2021-09-13 04:42:34 +00:00
|
|
|
import boto3
|
|
|
|
import botocore.credentials
|
|
|
|
from botocore.awsrequest import AWSRequest
|
|
|
|
from botocore.endpoint import URLLib3Session
|
|
|
|
from botocore.auth import SigV4Auth
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
from datetime import datetime, timedelta, timezone
|
|
|
|
import sys, traceback
|
|
|
|
import http.client
|
|
|
|
import math
|
|
|
|
import logging
|
|
|
|
import gzip
|
|
|
|
from io import BytesIO
|
|
|
|
|
|
|
|
HOST = os.getenv("ES")
|
|
|
|
|
|
|
|
def getDensity(altitude):
|
|
|
|
"""
|
|
|
|
Calculate the atmospheric density for a given altitude in metres.
|
|
|
|
This is a direct port of the oziplotter Atmosphere class
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Constants
|
|
|
|
airMolWeight = 28.9644 # Molecular weight of air
|
|
|
|
densitySL = 1.225 # Density at sea level [kg/m3]
|
|
|
|
pressureSL = 101325 # Pressure at sea level [Pa]
|
|
|
|
temperatureSL = 288.15 # Temperature at sea level [deg K]
|
|
|
|
gamma = 1.4
|
|
|
|
gravity = 9.80665 # Acceleration of gravity [m/s2]
|
|
|
|
tempGrad = -0.0065 # Temperature gradient [deg K/m]
|
|
|
|
RGas = 8.31432 # Gas constant [kg/Mol/K]
|
|
|
|
R = 287.053
|
|
|
|
deltaTemperature = 0.0
|
|
|
|
|
|
|
|
# Lookup Tables
|
|
|
|
altitudes = [0, 11000, 20000, 32000, 47000, 51000, 71000, 84852]
|
|
|
|
pressureRels = [
|
|
|
|
1,
|
|
|
|
2.23361105092158e-1,
|
|
|
|
5.403295010784876e-2,
|
|
|
|
8.566678359291667e-3,
|
|
|
|
1.0945601337771144e-3,
|
|
|
|
6.606353132858367e-4,
|
|
|
|
3.904683373343926e-5,
|
|
|
|
3.6850095235747942e-6,
|
|
|
|
]
|
|
|
|
temperatures = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
|
|
|
|
tempGrads = [-6.5, 0, 1, 2.8, 0, -2.8, -2, 0]
|
|
|
|
gMR = gravity * airMolWeight / RGas
|
|
|
|
|
|
|
|
# Pick a region to work in
|
|
|
|
i = 0
|
|
|
|
if altitude > 0:
|
|
|
|
while altitude > altitudes[i + 1]:
|
|
|
|
i = i + 1
|
|
|
|
|
|
|
|
# Lookup based on region
|
|
|
|
baseTemp = temperatures[i]
|
|
|
|
tempGrad = tempGrads[i] / 1000.0
|
|
|
|
pressureRelBase = pressureRels[i]
|
|
|
|
deltaAltitude = altitude - altitudes[i]
|
|
|
|
temperature = baseTemp + tempGrad * deltaAltitude
|
|
|
|
|
|
|
|
# Calculate relative pressure
|
|
|
|
if math.fabs(tempGrad) < 1e-10:
|
|
|
|
pressureRel = pressureRelBase * math.exp(
|
|
|
|
-1 * gMR * deltaAltitude / 1000.0 / baseTemp
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
pressureRel = pressureRelBase * math.pow(
|
|
|
|
baseTemp / temperature, gMR / tempGrad / 1000.0
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add temperature offset
|
|
|
|
temperature = temperature + deltaTemperature
|
|
|
|
|
|
|
|
# Finally, work out the density...
|
|
|
|
speedOfSound = math.sqrt(gamma * R * temperature)
|
|
|
|
pressure = pressureRel * pressureSL
|
|
|
|
density = densitySL * pressureRel * temperatureSL / temperature
|
|
|
|
|
|
|
|
return density
|
|
|
|
|
|
|
|
|
|
|
|
def seaLevelDescentRate(descent_rate, altitude):
|
|
|
|
""" Calculate the descent rate at sea level, for a given descent rate at altitude """
|
|
|
|
|
|
|
|
rho = getDensity(altitude)
|
|
|
|
return math.sqrt((rho / 1.225) * math.pow(descent_rate, 2))
|
|
|
|
|
|
|
|
|
|
|
|
def predict(event, context):
|
|
|
|
path = "telm-*/_search"
|
|
|
|
payload = {
|
|
|
|
"aggs": {
|
|
|
|
"2": {
|
|
|
|
"terms": {
|
|
|
|
"field": "serial.keyword",
|
|
|
|
"order": {
|
|
|
|
"_key": "desc"
|
|
|
|
},
|
|
|
|
"size": 1000
|
|
|
|
},
|
|
|
|
"aggs": {
|
|
|
|
"3": {
|
|
|
|
"date_histogram": {
|
|
|
|
"field": "datetime",
|
|
|
|
"fixed_interval": "5s"
|
|
|
|
},
|
|
|
|
"aggs": {
|
|
|
|
"1": {
|
|
|
|
"top_hits": {
|
|
|
|
"docvalue_fields": [
|
|
|
|
{
|
|
|
|
"field": "alt"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"_source": "alt",
|
|
|
|
"size": 1,
|
|
|
|
"sort": [
|
|
|
|
{
|
|
|
|
"datetime": {
|
|
|
|
"order": "desc"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"4": {
|
|
|
|
"serial_diff": {
|
|
|
|
"buckets_path": "4-metric",
|
|
|
|
"gap_policy": "skip",
|
|
|
|
"lag": 5
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"5": {
|
|
|
|
"top_hits": {
|
|
|
|
"docvalue_fields": [
|
|
|
|
{
|
|
|
|
"field": "position"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"_source": {"includes": ["position", "type", "subtype"]},
|
|
|
|
"size": 1,
|
|
|
|
"sort": [
|
|
|
|
{
|
|
|
|
"datetime": {
|
|
|
|
"order": "desc"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"4-metric": {
|
|
|
|
"avg": {
|
|
|
|
"field": "alt"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"size": 0,
|
|
|
|
"stored_fields": [
|
|
|
|
"*"
|
|
|
|
],
|
|
|
|
"script_fields": {},
|
|
|
|
"docvalue_fields": [
|
|
|
|
{
|
|
|
|
"field": "@timestamp",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "datetime",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "log_date",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "time_received",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "time_server",
|
|
|
|
"format": "date_time"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"field": "time_uploaded",
|
|
|
|
"format": "date_time"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"_source": {
|
|
|
|
"excludes": []
|
|
|
|
},
|
|
|
|
"query": {
|
|
|
|
"bool": {
|
|
|
|
"must": [],
|
|
|
|
"filter": [
|
|
|
|
{
|
|
|
|
"match_all": {}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"range": {
|
|
|
|
"datetime": {
|
|
|
|
"gte": "now-10m",
|
|
|
|
"lte": "now",
|
|
|
|
"format": "strict_date_optional_time"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"should": [],
|
|
|
|
"must_not": [
|
|
|
|
{
|
|
|
|
"match_phrase": {
|
|
|
|
"software_name": "SondehubV1"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"size": 0
|
|
|
|
}
|
|
|
|
logging.debug("Start ES Request")
|
|
|
|
results = es_request(json.dumps(payload), path, "GET")
|
|
|
|
logging.debug("Finished ES Request")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
serials = { }
|
|
|
|
for x in results['aggregations']['2']['buckets']:
|
|
|
|
try:
|
|
|
|
serials[x['key']] = {
|
|
|
|
"alt": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['1']['hits']['hits'][0]['fields']['alt'][0],
|
|
|
|
"position": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]['fields']['position'][0].split(","),
|
|
|
|
"rate": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['4']['value']/25, # as we bucket for every 5 seconds with a lag of 5
|
|
|
|
"time": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['key_as_string'],
|
|
|
|
"type": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["type"],
|
2021-09-14 01:06:38 +00:00
|
|
|
"subtype": sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"]["subtype"] if "subtype" in sorted(x['3']['buckets'], key=lambda k: k['key_as_string'])[-1]['5']['hits']['hits'][0]["_source"] else None
|
2021-09-13 04:42:34 +00:00
|
|
|
}
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
conn = http.client.HTTPSConnection("tawhiri.v2.sondehub.org")
|
|
|
|
serial_data={}
|
|
|
|
logging.debug("Start Predict")
|
|
|
|
for serial in serials:
|
|
|
|
|
|
|
|
value = serials[serial]
|
|
|
|
ascent_rate=value['rate'] if value['rate'] > 0.5 else 5 # this shouldn't really be used but it makes the API happy
|
|
|
|
descent_rate= seaLevelDescentRate(abs(value['rate']),value['alt']) if value['rate'] < 0 else 6
|
|
|
|
if descent_rate < 0.5:
|
|
|
|
continue
|
|
|
|
if value['rate'] < 0:
|
|
|
|
burst_altitude = value['alt']+0.05
|
|
|
|
else:
|
|
|
|
burst_altitude = (value['alt']+0.05) if value['alt'] > 26000 else 26000
|
|
|
|
|
|
|
|
longitude = float(value['position'][1].strip())
|
|
|
|
if longitude < 0:
|
|
|
|
longitude += 360
|
|
|
|
url = f"/api/v1/?launch_latitude={value['position'][0].strip()}&launch_longitude={longitude}&launch_datetime={value['time']}&launch_altitude={value['alt']:.2f}&ascent_rate={ascent_rate:.2f}&burst_altitude={burst_altitude:.2f}&descent_rate={descent_rate:.2f}"
|
|
|
|
|
|
|
|
|
|
|
|
conn.request("GET", url
|
|
|
|
|
|
|
|
)
|
|
|
|
res = conn.getresponse()
|
|
|
|
data = res.read()
|
|
|
|
if res.code != 200:
|
|
|
|
logging.debug(data)
|
|
|
|
serial_data[serial] = json.loads(data.decode("utf-8"))
|
|
|
|
logging.debug("Stop Predict")
|
|
|
|
output = []
|
|
|
|
for serial in serial_data:
|
|
|
|
value = serial_data[serial]
|
|
|
|
|
|
|
|
|
|
|
|
data = []
|
|
|
|
if 'prediction' in value:
|
|
|
|
for stage in value['prediction']:
|
|
|
|
if stage['stage'] == 'ascent' and serials[serial]['rate'] < 0: # ignore ascent stage if we have already burst
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
for item in stage['trajectory']:
|
|
|
|
data.append({
|
|
|
|
"time": int(datetime.fromisoformat(item['datetime'].split(".")[0].replace("Z","")).timestamp()),
|
|
|
|
"lat": item['latitude'],
|
|
|
|
"lon": item['longitude'] - 360 if item['longitude'] > 180 else item['longitude'],
|
|
|
|
"alt": item['altitude'],
|
|
|
|
})
|
|
|
|
output.append(
|
|
|
|
{
|
|
|
|
"serial": serial,
|
|
|
|
"type": serials[serial]['type'],
|
|
|
|
"subtype": serials[serial]['subtype'],
|
|
|
|
"datetime": value['request']['launch_datetime'],
|
|
|
|
"position": [
|
2021-09-13 05:41:23 +00:00
|
|
|
value['request']['launch_longitude'] - 360 if value['request']['launch_longitude'] > 180 else value['request']['launch_longitude'],
|
|
|
|
value['request']['launch_latitude']
|
2021-09-13 04:42:34 +00:00
|
|
|
],
|
|
|
|
"altitude": value['request']['launch_altitude'],
|
|
|
|
"ascent_rate": value['request']['ascent_rate'],
|
|
|
|
"descent_rate": value['request']['descent_rate'],
|
|
|
|
"burst_altitude": value['request']['burst_altitude'],
|
|
|
|
"descending": True if serials[serial]['rate'] < 0 else False,
|
|
|
|
"landed": False, # I don't think this gets used anywhere?
|
|
|
|
"data": data
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
# ES bulk update
|
|
|
|
body=""
|
|
|
|
for payload in output:
|
|
|
|
body += "{\"index\":{}}\n" + json.dumps(payload) + "\n"
|
|
|
|
body += "\n"
|
|
|
|
index = datetime.now().strftime("%Y-%m")
|
|
|
|
result = es_request(body, f"predictions-{index}/_doc/_bulk", "POST")
|
|
|
|
if 'errors' in result and result['errors'] == True:
|
|
|
|
error_types = [x['index']['error']['type'] for x in result['items'] if 'error' in x['index']] # get all the error types
|
|
|
|
error_types = [a for a in error_types if a != 'mapper_parsing_exception'] # filter out mapper failures since they will never succeed
|
|
|
|
if error_types:
|
|
|
|
print(event)
|
|
|
|
print(result)
|
|
|
|
raise RuntimeError
|
|
|
|
|
|
|
|
logging.debug("Finished")
|
|
|
|
return
|
|
|
|
|
|
|
|
def es_request(params, path, method):
|
|
|
|
# get aws creds
|
|
|
|
session = boto3.Session()
|
|
|
|
|
|
|
|
compressed = BytesIO()
|
|
|
|
with gzip.GzipFile(fileobj=compressed, mode='w') as f:
|
|
|
|
f.write(params.encode('utf-8'))
|
|
|
|
params = compressed.getvalue()
|
|
|
|
|
|
|
|
|
|
|
|
headers = {"Host": HOST, "Content-Type": "application/json", "Content-Encoding":"gzip"}
|
|
|
|
request = AWSRequest(
|
|
|
|
method=method, url=f"https://{HOST}/{path}", data=params, headers=headers
|
|
|
|
)
|
|
|
|
SigV4Auth(boto3.Session().get_credentials(), "es", "us-east-1").add_auth(request)
|
|
|
|
|
|
|
|
session = URLLib3Session()
|
|
|
|
r = session.send(request.prepare())
|
|
|
|
|
|
|
|
if r.status_code != 200:
|
|
|
|
raise RuntimeError
|
|
|
|
return json.loads(r.text)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print(predict(
|
|
|
|
{},{}
|
|
|
|
))
|
|
|
|
|
|
|
|
|