamer} \usepackage[latin1]{inputenc} \usepackage{hyperref} \title[Small superpressure]{A quick guide to small superpressure} \subtitle{\url{https://github.com/richardeoin/a-quick-guide}} \author{Richard Meadows} \institute{UKHAS Conference 2016} \date{} \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame}{Superpressure is.. } \begin{columns} \begin{column}{0.6\textwidth} \begin{itemize} \item Gas sealed within the envelope. %% if the balloon is to do anything useful, this gas will end %% up at a higher pressure than the surrounding air - hence %% the name \item Envelope is intended to be inelastic. %% that is, the envelope will stop stretching and become %% stable, The resut of this is that the balloon remains at a %% particular density-altitude. \end{itemize} \end{column} \begin{column}{0.4\textwidth} \begin{figure}[!ht] %% image of lally balloon \includegraphics[width=1\textwidth]{lally_1967_balloon.png} \caption{GHOST Balloon, Lally 1967} %% this image is from when first \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Can Amateurs do this too?} \begin{itemize} \item Yes! \item See also Dan Bowen at \href{https://ukhas.org.uk/general:ukhasconference}{UKHAS 2011}. \end{itemize} \begin{columns} \begin{column}{0.5\textwidth} \begin{figure}[!ht] %% ubseds6 \includegraphics[width=1\textwidth]{ubseds6_altitude_plot.png} \caption{UBSEDS6, 7th June 2015} \end{figure} \end{column} \begin{column}{0.5\textwidth} \begin{figure}[!ht] %% image of b-64 \includegraphics[width=1\textwidth]{B-64-all.jpg} \caption{B-64, Leo Bodnar 2014} \end{figure} \end{column} \end{columns} % Multi-day flights with small envelopes (1-2 meters on the longest axis). % Leo flight -- 134 days %% go back and check Dan's presentation too - I haven't got time to %% return to everything he discussed. \end{frame} %% What does one look like in flight? \begin{frame}{In Flight} \begin{figure}[!ht] %% image of ubseds20 \centering \includegraphics[width=0.8\textwidth]{UBSEDL_2016-08-29T10-24-37_3.png} \caption{UBSEDS20 balloon at 12.5km float, 29th August 2016} \end{figure} %% lots of people here contributed to this image.. \end{frame} \begin{frame}{Floating} % Floating - what does this mean? % calcualate density Float when: \[ \text{Atmospheric Density} = \text{System Density} = {\frac{\Sigma{m}}{V}} \] %% we can assume that the payload has no volume, and the same for %% the material that makes the balloon. However, the balloon envelope stretches somewhat: % Envelope isn't perfectly inelastic \[ V = V_{initial}\times\Gamma \] %% introduce gamma as ratio Vfloat / Vbuilt %% atmospheric density profile \begin{figure}[!ht] \centering \includegraphics[width=0.8\textwidth]{isa_density_profile.png} \caption{Density in the International Standard Atmosphere} \end{figure} \end{frame} \begin{frame}{The Origins of Superpressure} %% Superpressure - where does this come from? \begin{itemize} \item Free lift %% more mols of gas inside than displaced outside \item Supertemperature %% aka. superheat, initial studies tend to use supertemperature, %% so we'll stick with that. Floating greenhouse. \item Vertical Air Currents (Lally 1967, VI. D. p.31) %% less significant, < 10% \end{itemize} \end{frame} \begin{frame}{Calculating Superpressure 1} Ideal gas law $PV = nRT$ \begin{columns} \begin{column}{0.5\textwidth} % gas \begin{figure}[!ht] \centering \includegraphics[width=0.6\textwidth]{circle_gas.png} \end{figure} \[ P_{gas}V = {m_{gas}\over{M_{gas}}} R T_{gas} \] \end{column} \begin{column}{0.5\textwidth} % displaced air \begin{figure}[!ht] \centering \includegraphics[width=0.6\textwidth]{circle_air_displaced.png} \end{figure} \[ P_{air}V = {m_{system}\over{M_{air}}} R T_{air} \] % can say this because we're floating \end{column} \end{columns} % now make volumes equal, and cancel R \end{frame} \begin{frame}{Calculating Superpressure 2} Definitions of Superpressure and Supertemperature: % aka. superheat \[ P_{super} = P_{gas} - P_{air} \] \[ T_{super} = T_{gas} - T_{air} \] Assuming volumes are equal: % taking the equation on the previous page, and after some algebra.. % algebra is available as a separate document \[ P_{super} = { {R\over{V}} \bigg[ \Big( {m_{gas}\over{M_{gas}}} - {m_{system}\over{M_{air}}} \Big)T_{air} + {{m_{gas}}\over{M_{gas}}}T_{super} \bigg]} \] % first term is due to extra gas - free lift, second due to supertemperature The second term dominates, so: \[ {P_{super}\over{T_{super}}} \approx {{m_{gas}}\over{M_{gas}}}{R\over{V}} \] % So superpressure and supertemperature are proportional - this is % well known (Lally etc.) - and we want to minimise the constant of % proportionality. \end{frame} % \item Effects of changing gamma. \begin{frame}{Supertemperature} \begin{figure}[!ht] %% lally table \centering \includegraphics[width=0.8\textwidth]{lally_19_table_9.png} \caption{Lally 1967, Table 9 p.24 (edited)} \end{figure} % this gives us a useful guesstimate at the supertemperature \end{frame} % I noted earlier that amateur balloons aren't spherical. Instead % they're make flat and then inflated. Bristol SEDS, Leo, Qualatex % are all essentially this shape. It's easy to make. \begin{frame}{Mylar Balloon Shape 1} % This is the "mylar balloon". % shape. So called because mathematicians found this shape "in the % wild" and named it after the object that took this shape - namely % party balloons made from mylar. \begin{figure}[!ht] %% mylar balloon shape \centering \includegraphics[width=0.7\textwidth]{paulsen_1994_figure_1.png} \caption{Paulsen 1994, Figure 1} \end{figure} \[ \int_{0}^{a} \sqrt {1 + f'(x)^2}\ dx = r \] % When you inflate it, the radius that the 2D shape had still % exists. So it limits the shape % This is a well defined shape, can calcuate volume and so on - for % instance the area of this cross section is 2 a^2 \end{frame} \begin{frame}{Mylar Balloon Shape} \begin{figure}[!ht] \centering \includegraphics[width=1\textwidth]{mylar_balloon_crimping_hot.png} \caption{Crimping means a small area the in centre is stressed. } \end{figure} %% The size of the area that's stressed is related to the %% elasticisty of the material, which probably is quite low at %% stratospheric temperatures. %% So this design doesn't appear to be much better than the tetroon, %% where stress is concentrated at the corners. %% But we've got a trick... \end{frame} \begin{frame}{The Magic of Pre-stretch} %% Major step in making these balloons work - attributed to whom?? \begin{itemize} \item Minimise Creep and relieve manufacturing stresses (Lally 1967, VI. C. p.28) %% Lally knew about this \item Increases $\Gamma$, leading to higher float and lower superpressure. % our equation for density has volume on the bottom - we increase % volume, get less dense and go higher. Same for pressure-thermal ratio % Gamma ~1.7 for latest flights \item Re-distributes stresses around mylar balloon shape. %% When first built the stress is concentrated in the middle of each gore. %% Pre-stretching equalises the stress over a much greater proportion of the gore. %% Pre-stretch generally good, as long as your material %% mantains its properties. We haven't explored gamma > 2 regime %% however. \end{itemize} \end{frame} \begin{frame}{Envelope Construction} \begin{figure}[!ht] \centering \includegraphics[width=0.9\textwidth]{bristol_seds_balloon_1_9m.png} \caption{Drawing for 1.9m balloon} \end{figure} \end{frame} \begin{frame}{Envelope Construction} \begin{figure}[!ht] \centering \includegraphics[width=1\textwidth]{bristol_seds_balloon_1_9m_film.png} \caption{50$\mu$m film cross section} \end{figure} Thanks to Exploratory Ideas grant from CEOI. %% Paid for the lab time to take a look at this \end{frame} \begin{frame}{Further Work} \begin{itemize} \item Web based calcuator - like the Burst Calculator. \item Numerical analysis of previous flights. \item Guidelines for minimum free lift. %% drag equation \item Modelling and measuring supertemperature. %% not so easy, but do-able \item Model for mylar tube shape. %% bit of geometry \item Explore $\Gamma > 2$ %% the limit of pre-stretch \item Measuring strain on the ground (Angell and Pack, Apr. 1960). %% no specilist tools needed \item Relationship between stress and strain. %% in non-linear region - okay this is hard \end{itemize} \end{frame} \begin{frame}{Further Work} \begin{itemize} \item Have fun flying round the world... \end{itemize} \begin{figure}[!ht] \centering \includegraphics[width=0.6\textwidth]{pico-pi-logo.png} \end{figure} \end{frame} \begin{frame}{Meridional Hoop} \begin{figure}[!ht] \centering \includegraphics[width=1\textwidth]{mylar_balloon_meridianal_hoop.png} \caption{Meridional Hoop of a Mylar Balloon } \end{figure} \end{frame} \end{document}