capture to git
BIN
B-64-all.jpg
Normal file
After Width: | Height: | Size: 315 KiB |
BIN
UBSEDL_2016-08-29T10-24-37_3.png
Normal file
After Width: | Height: | Size: 1.1 MiB |
38
UKHAS 2016 Conference References Extended.txt
Normal file
@ -0,0 +1,38 @@
|
||||
Original refrences from Dan Bowen's 2011 talk ([01]-[14]), extended by Richard Meadows 2016
|
||||
|
||||
[00] University of Minnesota: Progress Report on High Altitude Plastic Balloons. 1952.pdf
|
||||
[01] J. K. ANGELL and D. H. PACK, “ANALYSIS OF SOME PRELIMINARY LOW-LEVEL CONSTANT LEVEL BALLOON (TETROON) FLIGHTS,” MONTHLY WEATHER REVIEW, vol. 88, no. 7, pp. 235-248, Apr. 1960.pdf
|
||||
[02] D. Booker and L. W. Cooper, “Superpressure Balloons for Weather Research,” Journal of Applied Meteorology, vol. 4, pp. 122–129, 1965.
|
||||
[03] N. J. Cherry, “Characteristics and Performance of Three Low-Cost Superpressure Balloon (Tetroon) Systems,” Journal of Applied Meteorology, vol. 10, no. 5, pp. 982-990, 1971.pdf
|
||||
[04] J. H. Hirsch and D. R. Booker, “Response of Superpressure Balloons to Vertical Air Motions,” Journal of Applied Meteorology, vol. 5, no. April, pp. 226-229, 1966.pdf
|
||||
[05] W. H. Hoecker, “A Computer Program for Calculating Tetroon Inflation-Factor Nomographs,” Journal of Applied Meteorology, vol. 20, no. 8, pp. 949-954, 1981.pdf
|
||||
[06] W. H. Hoecker, “A Universal Procedure for Deploying Constant-Volume Balloons and for Deriving Vertical Air Speeds from Them,” Journal of Applied Meteorology, vol. 14, no. September, pp. 1118-1124, 1975.pdf
|
||||
[07] V. E. Lally and NCAR, “Superpressure Balloons for Horizontal Soundings of the Atmosphere,” NCAR, 0, 1967.pdf
|
||||
[08] N. Levanon, R. A. Oehlkers, S. D. Ellington, and W. J. Massman, “On the Behavior of Superpressure Balloons at 150 mb,” Journal of Applied Meteorology, vol. 13, no. June, pp. 494-504, 1974.pdf
|
||||
[09] P. Morel and W. Bandeen, “the EOLE experiments: early results and current objectives,” Bulletin of the American Meteorological Society, vol. 54, no. 4, pp. 298-304, 1973.pdf
|
||||
[10] P. Morel, J. Fourrier, and P. Sitbon, 1968: The Occurrence of Icing on Constant Level Balloons. J. Appl. Meteor., 7, 626–634.pdf
|
||||
[11] P. G. Scott, T. M. Lew, J. S. Wilbeck, J. L. Rand, and R. H. Brezinskv, “Long Duration Balloon Technology Survey,” Huntsville, 1996.pdf
|
||||
[12] M. S. Smith and E. L. Rainwater, “OPTIMUM DESIGNS FOR SUPERPRESSURE BALLOONS,” Sulpher Springs, 2002.pdf
|
||||
[13] TWERLE Team, “The TWERLE Experiment,” Bulletin of the American Meteorological Society, vol. 58, no. 9, pp. 936-948, 1977.pdf
|
||||
[14] P. B. Voss, “Advances in Controlled Meteorological(CMET) Balloon Systems,” no. May. American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Dr., Suite 500 Reston VA 20191-4344 USA,, pp. 1-5, 2009.pdf
|
||||
[15] G. D. Nastrom: The Response of Superpressure Balloons to Gravity Waves. Journal of Applied Meteorology, 19, 1013–1019. 1980.pdf
|
||||
[16] Geoffrey A. Landis: Low-altitude Exploration of the Venus Atmosphere by Balloon. 48th AIAA Aerospace Sciences Meeting, Orlando FL, January 6-9 2010.pdf
|
||||
[17] M. KEIL, Met Office, Exeter, UK: Assimilating data from a simulated global constellation of stratospheric balloons. Q. J. R. Meteorol. Soc. 130, pp. 2475–2493. 2004.pdf
|
||||
[18] THE CONCORDIASI PROJECT OVER ANTARCTICA DURING THE INTERNATIONAL POLAR YEAR (IPY). 2008.pdf
|
||||
[19] Global Aerospace Corporation: Global Constellation of Stratospheric Scientific Platforms. Phase II Final Report. November 2002.pdf
|
||||
[20] M. Pagitz and S. Pellegrino: Shape Optimization of “Pumpkin” Balloons. 2007.pdf
|
||||
[21] L. A. Grass: Superpressure Balloon for Constant Level Flight. 1963.pdf
|
||||
[22] JUSTIN H. SMALLEY: Balloon Shapes and Stresses Below the Design Altitude. December 1966.pdf
|
||||
[23] Kumar et al.: DEVELOPMENT OF ULTRA-THIN POLYETHYLENE BALLOONS FOR HIGH ALTITUDE RESEARCH UPTO MESOSPHERE. 2014.pdf
|
||||
[24] Frank Baginski, Michael Barg and William Collier: EXISTENCE THEOREMS FOR THIN INFLATED WRINKLED MEMBRANES SUBJECTED TO A HYDROSTATIC PRESSURE. 2006.pdf
|
||||
[25] Henry M. Cathey, Jr. and David L. Pierce: Development of the NASA Ultra-Long Duration Balloon. 2007.pdf
|
||||
[26] NCAR Technical Note 19: Low Modulus Strain Gages Stress Analysis of Balloon Structures. July 1966.pdf
|
||||
[27] NCAR Technical Note 21, Harold L. Baker: Balloon Stress Band Analysis. September 1966.pdf
|
||||
|
||||
Dan Bowen's 2011 talk: https://www.youtube.com/watch?v=jtfJuTvaHxo
|
||||
Also Dan Bowen's 2012 talk: https://www.youtube.com/watch?v=cxkZViG4yoc&feature=youtu.be
|
||||
|
||||
Richard Meadows's 2016 talk: https://www.youtube.com/watch?v=PQJAjDEq5AA&t=5h03m16s
|
||||
https://github.com/richardeoin/a-quick-guide
|
||||
|
||||
Vince Lally's papers are archived here: https://opensky.ucar.edu/islandora/object/archives%3Avinlally?display=list
|
BIN
a-quick-guide.pdf
Normal file
367
a-quick-guide.tex
Normal file
@ -0,0 +1,367 @@
|
||||
\documentclass{beamer}
|
||||
\usepackage[latin1]{inputenc}
|
||||
\usepackage{hyperref}
|
||||
\title[Small superpressure]{A quick guide to small superpressure}
|
||||
\subtitle{\url{https://github.com/richardeoin/a-quick-guide}}
|
||||
\author{Richard Meadows}
|
||||
\institute{UKHAS Conference 2016}
|
||||
\date{}
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}
|
||||
\titlepage
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Superpressure is.. }
|
||||
|
||||
\begin{columns}
|
||||
\begin{column}{0.6\textwidth}
|
||||
\begin{itemize}
|
||||
\item Gas sealed within the envelope.
|
||||
%% if the balloon is to do anything useful, this gas will end
|
||||
%% up at a higher pressure than the surrounding air - hence
|
||||
%% the name
|
||||
\item Envelope is intended to be inelastic.
|
||||
%% that is, the envelope will stop stretching and become
|
||||
%% stable, The resut of this is that the balloon remains at a
|
||||
%% particular density-altitude.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\end{column}
|
||||
\begin{column}{0.4\textwidth}
|
||||
\begin{figure}[!ht]
|
||||
%% image of lally balloon
|
||||
\includegraphics[width=1\textwidth]{lally_1967_balloon.png}
|
||||
\caption{GHOST Balloon, Lally 1967}
|
||||
|
||||
%% this image is from when first
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Can Amateurs do this too?}
|
||||
|
||||
\begin{itemize}
|
||||
\item Yes!
|
||||
\item See also Dan Bowen at \href{https://ukhas.org.uk/general:ukhasconference}{UKHAS 2011}.
|
||||
\end{itemize}
|
||||
|
||||
\begin{columns}
|
||||
\begin{column}{0.5\textwidth}
|
||||
\begin{figure}[!ht]
|
||||
%% ubseds6
|
||||
\includegraphics[width=1\textwidth]{ubseds6_altitude_plot.png}
|
||||
\caption{UBSEDS6, 7th June 2015}
|
||||
\end{figure}
|
||||
|
||||
\end{column}
|
||||
\begin{column}{0.5\textwidth}
|
||||
\begin{figure}[!ht]
|
||||
%% image of b-64
|
||||
\includegraphics[width=1\textwidth]{B-64-all.jpg}
|
||||
\caption{B-64, Leo Bodnar 2014}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
|
||||
% Multi-day flights with small envelopes (1-2 meters on the longest axis).
|
||||
% Leo flight -- 134 days
|
||||
|
||||
%% go back and check Dan's presentation too - I haven't got time to
|
||||
%% return to everything he discussed.
|
||||
|
||||
\end{frame}
|
||||
|
||||
%% What does one look like in flight?
|
||||
|
||||
\begin{frame}{In Flight}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
%% image of ubseds20
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{UBSEDL_2016-08-29T10-24-37_3.png}
|
||||
\caption{UBSEDS20 balloon at 12.5km float, 29th August 2016}
|
||||
\end{figure}
|
||||
|
||||
%% lots of people here contributed to this image..
|
||||
|
||||
\end{frame}
|
||||
\begin{frame}{Floating}
|
||||
|
||||
% Floating - what does this mean?
|
||||
% calcualate density
|
||||
|
||||
Float when:
|
||||
|
||||
\[
|
||||
\text{Atmospheric Density} = \text{System Density} = {\frac{\Sigma{m}}{V}}
|
||||
\]
|
||||
|
||||
%% we can assume that the payload has no volume, and the same for
|
||||
%% the material that makes the balloon.
|
||||
|
||||
However, the balloon envelope stretches somewhat:
|
||||
% Envelope isn't perfectly inelastic
|
||||
|
||||
\[
|
||||
V = V_{initial}\times\Gamma
|
||||
\]
|
||||
|
||||
%% introduce gamma as ratio Vfloat / Vbuilt
|
||||
|
||||
%% atmospheric density profile
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{isa_density_profile.png}
|
||||
\caption{Density in the International Standard Atmosphere}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
\begin{frame}{The Origins of Superpressure}
|
||||
|
||||
%% Superpressure - where does this come from?
|
||||
|
||||
\begin{itemize}
|
||||
\item Free lift
|
||||
%% more mols of gas inside than displaced outside
|
||||
\item Supertemperature
|
||||
%% aka. superheat, initial studies tend to use supertemperature,
|
||||
%% so we'll stick with that. Floating greenhouse.
|
||||
\item Vertical Air Currents (Lally 1967, VI. D. p.31)
|
||||
%% less significant, < 10%
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calculating Superpressure 1}
|
||||
|
||||
Ideal gas law $PV = nRT$
|
||||
|
||||
\begin{columns}
|
||||
\begin{column}{0.5\textwidth}
|
||||
% gas
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{circle_gas.png}
|
||||
\end{figure}
|
||||
|
||||
\[
|
||||
P_{gas}V = {m_{gas}\over{M_{gas}}} R T_{gas}
|
||||
\]
|
||||
\end{column}
|
||||
\begin{column}{0.5\textwidth}
|
||||
% displaced air
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{circle_air_displaced.png}
|
||||
\end{figure}
|
||||
|
||||
\[
|
||||
P_{air}V = {m_{system}\over{M_{air}}} R T_{air}
|
||||
\]
|
||||
% can say this because we're floating
|
||||
\end{column}
|
||||
\end{columns}
|
||||
|
||||
% now make volumes equal, and cancel R
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calculating Superpressure 2}
|
||||
|
||||
Definitions of Superpressure and Supertemperature:
|
||||
% aka. superheat
|
||||
|
||||
\[
|
||||
P_{super} = P_{gas} - P_{air}
|
||||
\]
|
||||
\[
|
||||
T_{super} = T_{gas} - T_{air}
|
||||
\]
|
||||
|
||||
Assuming volumes are equal:
|
||||
|
||||
% taking the equation on the previous page, and after some algebra..
|
||||
% algebra is available as a separate document
|
||||
\[
|
||||
P_{super} = { {R\over{V}} \bigg[ \Big( {m_{gas}\over{M_{gas}}} - {m_{system}\over{M_{air}}} \Big)T_{air} + {{m_{gas}}\over{M_{gas}}}T_{super} \bigg]}
|
||||
\]
|
||||
|
||||
% first term is due to extra gas - free lift, second due to supertemperature
|
||||
|
||||
The second term dominates, so:
|
||||
|
||||
\[
|
||||
{P_{super}\over{T_{super}}} \approx {{m_{gas}}\over{M_{gas}}}{R\over{V}}
|
||||
\]
|
||||
|
||||
% So superpressure and supertemperature are proportional - this is
|
||||
% well known (Lally etc.) - and we want to minimise the constant of
|
||||
% proportionality.
|
||||
|
||||
\end{frame}
|
||||
|
||||
% \item Effects of changing gamma.
|
||||
|
||||
|
||||
\begin{frame}{Supertemperature}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
%% lally table
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{lally_19_table_9.png}
|
||||
\caption{Lally 1967, Table 9 p.24 (edited)}
|
||||
\end{figure}
|
||||
|
||||
% this gives us a useful guesstimate at the supertemperature
|
||||
|
||||
\end{frame}
|
||||
|
||||
% I noted earlier that amateur balloons aren't spherical. Instead
|
||||
% they're make flat and then inflated. Bristol SEDS, Leo, Qualatex
|
||||
% are all essentially this shape. It's easy to make.
|
||||
|
||||
\begin{frame}{Mylar Balloon Shape 1}
|
||||
|
||||
% This is the "mylar balloon".
|
||||
% shape. So called because mathematicians found this shape "in the
|
||||
% wild" and named it after the object that took this shape - namely
|
||||
% party balloons made from mylar.
|
||||
|
||||
\begin{figure}[!ht]
|
||||
%% mylar balloon shape
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{paulsen_1994_figure_1.png}
|
||||
\caption{Paulsen 1994, Figure 1}
|
||||
\end{figure}
|
||||
|
||||
\[
|
||||
\int_{0}^{a} \sqrt {1 + f'(x)^2}\ dx = r
|
||||
\]
|
||||
|
||||
% When you inflate it, the radius that the 2D shape had still
|
||||
% exists. So it limits the shape
|
||||
|
||||
% This is a well defined shape, can calcuate volume and so on - for
|
||||
% instance the area of this cross section is 2 a^2
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Mylar Balloon Shape}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=1\textwidth]{mylar_balloon_crimping_hot.png}
|
||||
\caption{Crimping means a small area the in centre is stressed. }
|
||||
\end{figure}
|
||||
|
||||
%% The size of the area that's stressed is related to the
|
||||
%% elasticisty of the material, which probably is quite low at
|
||||
%% stratospheric temperatures.
|
||||
|
||||
%% So this design doesn't appear to be much better than the tetroon,
|
||||
%% where stress is concentrated at the corners.
|
||||
|
||||
%% But we've got a trick...
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{The Magic of Pre-stretch}
|
||||
|
||||
%% Major step in making these balloons work - attributed to whom??
|
||||
|
||||
\begin{itemize}
|
||||
\item Minimise Creep and relieve manufacturing stresses (Lally 1967, VI. C. p.28)
|
||||
%% Lally knew about this
|
||||
\item Increases $\Gamma$, leading to higher float and lower superpressure.
|
||||
% our equation for density has volume on the bottom - we increase
|
||||
% volume, get less dense and go higher. Same for pressure-thermal ratio
|
||||
% Gamma ~1.7 for latest flights
|
||||
\item Re-distributes stresses around mylar balloon shape.
|
||||
%% When first built the stress is concentrated in the middle of each gore.
|
||||
%% Pre-stretching equalises the stress over a much greater proportion of the gore.
|
||||
|
||||
%% Pre-stretch generally good, as long as your material
|
||||
%% mantains its properties. We haven't explored gamma > 2 regime
|
||||
%% however.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Envelope Construction}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{bristol_seds_balloon_1_9m.png}
|
||||
\caption{Drawing for 1.9m balloon}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Envelope Construction}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=1\textwidth]{bristol_seds_balloon_1_9m_film.png}
|
||||
\caption{50$\mu$m film cross section}
|
||||
\end{figure}
|
||||
|
||||
Thanks to Exploratory Ideas grant from CEOI.
|
||||
%% Paid for the lab time to take a look at this
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Further Work}
|
||||
|
||||
\begin{itemize}
|
||||
\item Web based calcuator - like the Burst Calculator.
|
||||
\item Numerical analysis of previous flights.
|
||||
\item Guidelines for minimum free lift.
|
||||
%% drag equation
|
||||
\item Modelling and measuring supertemperature.
|
||||
%% not so easy, but do-able
|
||||
\item Model for mylar tube shape.
|
||||
%% bit of geometry
|
||||
\item Explore $\Gamma > 2$
|
||||
%% the limit of pre-stretch
|
||||
\item Measuring strain on the ground (Angell and Pack, Apr. 1960).
|
||||
%% no specilist tools needed
|
||||
\item Relationship between stress and strain.
|
||||
%% in non-linear region - okay this is hard
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Further Work}
|
||||
|
||||
\begin{itemize}
|
||||
\item Have fun flying round the world...
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{pico-pi-logo.png}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Meridional Hoop}
|
||||
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
\includegraphics[width=1\textwidth]{mylar_balloon_meridianal_hoop.png}
|
||||
\caption{Meridional Hoop of a Mylar Balloon }
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
a-quick-guide/a-quick-guide-0.png
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
a-quick-guide/a-quick-guide-1.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
a-quick-guide/a-quick-guide-10.png
Normal file
After Width: | Height: | Size: 94 KiB |
BIN
a-quick-guide/a-quick-guide-11.png
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
a-quick-guide/a-quick-guide-12.png
Normal file
After Width: | Height: | Size: 23 KiB |
BIN
a-quick-guide/a-quick-guide-13.png
Normal file
After Width: | Height: | Size: 21 KiB |
BIN
a-quick-guide/a-quick-guide-14.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
a-quick-guide/a-quick-guide-15.png
Normal file
After Width: | Height: | Size: 122 KiB |
BIN
a-quick-guide/a-quick-guide-16.png
Normal file
After Width: | Height: | Size: 231 KiB |
BIN
a-quick-guide/a-quick-guide-2.png
Normal file
After Width: | Height: | Size: 491 KiB |
BIN
a-quick-guide/a-quick-guide-3.png
Normal file
After Width: | Height: | Size: 725 KiB |
BIN
a-quick-guide/a-quick-guide-4.png
Normal file
After Width: | Height: | Size: 49 KiB |
BIN
a-quick-guide/a-quick-guide-5.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
a-quick-guide/a-quick-guide-6.png
Normal file
After Width: | Height: | Size: 70 KiB |
BIN
a-quick-guide/a-quick-guide-7.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
a-quick-guide/a-quick-guide-8.png
Normal file
After Width: | Height: | Size: 179 KiB |
BIN
a-quick-guide/a-quick-guide-9.png
Normal file
After Width: | Height: | Size: 55 KiB |
BIN
bristol_seds_balloon_1_9m.pdf
Normal file
BIN
bristol_seds_balloon_1_9m.png
Normal file
After Width: | Height: | Size: 650 KiB |
BIN
bristol_seds_balloon_1_9m_film.png
Normal file
After Width: | Height: | Size: 134 KiB |
BIN
circle_air_displaced.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
circle_gas.png
Normal file
After Width: | Height: | Size: 161 KiB |
BIN
ideal_gas_analysis.pdf
Normal file
87
ideal_gas_analysis.tex
Normal file
@ -0,0 +1,87 @@
|
||||
\documentclass{article}
|
||||
\usepackage[a4paper,left=2cm,top=2cm]{geometry}
|
||||
|
||||
\usepackage{parskip}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Analysis of Superpressure Balloon using the ideal gas law}
|
||||
\author{Richard Meadows 2016}
|
||||
|
||||
Analysis of Superpressure Balloon using the ideal gas law.
|
||||
|
||||
\[
|
||||
P_{super} = P_{gas} - P_{air} \ \ \ \ (1)
|
||||
\]
|
||||
|
||||
We can write the ideal gas equation for the gas inside the balloon:
|
||||
|
||||
\[
|
||||
P_{gas}V = {m_{gas}\over{M_{gas}}} R T_{gas} \ \ \ \ (2)
|
||||
\]
|
||||
|
||||
Since the system is floating, we know the mass of the air displaced is
|
||||
$m_{system}$. So we can also write the idea gas equation for the air
|
||||
displaced by the balloon.
|
||||
|
||||
\[
|
||||
P_{air}V = {m_{system}\over{M_{air}}} R T_{air} \ \ \ \ (3)
|
||||
\]
|
||||
|
||||
We assume the volumes are equal, so we can subsitiute one into the other.
|
||||
|
||||
\[
|
||||
P_{gas} = P_{air} \bigg[ {{{m_{gas}\over{M_{gas}}} R T_{gas}}\over{{m_{system}\over{M_{air}}} R T_{air}}} \bigg] \ \ \ \ (4)
|
||||
\]
|
||||
|
||||
Re-arrange and cancel $R$:
|
||||
|
||||
\[
|
||||
P_{gas} = { P_{air} \bigg[ { {m_{gas}T_{gas}M_{air}}\over{M_{gas}T_{air}m_{system}} } \bigg]} \ \ \ \ (5)
|
||||
\]
|
||||
|
||||
Now we can use the definition of superpressure (1):
|
||||
|
||||
\[
|
||||
P_{super} = P_{gas} - P_{air} \ \ \ \ (1)
|
||||
\]
|
||||
|
||||
\[
|
||||
P_{super} = { P_{air} \bigg[ { {m_{gas}T_{gas}M_{air}}\over{M_{gas}T_{air}m_{system}} } - 1\bigg]} \ \ \ \ (6)
|
||||
\]
|
||||
|
||||
Substituting in our expression for $P_{air}$:
|
||||
|
||||
\[
|
||||
P_{air} = {{m_{system}R T_{air}}\over{M_{air}V}} \ \ \ \ (3)
|
||||
\]
|
||||
|
||||
\[
|
||||
P_{super} = { {{m_{system}R T_{air}}\over{M_{air}V}} \bigg[ { {m_{gas}T_{gas}M_{air}}\over{M_{gas}T_{air}m_{system}} } - 1\bigg]} \ \ \ \ (7)
|
||||
\]
|
||||
|
||||
\[
|
||||
P_{super} = { {R\over{V}} \bigg[ { {m_{gas}}\over{M_{gas}} } T_{gas} - { {m_{system}}\over{M_{system}} } T_{air}\bigg]} \ \ \ \ (8)
|
||||
\]
|
||||
|
||||
We define supertemperature in the same way as superpressure:
|
||||
|
||||
\[
|
||||
T_{super} = T_{gas} - T_{air} \ \ \ \ (9)
|
||||
\]
|
||||
|
||||
\[
|
||||
P_{super} = { {R\over{V}} \bigg[ \Big( {m_{gas}\over{M_{gas}}} - {m_{system}\over{M_{air}}} \Big)T_{air} + {{m_{gas}}\over{M_{gas}}}T_{super} \bigg]} \ \ \ \ \ \ (10)
|
||||
\]
|
||||
|
||||
We can reasonably say the superpressure due to the temperature dominates, so
|
||||
|
||||
\[
|
||||
{P_{super}\over{T_{super}}} \approx {{m_{gas}}\over{M_{gas}}}{R\over{V}} \ \ \ \ \ (11)
|
||||
\]
|
||||
|
||||
\end{document}
|
BIN
isa_density_profile.png
Normal file
After Width: | Height: | Size: 69 KiB |
BIN
lally_1967_balloon.png
Normal file
After Width: | Height: | Size: 318 KiB |
BIN
lally_19_table_9.png
Normal file
After Width: | Height: | Size: 704 KiB |
BIN
mylar_balloon_crimping.png
Normal file
After Width: | Height: | Size: 372 KiB |
BIN
mylar_balloon_crimping_factor.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
mylar_balloon_crimping_hot.png
Normal file
After Width: | Height: | Size: 379 KiB |
BIN
mylar_balloon_equatorial_hoop.png
Normal file
After Width: | Height: | Size: 844 KiB |
BIN
mylar_balloon_grid.png
Normal file
After Width: | Height: | Size: 503 KiB |
BIN
mylar_balloon_meridianal_hoop.png
Normal file
After Width: | Height: | Size: 205 KiB |
BIN
paulsen_1994_figure_1.png
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
paulsen_1994_limit.png
Normal file
After Width: | Height: | Size: 10 KiB |
BIN
pico-pi-logo.png
Normal file
After Width: | Height: | Size: 359 KiB |
BIN
ubseds6_altitude_plot.png
Normal file
After Width: | Height: | Size: 47 KiB |