929 lines
34 KiB
Python
Raw Normal View History

2023-09-25 11:48:43 +10:00
import sys
sys.path.append("sns_to_mqtt/vendor")
import paho.mqtt.client as mqtt
2021-09-13 14:42:34 +10:00
import json
2021-12-20 17:02:02 +11:00
from datetime import datetime
2021-09-13 14:42:34 +10:00
import http.client
import math
import logging
2021-10-04 17:55:03 +10:30
from math import radians, degrees, sin, cos, atan2, sqrt, pi
2021-12-20 17:02:02 +11:00
import es
2022-03-12 13:03:16 +11:00
import asyncio
import functools
2023-09-25 11:48:43 +10:00
import os
import random
import time
import traceback
import config_handler
2023-09-25 11:48:43 +10:00
client = mqtt.Client(transport="websockets")
connected_flag = False
import socket
socket.setdefaulttimeout(1)
## MQTT functions
def connect():
client.on_connect = on_connect
client.on_disconnect = on_disconnect
client.on_publish = on_publish
#client.tls_set()
client.username_pw_set(username=config_handler.get("MQTT","USERNAME"), password=config_handler.get("MQTT","PASSWORD"))
HOSTS = config_handler.get("MQTT","HOST").split(",")
PORT = int(config_handler.get("MQTT","PORT", default="8080"))
2023-09-25 11:48:43 +10:00
if PORT == 443:
client.tls_set()
HOST = random.choice(HOSTS)
print(f"Connecting to {HOST}")
client.connect(HOST, PORT, 5)
client.loop_start()
print("loop started")
def on_disconnect(client, userdata, rc):
global connected_flag
print("disconnected")
connected_flag=False #set flag
def on_connect(client, userdata, flags, rc):
global connected_flag
if rc==0:
print("connected")
connected_flag=True #set flag
else:
print("Bad connection Returned code")
def on_publish(client, userdata, mid):
pass
2023-09-25 11:48:43 +10:00
# setup MQTT
connect()
2021-10-04 17:55:03 +10:30
# FLIGHT PROFILE DEFAULTS
#
# If we have no better estimates for flight profile, use these:
PREDICT_DEFAULTS = {'ascent_rate': 5.0, 'burst_altitude': 26000.0, 'descent_rate': 6.0}
# For some sonde types we can make better assumptions
SONDE_TYPE_PREDICT_DEFAULTS = {
2021-10-09 11:18:57 +11:00
'LMS6': {'ascent_rate': 5.0, 'burst_altitude': 32000.0, 'descent_rate': 3.0},
2021-10-04 17:55:03 +10:30
}
#
# LAUNCH SITE ALLOCATION SETTINGS
#
# Immediately allocate a launch site if it is within this distance (straight line)
# of a known launch site.
2021-10-09 14:53:50 +10:30
LAUNCH_ALLOCATE_RANGE_MIN = 4000 # metres
LAUNCH_ALLOCATE_RANGE_MAX = 30000 # metres
LAUNCH_ALLOCATE_RANGE_SCALING = 1.5 # Scaling factor - launch allocation range is min(current alt * this value , launch allocate range max)
2021-10-04 17:55:03 +10:30
# Do not run predictions if the ascent or descent rate is less than this value
ASCENT_RATE_THRESHOLD = 0.8
2021-10-04 17:55:03 +10:30
def flight_profile_by_type(sonde_type):
"""
Determine the appropriate flight profile based on radiosonde type
"""
for _def_type in SONDE_TYPE_PREDICT_DEFAULTS:
if _def_type in sonde_type:
2021-10-09 16:17:17 +11:00
return SONDE_TYPE_PREDICT_DEFAULTS[_def_type].copy()
2021-10-04 17:55:03 +10:30
2021-10-09 16:17:17 +11:00
return PREDICT_DEFAULTS.copy()
2021-10-04 17:55:03 +10:30
2021-09-13 14:42:34 +10:00
def getDensity(altitude):
"""
Calculate the atmospheric density for a given altitude in metres.
This is a direct port of the oziplotter Atmosphere class
"""
# Constants
airMolWeight = 28.9644 # Molecular weight of air
densitySL = 1.225 # Density at sea level [kg/m3]
pressureSL = 101325 # Pressure at sea level [Pa]
temperatureSL = 288.15 # Temperature at sea level [deg K]
gamma = 1.4
gravity = 9.80665 # Acceleration of gravity [m/s2]
tempGrad = -0.0065 # Temperature gradient [deg K/m]
RGas = 8.31432 # Gas constant [kg/Mol/K]
R = 287.053
deltaTemperature = 0.0
# Lookup Tables
altitudes = [0, 11000, 20000, 32000, 47000, 51000, 71000, 84852]
pressureRels = [
1,
2.23361105092158e-1,
5.403295010784876e-2,
8.566678359291667e-3,
1.0945601337771144e-3,
6.606353132858367e-4,
3.904683373343926e-5,
3.6850095235747942e-6,
]
temperatures = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
tempGrads = [-6.5, 0, 1, 2.8, 0, -2.8, -2, 0]
gMR = gravity * airMolWeight / RGas
# Pick a region to work in
i = 0
if altitude > 0:
while altitude > altitudes[i + 1]:
i = i + 1
# Lookup based on region
baseTemp = temperatures[i]
tempGrad = tempGrads[i] / 1000.0
pressureRelBase = pressureRels[i]
deltaAltitude = altitude - altitudes[i]
temperature = baseTemp + tempGrad * deltaAltitude
# Calculate relative pressure
if math.fabs(tempGrad) < 1e-10:
pressureRel = pressureRelBase * math.exp(
-1 * gMR * deltaAltitude / 1000.0 / baseTemp
)
else:
pressureRel = pressureRelBase * math.pow(
baseTemp / temperature, gMR / tempGrad / 1000.0
)
# Add temperature offset
temperature = temperature + deltaTemperature
# Finally, work out the density...
speedOfSound = math.sqrt(gamma * R * temperature)
pressure = pressureRel * pressureSL
density = densitySL * pressureRel * temperatureSL / temperature
return density
def seaLevelDescentRate(descent_rate, altitude):
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
rho = getDensity(altitude)
return math.sqrt((rho / 1.225) * math.pow(descent_rate, 2))
2021-10-04 17:55:03 +10:30
# Earthmaths code by Daniel Richman (thanks!)
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
def position_info(listener, balloon):
"""
Calculate and return information from 2 (lat, lon, alt) tuples
Returns a dict with:
- angle at centre
- great circle distance
- distance in a straight line
- bearing (azimuth or initial course)
- elevation (altitude)
Input and output latitudes, longitudes, angles, bearings and elevations are
in degrees, and input altitudes and output distances are in meters.
"""
# Earth:
radius = 6371000.0
(lat1, lon1, alt1) = listener
(lat2, lon2, alt2) = balloon
lat1 = radians(lat1)
lat2 = radians(lat2)
lon1 = radians(lon1)
lon2 = radians(lon2)
# Calculate the bearing, the angle at the centre, and the great circle
# distance using Vincenty's_formulae with f = 0 (a sphere). See
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
# http://en.wikipedia.org/wiki/Great-circle_navigation and
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
d_lon = lon2 - lon1
sa = cos(lat2) * sin(d_lon)
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
bearing = atan2(sa, sb)
aa = sqrt((sa ** 2) + (sb ** 2))
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
angle_at_centre = atan2(aa, ab)
great_circle_distance = angle_at_centre * radius
# Armed with the angle at the centre, calculating the remaining items
# is a simple 2D triangley circley problem:
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
# straight line. The angle between (r + alt1) and (r + alt2) is the
# angle at the centre. The angle between distance in a straight line and
# (r + alt1) is the elevation plus pi/2.
# Use sum of angle in a triangle to express the third angle in terms
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
# expand with compound angle formulae and solve for tan elevation by
# dividing both sides by cos elevation
ta = radius + alt1
tb = radius + alt2
ea = (cos(angle_at_centre) * tb) - ta
eb = sin(angle_at_centre) * tb
elevation = atan2(ea, eb)
# Use cosine rule to find unknown side.
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
# Give a bearing in range 0 <= b < 2pi
if bearing < 0:
bearing += 2 * pi
return {
"listener": listener,
"balloon": balloon,
"listener_radians": (lat1, lon1, alt1),
"balloon_radians": (lat2, lon2, alt2),
"angle_at_centre": degrees(angle_at_centre),
"angle_at_centre_radians": angle_at_centre,
"bearing": degrees(bearing),
"bearing_radians": bearing,
"great_circle_distance": great_circle_distance,
"straight_distance": distance,
"elevation": degrees(elevation),
"elevation_radians": elevation,
}
2021-10-09 14:53:50 +10:30
def compare_launch_sites(sites, launch_estimate, altitude=0):
"""
Compare a provided launch position estimate with all known launch sites
If a launch site is within a threshold, return the launch site.
"""
launch_site = None
launch_site_range = 999999999999999
for _site in sites:
try:
_site_pos = [sites[_site]['position'][1], sites[_site]['position'][0], sites[_site]['alt']]
_pos_info = position_info(_site_pos, launch_estimate)
if _pos_info['straight_distance'] < launch_site_range:
launch_site = _site
launch_site_range = _pos_info['straight_distance']
except Exception as e:
logging.error(f"Error comparing launch site with estimate: {str(e)}")
print(_site_pos)
print(launch_estimate)
continue
# print(sites[launch_site])
# print(launch_site_range)
2021-10-09 16:24:50 +11:00
_allocate_range = min(LAUNCH_ALLOCATE_RANGE_MAX, max(LAUNCH_ALLOCATE_RANGE_MIN, altitude*LAUNCH_ALLOCATE_RANGE_SCALING))
2021-10-09 14:53:50 +10:30
if launch_site_range < _allocate_range:
return {'site':launch_site, 'range': launch_site_range}
else:
return None
2022-03-12 13:03:16 +11:00
def get_standard_prediction(timestamp, latitude, longitude, altitude, current_rate=5.0, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], burst_altitude=PREDICT_DEFAULTS['burst_altitude'], descent_rate=PREDICT_DEFAULTS['descent_rate']):
2021-10-04 17:55:03 +10:30
"""
Request a standard flight path prediction from Tawhiri.
Notes:
- The burst_altitude must be higher than the current altitude.
- Longitude is in the range 0-360.0
- All ascent/descent rates must be positive.
"""
2023-09-25 11:48:43 +10:00
try:
# Bomb out if the rates are too low.
if ascent_rate < ASCENT_RATE_THRESHOLD:
return None
2021-10-04 17:55:03 +10:30
2023-09-25 11:48:43 +10:00
if descent_rate < ASCENT_RATE_THRESHOLD:
return None
2021-10-04 17:55:03 +10:30
2023-09-25 11:48:43 +10:00
# Shift longitude into the appropriate range for Tawhiri
if longitude < 0:
longitude += 360.0
2021-10-04 17:55:03 +10:30
2023-09-25 11:48:43 +10:00
# Generate the prediction URL
url = f"/api/v1/?launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}&burst_altitude={burst_altitude:.2f}&descent_rate={descent_rate:.2f}"
logging.debug(url)
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
conn.request("GET", url)
res = conn.getresponse()
data = res.read()
2021-10-04 17:55:03 +10:30
2023-09-25 11:48:43 +10:00
if res.code != 200:
logging.debug(data)
return None
pred_data = json.loads(data.decode("utf-8"))
2021-10-04 17:55:03 +10:30
2023-09-25 11:48:43 +10:00
path = []
2021-10-04 17:55:03 +10:30
2023-09-25 11:48:43 +10:00
if 'prediction' in pred_data:
for stage in pred_data['prediction']:
# Probably don't need to worry about this, it should only result in one or two points
# in 'ascent'.
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
continue
else:
for item in stage['trajectory']:
path.append({
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
"lat": item['latitude'],
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
"alt": item['altitude'],
})
pred_data['path'] = path
return pred_data
else:
return None
except:
traceback.print_exc()
logging.error(f"Error turnning standard prediction for {url}")
2021-10-04 17:55:03 +10:30
return None
2022-03-12 14:01:24 +11:00
def get_launch_estimate(timestamp, latitude, longitude, altitude, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], current_rate=5.0):
2021-10-04 17:55:03 +10:30
"""
Estimate the launch site of a sonde based on a current ascent position.
Notes:
- Longitude is in the range 0-360.0
- All ascent/descent rates must be positive.
UNTESTED
"""
# Bomb out if the rates are too low.
if ascent_rate < ASCENT_RATE_THRESHOLD:
return None
# Shift longitude into the appropriate range for Tawhiri
if longitude < 0:
longitude += 360.0
# Generate the prediction URL
url = f"/api/v1/?profile=reverse_profile&launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}"
logging.debug(url)
2022-03-12 13:03:16 +11:00
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
2021-10-04 17:55:03 +10:30
conn.request("GET", url)
res = conn.getresponse()
data = res.read()
if res.code != 200:
logging.debug(data)
return None
pred_data = json.loads(data.decode("utf-8"))
2021-10-09 14:53:50 +10:30
path = []
if 'prediction' in pred_data:
for stage in pred_data['prediction']:
# Probably don't need to worry about this, it should only result in one or two points
# in 'ascent'.
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
continue
else:
for item in stage['trajectory']:
path.append({
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
"lat": item['latitude'],
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
"alt": item['altitude'],
})
pred_data['path'] = path
return pred_data
2021-10-04 17:55:03 +10:30
else:
return None
# return a dict key'd by serial with reverse prediction data
def get_reverse_predictions():
path = "reverse-prediction-*/_search"
payload = {
"size": 1000,
"sort": [
{
"datetime": {
"order": "asc",
"unmapped_type": "boolean"
}
}
],
"query": {
"bool": {
"filter": [
{
"range": {
"datetime": {
"gte": "now-1d",
"lte": "now",
"format": "strict_date_optional_time"
}
}
}
]
}
}
}
logging.debug("Start ES Request")
2021-12-20 17:02:02 +11:00
results = es.request(json.dumps(payload), path, "POST")
logging.debug("Finished ES Request")
return { x['_source']['serial'] : x['_source'] for x in results['hits']['hits']}
2021-10-09 14:53:50 +10:30
# Example data structure from get_launch_sites
# {
# '01028': {'station': '01028', 'rs_types': ['23'], 'position': [19.0012, 74.5038], 'alt': 20, 'station_name': 'Bjornoya (Norway)', 'times': ['0:00:00', '0:06:00', '0:12:00', '0:18:00']},
# '-3': {'station': '-3', 'rs_types': ['17'], 'position': [-1.23813, 44.35714], 'alt': 15, 'station_name': 'DGA Essais de missiles (France)', 'burst_altitude': 20000},
# '-2': {'station': '-2', 'rs_types': ['63', '77'], 'position': [2.60012, 48.337861], 'alt': 118, 'station_name': 'METEOMODEM Headquarters (France)'},
# ...
# }
2021-10-09 11:24:55 +11:00
def get_launch_sites():
path = "sites/_search"
payload = {
"size": 10000
}
logging.debug("Start ES Request")
2021-12-20 17:02:02 +11:00
results = es.request(json.dumps(payload), path, "POST")
2021-10-09 11:24:55 +11:00
logging.debug("Finished ES Request")
return {x['_source']['station']: x['_source'] for x in results['hits']['hits']}
def bulk_upload_es(index_prefix,payloads):
body=""
for payload in payloads:
body += "{\"index\":{}}\n" + json.dumps(payload) + "\n"
body += "\n"
date_prefix = datetime.now().strftime("%Y-%m")
2022-11-20 13:15:53 +11:00
result = es.request(body, f"{index_prefix}-{date_prefix}/_bulk", "POST")
if 'errors' in result and result['errors'] == True:
error_types = [x['index']['error']['type'] for x in result['items'] if 'error' in x['index']] # get all the error types
error_types = [a for a in error_types if a != 'mapper_parsing_exception'] # filter out mapper failures since they will never succeed
if error_types:
print(result)
raise RuntimeError
2021-10-04 17:55:03 +10:30
2021-09-13 14:42:34 +10:00
def predict(event, context):
2023-09-25 11:48:43 +10:00
client.loop(timeout=0.05, max_packets=1) # make sure MQTT reconnects
2022-03-12 13:03:16 +11:00
# Use asyncio.run to synchronously "await" an async function
result = asyncio.run(predict_async(event, context))
2023-09-25 11:48:43 +10:00
time.sleep(0.5) # give paho mqtt 500ms to send messages this could be improved on but paho mqtt is a pain to interface with
2022-03-12 13:03:16 +11:00
return result
async def predict_async(event, context):
2022-03-17 12:56:37 +11:00
sem = asyncio.Semaphore(5)
2021-09-13 14:42:34 +10:00
path = "telm-*/_search"
2023-01-15 09:07:50 +11:00
interval = 10
lag = 3 # how many samples to use
2021-09-13 14:42:34 +10:00
payload = {
"aggs": {
"2": {
"terms": {
"field": "serial.keyword",
"order": {
"_key": "desc"
},
"size": 1000
},
"aggs": {
"3": {
"date_histogram": {
"field": "datetime",
2023-01-15 09:07:50 +11:00
"fixed_interval": f"{interval}s"
2021-09-13 14:42:34 +10:00
},
"aggs": {
"1": {
"top_hits": {
"docvalue_fields": [
{
"field": "alt"
}
],
"_source": "alt",
"size": 1,
"sort": [
{
"datetime": {
"order": "desc"
}
}
]
}
},
"4": {
"serial_diff": {
"buckets_path": "4-metric",
"gap_policy": "skip",
2023-01-24 15:53:44 +11:00
"lag": lag
2021-09-13 14:42:34 +10:00
}
},
"5": {
"top_hits": {
"docvalue_fields": [
{
"field": "position"
}
],
"_source": {"includes": ["position", "type", "subtype"]},
"size": 1,
"sort": [
{
"datetime": {
"order": "desc"
}
}
]
}
},
"4-metric": {
"avg": {
"field": "alt"
}
}
}
}
}
}
},
"size": 0,
"stored_fields": [
"*"
],
"script_fields": {},
"docvalue_fields": [
{
"field": "@timestamp",
"format": "date_time"
},
{
"field": "datetime",
"format": "date_time"
},
{
"field": "log_date",
"format": "date_time"
},
{
"field": "time_received",
"format": "date_time"
},
{
"field": "time_server",
"format": "date_time"
},
{
"field": "time_uploaded",
"format": "date_time"
}
],
"_source": {
"excludes": []
},
"query": {
"bool": {
"must_not":[
{
"match": {
"lat": 0,
}
},
{
"match": {
"lon": 0,
}
},
{
"match": {
"sats": 0,
}
2021-09-13 14:42:34 +10:00
}
],
# "must": [
# {
# "exists": {
# "field": "sats"
# }
# },
# {
# "range": {
# "sats": {
# "gte": 1,
# "lt": None
# }
# }
# }
# ],
"filter": [
{
"match_all": {}
},
{
"range": {
"datetime": {
"gte": "now-10m",
"lte": "now",
"format": "strict_date_optional_time"
}
}
}
],
"should": []
2021-09-13 14:42:34 +10:00
}
},
"size": 0
}
logging.debug("Start ES Request")
2021-12-20 17:02:02 +11:00
results = es.request(json.dumps(payload), path, "GET")
2021-09-13 14:42:34 +10:00
logging.debug("Finished ES Request")
serials = { }
for x in results['aggregations']['2']['buckets']:
try:
serials[x['key']] = {
"alt": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['1']['hits']['hits'][0]['fields']['alt'][0],
"position": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]['fields']['position'][0].split(","),
2023-01-15 09:07:50 +11:00
"rate": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['4']['value']/(lag*interval), # as we bucket for every 5 seconds with a lag of 5
2021-09-13 14:42:34 +10:00
"time": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['key_as_string'],
"type": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["type"],
2021-09-14 11:06:38 +10:00
"subtype": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["subtype"] if "subtype" in sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"] else None
2021-09-13 14:42:34 +10:00
}
except:
pass
2021-10-09 14:53:50 +10:30
launch_sites = get_launch_sites()
reverse_predictions = get_reverse_predictions()
2021-09-13 14:42:34 +10:00
serial_data={}
2021-10-09 14:53:50 +10:30
reverse_serial_data = {}
2021-09-13 14:42:34 +10:00
logging.debug("Start Predict")
2022-03-12 13:03:16 +11:00
jobs=[]
2021-09-13 14:42:34 +10:00
for serial in serials:
2022-03-13 07:35:08 +11:00
jobs.append(run_predictions_for_serial(sem, serial, serials[serial], reverse_predictions, launch_sites))
2022-03-12 13:03:16 +11:00
output = await asyncio.gather(*jobs)
for data in output:
if data:
serial_data[data[0]] = data[1]
2022-03-12 14:01:24 +11:00
if data[2]:
reverse_serial_data[data[0]] = data[2]
2022-03-12 13:03:16 +11:00
logging.debug("Stop Predict")
# Collate and upload forward predictions
output = []
for serial in serial_data:
value = serial_data[serial]
if value is not None:
output.append(
{
"serial": serial,
"type": serials[serial]['type'],
"subtype": serials[serial]['subtype'],
"datetime": value['request']['launch_datetime'],
"position": [
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
value['request']['launch_latitude']
],
"altitude": value['request']['launch_altitude'],
"ascent_rate": value['request']['ascent_rate'],
"descent_rate": value['request']['descent_rate'],
"burst_altitude": value['request']['burst_altitude'],
"descending": True if serials[serial]['rate'] < 0 else False,
"landed": False, # I don't think this gets used anywhere?
"data": value['path']
}
)
# Collate and upload reverse predictions
output_reverse = []
for serial in reverse_serial_data:
value = reverse_serial_data[serial]
if value is not None:
_tmp = {
"serial": serial,
"type": serials[serial]['type'],
"subtype": serials[serial]['subtype'],
"datetime": value['request']['launch_datetime'],
"position": [
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
value['request']['launch_latitude']
],
"altitude": value['request']['launch_altitude'],
"ascent_rate": value['request']['ascent_rate'],
"data": value['path']
}
if 'launch_site' in value:
_tmp['launch_site'] = value['launch_site']
if 'launch_site_range_estimate' in value:
_tmp['launch_site_range_estimate'] = value['launch_site_range_estimate']
output_reverse.append(_tmp)
if len(output) > 0:
bulk_upload_es("predictions", output)
if len(output_reverse) > 0:
bulk_upload_es("reverse-prediction", output_reverse)
2023-09-25 11:48:43 +10:00
# upload to mqtt
while not connected_flag:
time.sleep(0.01) # wait until connected
for prediction in output:
logging.debug(f'Publishing prediction for {prediction["serial"]} to MQTT')
client.publish(
topic=f'prediction/{prediction["serial"]}',
payload=json.dumps(prediction),
qos=0,
retain=False
)
logging.debug(f'Published prediction for {prediction["serial"]} to MQTT')
for prediction in output_reverse:
logging.debug(f'Publishing reverse prediction for {prediction["serial"]} to MQTT')
client.publish(
topic=f'reverse-prediction/{prediction["serial"]}',
payload=json.dumps(prediction),
qos=0,
retain=False
)
logging.debug(f'Published reverse prediction for {prediction["serial"]} to MQTT')
2022-03-12 13:03:16 +11:00
logging.debug("Finished")
return
2021-09-13 14:42:34 +10:00
2021-10-04 17:55:03 +10:30
2022-03-12 13:03:16 +11:00
2022-03-13 07:35:08 +11:00
async def run_predictions_for_serial(sem, serial, value, reverse_predictions, launch_sites):
2022-03-12 14:16:15 +11:00
async with sem:
2022-03-12 13:03:16 +11:00
loop = asyncio.get_event_loop()
2021-10-04 17:55:03 +10:30
#
2021-10-09 14:53:50 +10:30
# Flight Profile selection
#
# Fallback Option - use flight profile data based on sonde type.
2021-10-04 17:55:03 +10:30
_flight_profile = flight_profile_by_type(value['type'])
2022-03-12 14:01:24 +11:00
reverse_serial_data = None
2021-10-09 14:53:50 +10:30
# Check if we have already run a reverse prediction on this serial
if serial in reverse_predictions:
logging.debug(f"Found reverse prediction for {serial}.")
_rev_pred = reverse_predictions[serial]
#print(_rev_pred)
if 'launch_site' in _rev_pred:
# This serial number has been assigned to a launch site!
# Grab the launch site information
try:
_site_info = launch_sites[_rev_pred['launch_site']]
# If we have flight profile data, update the default flight profile
if 'ascent_rate' in _site_info:
_flight_profile['ascent_rate'] = _site_info['ascent_rate']
if 'burst_altitude' in _site_info:
_flight_profile['burst_altitude'] = _site_info['burst_altitude']
if 'descent_rate' in _site_info:
_flight_profile['descent_rate'] = _site_info['descent_rate']
logging.debug(f"{serial} - Using Flight Profile data for Launch site: {_site_info['station_name']}")
except KeyError:
logging.info(f"Possible missing launch site {_rev_pred['launch_site'] } for sonde {serial}")
2021-10-09 14:53:50 +10:30
else:
# No launch site was allocated...
# TODO - Try again?
pass
else:
# No reverse prediction data!
# We can only run a reverse prediction with a sonde on ascent.
#print(f"{serial}: {value['rate']}")
2022-03-17 15:15:08 +11:00
if value['rate'] > ASCENT_RATE_THRESHOLD:
2021-10-09 14:53:50 +10:30
# Try and run a reverse prediction
logging.info(f"Running reverse predict for {serial}")
longitude = float(value['position'][1].strip())
latitude = float(value['position'][0].strip())
2022-03-12 13:03:16 +11:00
2022-03-12 17:44:26 +11:00
_rev_pred = get_launch_estimate(
2021-10-09 14:53:50 +10:30
value['time'],
latitude,
longitude,
value['alt'],
current_rate=value['rate'],
2022-03-12 17:44:26 +11:00
ascent_rate=value['rate']
)
2021-10-09 14:53:50 +10:30
if _rev_pred:
# Attempt to find a launch site near to the launch estimate.
_launch_estimate = [_rev_pred['launch_estimate']['latitude'], _rev_pred['launch_estimate']['longitude'], _rev_pred['launch_estimate']['altitude']]
_alloc_site = compare_launch_sites(launch_sites, _launch_estimate, value['alt'])
if _alloc_site:
# We have found the launch site!
# {'site':_site, 'range': launch_site_range}
logging.info(f"Allocated {serial} to launch site {launch_sites[_alloc_site['site']]['station_name']} ({_alloc_site['site']}) with range {_alloc_site['range']:.1f}.")
# Add launch site into the prediction data
_rev_pred['launch_site'] = _alloc_site['site']
_rev_pred['launch_site_range_estimate'] = _alloc_site['range']
# If we have flight profile data, update the default flight profile
_site_info = launch_sites[_alloc_site['site']]
if 'ascent_rate' in _site_info:
_flight_profile['ascent_rate'] = _site_info['ascent_rate']
if 'burst_altitude' in _site_info:
_flight_profile['burst_altitude'] = _site_info['burst_altitude']
if 'descent_rate' in _site_info:
_flight_profile['descent_rate'] = _site_info['descent_rate']
# Add to dict for upload later.
2022-03-12 14:01:24 +11:00
reverse_serial_data = _rev_pred
2021-10-09 14:53:50 +10:30
else:
# Launch estimate prediction failed.
pass
2021-10-04 17:55:03 +10:30
#print(value)
#print(_flight_profile)
2021-10-09 14:53:50 +10:30
logging.debug(f"Running prediction for {serial} using flight profile {str(_flight_profile)}.")
2021-10-04 17:55:03 +10:30
2022-03-17 15:15:08 +11:00
# skip when close to 0.
if value['rate'] < ASCENT_RATE_THRESHOLD and value['rate'] > -ASCENT_RATE_THRESHOLD:
logging.debug(f"Skipping {serial} due to ascent rate limiting.")
return False
2021-10-04 17:55:03 +10:30
# Determine current ascent rate
# If the value is < 0.5 (e.g. we are on descent, or not moving), we just use a default value.
2022-03-17 15:15:08 +11:00
ascent_rate=value['rate'] if value['rate'] > ASCENT_RATE_THRESHOLD else _flight_profile['ascent_rate']
2021-10-04 17:55:03 +10:30
# If we are on descent, estimate the sea-level descent rate from the current descent rate
# Otherwise, use the flight profile descent rate
descent_rate= seaLevelDescentRate(abs(value['rate']),value['alt']) if value['rate'] < 0 else _flight_profile['descent_rate']
# If the resultant sea-level descent rate is very small, it means we're probably landed
# so dont run a prediction for this sonde.
2022-03-17 15:15:08 +11:00
if descent_rate < ASCENT_RATE_THRESHOLD:
2022-03-12 13:03:16 +11:00
return False
2021-10-04 17:55:03 +10:30
# Now to determine the burst altitude
2021-09-13 14:42:34 +10:00
if value['rate'] < 0:
2021-10-04 17:55:03 +10:30
# On descent (rate < 0), we need to set the burst altitude just higher than our current altitude for
# the predictor to be happy
2021-09-13 14:42:34 +10:00
burst_altitude = value['alt']+0.05
else:
2021-10-04 17:55:03 +10:30
# Otherwise, on ascent we either use the expected burst altitude, or we
# add a little bit on to our current altitude.
burst_altitude = (value['alt']+0.05) if value['alt'] > _flight_profile['burst_altitude'] else _flight_profile['burst_altitude']
2021-09-13 14:42:34 +10:00
longitude = float(value['position'][1].strip())
2021-10-04 17:55:03 +10:30
latitude = float(value['position'][0].strip())
#print(f"Prediction Parameters for {serial} at {latitude}, {longitude}, {value['alt']}: {ascent_rate}/{burst_altitude}/{descent_rate}")
# Run prediction! This will return None if there is an error
2022-03-12 13:03:16 +11:00
return [serial, await loop.run_in_executor(None, functools.partial(get_standard_prediction,
2021-10-04 17:55:03 +10:30
value['time'],
latitude,
longitude,
value['alt'],
current_rate=value['rate'],
ascent_rate=ascent_rate,
burst_altitude=burst_altitude,
descent_rate=descent_rate
2022-03-12 14:01:24 +11:00
)), reverse_serial_data]