2021-09-13 04:42:34 +00:00
|
|
|
import boto3
|
|
|
|
import botocore.credentials
|
|
|
|
from botocore.awsrequest import AWSRequest
|
|
|
|
from botocore.endpoint import URLLib3Session
|
|
|
|
from botocore.auth import SigV4Auth
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
from datetime import datetime, timedelta, timezone
|
|
|
|
import sys, traceback
|
|
|
|
import http.client
|
|
|
|
import math
|
|
|
|
import logging
|
|
|
|
import gzip
|
|
|
|
from io import BytesIO
|
2021-10-04 07:25:03 +00:00
|
|
|
from math import radians, degrees, sin, cos, atan2, sqrt, pi
|
2021-09-13 04:42:34 +00:00
|
|
|
|
|
|
|
HOST = os.getenv("ES")
|
|
|
|
|
2021-10-04 07:25:03 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# FLIGHT PROFILE DEFAULTS
|
|
|
|
#
|
|
|
|
|
|
|
|
# If we have no better estimates for flight profile, use these:
|
|
|
|
PREDICT_DEFAULTS = {'ascent_rate': 5.0, 'burst_altitude': 26000.0, 'descent_rate': 6.0}
|
|
|
|
|
|
|
|
# For some sonde types we can make better assumptions
|
|
|
|
SONDE_TYPE_PREDICT_DEFAULTS = {
|
2021-10-09 00:09:20 +00:00
|
|
|
'LMS6-403': {'ascent_rate': 5.0, 'burst_altitude': 32000.0, 'descent_rate': 3.0},
|
|
|
|
'LMS6-1680': {'ascent_rate': 5.0, 'burst_altitude': 32000.0, 'descent_rate': 3.0},
|
2021-10-04 07:25:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#
|
|
|
|
# LAUNCH SITE ALLOCATION SETTINGS
|
|
|
|
#
|
|
|
|
# Immediately allocate a launch site if it is within this distance (straight line)
|
|
|
|
# of a known launch site.
|
|
|
|
LAUNCH_ALLOCATE_RANGE = 4000 # metres
|
|
|
|
|
|
|
|
# Do not run predictions if the ascent or descent rate is less than this value
|
|
|
|
ASCENT_RATE_THRESHOLD = 0.5
|
|
|
|
|
|
|
|
|
|
|
|
def flight_profile_by_type(sonde_type):
|
|
|
|
"""
|
|
|
|
Determine the appropriate flight profile based on radiosonde type
|
|
|
|
"""
|
|
|
|
|
|
|
|
for _def_type in SONDE_TYPE_PREDICT_DEFAULTS:
|
|
|
|
if _def_type in sonde_type:
|
|
|
|
return SONDE_TYPE_PREDICT_DEFAULTS[_def_type]
|
|
|
|
|
|
|
|
return PREDICT_DEFAULTS
|
|
|
|
|
|
|
|
|
2021-09-13 04:42:34 +00:00
|
|
|
def getDensity(altitude):
|
|
|
|
"""
|
|
|
|
Calculate the atmospheric density for a given altitude in metres.
|
|
|
|
This is a direct port of the oziplotter Atmosphere class
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Constants
|
|
|
|
airMolWeight = 28.9644 # Molecular weight of air
|
|
|
|
densitySL = 1.225 # Density at sea level [kg/m3]
|
|
|
|
pressureSL = 101325 # Pressure at sea level [Pa]
|
|
|
|
temperatureSL = 288.15 # Temperature at sea level [deg K]
|
|
|
|
gamma = 1.4
|
|
|
|
gravity = 9.80665 # Acceleration of gravity [m/s2]
|
|
|
|
tempGrad = -0.0065 # Temperature gradient [deg K/m]
|
|
|
|
RGas = 8.31432 # Gas constant [kg/Mol/K]
|
|
|
|
R = 287.053
|
|
|
|
deltaTemperature = 0.0
|
|
|
|
|
|
|
|
# Lookup Tables
|
|
|
|
altitudes = [0, 11000, 20000, 32000, 47000, 51000, 71000, 84852]
|
|
|
|
pressureRels = [
|
|
|
|
1,
|
|
|
|
2.23361105092158e-1,
|
|
|
|
5.403295010784876e-2,
|
|
|
|
8.566678359291667e-3,
|
|
|
|
1.0945601337771144e-3,
|
|
|
|
6.606353132858367e-4,
|
|
|
|
3.904683373343926e-5,
|
|
|
|
3.6850095235747942e-6,
|
|
|
|
]
|
|
|
|
temperatures = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
|
|
|
|
tempGrads = [-6.5, 0, 1, 2.8, 0, -2.8, -2, 0]
|
|
|
|
gMR = gravity * airMolWeight / RGas
|
|
|
|
|
|
|
|
# Pick a region to work in
|
|
|
|
i = 0
|
|
|
|
if altitude > 0:
|
|
|
|
while altitude > altitudes[i + 1]:
|
|
|
|
i = i + 1
|
|
|
|
|
|
|
|
# Lookup based on region
|
|
|
|
baseTemp = temperatures[i]
|
|
|
|
tempGrad = tempGrads[i] / 1000.0
|
|
|
|
pressureRelBase = pressureRels[i]
|
|
|
|
deltaAltitude = altitude - altitudes[i]
|
|
|
|
temperature = baseTemp + tempGrad * deltaAltitude
|
|
|
|
|
|
|
|
# Calculate relative pressure
|
|
|
|
if math.fabs(tempGrad) < 1e-10:
|
|
|
|
pressureRel = pressureRelBase * math.exp(
|
|
|
|
-1 * gMR * deltaAltitude / 1000.0 / baseTemp
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
pressureRel = pressureRelBase * math.pow(
|
|
|
|
baseTemp / temperature, gMR / tempGrad / 1000.0
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add temperature offset
|
|
|
|
temperature = temperature + deltaTemperature
|
|
|
|
|
|
|
|
# Finally, work out the density...
|
|
|
|
speedOfSound = math.sqrt(gamma * R * temperature)
|
|
|
|
pressure = pressureRel * pressureSL
|
|
|
|
density = densitySL * pressureRel * temperatureSL / temperature
|
|
|
|
|
|
|
|
return density
|
|
|
|
|
|
|
|
|
|
|
|
def seaLevelDescentRate(descent_rate, altitude):
|
|
|
|
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
|
|
|
|
|
|
|
|
rho = getDensity(altitude)
|
|
|
|
return math.sqrt((rho / 1.225) * math.pow(descent_rate, 2))
|
|
|
|
|
|
|
|
|
2021-10-04 07:25:03 +00:00
|
|
|
# Earthmaths code by Daniel Richman (thanks!)
|
|
|
|
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
|
|
|
|
def position_info(listener, balloon):
|
|
|
|
"""
|
|
|
|
Calculate and return information from 2 (lat, lon, alt) tuples
|
|
|
|
|
|
|
|
Returns a dict with:
|
|
|
|
|
|
|
|
- angle at centre
|
|
|
|
- great circle distance
|
|
|
|
- distance in a straight line
|
|
|
|
- bearing (azimuth or initial course)
|
|
|
|
- elevation (altitude)
|
|
|
|
|
|
|
|
Input and output latitudes, longitudes, angles, bearings and elevations are
|
|
|
|
in degrees, and input altitudes and output distances are in meters.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Earth:
|
|
|
|
radius = 6371000.0
|
|
|
|
|
|
|
|
(lat1, lon1, alt1) = listener
|
|
|
|
(lat2, lon2, alt2) = balloon
|
|
|
|
|
|
|
|
lat1 = radians(lat1)
|
|
|
|
lat2 = radians(lat2)
|
|
|
|
lon1 = radians(lon1)
|
|
|
|
lon2 = radians(lon2)
|
|
|
|
|
|
|
|
# Calculate the bearing, the angle at the centre, and the great circle
|
|
|
|
# distance using Vincenty's_formulae with f = 0 (a sphere). See
|
|
|
|
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
|
|
|
|
# http://en.wikipedia.org/wiki/Great-circle_navigation and
|
|
|
|
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
|
|
|
|
d_lon = lon2 - lon1
|
|
|
|
sa = cos(lat2) * sin(d_lon)
|
|
|
|
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
|
|
|
|
bearing = atan2(sa, sb)
|
|
|
|
aa = sqrt((sa ** 2) + (sb ** 2))
|
|
|
|
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
|
|
|
|
angle_at_centre = atan2(aa, ab)
|
|
|
|
great_circle_distance = angle_at_centre * radius
|
|
|
|
|
|
|
|
# Armed with the angle at the centre, calculating the remaining items
|
|
|
|
# is a simple 2D triangley circley problem:
|
|
|
|
|
|
|
|
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
|
|
|
|
# straight line. The angle between (r + alt1) and (r + alt2) is the
|
|
|
|
# angle at the centre. The angle between distance in a straight line and
|
|
|
|
# (r + alt1) is the elevation plus pi/2.
|
|
|
|
|
|
|
|
# Use sum of angle in a triangle to express the third angle in terms
|
|
|
|
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
|
|
|
|
# expand with compound angle formulae and solve for tan elevation by
|
|
|
|
# dividing both sides by cos elevation
|
|
|
|
ta = radius + alt1
|
|
|
|
tb = radius + alt2
|
|
|
|
ea = (cos(angle_at_centre) * tb) - ta
|
|
|
|
eb = sin(angle_at_centre) * tb
|
|
|
|
elevation = atan2(ea, eb)
|
|
|
|
|
|
|
|
# Use cosine rule to find unknown side.
|
|
|
|
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
|
|
|
|
|
|
|
|
# Give a bearing in range 0 <= b < 2pi
|
|
|
|
if bearing < 0:
|
|
|
|
bearing += 2 * pi
|
|
|
|
|
|
|
|
return {
|
|
|
|
"listener": listener,
|
|
|
|
"balloon": balloon,
|
|
|
|
"listener_radians": (lat1, lon1, alt1),
|
|
|
|
"balloon_radians": (lat2, lon2, alt2),
|
|
|
|
"angle_at_centre": degrees(angle_at_centre),
|
|
|
|
"angle_at_centre_radians": angle_at_centre,
|
|
|
|
"bearing": degrees(bearing),
|
|
|
|
"bearing_radians": bearing,
|
|
|
|
"great_circle_distance": great_circle_distance,
|
|
|
|
"straight_distance": distance,
|
|
|
|
"elevation": degrees(elevation),
|
|
|
|
"elevation_radians": elevation,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def get_standard_prediction(conn, timestamp, latitude, longitude, altitude, current_rate=5.0, ascent_rate=PREDICT_DEFAULTS['ascent_rate'], burst_altitude=PREDICT_DEFAULTS['burst_altitude'], descent_rate=PREDICT_DEFAULTS['descent_rate']):
|
|
|
|
"""
|
|
|
|
Request a standard flight path prediction from Tawhiri.
|
|
|
|
Notes:
|
|
|
|
- The burst_altitude must be higher than the current altitude.
|
|
|
|
- Longitude is in the range 0-360.0
|
|
|
|
- All ascent/descent rates must be positive.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Bomb out if the rates are too low.
|
|
|
|
if ascent_rate < ASCENT_RATE_THRESHOLD:
|
|
|
|
return None
|
|
|
|
|
|
|
|
if descent_rate < ASCENT_RATE_THRESHOLD:
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
# Shift longitude into the appropriate range for Tawhiri
|
|
|
|
if longitude < 0:
|
|
|
|
longitude += 360.0
|
|
|
|
|
|
|
|
# Generate the prediction URL
|
|
|
|
url = f"/api/v1/?launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}&burst_altitude={burst_altitude:.2f}&descent_rate={descent_rate:.2f}"
|
|
|
|
|
|
|
|
conn.request("GET", url)
|
|
|
|
res = conn.getresponse()
|
|
|
|
data = res.read()
|
|
|
|
|
|
|
|
if res.code != 200:
|
|
|
|
logging.debug(data)
|
|
|
|
return None
|
|
|
|
|
|
|
|
pred_data = json.loads(data.decode("utf-8"))
|
|
|
|
|
|
|
|
path = []
|
|
|
|
|
|
|
|
if 'prediction' in pred_data:
|
|
|
|
for stage in pred_data['prediction']:
|
|
|
|
# Probably don't need to worry about this, it should only result in one or two points
|
|
|
|
# in 'ascent'.
|
|
|
|
if stage['stage'] == 'ascent' and current_rate < 0: # ignore ascent stage if we have already burst
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
for item in stage['trajectory']:
|
|
|
|
path.append({
|
|
|
|
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
|
|
|
|
"lat": item['latitude'],
|
|
|
|
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
|
|
|
|
"alt": item['altitude'],
|
|
|
|
})
|
|
|
|
|
|
|
|
pred_data['path'] = path
|
|
|
|
return pred_data
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def get_launch_estimate(conn, timestamp, latitude, longitude, altitude, ascent_rate=PREDICT_DEFAULTS['ascent_rate']):
|
|
|
|
"""
|
|
|
|
Estimate the launch site of a sonde based on a current ascent position.
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
- Longitude is in the range 0-360.0
|
|
|
|
- All ascent/descent rates must be positive.
|
|
|
|
|
|
|
|
UNTESTED
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Bomb out if the rates are too low.
|
|
|
|
if ascent_rate < ASCENT_RATE_THRESHOLD:
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
# Shift longitude into the appropriate range for Tawhiri
|
|
|
|
if longitude < 0:
|
|
|
|
longitude += 360.0
|
|
|
|
|
|
|
|
# Generate the prediction URL
|
|
|
|
url = f"/api/v1/?profile=reverse_profile&launch_latitude={latitude}&launch_longitude={longitude}&launch_datetime={timestamp}&launch_altitude={altitude:.2f}&ascent_rate={ascent_rate:.2f}"
|
|
|
|
|
|
|
|
conn.request("GET", url)
|
|
|
|
res = conn.getresponse()
|
|
|
|
data = res.read()
|
|
|
|
|
|
|
|
if res.code != 200:
|
|
|
|
logging.debug(data)
|
|
|
|
return None
|
|
|
|
|
|
|
|
pred_data = json.loads(data.decode("utf-8"))
|
|
|
|
|
|
|
|
if 'launch_estimate' in pred_data:
|
|
|
|
return pred_data['launch_estimate']
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
2021-10-04 09:15:28 +00:00
|
|
|
# return a dict key'd by serial with reverse prediction data
|
|
|
|
def get_reverse_predictions():
|
|
|
|
path = "reverse-prediction-*/_search"
|
|
|
|
payload = {
|
|
|
|
"size": 1000,
|
|
|
|
"sort": [
|
|
|
|
{
|
|
|
|
"datetime": {
|
|
|
|
"order": "asc",
|
|
|
|
"unmapped_type": "boolean"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"query": {
|
|
|
|
"bool": {
|
|
|
|
"filter": [
|
|
|
|
{
|
|
|
|
"range": {
|
|
|
|
"datetime": {
|
|
|
|
"gte": "now-1d",
|
|
|
|
"lte": "now",
|
|
|
|
"format": "strict_date_optional_time"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
logging.debug("Start ES Request")
|
|
|
|
results = es_request(json.dumps(payload), path, "POST")
|
|
|
|
logging.debug("Finished ES Request")
|
|
|
|
return { x['_source']['serial'] : x['_source'] for x in results['hits']['hits']}
|
|
|
|
|
|
|
|
def bulk_upload_es(index_prefix,payloads):
|
|
|
|
body=""
|
|
|
|
for payload in payloads:
|
|
|
|
body += "{\"index\":{}}\n" + json.dumps(payload) + "\n"
|
|
|
|
body += "\n"
|
|
|
|
date_prefix = datetime.now().strftime("%Y-%m")
|
|
|
|
result = es_request(body, f"{index_prefix}-{date_prefix}/_doc/_bulk", "POST")
|
|
|
|
|
|
|
|
if 'errors' in result and result['errors'] == True:
|
|
|
|
error_types = [x['index']['error']['type'] for x in result['items'] if 'error' in x['index']] # get all the error types
|
|
|
|
error_types = [a for a in error_types if a != 'mapper_parsing_exception'] # filter out mapper failures since they will never succeed
|
|
|
|
if error_types:
|
|
|
|
print(result)
|
|
|
|
raise RuntimeError
|
2021-10-04 07:25:03 +00:00
|
|
|
|
2021-09-13 04:42:34 +00:00
|
|
|
def predict(event, context):
|
|
|
|
path = "telm-*/_search"
|
|
|
|
payload = {
|
|
|
|
"aggs": {
|
|
|
|
"2": {
|
|
|
|
"terms": {
|
|
|
|
"field": "serial.keyword",
|
|
|
|
"order": {
|
|
|
|
"_key": "desc"
|
|
|
|
},
|
|
|
|
"size": 1000
|
|
|
|
},
|
|
|
|
"aggs": {
|
|
|
|
"3": {
|
|
|
|
"date_histogram": {
|
|
|
|
"field": "datetime",
|
|
|
|
"fixed_interval": "5s"
|
|
|
|
},
|
|
|
|
"aggs": {
|
|
|
|
"1": {
|
|
|
|
"top_hits": {
|
|
|
|
"docvalue_fields": [
|
|
|
|
{
|
|
|
|
"field": "alt"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"_source": "alt",
|
|
|
|
"size": 1,
|
|
|
|
"sort": [
|
|
|
|
{
|
|
|
|
"datetime": {
|
|
|
|
"order": "desc"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"4": {
|
|
|
|
"serial_diff": {
|
|
|
|
"buckets_path": "4-metric",
|
|
|
|
"gap_policy": "skip",
|
|
|
|
"lag": 5
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"5": {
|
|
|
|
"top_hits": {
|
|
|
|
"docvalue_fields": [
|
|
|
|
{
|
|
|
|
"field": "position"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"_source": {"includes": ["position", "type", "subtype"]},
|
|
|
|
"size": 1,
|
|
|
|
"sort": [
|
|
|
|
{
|
|
|
|
"datetime": {
|
|
|
|
"order": "desc"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"4-metric": {
|
|
|
|
"avg": {
|
|
|
|
"field": "alt"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"size": 0,
|
|
|
|
"stored_fields": [
|
|
|
|
"*"
|
|
|
|
],
|
|
|
|
"script_fields": {},
|
|
|
|
"docvalue_fields": [
|
|
|
|
{
|
|
|
|
"field": "@timestamp",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "datetime",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "log_date",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "time_received",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "time_server",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "time_uploaded",
|
|
|
|
"format": "date_time"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"_source": {
|
|
|
|
"excludes": []
|
|
|
|
},
|
|
|
|
"query": {
|
|
|
|
"bool": {
|
|
|
|
"must": [],
|
|
|
|
"filter": [
|
|
|
|
{
|
|
|
|
"match_all": {}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"range": {
|
|
|
|
"datetime": {
|
|
|
|
"gte": "now-10m",
|
|
|
|
"lte": "now",
|
|
|
|
"format": "strict_date_optional_time"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"should": [],
|
|
|
|
"must_not": [
|
|
|
|
{
|
|
|
|
"match_phrase": {
|
|
|
|
"software_name": "SondehubV1"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"size": 0
|
|
|
|
}
|
|
|
|
logging.debug("Start ES Request")
|
|
|
|
results = es_request(json.dumps(payload), path, "GET")
|
|
|
|
logging.debug("Finished ES Request")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
serials = { }
|
|
|
|
for x in results['aggregations']['2']['buckets']:
|
|
|
|
try:
|
|
|
|
serials[x['key']] = {
|
|
|
|
"alt": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['1']['hits']['hits'][0]['fields']['alt'][0],
|
|
|
|
"position": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]['fields']['position'][0].split(","),
|
|
|
|
"rate": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['4']['value']/25, # as we bucket for every 5 seconds with a lag of 5
|
|
|
|
"time": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['key_as_string'],
|
|
|
|
"type": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["type"],
|
2021-09-14 01:06:38 +00:00
|
|
|
"subtype": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["subtype"] if "subtype" in sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"] else None
|
2021-09-13 04:42:34 +00:00
|
|
|
}
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
|
|
|
|
serial_data={}
|
|
|
|
logging.debug("Start Predict")
|
|
|
|
for serial in serials:
|
|
|
|
|
|
|
|
value = serials[serial]
|
2021-10-04 07:25:03 +00:00
|
|
|
|
|
|
|
# TODO - If this serial already has a launch site allocated, get the default flight profile for it
|
|
|
|
#
|
|
|
|
# TODO - If this serial doesn't have a launch site allocated, try and allocate one.
|
|
|
|
# - Estimate the launch site using a call to tawhiri
|
|
|
|
# - For each known launch site, calculate the straight-line distance between the estimted launch location
|
|
|
|
# and the launch site (use position_info function above). Keep the smallest straight-line distance and its corresponding launch site.
|
|
|
|
# - If the straight-line distance is < LAUNCH_ALLOCATE_RANGE, assign the sonde to that launch site.
|
|
|
|
# - Otherwise, set the serial's launch site to 'unknown'.
|
|
|
|
#
|
|
|
|
# Otherwise, fallback to using a flight profile based on the sonde type.
|
|
|
|
_flight_profile = flight_profile_by_type(value['type'])
|
|
|
|
|
|
|
|
#print(value)
|
|
|
|
#print(_flight_profile)
|
|
|
|
|
|
|
|
# Determine current ascent rate
|
|
|
|
# If the value is < 0.5 (e.g. we are on descent, or not moving), we just use a default value.
|
|
|
|
ascent_rate=value['rate'] if value['rate'] > 0.5 else _flight_profile['ascent_rate']
|
|
|
|
|
|
|
|
# If we are on descent, estimate the sea-level descent rate from the current descent rate
|
|
|
|
# Otherwise, use the flight profile descent rate
|
|
|
|
descent_rate= seaLevelDescentRate(abs(value['rate']),value['alt']) if value['rate'] < 0 else _flight_profile['descent_rate']
|
|
|
|
|
|
|
|
# If the resultant sea-level descent rate is very small, it means we're probably landed
|
|
|
|
# so dont run a prediction for this sonde.
|
2021-09-13 04:42:34 +00:00
|
|
|
if descent_rate < 0.5:
|
|
|
|
continue
|
2021-10-04 07:25:03 +00:00
|
|
|
|
|
|
|
# Now to determine the burst altitude
|
2021-09-13 04:42:34 +00:00
|
|
|
if value['rate'] < 0:
|
2021-10-04 07:25:03 +00:00
|
|
|
# On descent (rate < 0), we need to set the burst altitude just higher than our current altitude for
|
|
|
|
# the predictor to be happy
|
2021-09-13 04:42:34 +00:00
|
|
|
burst_altitude = value['alt']+0.05
|
|
|
|
else:
|
2021-10-04 07:25:03 +00:00
|
|
|
# Otherwise, on ascent we either use the expected burst altitude, or we
|
|
|
|
# add a little bit on to our current altitude.
|
|
|
|
burst_altitude = (value['alt']+0.05) if value['alt'] > _flight_profile['burst_altitude'] else _flight_profile['burst_altitude']
|
2021-09-13 04:42:34 +00:00
|
|
|
|
|
|
|
longitude = float(value['position'][1].strip())
|
2021-10-04 07:25:03 +00:00
|
|
|
latitude = float(value['position'][0].strip())
|
|
|
|
|
|
|
|
#print(f"Prediction Parameters for {serial} at {latitude}, {longitude}, {value['alt']}: {ascent_rate}/{burst_altitude}/{descent_rate}")
|
|
|
|
|
|
|
|
# Run prediction! This will return None if there is an error
|
|
|
|
serial_data[serial] = get_standard_prediction(
|
|
|
|
conn,
|
|
|
|
value['time'],
|
|
|
|
latitude,
|
|
|
|
longitude,
|
|
|
|
value['alt'],
|
|
|
|
current_rate=value['rate'],
|
|
|
|
ascent_rate=ascent_rate,
|
|
|
|
burst_altitude=burst_altitude,
|
|
|
|
descent_rate=descent_rate
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2021-09-13 04:42:34 +00:00
|
|
|
|
|
|
|
logging.debug("Stop Predict")
|
|
|
|
output = []
|
|
|
|
for serial in serial_data:
|
|
|
|
value = serial_data[serial]
|
|
|
|
|
2021-10-04 07:25:03 +00:00
|
|
|
if value is not None:
|
2021-09-13 04:42:34 +00:00
|
|
|
output.append(
|
|
|
|
{
|
|
|
|
"serial": serial,
|
|
|
|
"type": serials[serial]['type'],
|
|
|
|
"subtype": serials[serial]['subtype'],
|
|
|
|
"datetime": value['request']['launch_datetime'],
|
|
|
|
"position": [
|
2021-09-13 05:41:23 +00:00
|
|
|
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
|
|
|
|
value['request']['launch_latitude']
|
2021-09-13 04:42:34 +00:00
|
|
|
],
|
|
|
|
"altitude": value['request']['launch_altitude'],
|
|
|
|
"ascent_rate": value['request']['ascent_rate'],
|
|
|
|
"descent_rate": value['request']['descent_rate'],
|
|
|
|
"burst_altitude": value['request']['burst_altitude'],
|
|
|
|
"descending": True if serials[serial]['rate'] < 0 else False,
|
|
|
|
"landed": False, # I don't think this gets used anywhere?
|
2021-10-04 07:25:03 +00:00
|
|
|
"data": value['path']
|
2021-09-13 04:42:34 +00:00
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2021-10-04 09:15:28 +00:00
|
|
|
bulk_upload_es("predictions", output)
|
2021-09-13 04:42:34 +00:00
|
|
|
|
|
|
|
logging.debug("Finished")
|
|
|
|
return
|
|
|
|
|
|
|
|
def es_request(params, path, method):
|
|
|
|
# get aws creds
|
|
|
|
session = boto3.Session()
|
|
|
|
|
|
|
|
compressed = BytesIO()
|
|
|
|
with gzip.GzipFile(fileobj=compressed, mode='w') as f:
|
|
|
|
f.write(params.encode('utf-8'))
|
|
|
|
params = compressed.getvalue()
|
|
|
|
|
|
|
|
|
|
|
|
headers = {"Host": HOST, "Content-Type": "application/json", "Content-Encoding":"gzip"}
|
|
|
|
request = AWSRequest(
|
|
|
|
method=method, url=f"https://{HOST}/{path}", data=params, headers=headers
|
|
|
|
)
|
|
|
|
SigV4Auth(boto3.Session().get_credentials(), "es", "us-east-1").add_auth(request)
|
|
|
|
|
|
|
|
session = URLLib3Session()
|
|
|
|
r = session.send(request.prepare())
|
|
|
|
|
|
|
|
if r.status_code != 200:
|
|
|
|
raise RuntimeError
|
|
|
|
return json.loads(r.text)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-10-04 07:25:03 +00:00
|
|
|
|
|
|
|
# Predictor test
|
|
|
|
# conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
|
|
|
|
# _now = datetime.utcnow().isoformat() + "Z"
|
|
|
|
|
|
|
|
# _ascent = get_standard_prediction(conn, _now, -34.0, 138.0, 10.0, burst_altitude=26000)
|
|
|
|
# print(f"Got {len(_ascent)} data points for ascent prediction.")
|
|
|
|
# _descent = get_standard_prediction(conn, _now, -34.0, 138.0, 24000.0, burst_altitude=24000.5)
|
|
|
|
# print(f"Got {len(_descent)} data points for descent prediction.")
|
|
|
|
|
2021-10-09 00:09:20 +00:00
|
|
|
test = predict(
|
|
|
|
{},{}
|
|
|
|
)
|
2021-10-04 07:25:03 +00:00
|
|
|
|
|
|
|
# for _serial in test:
|
|
|
|
# print(f"{_serial['serial']}: {len(_serial['data'])}")
|
|
|
|
|
|
|
|
|
2021-10-04 09:15:28 +00:00
|
|
|
# print(predict(
|
|
|
|
# {},{}
|
|
|
|
# ))
|
2021-10-09 00:09:20 +00:00
|
|
|
# bulk_upload_es("reverse-prediction",[{
|
|
|
|
# "datetime" : "2021-10-04",
|
|
|
|
# "data" : { },
|
|
|
|
# "serial" : "R12341234",
|
|
|
|
# "station" : "-2",
|
|
|
|
# "subtype" : "RS41-SGM",
|
|
|
|
# "ascent_rate" : "5",
|
|
|
|
# "alt" : 1000,
|
|
|
|
# "position" : [
|
|
|
|
# 1,
|
|
|
|
# 2
|
|
|
|
# ],
|
|
|
|
# "type" : "RS41"
|
|
|
|
# }]
|
|
|
|
# )
|
2021-09-13 04:42:34 +00:00
|
|
|
|