tippecanoe/tile.cc

1128 lines
29 KiB
C++
Raw Normal View History

#include <iostream>
#include <fstream>
#include <string>
2014-09-24 23:51:53 +00:00
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
2014-09-23 00:46:48 +00:00
#include <stdio.h>
#include <unistd.h>
#include <limits.h>
#include <zlib.h>
2014-09-23 00:46:48 +00:00
#include <sys/stat.h>
#include <sys/types.h>
2015-06-20 00:29:56 +00:00
#include <sys/mman.h>
#include <math.h>
#include <sqlite3.h>
#include <pthread.h>
#include "vector_tile.pb.h"
#include "geometry.hh"
2014-09-22 23:06:44 +00:00
extern "C" {
#include "tile.h"
#include "pool.h"
#include "clip.h"
#include "mbtiles.h"
#include "projection.h"
2014-09-22 23:06:44 +00:00
}
2014-09-23 00:12:38 +00:00
#define CMD_BITS 3
#define XSTRINGIFY(s) STRINGIFY(s)
#define STRINGIFY(s) #s
pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;
2015-10-19 20:26:47 +00:00
pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER;
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
static inline int compress(std::string const &input, std::string &output) {
z_stream deflate_s;
deflate_s.zalloc = Z_NULL;
deflate_s.zfree = Z_NULL;
deflate_s.opaque = Z_NULL;
deflate_s.avail_in = 0;
deflate_s.next_in = Z_NULL;
deflateInit2(&deflate_s, Z_BEST_COMPRESSION, Z_DEFLATED, 31, 8, Z_DEFAULT_STRATEGY);
deflate_s.next_in = (Bytef *) input.data();
deflate_s.avail_in = input.size();
size_t length = 0;
do {
size_t increase = input.size() / 2 + 1024;
output.resize(length + increase);
deflate_s.avail_out = increase;
deflate_s.next_out = (Bytef *) (output.data() + length);
int ret = deflate(&deflate_s, Z_FINISH);
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
return -1;
}
length += (increase - deflate_s.avail_out);
} while (deflate_s.avail_out == 0);
deflateEnd(&deflate_s);
output.resize(length);
return 0;
}
int to_feature(drawvec &geom, mapnik::vector::tile_feature *feature) {
int px = 0, py = 0;
int cmd_idx = -1;
int cmd = -1;
int length = 0;
int drew = 0;
2014-09-24 04:40:23 +00:00
int i;
int n = geom.size();
2014-09-24 04:40:23 +00:00
for (i = 0; i < n; i++) {
int op = geom[i].op;
if (op != cmd) {
if (cmd_idx >= 0) {
if (feature != NULL) {
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
}
}
cmd = op;
length = 0;
if (feature != NULL) {
cmd_idx = feature->geometry_size();
feature->add_geometry(0);
}
}
if (op == VT_MOVETO || op == VT_LINETO) {
2014-09-24 04:40:23 +00:00
long long wwx = geom[i].x;
long long wwy = geom[i].y;
int dx = wwx - px;
int dy = wwy - py;
if (feature != NULL) {
feature->add_geometry((dx << 1) ^ (dx >> 31));
feature->add_geometry((dy << 1) ^ (dy >> 31));
}
px = wwx;
py = wwy;
length++;
if (op == VT_LINETO && (dx != 0 || dy != 0)) {
drew = 1;
}
} else if (op == VT_CLOSEPATH) {
length++;
2014-09-30 23:37:09 +00:00
} else {
fprintf(stderr, "\nInternal error: corrupted geometry\n");
exit(EXIT_FAILURE);
}
}
if (cmd_idx >= 0) {
if (feature != NULL) {
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
}
}
return drew;
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
struct coalesce {
int type;
drawvec geom;
2014-10-01 00:24:34 +00:00
std::vector<int> meta;
unsigned long long index;
unsigned long long index2;
2014-10-08 21:01:47 +00:00
char *metasrc;
bool coalesced;
long long original_seq;
bool operator<(const coalesce &o) const {
int cmp = coalindexcmp(this, &o);
if (cmp < 0) {
return true;
} else {
return false;
}
}
};
struct preservecmp {
2015-09-15 20:23:34 +00:00
bool operator()(const struct coalesce &a, const struct coalesce &b) {
return a.original_seq < b.original_seq;
}
} preservecmp;
int coalcmp(const void *v1, const void *v2) {
const struct coalesce *c1 = (const struct coalesce *) v1;
const struct coalesce *c2 = (const struct coalesce *) v2;
int cmp = c1->type - c2->type;
if (cmp != 0) {
return cmp;
}
2014-10-01 00:24:34 +00:00
unsigned i;
for (i = 0; i < c1->meta.size() && i < c2->meta.size(); i++) {
cmp = c1->meta[i] - c2->meta[i];
if (cmp != 0) {
return cmp;
}
}
2014-10-01 00:24:34 +00:00
if (c1->meta.size() < c2->meta.size()) {
return -1;
} else if (c1->meta.size() > c2->meta.size()) {
return 1;
} else {
return 0;
}
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
int cmp = coalcmp((const void *) c1, (const void *) c2);
if (cmp == 0) {
if (c1->index < c2->index) {
return -1;
} else if (c1->index > c2->index) {
return 1;
}
if (c1->index2 > c2->index2) {
return -1;
} else if (c1->index2 < c2->index2) {
return 1;
}
}
return cmp;
}
struct pool_val *retrieve_string(char **f, struct pool *p, char *stringpool) {
2015-06-18 00:30:17 +00:00
struct pool_val *ret;
long long off;
2015-06-18 00:30:17 +00:00
deserialize_long_long(f, &off);
ret = pool(p, stringpool + off + 1, stringpool[off]);
2015-06-18 00:30:17 +00:00
return ret;
}
2015-10-19 20:26:47 +00:00
void decode_meta(char **meta, char *stringpool, struct pool *keys, struct pool *values, struct pool *file_keys, std::vector<int> *intmeta) {
2014-10-08 21:01:47 +00:00
int m;
deserialize_int(meta, &m);
int i;
for (i = 0; i < m; i++) {
struct pool_val *key = retrieve_string(meta, keys, stringpool);
2015-10-19 20:26:47 +00:00
struct pool_val *value = retrieve_string(meta, values, stringpool);
2014-10-08 21:01:47 +00:00
2015-10-19 20:26:47 +00:00
intmeta->push_back(key->n);
intmeta->push_back(value->n);
if (!is_pooled(file_keys, key->s, value->type)) {
if (pthread_mutex_lock(&var_lock) != 0) {
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
2015-10-19 20:26:47 +00:00
// Dup to retain after munmap
pool(file_keys, strdup(key->s), value->type);
2014-10-08 21:01:47 +00:00
2015-10-19 20:26:47 +00:00
if (pthread_mutex_unlock(&var_lock) != 0) {
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
2014-10-08 21:01:47 +00:00
}
}
}
2015-03-25 00:07:51 +00:00
mapnik::vector::tile create_tile(char **layernames, int line_detail, std::vector<std::vector<coalesce> > &features, long long *count, struct pool **keys, struct pool **values, int nlayers) {
2014-10-08 21:01:47 +00:00
mapnik::vector::tile tile;
2015-03-25 00:07:51 +00:00
int i;
for (i = 0; i < nlayers; i++) {
if (features[i].size() == 0) {
continue;
}
2015-03-25 00:07:51 +00:00
mapnik::vector::tile_layer *layer = tile.add_layers();
2014-10-08 21:01:47 +00:00
2015-03-25 00:07:51 +00:00
layer->set_name(layernames[i]);
layer->set_version(1);
layer->set_extent(1 << line_detail);
2014-10-08 21:01:47 +00:00
2015-03-25 00:07:51 +00:00
unsigned x;
for (x = 0; x < features[i].size(); x++) {
if (features[i][x].type == VT_LINE || features[i][x].type == VT_POLYGON) {
features[i][x].geom = remove_noop(features[i][x].geom, features[i][x].type, 0);
2015-03-25 00:07:51 +00:00
}
2014-10-08 21:01:47 +00:00
2015-03-25 00:07:51 +00:00
mapnik::vector::tile_feature *feature = layer->add_features();
2014-10-08 21:01:47 +00:00
2015-03-25 00:07:51 +00:00
if (features[i][x].type == VT_POINT) {
feature->set_type(mapnik::vector::tile::Point);
} else if (features[i][x].type == VT_LINE) {
feature->set_type(mapnik::vector::tile::LineString);
} else if (features[i][x].type == VT_POLYGON) {
feature->set_type(mapnik::vector::tile::Polygon);
} else {
feature->set_type(mapnik::vector::tile::Unknown);
}
to_feature(features[i][x].geom, feature);
*count += features[i][x].geom.size();
2014-10-08 21:01:47 +00:00
2015-03-25 00:07:51 +00:00
unsigned y;
for (y = 0; y < features[i][x].meta.size(); y++) {
feature->add_tags(features[i][x].meta[y]);
}
2014-10-08 21:01:47 +00:00
}
2015-03-25 00:07:51 +00:00
struct pool_val *pv;
for (pv = keys[i]->head; pv != NULL; pv = pv->next) {
layer->add_keys(pv->s, strlen(pv->s));
}
for (pv = values[i]->head; pv != NULL; pv = pv->next) {
mapnik::vector::tile_value *tv = layer->add_values();
2014-10-08 21:01:47 +00:00
2015-03-25 00:07:51 +00:00
if (pv->type == VT_NUMBER) {
tv->set_double_value(atof(pv->s));
} else if (pv->type == VT_BOOLEAN) {
tv->set_bool_value(pv->s[0] == 't');
2015-03-25 00:07:51 +00:00
} else {
tv->set_string_value(pv->s);
}
2014-10-08 21:01:47 +00:00
}
}
return tile;
}
2014-10-08 23:59:00 +00:00
struct sll {
char *name;
2014-10-08 23:59:00 +00:00
long long val;
bool operator<(const sll &o) const {
2014-10-08 23:59:00 +00:00
if (this->val < o.val) {
return true;
} else {
return false;
}
}
2014-10-08 23:59:00 +00:00
sll(char *name, long long val) {
this->name = name;
this->val = val;
}
};
void rewrite(drawvec &geom, int z, int nextzoom, int file_maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int line_detail, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom) {
if (geom.size() > 0 && nextzoom <= file_maxzoom) {
int xo, yo;
int span = 1 << (nextzoom - z);
// Get the feature bounding box in pixel (256) coordinates at the child zoom
// in order to calculate which sub-tiles it can touch including the buffer.
long long bbox2[4];
int k;
for (k = 0; k < 4; k++) {
// Division instead of right-shift because coordinates can be negative
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
}
bbox2[0] -= buffer;
bbox2[1] -= buffer;
bbox2[2] += buffer;
bbox2[3] += buffer;
for (k = 0; k < 4; k++) {
if (bbox2[k] < 0) {
bbox2[k] = 0;
}
if (bbox2[k] >= 256 * span) {
bbox2[k] = 256 * (span - 1);
}
bbox2[k] /= 256;
}
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
unsigned jx = tx * span + xo;
unsigned jy = ty * span + yo;
// j is the shard that the child tile's data is being written to.
//
// Be careful: We can't jump more zoom levels than max_zoom_increment
// because that could break the constraint that each of the children
// of the current tile must have its own shard, because the data for
// the child tile must be contiguous within the shard.
//
// But it's OK to spread children across all the shards, not just
// the four that would normally result from splitting one tile,
// because it will go through all the shards when it does the
// next zoom.
//
// If child_shards is a power of 2 but not a power of 4, this will
// shard X more widely than Y. XXX Is there a better way to do this
// without causing collisions?
2015-07-08 23:35:02 +00:00
int j = ((jx << max_zoom_increment) |
((jy & ((1 << max_zoom_increment) - 1)))) &
(child_shards - 1);
{
if (!within[j]) {
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
within[j] = 1;
}
// Offset from tile coordinates back to world coordinates
unsigned sx = 0, sy = 0;
if (z != 0) {
sx = tx << (32 - z);
sy = ty << (32 - z);
}
// printf("type %d, meta %lld\n", t, metastart);
serialize_byte(geomfile[j], t, &geompos[j], fname);
serialize_long_long(geomfile[j], seq, &geompos[j], fname);
serialize_long_long(geomfile[j], (layer << 2) | ((tippecanoe_minzoom != -1) << 1) | (tippecanoe_maxzoom != -1), &geompos[j], fname);
if (tippecanoe_minzoom != -1) {
serialize_int(geomfile[j], tippecanoe_minzoom, geompos, fname);
}
if (tippecanoe_maxzoom != -1) {
serialize_int(geomfile[j], tippecanoe_maxzoom, geompos, fname);
}
serialize_long_long(geomfile[j], metastart, &geompos[j], fname);
long long wx = initial_x, wy = initial_y;
for (unsigned u = 0; u < geom.size(); u++) {
serialize_byte(geomfile[j], geom[u].op, &geompos[j], fname);
if (geom[u].op != VT_CLOSEPATH) {
serialize_long_long(geomfile[j], ((geom[u].x + sx) >> geometry_scale) - (wx >> geometry_scale), &geompos[j], fname);
serialize_long_long(geomfile[j], ((geom[u].y + sy) >> geometry_scale) - (wy >> geometry_scale), &geompos[j], fname);
wx = geom[u].x + sx;
wy = geom[u].y + sy;
}
}
serialize_byte(geomfile[j], VT_END, &geompos[j], fname);
serialize_byte(geomfile[j], feature_minzoom, &geompos[j], fname);
}
}
}
}
}
long long write_tile(char **geoms, char *metabase, char *stringpool, int z, unsigned tx, unsigned ty, int detail, int min_detail, int basezoom, struct pool **file_keys, char **layernames, sqlite3 *outdb, double droprate, int buffer, const char *fname, FILE **geomfile, int file_minzoom, int file_maxzoom, double todo, char *geomstart, volatile long long *along, double gamma, int nlayers, char *prevent, char *additional, int child_shards) {
int line_detail;
double fraction = 1;
char *og = *geoms;
// XXX is there a way to do this without floating point?
int max_zoom_increment = log(child_shards) / log(4);
if (child_shards < 4 || max_zoom_increment < 1) {
fprintf(stderr, "Internal error: %d shards, max zoom increment %d\n", child_shards, max_zoom_increment);
exit(EXIT_FAILURE);
}
if ((((child_shards - 1) << 1) & child_shards) != child_shards) {
fprintf(stderr, "Internal error: %d shards not a power of 2\n", child_shards);
exit(EXIT_FAILURE);
}
int nextzoom = z + 1;
if (nextzoom < file_minzoom) {
if (z + max_zoom_increment > file_minzoom) {
nextzoom = file_minzoom;
} else {
nextzoom = z + max_zoom_increment;
}
}
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
2015-03-25 00:07:51 +00:00
struct pool keys1[nlayers], values1[nlayers];
struct pool *keys[nlayers], *values[nlayers];
int i;
for (i = 0; i < nlayers; i++) {
2015-03-25 00:07:51 +00:00
pool_init(&keys1[i], 0);
pool_init(&values1[i], 0);
keys[i] = &keys1[i];
values[i] = &values1[i];
}
long long count = 0;
double accum_area = 0;
double interval = 0;
double seq = 0;
if (z < basezoom) {
interval = exp(log(droprate) * (basezoom - z));
}
double fraction_accum = 0;
2015-03-06 21:12:32 +00:00
unsigned long long previndex = 0;
double scale = (double) (1LL << (64 - 2 * (z + 8)));
double gap = 0;
long long original_features = 0;
long long unclipped_features = 0;
std::vector<std::vector<coalesce> > features;
for (i = 0; i < nlayers; i++) {
features.push_back(std::vector<coalesce>());
}
int within[child_shards];
long long geompos[child_shards];
memset(within, '\0', sizeof(within));
memset(geompos, '\0', sizeof(geompos));
double oprogress = 0;
*geoms = og;
while (1) {
signed char t;
deserialize_byte(geoms, &t);
if (t < 0) {
break;
}
long long original_seq;
deserialize_long_long(geoms, &original_seq);
long long layer;
deserialize_long_long(geoms, &layer);
int tippecanoe_minzoom = -1, tippecanoe_maxzoom = -1;
if (layer & 2) {
deserialize_int(geoms, &tippecanoe_minzoom);
}
if (layer & 1) {
deserialize_int(geoms, &tippecanoe_maxzoom);
}
layer >>= 2;
long long metastart;
deserialize_long_long(geoms, &metastart);
char *meta = metabase + metastart;
long long bbox[4];
drawvec geom = decode_geometry(geoms, z, tx, ty, line_detail, bbox);
signed char feature_minzoom;
deserialize_byte(geoms, &feature_minzoom);
double progress = floor((((*geoms - geomstart + *along) / (double) todo) + z) / (file_maxzoom + 1) * 1000) / 10;
if (progress >= oprogress + 0.1) {
if (!quiet) {
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
}
oprogress = progress;
}
original_features++;
if (z == 0 && t == VT_POLYGON) {
geom = fix_polygon(geom);
}
int quick = quick_check(bbox, z, line_detail, buffer);
if (quick == 0) {
continue;
}
if (z == 0) {
if (bbox[0] < 0 || bbox[2] > 1LL << 32) {
// If the geometry extends off the edge of the world, concatenate on another copy
// shifted by 360 degrees, and then make sure both copies get clipped down to size.
unsigned n = geom.size();
if (bbox[0] < 0) {
for (unsigned i = 0; i < n; i++) {
geom.push_back(draw(geom[i].op, geom[i].x + (1LL << 32), geom[i].y));
}
}
if (bbox[2] > 1LL << 32) {
for (unsigned i = 0; i < n; i++) {
geom.push_back(draw(geom[i].op, geom[i].x - (1LL << 32), geom[i].y));
}
}
bbox[0] = 0;
bbox[2] = 1LL << 32;
quick = -1;
}
}
if (quick != 1) {
if (t == VT_LINE) {
geom = clip_lines(geom, z, line_detail, buffer);
}
if (t == VT_POLYGON) {
geom = clean_or_clip_poly(geom, z, line_detail, buffer, true);
}
if (t == VT_POINT) {
geom = clip_point(geom, z, line_detail, buffer);
}
geom = remove_noop(geom, t, 0);
}
if (geom.size() > 0) {
unclipped_features++;
}
if (line_detail == detail && fraction == 1) { /* only write out the next zoom once, even if we retry */
rewrite(geom, z, nextzoom, file_maxzoom, bbox, tx, ty, buffer, line_detail, within, geompos, geomfile, fname, t, layer, metastart, feature_minzoom, child_shards, max_zoom_increment, original_seq, tippecanoe_minzoom, tippecanoe_maxzoom);
}
if (z < file_minzoom) {
continue;
}
if (tippecanoe_minzoom != -1 && z < tippecanoe_minzoom) {
continue;
}
if (tippecanoe_maxzoom != -1 && z > tippecanoe_maxzoom) {
continue;
}
if (t == VT_LINE && z + line_detail <= feature_minzoom) {
continue;
}
if (t == VT_POINT && z < feature_minzoom && gamma < 0) {
continue;
}
if (gamma >= 0 && (t == VT_POINT || (additional['l' & 0xFF] && t == VT_LINE))) {
seq++;
if (seq >= 0) {
seq -= interval;
} else {
continue;
}
2015-03-06 21:12:32 +00:00
if (gamma > 0) {
unsigned long long index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2);
if (gap > 0) {
if (index == previndex) {
continue; // Exact duplicate: can't fulfil the gap requirement
}
2015-03-06 21:12:32 +00:00
if (exp(log((index - previndex) / scale) * gamma) >= gap) {
// Dot is further from the previous than the nth root of the gap,
// so produce it, and choose a new gap at the next point.
gap = 0;
} else {
continue;
}
2015-03-06 21:12:32 +00:00
} else {
gap = (index - previndex) / scale;
if (gap == 0) {
continue; // Exact duplicate: skip
} else if (gap < 1) {
continue; // Narrow dot spacing: need to stretch out
} else {
gap = 0; // Wider spacing than minimum: so pass through unchanged
}
2015-03-06 21:12:32 +00:00
}
previndex = index;
2015-03-06 21:12:32 +00:00
}
}
fraction_accum += fraction;
if (fraction_accum < 1) {
continue;
}
fraction_accum -= 1;
bool reduced = false;
if (t == VT_POLYGON) {
geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area);
}
if ((t == VT_LINE || t == VT_POLYGON) && !prevent['s' & 0xFF]) {
if (!reduced) {
if (t == VT_LINE) {
geom = remove_noop(geom, t, 32 - z - line_detail);
}
geom = simplify_lines(geom, z, line_detail);
}
}
2014-09-24 23:51:53 +00:00
#if 0
if (t == VT_LINE && z != basezoom) {
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
}
2014-09-24 23:51:53 +00:00
#endif
if (t == VT_LINE && additional['r' & 0xFF]) {
geom = reorder_lines(geom);
}
to_tile_scale(geom, z, line_detail);
if (t == VT_POLYGON) {
// Scaling may have made the polygon degenerate.
// Give Clipper a chance to try to fix it.
geom = clean_or_clip_poly(geom, 0, 0, 0, false);
geom = close_poly(geom);
}
if (t == VT_POINT || to_feature(geom, NULL)) {
struct coalesce c;
2014-09-23 00:12:38 +00:00
c.type = t;
if (geom.size() > 0) {
c.index = encode(geom[0].x, geom[0].y);
c.index2 = encode(geom[geom.size() - 1].x, geom[geom.size() - 1].y);
// Anything numbered below the start of the line
// can't possibly be the next feature.
// We want lowest-but-not-under.
if (c.index2 < c.index) {
c.index2 = ~0LL;
}
} else {
c.index = 0;
c.index2 = 0;
}
c.geom = geom;
2014-10-08 21:01:47 +00:00
c.metasrc = meta;
c.coalesced = false;
c.original_seq = original_seq;
2015-10-19 20:26:47 +00:00
decode_meta(&meta, stringpool, keys[layer], values[layer], file_keys[layer], &c.meta);
features[layer].push_back(c);
}
}
int j;
for (j = 0; j < child_shards; j++) {
if (within[j]) {
serialize_byte(geomfile[j], -2, &geompos[j], fname);
within[j] = 0;
}
}
for (j = 0; j < nlayers; j++) {
if (additional['o' & 0xFF]) {
std::sort(features[j].begin(), features[j].end());
}
std::vector<coalesce> out;
unsigned x;
for (x = 0; x < features[j].size(); x++) {
unsigned y = out.size() - 1;
#if 0
if (out.size() > 0 && coalcmp(&features[j][x], &out[y]) < 0) {
fprintf(stderr, "\nfeature out of order\n");
}
#endif
if (additional['c' & 0xFF] && out.size() > 0 && out[y].geom.size() + features[j][x].geom.size() < 20000 && coalcmp(&features[j][x], &out[y]) == 0 && features[j][x].type != VT_POINT) {
unsigned z;
for (z = 0; z < features[j][x].geom.size(); z++) {
out[y].geom.push_back(features[j][x].geom[z]);
}
out[y].coalesced = true;
} else {
out.push_back(features[j][x]);
}
}
features[j] = out;
for (x = 0; x < features[j].size(); x++) {
if (features[j][x].coalesced && features[j][x].type == VT_LINE) {
features[j][x].geom = remove_noop(features[j][x].geom, features[j][x].type, 0);
features[j][x].geom = simplify_lines(features[j][x].geom, 32, 0);
}
}
if (prevent['i' & 0xFF]) {
std::sort(features[j].begin(), features[j].end(), preservecmp);
}
}
if (z == 0 && unclipped_features < original_features / 2) {
fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n");
2015-06-05 17:34:19 +00:00
fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n");
}
long long totalsize = 0;
for (j = 0; j < nlayers; j++) {
totalsize += features[j].size();
}
if (totalsize > 0) {
if (totalsize > 200000 && !prevent['f' & 0xFF]) {
fprintf(stderr, "tile %d/%u/%u has %lld features, >200000 \n", z, tx, ty, totalsize);
fprintf(stderr, "Try using -z to set a higher base zoom level.\n");
return -1;
}
2015-03-25 00:07:51 +00:00
mapnik::vector::tile tile = create_tile(layernames, line_detail, features, &count, keys, values, nlayers);
int i;
for (i = 0; i < nlayers; i++) {
2015-03-25 00:07:51 +00:00
pool_free(&keys1[i]);
pool_free(&values1[i]);
}
std::string s;
std::string compressed;
tile.SerializeToString(&s);
compress(s, compressed);
if (compressed.size() > 500000 && !prevent['k' & 0xFF]) {
if (!quiet) {
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >500000 \n", z, tx, ty, (long long) compressed.size(), line_detail);
}
if (prevent['d' & 0xFF]) {
// The 95% is a guess to avoid too many retries
// and probably actually varies based on how much duplicated metadata there is
fraction = fraction * 500000 / compressed.size() * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
}
line_detail++; // to keep it the same when the loop decrements it
}
} else {
if (pthread_mutex_lock(&db_lock) != 0) {
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
if (pthread_mutex_unlock(&db_lock) != 0) {
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
return count;
2014-10-08 23:59:00 +00:00
}
} else {
int i;
for (i = 0; i < nlayers; i++) {
pool_free(&keys1[i]);
pool_free(&values1[i]);
}
return count;
}
}
2014-09-23 00:46:48 +00:00
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
return -1;
}
2015-06-20 00:29:56 +00:00
struct task {
int fileno;
struct task *next;
};
struct write_tile_args {
struct task *tasks;
char *metabase;
char *stringpool;
int min_detail;
int basezoom;
struct pool **file_keys;
char **layernames;
sqlite3 *outdb;
double droprate;
int buffer;
const char *fname;
FILE **geomfile;
int file_minzoom;
int file_maxzoom;
double todo;
volatile long long *along;
double gamma;
int nlayers;
char *prevent;
char *additional;
int child_shards;
int *geomfd;
off_t *geom_size;
volatile unsigned *midx;
volatile unsigned *midy;
int maxzoom;
int minzoom;
int full_detail;
int low_detail;
volatile long long *most;
};
void *run_thread(void *vargs) {
write_tile_args *arg = (write_tile_args *) vargs;
struct task *task;
for (task = arg->tasks; task != NULL; task = task->next) {
int j = task->fileno;
if (arg->geomfd[j] < 0) {
// only one source file for zoom level 0
continue;
}
if (arg->geom_size[j] == 0) {
continue;
}
// printf("%lld of geom_size\n", (long long) geom_size[j]);
char *geom = (char *) mmap(NULL, arg->geom_size[j], PROT_READ, MAP_PRIVATE, arg->geomfd[j], 0);
if (geom == MAP_FAILED) {
perror("mmap geom");
exit(EXIT_FAILURE);
}
char *geomstart = geom;
char *end = geom + arg->geom_size[j];
char *prevgeom = geom;
while (geom < end) {
int z;
unsigned x, y;
deserialize_int(&geom, &z);
deserialize_uint(&geom, &x);
deserialize_uint(&geom, &y);
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
long long len = write_tile(&geom, arg->metabase, arg->stringpool, z, x, y, z == arg->maxzoom ? arg->full_detail : arg->low_detail, arg->min_detail, arg->maxzoom, arg->file_keys, arg->layernames, arg->outdb, arg->droprate, arg->buffer, arg->fname, arg->geomfile, arg->minzoom, arg->maxzoom, arg->todo, geomstart, arg->along, arg->gamma, arg->nlayers, arg->prevent, arg->additional, arg->child_shards);
if (len < 0) {
int *err = (int *) malloc(sizeof(int));
*err = z - 1;
return err;
}
if (pthread_mutex_lock(&var_lock) != 0) {
2015-10-19 20:32:02 +00:00
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
if (z == arg->maxzoom && len > *arg->most) {
*arg->midx = x;
*arg->midy = y;
*arg->most = len;
}
2015-10-19 20:32:02 +00:00
*arg->along += geom - prevgeom;
prevgeom = geom;
if (pthread_mutex_unlock(&var_lock) != 0) {
2015-10-19 20:32:02 +00:00
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
}
if (munmap(geomstart, arg->geom_size[j]) != 0) {
perror("munmap geom");
}
}
return NULL;
}
2015-10-19 20:11:00 +00:00
int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, struct pool **file_keys, unsigned *midx, unsigned *midy, char **layernames, int maxzoom, int minzoom, sqlite3 *outdb, double droprate, int buffer, const char *fname, const char *tmpdir, double gamma, int nlayers, char *prevent, char *additional, int full_detail, int low_detail, int min_detail) {
2015-06-20 00:29:56 +00:00
int i;
for (i = 0; i <= maxzoom; i++) {
long long most = 0;
FILE *sub[TEMP_FILES];
int subfd[TEMP_FILES];
2015-06-20 00:29:56 +00:00
int j;
for (j = 0; j < TEMP_FILES; j++) {
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX" XSTRINGIFY(INT_MAX)) + 1];
2015-06-20 00:29:56 +00:00
sprintf(geomname, "%s/geom%d.XXXXXXXX", tmpdir, j);
subfd[j] = mkstemp(geomname);
// printf("%s\n", geomname);
if (subfd[j] < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
sub[j] = fopen(geomname, "wb");
if (sub[j] == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
unlink(geomname);
}
int useful_threads = 0;
2015-06-20 00:29:56 +00:00
long long todo = 0;
long long along = 0;
for (j = 0; j < TEMP_FILES; j++) {
2015-06-20 00:29:56 +00:00
todo += geom_size[j];
if (geom_size[j] > 0) {
useful_threads++;
}
2015-06-20 00:29:56 +00:00
}
int threads = CPUS;
if (threads > TEMP_FILES / 4) {
threads = TEMP_FILES / 4;
}
// XXX is it useful to divide further if we know we are skipping
// some zoom levels? Is it faster to have fewer CPUs working on
// sharding, but more deeply, or fewer CPUs, less deeply?
if (threads > useful_threads) {
threads = useful_threads;
}
// Round down to a power of 2
2015-10-20 19:03:49 +00:00
threads = 1 << (int) (log(threads) / log(2));
// Assign temporary files to threads
struct task tasks[TEMP_FILES];
struct dispatch {
struct task *tasks;
long long todo;
struct dispatch *next;
} dispatches[threads];
struct dispatch *dispatch_head = &dispatches[0];
for (j = 0; j < threads; j++) {
dispatches[j].tasks = NULL;
dispatches[j].todo = 0;
if (j + 1 < threads) {
dispatches[j].next = &dispatches[j + 1];
} else {
dispatches[j].next = NULL;
}
}
for (j = 0; j < TEMP_FILES; j++) {
if (geom_size[j] == 0) {
continue;
}
tasks[j].fileno = j;
tasks[j].next = dispatch_head->tasks;
dispatch_head->tasks = &tasks[j];
dispatch_head->todo += geom_size[j];
struct dispatch *here = dispatch_head;
dispatch_head = dispatch_head->next;
dispatch **d;
for (d = &dispatch_head; *d != NULL; d = &((*d)->next)) {
if (here->todo < (*d)->todo) {
break;
}
}
here->next = *d;
*d = here;
}
pthread_t pthreads[threads];
write_tile_args args[threads];
int thread;
for (thread = 0; thread < threads; thread++) {
args[thread].metabase = metabase;
args[thread].stringpool = stringpool;
args[thread].min_detail = min_detail;
2015-10-20 19:03:49 +00:00
args[thread].basezoom = maxzoom; // XXX rename?
args[thread].file_keys = file_keys; // locked with var_lock
args[thread].layernames = layernames;
2015-10-20 19:03:49 +00:00
args[thread].outdb = outdb; // locked with db_lock
args[thread].droprate = droprate;
args[thread].buffer = buffer;
args[thread].fname = fname;
args[thread].geomfile = sub + thread * (TEMP_FILES / threads);
args[thread].file_minzoom = minzoom;
args[thread].file_maxzoom = maxzoom;
args[thread].todo = todo;
2015-10-20 19:03:49 +00:00
args[thread].along = &along; // locked with var_lock
args[thread].gamma = gamma;
args[thread].nlayers = nlayers;
args[thread].prevent = prevent;
args[thread].additional = additional;
args[thread].child_shards = TEMP_FILES / threads;
args[thread].geomfd = geomfd;
args[thread].geom_size = geom_size;
2015-10-20 19:03:49 +00:00
args[thread].midx = midx; // locked with var_lock
args[thread].midy = midy; // locked with var_lock
args[thread].maxzoom = maxzoom;
args[thread].minzoom = minzoom;
args[thread].full_detail = full_detail;
args[thread].low_detail = low_detail;
2015-10-20 19:03:49 +00:00
args[thread].most = &most; // locked with var_lock
args[thread].tasks = dispatches[thread].tasks;
if (pthread_create(&pthreads[thread], NULL, run_thread, &args[thread]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
int err = INT_MAX;
for (thread = 0; thread < threads; thread++) {
void *retval;
if (pthread_join(pthreads[thread], &retval) != 0) {
perror("pthread_join");
}
if (retval != NULL) {
err = *((int *) retval);
}
2015-06-20 00:29:56 +00:00
}
for (j = 0; j < TEMP_FILES; j++) {
2015-06-20 00:29:56 +00:00
close(geomfd[j]);
fclose(sub[j]);
struct stat geomst;
if (fstat(subfd[j], &geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
geomfd[j] = subfd[j];
geom_size[j] = geomst.st_size;
}
if (err != INT_MAX) {
return err;
}
2015-06-20 00:29:56 +00:00
}
if (!quiet) {
fprintf(stderr, "\n");
}
2015-06-20 00:29:56 +00:00
return maxzoom;
}