In the version 2023.01, the U-boot image was renamed because of the
upstream change [1]
[1] 87ac4b4b4c
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
This uses version 4.23.1 of the dsl_cpe_control package from the Intel
UGW 8.5.2.10 for the VRX518.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[rebased]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
[update to 4.23.1, added Jan's vector mac patch, fix warnings,
switch to tag tarball]
Signed-off-by: Andre Heider <a.heider@gmail.com>
[add missing nLine in autoboot script, fix disconnect on termination,
remove unneeded VR9 leftovers in init script]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Andre Heider <a.heider@gmail.com>
This uses version 4.23.1 of the drv_dsl_cpe_api package from the Intel
UGW 8.5.2.10 for the VRX518.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[rebased and updated for kernel 5.10]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
[update to 4.23.1, switch to tag tarball, update patches]
Signed-off-by: Andre Heider <a.heider@gmail.com>
[added fix for elapsed time and upstream MINEFTR]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Andre Heider <a.heider@gmail.com>
This uses version 1.11.1 of the drv_mei_cpe package from the Intel UGW
8.5.2.10 for the VRX518.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[updated for kernel 5.10]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
[update to 1.11.1, switch to tag tarball, update patches]
Signed-off-by: Andre Heider <a.heider@gmail.com>
[update for kernel 5.15]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Andre Heider <a.heider@gmail.com>
This driver version is also included in Intel UGW 8.5.2.10.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[updated for kernel 5.10]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
[update to 1.5.12.4, switch to tag tarball]
Signed-off-by: Andre Heider <a.heider@gmail.com>
[add working software data path]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Andre Heider <a.heider@gmail.com>
This driver was picked from the Intel UGW 8.5.2.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[updated for kernel 5.10]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
[update to 8.5.2]
Signed-off-by: Andre Heider <a.heider@gmail.com>
[fix masking interrupts and add locking]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Andre Heider <a.heider@gmail.com>
04d7570 jail: fs: don't overwrite existing mount target
6b9629b jail: don't assume positive return value of creat
190f13a init: attempt to mount efivarfs
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Dynalink DL-WRX36 is a AX WIFI router with 4 1G and 1 2.5G ports.
Specifications:
• CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
• RAM: 1024MB of DDR3
• Storage: 256MB Nand
• Ethernet: 4x 1G RJ45 ports (QCA8075) + 1 2.5G Port (QCA8081)
• WLAN:
2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 1174 Mbps PHY rate
5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate
• 1x USB 3.0
• 1 gpio-controlled dual color led (blue/red)
• Buttons: 1x soft reset / 1x WPS
• Power: 12V DC jack
A poulated serial header is onboard (J1004)
the connector size is a 4-pin 2.0 mm JST PH.
RX/TX is working, u-boot bootwait is active, secure boot is enabled.
Notes:
- Serial is completely deactivated in the stock firmware image.
- This commit adds only single partition support, that means
sysupgrade is upgrading the current rootfs partition.
- Installation can be done by serial connection or
SSH access on OEM firmware
Installation Instructions:
Most part of the installation is performed from an initramfs image
running OpenWrt, and there are two options to boot it.
Boot initramfs option 1: Using serial connection (3.3V)
1. Stop auto boot to get to U-boot shell
2. Transfer initramfs image to device
(openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb)
Tested using TFTP and a FAT-formatted USB flash drive.
3. Boot the initramfs image
# bootm
Boot initramfs option 2: From SSH access on OEM firmware
1. Copy the initramfs image to a FAT-formatted flash drive
(tested on single-partition drive) and connect it to device USB port.
2. Change boot command so it loads the initramfs image on next boot
Fallback to OEM firmware is provided.
# fw_setenv bootcmd 'usb start && fatload usb 0:1 0x44000000 openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb && bootm 0x44000000; bootipq'
3. Reboot the device to boot the initramfs
# reboot
Install OpenWrt from initramfs image:
1. Use SCP (or other way) to transfer OpenWrt factory image
2. Connect to device using SSH (on a LAN port)
3. Check MTD partition table.
rootfs and rootfs_1 should be mtd18 and mtd20
depending on current OEM slot.
# cat /proc/mtd
4. Do a ubiformat to both rootfs partitions:
# ubiformat /dev/mtd18 -y -f /path_to/factory_image
# ubiformat /dev/mtd20 -y -f /path_to/factory_image
5. Set U-boot env variable: mtdids
# fw_setenv mtdids 'nand0=nand0'
6. Get offset of mtd18 to determine current OEM slot
- If current OEM slot is 1, offset is 16777216 (0x1000000)
- If current OEM slot is 2, offset is 127926272 (0x7a00000)
# cat /sys/class/mtd/mtd18/offset
7. Set U-boot env variable: mtdparts
If current OEM slot is 1, run:
# fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x1000000(fs),0x6100000@0x7a00000(fs_1)'
If current OEM slot is 2, run:
# fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x7a00000(fs),0x6100000@0x1000000(fs_1)'
8. Set U-boot env variable: bootcmd
# fw_setenv bootcmd 'setenv bootargs console=ttyMSM0,115200n8 ubi.mtd=rootfs rootfstype=squashfs rootwait; ubi part fs; ubi read 0x44000000 kernel; bootm 0x44000000#config@rt5010w-d350-rev0'
9. Reboot the device
# reboot
Note: this PR adds only single partition support, that means sysupgrade is
upgrading the current rootfs partition
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
The Edgecore EAP102 is a wall/ceiling mountable AP. The AP can be
powered by either PoE or AC adapter.
Device info:
- IPQ8071-A SoC
- 1GiB RAM
- 256MiB NAND flash
- 32MiB SPI NOR
- 2 Ethernet ports
- 1 Console port
- 2GHz/5GHz AX WLAN
- 2 USB 2.0 ports
Install instructions:
Prerequistes - TFTP server, preferrably within 192.168.1.0/24
Console cable plugged in (115200 8N1 no flow control)
1. Power on device and interrupt u-boot to obtain u-boot CLI
2. set serverip to IP address of the TFTP server:
`setenv serverip 192.168.1.250`
3. Download image from TFTP server:
`tftpboot 0x44000000 openwrt-ipq807x-generic-edgecore_eap102-squashfs-nand-factory.ubi`
4. Flash ubi image to both partitions and reset:
`sf probe
imxtract 0x44000000 ubi
nand device 0
nand erase 0x0 0x3400000
nand erase 0x3c00000 0x3400000
nand write $fileaddr 0x0 $filesize
nand write $fileaddr 0x3c00000 $filesize
reset`
Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
Xiaomi AX9000 is a premium 802.11ax "tri"-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
* RAM: 1024MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet:
* 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* 1x2.5G RJ45 port (QCA8081) with 1x status LED
* WLAN:
* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
* 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate
* 5.8GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402Mbps PHY rate
* 5GHz: PCI based Qualcomm QCN9024 4x4@160MHz 802.11a/b/g/n/ac/ax 4804Mbps PHY rate
* USB: 1x USB3.0 Type-A port
* LED-s:
* System (Blue and Yellow)
* Network (Blue and Yellow)
* RGB light bar on top in X shape
* Buttons:
* 1x Power switch
* 1x Soft reset
* 1x Mesh button
* Power: 12V DC Jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/ax9000#obtain_ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd21 and mtd22 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd22 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd21 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Robert Marko <robimarko@gmail.com>
QNAP 301w is a AX WIFI router with 4 1G and 2 10G ports.
Specifications:
• CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
• RAM: 1024MB of DDR3
• Storage: 4GB eMMC (contains kernel and rootfs) / 8MB NOR
(contains art and u-boot-env)
• Ethernet: 4x 1G RJ45 ports + 2 10G ports (Aquantia AQR113C)
• WLAN:
2.4GHz: Qualcomm QCN5024 4x4 (40 MHz) 802.11b/g/n/ax 1174 Mbps PHY rate
5GHz: Qualcomm QCN5054 4x4 (80 MHz) or 2x2 (160 MHz) 802.11a/b/g/n/ac/ax 2402 PHY rate
• LEDs:
7 x GPIO-controlled dual color LEDs + 2 GPIO-controlled single color LEDs
• Buttons: 1x soft reset / 1x WPS
• Power: 12V DC jack
A poulated serial header is onboard.
RX/TX is working, bootwait is active, secure boot is not enabled.
SSH can be activated in the stock firmware, hold WPS button til the second beep
(yes the router has a buzzer)
SSH is available on port 22200, login with user admin and
password "mac address of the router".
Installation Instructions:
• obtain serial access (https://openwrt.org/inbox/toh/qnap/301w#serial)
• stop auto boot
• setenv serverip 192.168.10.1
• setenv ipaddr 192.168.10.10
• tftpboot the initramfs image
(openwrt-ipq807x-generic-qnap_301w-initramfs-fit-uImage.itb)
• bootm
• make sure that current_entry is set to "0":
"fw_printenv -n current_entry" should be print "0". If not,
do "fw_setenv current_entry 0"
• copy openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
to the device to /tmp folder
• sysupgrade -n /tmp/openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
this flashes openwrt to the first kernel and rootfs partition (mmcblk0p1 / mmcblk0p4)
• reboot
Note: this leaves the second kernel / rootfs parition untouched. So if you want
to go back to stock, stop u-boot autoboot, "setenv current_entry 1" ,
"saveenv", "bootipq".
Stock firmware should start from the second partition.
Then do a firmwareupgrade in the stock gui, that should overwrite the openwrt
in the first partitions
Make 10G Aquantia phy's work:
The aquantia phy's need a firmware to work. This can either be loaded
in linux with a userspace tool or in u-boot.
I was not successfull to load the firmware in linux (aq-fw-download) but luckily there is
aq_load_fw available in u-boot. But first the right firmware needs to write
to the 0:ETHPHYFW mtd partition (it is empty on my device)
Grab the ethphy firmware image from:
https://github.com/kirdesde/nbg7815_gpl/blob/master/target/linux/ipq/ipq807x_64/prebuilt_images/AQR_ethphyfw.mbn
and scp that to openwrt.
Check the 0:ETHPHYFW partition number:
cat /proc/mtd|grep "0:ETHPHYFW", should be mtd10.
Backup the 0:ETHPHYFW partition:
dd if=/dev/mtd10 of=/tmp/ethphyfw.backup, scp ethphyfw.backup to a save place.
Write the new firmware image to the 0:ETHPHYFW partition:
"mtd erase /dev/mtd10", "mtd -n write AQR_ethphyfw.mbn /dev/mtd10".
Reboot to u-boot.
Check if aq_load_fw is working:
"aq_load_fw 0", that checks the firmware and if successfull,
loads iram and dram to one of the aquantia phy's.
If that worked, add the aq_load_fw to the bootcmd:
setenv bootcmd "aq_load_fw 0 && aq_load_fw 8 && bootipq"
"saveenv"
"reset"
Board reboots and the firmware load to both phy's should start and
then openwrt boots.
Check if the 10G ports work.
Note: lan port labeled "10G-2" is configured as WAN port as per default.
All other port are in the br-lan. This can be changed in the network config.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Edimax CAX1800 is a 802.11 ax dual-band AP
with PoE. AP can be ceiling or wall mount.
Specifications:
• CPU: Qualcomm IPQ8070A Quad core Cortex-A53 1.4GHz
• RAM: 512MB of DDR3
• Storage: 128MB NAND (contains rootfs) / 8MB NOR (contains art and uboot-env)
• Ethernet: 1x 1G RJ45 port (QCA8072) PoE
• WLAN:
2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
5GHz: Qualcomm QCN5054 2x2 802.11a/b/g/n/ac/ax 1201 PHY rate
• LEDs:
3 x GPIO-controlled System-LEDs
(form one virtual RGB System-LED)
black_small_square Buttons: 1x soft reset
black_small_square Power: 12V DC jack or PoE (802.3af )
An unpopulated serial header is onboard.
RX/TX is working, bootwait is active, secure boot is not enabled.
SSH can be activated in the stock firmware, but it drops only
to a limited shell .
Installation Instructions:
black_small_square obtain serial access
black_small_square stop auto boot
black_small_square tftpboot the initramfs image (serverip is set to 192.168.99.8 in uboot)
black_small_square bootm
black_small_square copy openwrt-ipq807x-generic-edimax_cax1800-squashfs-nand-factory.ubi
to the device
black_small_square write the image to the NAND:
black_small_square cat /proc/mtd and look for rootfs partition (should be mtd0)
black_small_square ubiformat /dev/mtd0 -f -y openwrt-ipq807x-generic-edimax_cax1800-squashfs-
nand-factory.ubi
black_small_square reboot
Note: Device is not using dual partitioning (NAND contains other partitions
with different manufacture data etc.)
Draytek VigorAP 960C and Lancom LW-600 both look similar, but I haven't checked them.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Redmi AX6 is a budget 802.11ax dual-band router/AP
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 128MB NAND
* Ethernet: 4x1G RJ45 ports (QCA8075)
* WLAN:
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LEDs:
* System (Blue/Yellow)
* Network (Blue/Yellow)
*Buttons: 1x soft reset
*Power: 12V DC jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_redmi_ax6_ax3000#ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Zhijun You <hujy652@gmail.com>
Xiaomi AX3600 is a budget 802.11ax dual-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet: 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* WLAN:
* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LED-s:
* System (Blue and Yellow)
* IoT (Blue)
* Network (Blue and Yellow)
* Buttons: 1x Soft reset
* Power: 12V DC Jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_ax3600#obtain_ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm NSS-DP is as its name says Qualcomms ethernet driver for the NSS
subsystem (Networking subsystem) built-into various Qualcomm SoCs.
It has 2 modes of operation:
* Without NSS FW and rest of code required for offloading
This is the one that we will use as the amount of kernel patching required
for NSS offloading and the fact that its not upstreamable at all makes it
unusable for us.
Driver in this mode is rather basic, it currently only offers NAPI GRO
(Added by us as part of the fixup) and basically relies on the powerfull
CPU to get good throughput.
* With NSS FW and rest of code required for offloading
In this mode, driver just registers the interfaces and hooks them into
NSS-ECM to allow offloading.
This mode is not viable for use in OpenWrt due to reasons already described
above.
This driver is required for ipq807x to have wired networking until a better
one is available, so lets add the fixed-up version for 5.15 for now.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm SSDK is driver for Qualcomm Atheros switches and PHY-s.
It is quite complicated and used by rest of the Qualcomm SDK stack for
anything switch or PHY related.
It is required for IPQ807x support as currently, there is no better driver
for the built-in switch or UNIPHY.
So, lets add the fixed-up version that supports kernel 5.15 for use on
ipq807x target until a better driver is available.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is the follow up to the PCI support commit now providing support for
AHB variant as well, though currently only for ipq807x as that is only
OpenWrt supported SoC ath11k supports as well.
Currently, we are disabling coldboot calibration on ipq807x as it does not
work, there is a remoteproc bug that makes it come late out of reset so
disable coldboot until that is fixed.
Also, as ath11k is quite memory hungry, we are introducing a config option
to use the limits for 512MB of RAM, similar to what QCA does downstream but
in way simpler and cleaner way so that 512MB save some RAM.
512MB profile is also set as the default for now.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm Atheros IPQ807x is a modern WiSoC featuring:
* Quad Core ARMv8 Cortex A-53
* @ 2.2 GHz (IPQ8072A/4A/6A/8A) Codename Hawkeye
* @ 1.4 GHz (IPQ8070A/1A) Codename Acorn
* Dual Band simultaneaous IEEE 802.11ax
* 5G: 8x8/80 or 4x4/160MHz (IPQ8074A/8A)
* 5G: 4x4/80 or 2x2/160MHz (IPQ8071A/2A/6A)
* 5G: 2x2/80MHz (IPQ8070A)
* 2G: 4x4/40MHz (IPQ8072A/4A/6A/8A)
* 2G: 2x2/40MHz (IPQ8070A/1A)
* 1x PSGMII via QCA8072/5 (Max 5x 1GbE ports)
* 2x SGMII/USXGMII (1/2.5/5/10 GbE) on Hawkeye
* 2x SGMII/USXGMII (1/2.5/5 GbE) on Acorn
* DDR3L/4 32/16 bit up to 2400MT/s
* SDIO 3.0/SD card 3.0/eMMC 5.1
* Dual USB 3.0
* One PCIe Gen2.1 and one PCIe Gen3.0 port (Single lane)
* Parallel NAND (ONFI)/LCD
* 6x QUP BLSP SPI/I2C/UART
* I2S, PCM, and TDMA
* HW PWM
* 1.8V configurable GPIO
* Companion PMP8074 PMIC via SPMI (GPIOS, RTC etc)
Note that only v2 SOC models aka the ones ending with A suffix are
supported, v1 models do not comply to the final 802.11ax and have
lower clocks, lack the Gen3 PCIe etc.
SoC itself has two UBI32 cores for the NSS offloading system, however
currently no offloading is supported.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is a temporary workaround for supporting multiple cards or AHB+PCI.
There is ongoing upstream work to properly support this based of
advertised FW features, but that is still ongoing.
This is only supported on QCN9074 cards due to FW limitation, so HW ID
is checked in order to prevent breaking QCA6390 and other popular cards.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Package ath11k firmware for AHB devices as well as QCN9074 which is a non
consumer card targeted as a companion for QCA WiSoC-s.
linux-firmware is always out of date for these, so fetch them from Kalle-s
repo like we do for ath10k.
Signed-off-by: Robert Marko <robimarko@gmail.com>
The Arcadyan WE420223-99 is a WiFi AC simultaneous dual-band access
point distributed as Experia WiFi by KPN in the Netherlands. It features
two ethernet ports and 2 internal antennas.
Specifications
--------------
SOC : Mediatek MT7621AT
ETH : Two 1 gigabit ports, built into the SOC
WIFI : MT7615DN
BUTTON: Reset
BUTTON: WPS
LED : Power (green+red)
LED : WiFi (green+blue)
LED : WPS (green+red)
LED : Followme (green+red)
Power : 12 VDC, 1A barrel plug
Winbond variant:
RAM : Winbond W631GG6MB12J, 1GBIT DDR3 SDRAM
Flash : Winbond W25Q256JVFQ, 256Mb SPI
U-Boot: 1.1.3 (Nov 23 2017 - 16:40:17), Ralink 5.0.0.1
Macronix variant:
RAM : Nanya NT5CC64M16GP-DI, 1GBIT DDR3 SDRAM
Flash : MX25l25635FMI-10G, 256Mb SPI
U-Boot: 1.1.3 (Dec 4 2017 - 11:37:57), Ralink 5.0.0.1
Serial
------
The serial port needs a TTL/RS-232 3V3 level converter! The Serial
setting is 57600-8-N-1. The board has an unpopulated 2.54mm straight pin
header.
The pinout is: VCC (the square), RX, TX, GND.
Installation
------------
See the Wiki page [1] for more details, it comes down to:
1. Open the device, take off the heat sink
2. Connect the SPI flash chip to a flasher, e.g. a Raspberry Pi. Also
connect the RESET pin for stability (thanks @FPSUsername for reporting)
3. Make a backup in case you want to revert to stock later
4. Flash the squashfs-factory.trx file to offset 0x50000 of the flash
5. Ensure the bootpartition variable is set to 0 in the U-Boot
environment located at 0x30000
Note that the U-Boot is password protected, this can optionally be
removed. See the forum [2] for more details.
MAC Addresses(stock)
--------------------
+----------+------------------+-------------------+
| use | address | example |
+----------+------------------+-------------------+
| Device | label | 00:00:00:11:00:00 |
| Ethernet | + 3 | 00:00:00:11:00:03 |
| 2g | + 0x020000f00001 | 02:00:00:01:00:01 |
| 5g | + 1 | 00:00:00:11:00:01 |
+----------+------------------+-------------------+
The label address is stored in ASCII in the board_data partition
Notes
-----
- This device has a dual-boot partition scheme, but OpenWRT will claim
both partitions for more storage space.
Known issues
------------
- 2g MAC address does not match stock due to missing support for that in
macaddr_add
- Only the power LED is configured by default
References
----------
[1] https://openwrt.org/inbox/toh/arcadyan/astoria/we420223-99
[2] https://forum.openwrt.org/t/adding-openwrt-support-for-arcadyan-we420223-99-kpn-experia-wifi/132653
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: Harm Berntsen <git@harmberntsen.nl>
SOC: Qualcomm IPQ4019
WiFi 1: QCA4019 IEEE 802.11b/g/n
WiFi 2: QCA4019 IEEE 802.11a/n/ac
WiFi 3: QCA8888 IEEE 802.11a/n/ac
Bluetooth: Qualcomm CSR8811 (A12U)
Zigbee: Silicon Labs EM3581 NCP + Skyworks SE2432L
Ethernet: Qualcomm Atheros QCA8072 (2-port)
Flash 1: Mactronix MX30LF4G18AC-XKI
RAM (NAND): SK hynix H5TC4G63CFR-PBA (512MB)
LED Controller: NXP PCA9633 (I2C)
Buttons: Single reset button (GPIO).
- The three WiFis were fully tested and are configured with the same settings as in the vendor firmware.
- The specific board files were submitted to the ATH10k mailing list but I'm still waiting for a reply. They can be removed once they are approved upstream.
- Two ethernet ports are accessible on the device. By default one is configured as WAN and the other one is LAN. They are fully working.
Bluetooth:
========
- Fully working with the following caveats:
- RFKILL need to be enabled in the kernel.
- An older version of bluez is needed as bccmd is needed to configure the chip.
Zigbee:
======
- The spidev device is available in the /dev directory.
- GPIOs are configured the same way as in the vendor firmware.
- Tests are on-going. I am working on getting access to the Silicon Labs stack to validate that it is fully working.
Installation:
=========
The squash-factory image can be installed via the Linksys Web UI:
1. Open "http://192.168.1.1/ca" (Change the IP with the IP of your device).
2. Login with your admin password.
3. To enter into the support mode, click on the "CA" link and the bottom of the page.
4. Open the "Connectivity" menu and upload the squash-factory image with the "Choose file" button.
5. Click start. Ignore all the prompts and warnings by click "yes" in all the popups.
The device uses a dual partition mechanism. The device automatically revert to the previous partition after 3 failed boot attempts.
If you want to force the previous firmware to load, you can turn off and then turn on the device for 2 seconds, 3 times in a row.
It can also be done via TFTP:
1. Setup a local TFTP server and configure its IP to 192.168.1.100.
2. Rename your image to "nodes_v2.img" and put it to the TFTP root of your server.
3. Connect to the device through the serial console.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash the partition of your choice by typing "run flashimg" or "run flashimg2".
6. Once flashed, enter "reset" to reboot the device.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Vincent Tremblay <vincent@vtremblay.dev>
Light and small router ( In Poland operators sells together with MC7010 outdoor modem to provide WIFI inside home).
Device specification
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz (QCA9982): a/n/ac, 3x3
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Power (blue) , WiFI (blue and red), SMARTHOME (blue and red) and 1 internal (blue) -- NOTE: Power controls all external led (if down ,all others also not lights even signal is up)
Power: 5VDC, 2,1A via USB-C socket
Bootloader: U-Boot
On board ZWave and Zigbee (EFR32 MG1P232GG..) modules ( not supported by orginal software )
Installation
1.Open MF18A case by ungluing rubber pad under the router and unscrew screws, and connect to serial console port,
with the following pinout, starting from pin 1, which is the topmost pin when the board is upright (reset button on the bottom) :
VCC (3.3V). Do not use unless you need to source power for the converer from it.
TX
RX
GND
Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1.
2.Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2
3.Connect TFTP server to RJ-45 port (WAN/LAN1).
4.Power on MF18A , stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftpboot 0x84000000 openwrt-ipq40xx-generic-zte_mf18a-initramfs-fit-zImage.itb
bootm 0x84000000
5.Please make backup of original partitions, if you think about revert to stock, specially mtd8 (Web UI) and mtd9 (rootFS). Use /tmp as temporary storage and do:
WEB PARITION
cat /dev/mtd8 > /tmp/mtd8.bin
scp /tmp/mtd8.bin root@YOURSERVERIP:/
rm /tmp/mtd8.bin
ROOT PARITION
cat /dev/mtd9 > /tmp/mtd9.bin
scp /tmp/mtd9.bin root@YOURSERVERIP:/
rm /tmp/mtd9.bin
If you are sure ,that you want to flash openwrt, from uBoot, before bootm, clean rootfs partition with command:
nand erase 0x1800000 0x1D00000
6.Login via ssh or serial and remove stock partitions (default IP 192.168.1.1):
ubiattach -m 9 # it could return error if ubi was attached before or rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs # it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs_data # some devices doesn't have it
7. Install image via :
sysupgrade -n /tmp/openwrt-ipq40xx-generic-zte_mf18a-squashfs-sysupgrade.bin
previously wgeting bin. Sometimes it could print ubi attach error, but please ignore it if process goes forward.
Back to Stock (!!! need original dump taken from initramfs !!!) -------------
Place mtd8.bin and mtd9.bin initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2
Connect serial console (115200,8n1) to serial console connector .
Connect TFTP server to RJ-45 port (WAN/LAN1).
rename mtd8.bin to web.img and mtd9.bin to root_uImage_s
Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase Web and RootFS:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 root_uImage_s
nand erase 0x1800000 0x1D00000
nand write 0x84000000 0x1800000 0x1D00000
This will restore Web Interface:
tftpboot 0x84000000 web.img
nand erase 0x1000000 0x800000
nand write 0x84000000 0x1000000 0x800000
After first boot on stock firwmare, do a factory reset. Push reset button for 5 seconds so all parameters will be reverted to the one printed on label on bottom of the router
As reference was taken MF289F support by Giammarco Marzano stich86@gmail.com and MF286D by Pawel Dembicki paweldembicki@gmail.com
Signed-off-by: Marcin Gajda <mgajda@o2.pl>
This adds basic support for TP-Link EC330-G5u Ver:1.0 router (also known
as TP-Link Archer C9ERT).
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB, Nanya NT5CC64M16GP-DI
Flash: 128 MiB NAND, ESMT F59L1G81MA-25T
Wireless 2.4 GHz (MediaTek MT7615N): b/g/n, 4x4
Wireless 5 GHz (MediaTek MT7615N): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 4 (Led, WiFi On/Off, Reset, WPS)
LEDs: 7 blue LEDs, 1 orange(amber) LED, 1 white(non-gpio) LED
Power: 12 VDC, 2 A
Connector type: Barrel
Bootloader: First U-Boot (1.1.3), Main U-Boot (1.1.3). Additionally,
original TP-Link firmware contains Image U-Boot (1.1.3).
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
| J2
|
+--- Don't connect
Installation
------------
1. Rename OpenWrt initramfs image to test.bin and place it on tftp server
with IP 192.168.0.5
2. Attach UART, switch on the router and interrupt the boot process by
pressing 't'
3. Load and run OpenWrt initramfs image:
tftpboot
bootm
4. Once inside OpenWrt, switch to the first boot image:
fw_setenv BootImage 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Back to Stock
-------------
1. Run in the OpenWrt shell:
fw_setenv BootImage 1
reboot
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.0.1/) and upload
the OEM firmware
MAC addresses
-------------
+---------+-------------------+-------------------+-------------+
| | MAC example 1 | MAC example 2 | Algorithm |
+---------+-------------------+-------------------+-------------+
| label | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| LAN | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| WAN | 72:ff:7b:xx:xx:f5 | 54:d4:f7:xx:xx:db | label+1 [1] |
| WLAN 2g | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| WLAN 5g | 68:ff:7b:xx:xx:f6 | 50:d4:f7:xx:xx:dc | label+2 |
+---------+-------------------+-------------------+-------------+
label MAC address was found in factory at 0x165 (text format
xx:xx:xx:xx:xx:xx).
Notes
-----
[1] WAN MAC address:
a. First octet of WAN MAC is differ than others and OUI is not related
to TP-Link company. This probably should be fixed.
b. Flipping bits in first octet and hex delta are different for the
different MAC examples:
+-----------------+----------------+----------------+
| | Example 1 | Example 2 |
+-----------------+----------------+----------------+
| LAN | 68 = 0110 1000 | 50 = 0101 0000 |
| MAC (1st octet) | ^ ^ ^ | |
+-----------------+----------------+----------------+
| WAN | 72 = 0111 0010 | 54 = 0101 0100 |
| MAC (1st octet) | ^ ^ ^ | ^ |
+-----------------+----------------+----------------+
| HEX delta | 0xa | 0x4 |
+-----------------+----------------+----------------+
| DEC delta | 4 | 4 |
+-----------------+----------------+----------------+
c. DEC delta is a constant (4). This looks like a mistake in OEM
firmware and probably should be fixed.
Based on the above, I decided to keep correct OUI and make WAN MAC =
label + 1.
[2] Bootloaders
The device contains 3 bootloaders:
- First U-Boot: U-Boot 1.1.3 (Mar 18 2019 - 12:50:24). The First U-Boot
located on NAND Flash to load next full-feature Uboot.
- Main U-Boot + its backup: U-Boot 1.1.3 (Mar 18 2019 - 12:50:29). This
bootloader includes recovery webserver. Requires special uImages to
continue the boot process:
0x00 (os0, os1) - firmware uImage
0x40 (os0, os1) - standalone uImage (OpenWrt kernel is here)
- Additionally, both slots of the original TP-Link firmware contains
Image U-Boot: U-Boot 1.1.3 (Oct 16 2019 - 08:14:45). It checks image
magics and CRCs. We don't use this U-Boot with OpenWrt.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Support for MT7981 and MT7986 has been merged, remove patches.
Tested on a couple of MT7986, MT7622 and MT7623 boards.
MIPS builds are untested.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Currently, ath11k will crash the crash if we try to bringup the monitor
mode interface.
Luckily, it has already been fixed upstream, so backport the patches
fixing it.
Fixes: 93ae4353cdf6 ("mac80211: add ath11k PCI support")
Signed-off-by: Robert Marko <robimarko@gmail.com>
There is currently a problem with making reproducible version of lldpd.
The tool version is generated based on 3 source:
1. .dist-version file in release tar
2. git hash with presence of .git directory
3. current date
Using the codeload tar from github results in getting the repo without
the .git directory and since they are not release tar, we don't have
.dist-version. This results in having lldpd bin with a version set to
the current build time.
Switch to release tar so that we correctly have a .dist-version file and
the version is not based on the build time.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
This fixes a security problem in ksmbd. It currently has the
ZDI-CAN-18259 ID assigned, but no CVE yet.
Backported from:
8824b7af40cc4f3b5a6a
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The bpf plugin provides functionality for loading and interacting with
eBPF modules.
It allows loading full modules and pinned maps/programs and supports
interacting with maps and attaching programs as tc classifiers.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
34cfbb922c96 README.md: various spelling and documentation fixes
ff32355ea645 build: make rtnl/nl80211 depend on linux instead of !APPLE
c0e413c21f7b include: add uc_fn_thisval()
1e4d20932646 Merge pull request #134 from nbd168/thisval
Signed-off-by: Felix Fietkau <nbd@nbd.name>
GCC 12.2.0 shows these error messages:
````
rtl8812au-ct-2021-11-07-39df5596/core/rtw_sta_mgt.c: In function 'rtw_mfree_stainfo':
rtl8812au-ct-2021-11-07-39df5596/core/rtw_sta_mgt.c:210:24: error: the comparison will always evaluate as 'true' for the address of 'lock' will never be NULL [-Werror=address]
210 | if(&psta->lock != NULL)
| ^~
In file included from rtl8812au-ct-2021-11-07-39df5596/include/drv_types.h:109,
from rtl8812au-ct-2021-11-07-39df5596/core/rtw_sta_mgt.c:22:
rtl8812au-ct-2021-11-07-39df5596/include/sta_info.h:95:17: note: 'lock' declared here
95 | _lock lock;
| ^~~~
````
````
CC [M] rtl8812au-ct-2021-11-07-39df5596/os_dep/linux/ioctl_cfg80211.o
rtl8812au-ct-2021-11-07-39df5596/os_dep/linux/ioctl_cfg80211.c: In function 'cfg80211_rtw_scan':
rtl8812au-ct-2021-11-07-39df5596/os_dep/linux/ioctl_cfg80211.c:2176:32: warning: the comparison will always evaluate as 'true' for the address of 'ssid' will never be NULL [-Waddress]
2176 | if(ssids->ssid != NULL
| ^~
In file included from rtl8812au-ct-2021-11-07-39df5596/include/osdep_service_linux.h:88,
from rtl8812au-ct-2021-11-07-39df5596/include/osdep_service.h:41,
from rtl8812au-ct-2021-11-07-39df5596/include/drv_types.h:32,
from rtl8812au-ct-2021-11-07-39df5596/os_dep/linux/ioctl_cfg80211.c:22:
/home/hauke/openwrt/openwrt/staging_dir/target-mips_24kc_musl/usr/include/mac80211/net/cfg80211.h:2364:12: note: 'ssid' declared here
2364 | u8 ssid[IEEE80211_MAX_SSID_LEN];
| ^~~~
````
````
CC [M] rtl8812au-ct-2021-11-07-39df5596/hal/OUTSRC/phydm_debug.o
rtl8812au-ct-2021-11-07-39df5596/hal/OUTSRC/phydm_debug.c: In function 'phydm_cmd_parser':
rtl8812au-ct-2021-11-07-39df5596/hal/OUTSRC/phydm_debug.c:873:28: warning: the comparison will always evaluate as 'true' for the pointer operand in 'input + ((sizetype)i + 1) * 16' must not be NULL [-Waddress]
873 | if(input[i+1]) {
| ^~~~~
rtl8812au-ct-2021-11-07-39df5596/hal/OUTSRC/phydm_debug.c:894:28: warning: the comparison will always evaluate as 'true' for the pointer operand in 'input + ((sizetype)i + 1) * 16' must not be NULL [-Waddress]
894 | if(input[i+1]) {
| ^~~~~
````
This one was only seen on the rockchip/armv8 target:
````
CC [M] rtl8812au-ct-2021-11-07-39df5596/core/rtw_br_ext.o
In function '__nat25_add_pppoe_tag',
inlined from 'nat25_db_handle' at rtl8812au-ct-2021-11-07-39df5596/core/rtw_br_ext.c:909:10:
rtl8812au-ct-2021-11-07-39df5596/core/rtw_br_ext.c:118:9: error: 'memcpy' reading between 2052 and 9220 bytes from a region of size 40 [-Werror=stringop-overread]
118 | memcpy((unsigned char *)ph->tag, tag, data_len);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
rtl8812au-ct-2021-11-07-39df5596/core/rtw_br_ext.c: In function 'nat25_db_handle':
rtl8812au-ct-2021-11-07-39df5596/core/rtw_br_ext.c:878:63: note: source object 'tag_buf' of size 40
878 | unsigned char tag_buf[40];
| ^~~~~~~
````
Most of them are looking like real errors to me, but some fixes need a
deeper understanding of the driver and probably bigger changes to the driver.
Ignore these error messages for now. It would be nice if someone would
fix them.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
GCC 12.2.0 shows this false positive error message:
````
uqmi-2022-05-04-56cb2d40/dev.c: In function 'qmi_request_wait':
uqmi-2022-05-04-56cb2d40/dev.c:217:23: error: storing the address of local variable 'complete' in '*req.complete' [-Werror=dangling-pointer=]
217 | req->complete = &complete;
| ~~~~~~~~~~~~~~^~~~~~~~~~~
uqmi-2022-05-04-56cb2d40/dev.c:208:14: note: 'complete' declared here
208 | bool complete = false;
| ^~~~~~~~
uqmi-2022-05-04-56cb2d40/dev.c:208:14: note: 'req' declared here
cc1: all warnings being treated as errors
````
and this one:
````
In file included from uqmi-2022-05-04-56cb2d40/commands.c:28:
In function 'blobmsg_close_table',
inlined from 'cmd_nas_get_cell_location_info_cb' at /home/haukeuqmi-2022-05-04-56cb2d40/commands-nas.c:897:4:
/usr/include/libubox/blobmsg.h:256:9: error: 'c' may be used uninitialized [-Werror=maybe-uninitialized]
256 | blob_nest_end(buf, cookie);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from uqmi-2022-05-04-56cb2d40/commands.c:169:
uqmi-2022-05-04-56cb2d40/commands-nas.c: In function 'cmd_nas_get_cell_location_info_cb':
uqmi-2022-05-04-56cb2d40/commands-nas.c:713:15: note: 'c' was declared here
713 | void *c, *t, *cell, *freq;
| ^
cc1: all warnings being treated as errors
````
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
GCC 12.2.0 shows this false positive error message:
````
In function 'bigger_buffer',
inlined from '__libdw_gunzip' at gzip.c:374:12:
gzip.c:96:9: error: pointer may be used after 'realloc' [-Werror=use-after-free]
96 | b = realloc (state->buffer, more -= 1024);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
gzip.c:94:13: note: call to 'realloc' here
94 | char *b = realloc (state->buffer, more);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
cc1: all warnings being treated as errors
````
GCC bug report: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104069
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Update busybox to version 1.36.0
* refresh patches (remove the backported upstream fix)
* refresh config
Config refresh:
Refresh commands, run after busybox is first built once:
cd package/utils/busybox/config/
../convert_menuconfig.pl ../../../../build_dir/target-arm_cortex-a15+neon-vfpv4_musl_eabi/busybox-default/busybox-1.36.0
cd ..
./convert_defaults.pl ../../../build_dir/target-arm_cortex-a15+neon-vfpv4_musl_eabi/busybox-default/busybox-1.36.0/.config > Config-defaults.in
Manual edits needed after config refresh:
* Config-defaults.in: OpenWrt config symbol IPV6 logic applied to
BUSYBOX_DEFAULT_FEATURE_IPV6
* Config-defaults.in: OpenWrt config TARGET_bcm53xx logic applied to
BUSYBOX_DEFAULT_TRUNCATE (commit 547f1ec)
* Config-defaults.in: OpenWrt logic applied to
BUSYBOX_DEFAULT_LOGIN_SESSION_AS_CHILD (commit dc92917)
* Config-defaults.in: correct the default ports that get reset
BUSYBOX_DEFAULT_FEATURE_HTTPD_PORT_DEFAULT 80
BUSYBOX_DEFAULT_FEATURE_TELNETD_PORT_DEFAULT 23
* config/editors/Config.in: Add USE_GLIBC dependency to
BUSYBOX_CONFIG_FEATURE_VI_REGEX_SEARCH (commit f141090)
* config/shell/Config.in: change at "Options common to all shells" the conditional symbol
SHELL_ASH --> BUSYBOX_CONFIG_SHELL_ASH
(discussion in http://lists.openwrt.org/pipermail/openwrt-devel/2021-January/033140.html
Apparently our script does not see the hidden option while
prepending config options with "BUSYBOX_CONFIG_" which leads to a
missed dependency when the options are later evaluated.)
* Edit a few Config.in files by adding quotes to sourced items in
config/Config.in, config/networking/Config.in and config/util-linux/Config.in (commit 1da014f)
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
Add a separate firmware package to avoid installing the MT7615 firmware
on all MT7622 target devices by default. Now we only add MT7615 firmware
packages for devices that use MT7615E. This commit also removes the
explicit dependency on kmod-mt7615e to refine the package dependency.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The mt7915e driver supports MT7915, MT7916 and MT7986 chips. And Only
MT7915 series chips need the MT7915 firmware. To save storage, extract
them from the common code package and create a new package to provide
the firmware.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The kmod-mt7615-common package does not contain any code that
related to mt7915e Wi-Fi6 driver, so remove it.
Tested on ramips/mt7621: SIM SIMAX1800T
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
A huge rewrite in libpcap was introduced by dc14a7babca1 ("rpcap: have
the server tell the client its byte order.") [0]. The patch
"201-space_optimization.patch" does not apply at all anymore. So remove
it.
Refresh:
- 100-no-openssl.patch
- 102-skip-manpages.patch
Update the "300-Add-support-for-B.A.T.M.A.N.-Advanced.patch" with latest
PR [1].
old ipkg size:
90964 bin/packages/mips_24kc/base/libpcap1_1.10.1-5_mips_24kc.ipk
new ipkg size:
93340 bin/packages/mips_24kc/base/libpcap1_1.10.2-1_mips_24kc.ipk
[0] - dc14a7babc
[1] - https://github.com/the-tcpdump-group/libpcap/pull/980
Signed-off-by: Nick Hainke <vincent@systemli.org>