mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-17 18:30:24 +00:00
ea6fb9c16d
301 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Will Moss
|
0b22e87db0 |
ath79: D-Link DIR-825 B1 add factory.bin recipe
- Bring back factory.bin image which was missing after porting device to ath79 target - Use default sysupgrade.bin image recipe - Adjust max image size according to new firmware partition size after "ath79: expand rootfs for DIR-825-B1 with unused space ( |
||
Korey Caro
|
1133a8f805 |
ath79: add support to TrendNet TEW-673GRU
Add support for the TrendNet TEW-673GRU to ath79.
This device was supported in 19.07.9 but was deprecated with ar71xx.
This is mostly a copy of D-Link DIR-825 B1.
Updates have been completed to enable factory.bin and sysupgrade.bin both.
Code improvements to DTS file and makefile.
Architecture | MIPS
Vendor | Qualcomm Atheros
bootloader | U-Boot
System-On-Chip | AR7161 rev 2 (MIPS 24Kc V7.4)
CPU/Speed | 24Kc V7.4 680 MHz
Flash-Chip | Macronix MX25L6405D
Flash size | 8192 KiB
RAM Chip: | ProMOS V58C2256164SCI5 × 2
RAM size | 64 MiB
Wireless | 2 x Atheros AR922X 2.4GHz/5.0GHz 802.11abgn
Ethernet | RealTek RTL8366S Gigabit w/ port based vlan support
USB | Yes 2 x 2.0
Initial Flashing Process:
1) Download 22.03 tew-673gru factory bin
2) Flash 22.03 using TrendNet GUI
OpenWRT Upgrade Process
3) Download 22.03 tew-673gru sysupgrade.bin
4) Flash 22.03 using OpenWRT GUI
Signed-off-by: Korey Caro <korey.caro@gmail.com>
(cherry picked from commit
|
||
Lech Perczak
|
6cffcb2e9f |
ath79: support Ruckus ZoneFlex 7321
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.
Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1
Vverify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit
|
||
Lech Perczak
|
85a7588c90 |
ath79: support Ruckus ZoneFlex 7372
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.
Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.
Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
- Separate internal active antennas with beamforming support on both
bands with 7 elements per band, each controlled by 74LV164 GPIO
expanders, attached to GPIOs of each radio.
- Two dual-band external RP-SMA antenna connections on "7372-E"
variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.
The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).
which are based on same baseboard (codename St. Bernard),
with different populated components.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---
Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1
Verify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- This is first device in ath79 target to support link state reporting
on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
using active multi-segment antennas on both bands - controlled by
RF analog switches, driven by a pair of 74LV164 shift registers.
Shift registers used for each radio are connected to GPIO14 (clock)
and GPIO15 of the respective chip.
They are mapped as generic GPIOs in OpenWrt - in stock firmware,
they were most likely handled directly by radio firmware,
given the real-time nature of their control.
Lack of this support in OpenWrt causes the antennas to behave as
ordinary omnidirectional antennas, and does not affect throughput in
normal conditions, but GPIOs are available to tinker with nonetheless.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit
|
||
Nick Hainke
|
4b5bd15091 |
ath79: move ubnt-xm to tiny
ath79 has was bumped to 5.10. With this, as with every kernel change, the kernel has become larger. However, although the kernel gets bigger, there are still enough flash resources. But the RAM reaches its capacity limits. The tiny image comes with fewer kernel flags enabled and fewer daemons. Improves: |
||
Albin Hellström
|
e497818e18 |
ath79: add support for Extreme Networks WS-AP3805i
Specifications:
- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: 2x 128MB Nanya NT5TU64M16HG
- FLASH: 64MB - SPANSION FL512SAIFG1
- LAN: Atheros AR8035-A (RGMII GbE with PoE+ IN)
- WLAN2: Qualcomm Atheros QCA9557 2x2 2T2R
- WLAN5: Qualcomm Atheros QCA9882-BR4A 2x2 2T2R
- SERIAL: UART pins at J10 (115200 8n1)
Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
- LEDs: Power (Green/Amber)
WiFi 5 (Green)
WiFi 2 (Green)
- BTN: Reset
Installation:
1. Download the OpenWrt initramfs-image.
Place it into a TFTP server root directory and rename it to 1D01A8C0.img
Configure the TFTP server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point.
Attach power and interrupt the boot procedure when prompted.
Credentials are admin / new2day
4. Configure U-Boot for booting OpenWrt from ram and flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x89000000 1D01A8C0.img; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
6. Transfer the OpenWrt sysupgrade image to the device.
Write the image to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com>
[rename vendor - minor style fixes - update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit
|
||
Tomasz Maciej Nowak
|
409534860f |
ath79: bsap18x0: pad rootfs image
This image is supposed to be written with help of bootloader to the
flash, but as it stands, it's not aligned to block size and RedBoot will
happily create non-aligned partition size in FIS directory. This could
lead to kernel to mark the partition as read-only, therefore pad the
image to block erase size boundary.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(cherry picked from commit
|
||
Tomasz Maciej Nowak
|
8e09f9ffc3 |
ath79: switch some RedBoot based devices to OKLI loader
After the kernel has switched version to 5.10, JA76PF2 and RouterStations lost the capability to sysupgrade the OpenWrt version. The cause is the lack of porting the patches responsible for partial flash erase block writing and these boards FIS directory and RedBoot config partitions share the same erase block. Because of that the FIS directory can't be updated to accommodate kernel/rootfs partition size changes. This could be remedied by bootloader update, but it is very intrusive and could potentially lead to non-trivial recovery procedure, if something went wrong. The less difficult option is to use OpenWrt kernel loader, which will let us use static partition sizes and employ mtd splitter to dynamically adjust kernel and rootfs partition sizes. On sysupgrade from ath79 19.07 or 21.02 image, which still let to modify FIS directory, the loader will be written to kernel partition, while the kernel+rootfs to rootfs partition. The caveats are: * image format changes, no possible upgrade from ar71xx target images * downgrade to any older OpenWrt version will require TFTP recovery or usage of bootloader command line interface To downgrade to 19.07 or 21.02, or to upgrade if one is already on OpenWrt with kernel 5.10, for RouterStations use TFTP recovery procedure. For JA76PF2 use instructions from this commit message: commit |
||
Sebastian Schaper
|
b9d67e2608 |
ath79: fix rootfs padding for D-Link DAP-2xxx
It was observed that `rootfs_data` was sometimes not correctly erased
after performing sysupgrade, resulting in previous settings to prevail.
Add call to `wrgg-pad-rootfs` in sysupgrade image recipe to ensure any
previous jffs2 will be wiped, consistent with DAP-2610 from the ipq40xx
target, which introduced the double-flashing procedure for these devices.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
(cherry picked from commit
|
||
Stijn Segers
|
2b4fba8750 |
ath79: D-Link DAP-2680: select QCA9984 firmware
The DAP-2680 has a QCA9984 radio [1], but the commit adding support mistakenly adds the QCA99x0 firmware package. See forum topic [2]. [1] https://wikidevi.wi-cat.ru/D-Link_DAP-2680_rev_A1 [2] https://forum.openwrt.org/t/missing-5ghz-radio-on-dlink-dap-2680/ Fixes: |
||
Nick Hainke
|
9b20e2a699 |
ath79: add Netgear WNDAP360
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A
Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
(9600,8N1)
screen /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
setenv ipaddr 192.168.1.1
setenv serverip 192.168.1.42
saveenv
4. Reset the device
reset
5. Hit again the spacebar
6. Now load the image via tftp:
tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.
https://openwrt.org/toh/netgear/wndap360
The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:
&ath9k0 {
nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
nvmem-cell-names = "mac-address", "calibration";
};
&ath9k1 {
nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
nvmem-cell-names = "mac-address", "calibration";
};
&art {
...
cal_art_1000: cal@1000 {
reg = <0x1000 0xeb8>;
};
cal_art_5000: cal@5000 {
reg = <0x5000 0xeb8>;
};
};
Signed-off-by: Nick Hainke <vincent@systemli.org>
(cherry picked from commit
|
||
Andrew Powers-Holmes
|
ff9264fabc |
ath79: add support for Sophos AP100/AP55 family
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.
The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.
Specifications common to all models:
- Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
- 128 MB RAM
- 16 MB SPI flash
- 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
- Green and Red status LEDs sharing a single external light-pipe
- Reset button on PCB[1]
- Piezo beeper on PCB[2]
- Serial UART header on PCB
- Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC
Unique to AP100 and AP100C:
- 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
- 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP55 and AP55C:
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP100 and AP55:
- External RJ45 serial console port[3]
- USB 2.0 Type A port, power controlled via GPIO 11
Flashing instructions:
This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.
To flash via XG appliance:
- Register on Sophos' website for a no-cost Home Use XG firewall license
- Download and install the XG software on a compatible PC or virtual
machine, complete initial appliance setup, and enable SSH console access
- Connect the target AP device to the XG appliance's LAN interface
- Approve the AP from the XG Web UI and wait until it shows as Active
(this can take 3-5 minutes)
- Connect to the XG appliance over SSH and access the Advanced Console
(Menu option 5, then menu option 3)
- Run `sudo awetool` and select the menu option to connect to an AP via
SSH. When prompted to enable SSH on the target AP, select Yes.
- Wait 2-3 minutes, then select the AP from the awetool menu again. This
will connect you to a root shell on the target AP.
- Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
- Run `mtd -r write /tmp/openwrt.bin astaro_image`
- When complete, the access point will reboot to OpenWRT.
To flash via U-Boot serial console:
- Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
netmask 255.255.255.0
- Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
- Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
- Connect the AP ethernet to your PC's ethernet port
- Connect a terminal to the UART at 115200 8/N/1 as usual
- Power on the AP and press a key to cancel autoboot when prompted
- Run the following commands at the U-Boot console:
- `tftpboot`
- `cp.b $fileaddr 0x9f070000 $filesize`
- `boot`
- The access point will boot to OpenWRT.
MAC addresses as verified by OEM firmware:
use address source
LAN label config 0x201a (label)
2g label + 1 art 0x1002 (also found at config 0x2004)
5g label + 9 art 0x5006
Increments confirmed across three AP55C, two AP55, and one AP100C.
These changes have been tested to function on both current master and
21.02.0 without any obvious issues.
[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
any GPIO. Shorting an unpopulated resistor next to the driver circuitry
should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
works in OpenWRT without additional configuration, at least on my
three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
the device's top cover. On AP100C/AP55C models, the PCB must be removed
for access; three screws secure it to the case.
Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX
Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
(cherry picked from commit
|
||
Thibaut VARÈNE
|
321ec22f52 |
ath79: add support for Yuncore A930
Specification:
- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
(cherry picked from commit
|
||
Thibaut VARÈNE
|
708b883168 |
ath79: add support for Yuncore XD3200
Specification:
- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)
LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
(cherry picked from commit
|
||
Michael Pratt
|
41be1a2de2 |
ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC Araknis AN-700-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1750 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3 - QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:xb art 0x0 phy1 2.4G *:xc --- phy0 5GHz *:xd --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
56716b578e |
ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC Araknis AN-500-AP-I-AC is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EAP1200 the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - QCA9557 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - QCA9882 WLAN PCI card 168c:003c, 5 GHz, 2x2, 26dBm - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:e1 art 0x0 phy1 2.4G *:e2 --- phy0 5GHz *:e3 --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Michael Pratt
|
561f46bd02 |
ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN Araknis AN-300-AP-I-N is an indoor wireless access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ this board is a Senao device: the hardware is equivalent to EnGenius EWS310AP the software is modified Senao SDK which is based on openwrt and uboot including image checksum verification at boot time, and a failsafe image that boots if checksum fails **Specification:** - AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2 - AR9382 WLAN PCI on-board 168c:0030, 5 GHz, 2x2 - AR8035-A PHY RGMII GbE with PoE+ IN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM 1839ZFG V59C1512164QFJ25 - UART console J10, populated, RX shorted to ground - 4 antennas 5 dBi, internal omni-directional plates - 4 LEDs power, 2G, 5G, wps - 1 button reset NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide therefore, the power LED is off for default state **MAC addresses:** MAC address labeled as ETH Only one Vendor MAC address in flash at art 0x0 eth0 ETH *:7d art 0x0 phy1 2.4G *:7e --- phy0 5GHz *:7f --- **Serial Access:** the RX line on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin at J10 **Installation:** Method 1: Firmware upgrade page: (if you cannot access the APs webpage) factory reset with the reset button connect ethernet to a computer OEM webpage at 192.168.20.253 username and password 'araknis' make a new password, login again... Navigate to 'File Management' page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm wait about 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fd70000` wait a minute connect to ethernet and navigate to 192.168.20.253 Select the factory.bin image and upload wait about 3 minutes **Return to OEM:** Method 1: Serial to load Failsafe webpage (above) Method 2: delete a checksum from uboot-env this will make uboot load the failsafe image at next boot because it will fail the checksum verification of the image ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait a minute connect to ethernet and navigate to 192.168.20.253 select OEM firmware image and click upgrade Method 3: backup mtd partitions before upgrade **TFTP recovery:** Requires serial console, reset button does nothing rename initramfs-kernel.bin to '0101A8C0.img' make available on TFTP server at 192.168.1.101 power board, interrupt boot with serial console execute `tftpboot` and `bootm 0x81000000` NOTE: TFTP may not be reliable due to bugged bootloader set MTU to 600 and try many times **Format of OEM firmware image:** The OEM software is built using SDKs from Senao which is based on a heavily modified version of Openwrt Kamikaze or Altitude Adjustment. One of the many modifications is sysupgrade being performed by a custom script. Images are verified through successful unpackaging, correct filenames and size requirements for both kernel and rootfs files, and that they start with the correct magic numbers (first 2 bytes) for the respective headers. Newer Senao software requires more checks but their script includes a way to skip them. The OEM upgrade script is at /etc/fwupgrade.sh OKLI kernel loader is required because the OEM software expects the kernel to be less than 1536k and the OEM upgrade procedure would otherwise overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035 switch between the SOC and the ethernet port. For QCA955x series, the PLL registers for eth0 and eth1 can be see in the DTSI as 0x28 and 0x48 respectively. Therefore the PLL registers can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x18050028 1` and `md 0x18050048 1`. The clock delay required for RGMII can be applied at the PHY side, using the at803x driver `phy-mode` setting through the DTS. Therefore, the Ethernet Configuration registers for GMAC0 do not need the bits for RGMII delay on the MAC side. This is possible due to fixes in at803x driver since Linux 5.1 and 5.3 Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
Piotr Dymacz
|
131671bc54 |
ath79: add support for ALFA Network Tube-2HQ
ALFA Network Tube-2HQ is a successor of the Tube-2H/P series (EOL) which was based on the Atheros AR9331. The new version uses Qualcomm QCA9531. Specifications: - Qualcomm/Atheros QCA9531 v2 - 650/400/200 MHz (CPU/DDR/AHB) - 64 or 128 MB of RAM (DDR2) - 16+ MB of flash (SPI NOR) - 1x 10/100 Mbps Ethernet with passive PoE input (24 V) (802.3at/af PoE support with optional module) - 1T1R 2.4 GHz Wi-Fi with external PA (SE2623L, up to 27 dBm) and LNA - 1x Type-N (male) antenna connector - 6x LED (5x driven by GPIO) - 1x button (reset) - external h/w watchdog (EM6324QYSP5B, enabled by default) - UART (4-pin, 2.00 mm pitch) header on PCB Flash instruction: You can use sysupgrade image directly in vendor firmware which is based on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot: 1. Configure PC with static IP 192.168.1.2/24. 2. Connect PC with one of RJ45 ports, press the reset button, power up device, wait for first blink of all LEDs (indicates network setup), then keep button for 3 following blinks and release it. 3. Open 192.168.1.1 address in your browser and upload sysupgrade image. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> |
||
Piotr Dymacz
|
aae7af4219 |
ath79: image: use 'kmod-usb-chipidea2' for AR933x devices
AR933x based devices should include 'kmod-usb-chipidea2' for USB support. Fixes: #9243. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> |
||
Mauri Sandberg
|
b99aee5080 |
ath79: use gpio-cascade for Buffalo WZR-HP-G300NH
Switch to a generic GPIO cascade driver. Signed-off-by: Mauri Sandberg <maukka@ext.kapsi.fi> Signed-off-by: Petr Štetiar <ynezz@true.cz> [missing commit description] |
||
Wenli Looi
|
c32008a37b |
ath79: add partial support for Netgear EX7300v2
Hardware -------- SoC: QCN5502 Flash: 16 MiB RAM: 128 MiB Ethernet: 1 gigabit port Wireless No1: QCN5502 on-chip 2.4GHz 4x4 Wireless No2: QCA9984 pcie 5GHz 4x4 USB: none Installation ------------ Flash the factory image using the stock web interface or TFTP the factory image to the bootloader. What works ---------- - LEDs - Ethernet port - 5GHz wifi (QCA9984 pcie) What doesn't work ----------------- - 2.4GHz wifi (QCN5502 on-chip) (I was not able to make this work, probably because ath9k requires some changes to support QCN5502.) Signed-off-by: Wenli Looi <wlooi@ucalgary.ca> |
||
Tamas Balogh
|
b21bc3479d |
ath79: ASUS RP-AC66 use flash till the end
This makes available the additional space, which was occupied by OEM's jffs2 partition before: "0x000000f80000-0x000001000000 : jffs2" Reverting to the OEM firmware will also recover this partition, i.e. it is not needed and can be used by OpenWrt. Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com> |
||
Sven Eckelmann
|
8143709c90 |
ath79: Add support for OpenMesh OM2P v1
Device specifications: ====================== * Qualcomm/Atheros AR7240 rev 2 * 350/350/175 MHz (CPU/DDR/AHB) * 32 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 1T1R 2.4 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + 18-24V passive POE (mode B) + used as WAN interface - eth1 + builtin switch port 4 + used as LAN interface * 12-24V 1A DC * external antenna The device itself requires the mtdparts from the uboot arguments to properly boot the flashed image and to support dual-boot (primary + recovery image). Unfortunately, the name of the mtd device in mtdparts is still using the legacy name "ar7240-nor0" which must be supplied using the Linux-specfic DT parameter linux,mtd-name to overwrite the generic name "spi0.0". Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
1699c1dc7f |
ath79: Add support for OpenMesh OM5P-AC v2
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/200 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 4x GPIO-LEDs (3x wifi, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
- eth0
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as LAN interface
- eth1
+ AR8031 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
This device support is based on the partially working stub from commit
|
||
Tamas Balogh
|
872b65ecc8 |
ath79: patch Asus RP-AC66 clean up and fix for sysupgrade image
- clean up leftovers regarding MAC configure in dts - fix alphabetical order in caldata - IMAGE_SIZE for sysupgrade image Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com> |
||
Sven Eckelmann
|
97f5617259 |
ath79: Add support for OpenMesh OM5P-AC v1
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring * 2x ethernet - eth0 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as LAN interface - eth1 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
72ef594550 |
ath79: Add support for OpenMesh OM5P-AN
Device specifications: ====================== * Qualcomm/Atheros AR9344 rev 2 * 560/450/225 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 1T1R 2.4 GHz Wi-Fi * 2T2R 5 GHz Wi-Fi * 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring * 2x ethernet - eth0 + AR8035 ethernet PHY + 10/100/1000 Mbps Ethernet + 802.3af POE + used as LAN interface - eth1 + 10/100 Mbps Ethernet + builtin switch port 1 + 18-24V passive POE (mode B) + used as WAN interface * 12-24V 1A DC * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Tamas Balogh
|
b29f4cf34c |
ath79: add support for ASUS RP-AC66
Asus RP-AC66 Repeater Hardware specifications: Board: AP152 SoC: QCA9563 DRAM: 64MB DDR2 Flash: 25l128 16MB SPI-NOR LAN/WAN: 1x1000M QCA8033 WiFi 5GHz: QCA9880 Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz MAC addresses as verified by OEM firmware: use address source Lan/Wan *:24 art 0x1002 (label) 2G *:24 art 0x1002 5G *:26 art 0x5006 Installation: Asus windows recovery tool: - install the Asus firmware restoration utility - unplug the router, hold the reset button while powering it on - release when the power LED flashes slowly - specify a static IP on your computer: IP address: 192.168.1.75 Subnet mask 255.255.255.0 - Start the Asus firmware restoration utility, specify the factory image and press upload - Do not power off the device after OpenWrt has booted until the LED flashing. TFTP Recovery method: - set computer to a static ip, 192.168.1.75 - connect computer to the LAN 1 port of the router - hold the reset button while powering on the router for a few seconds - send firmware image using a tftp client; i.e from linux: $ tftp tftp> binary tftp> connect 192.168.1.1 tftp> put factory.bin tftp> quit Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com> |
||
Ryan Mounce
|
35aecc9d4a |
ath79: add support for WD My Net N600
SoC: AR9344 RAM: 128MB Flash: 16MiB SPI NOR 5GHz WiFi: AR9382 PCIe 2x2:2 802.11n 2.4GHz WiFi: AR9344 (SoC) AHB 2x2:2 802.11n 5x Fast ethernet via SoC switch (green LEDs) 1x USB 2.0 4x front LEDs from SoC GPIO 1x front WPS button from SoC GPIO 1x bottom reset button from SoC GPIO UART header JP1, 115200 no parity 1 stop TX GND VCC (N/P) RX Flash factory image via "emergency room" recovery: - Configure your computer with a static IP 192.168.1.123/24 - Connect to LAN port on the N600 switch - Hold reset putton - Power on, holding reset until the power LED blinks slowly - Visit http://192.168.1.1/ and upload OpenWrt factory image - Wait at least 5 minutes for flashing, reboot and key generation - Visit http://192.168.1.1/ (OpenWrt LuCI) and upload OpenWrt sysupgrade image Signed-off-by: Ryan Mounce <ryan@mounce.com.au> [dt leds preparations] Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Olivier Valentin
|
7853453950 |
ath79: add support for jjPlus JWAP230
The jjPlus JWAP230 is an access point board built around the QCA9558, with built-in 2.4GHz 3x3 N WiFi (28dBm). It can be expanded with 2 mini-PCIe boards, and has an USB2 root port. Specifications: - SOC: Qualcomm Atheros QCA9558 - CPU: 720MHz - H/W switch: QCA8327 rev 2 - Flash: 16 MiB SPI NOR (en25qh128) - RAM: 128 MiB DDR2 - WLAN: AR9550 built-in SoC bgn 3T3R (ath9k) - PCI: 2x mini-PCIe (optional 5V) - LEDs: 6x LEDs (3 are currently available) - Button: 1x Reset (not yet defined) - USB2: - 1x Type A root port - 1x combined mini-PCIe - Ethernet: - 2x 10/100/1000 (1x PoE 802.3af (36-57 V)) Notes: The device used to be supported in the ar71xx target. For upgrades: Please use "sysupgrade --force -n <image>". This will restore the device back to OpenWrt defaults! MAC address assignment: use source LAN art 0x0 WAN art 0x6 WLAN art 0x1002 (as part of the calibration data) Flash instructions: - install from u-boot with tftp (requires serial access) > setenv ipaddr a.b.c.d > setenv serverip e.f.g.h > tftp 0x80060000 \ openwrt-ath79-generic-jjplus_jwap230-squashfs-sysupgrade.bin > erase 0x9f050000 +${filesize} > cp.b $fileaddr 0x9f050000 $filesize > setenv bootcmd bootm 0x9f050000 > saveenv Signed-off-by: Olivier Valentin <valentio@free.fr> [Added DT-Leds (based on ar71xx), Added more notes about sysupgrade, fixed "qca9550" to match SoC in commit and dts file name] Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Catrinel Catrinescu
|
24d455d1d0 |
ath79: add Embedded Wireless Balin Platform
Add the Embedded Wireless "Balin" platform, it is in ar71xx too SoC: QCA AR9344 or AR9350 RAM: DDR2-RAM 64MBytes Flash: SPI-NOR 16MBytes WLAN: 2 x 2 MIMO 2.4 & 5 GHz IEEE802.11 a/b/g/n Ethernet: 3 x 10/100 Mb/s USB: 1 x USB2.0 Host/Device bootstrap-pin at power-up PCIe: MiniPCIe - 1 x lane PCIe 1.2 Button: 1 x Reset-Button UART: 1 x Normal, 1 x High-Speed JTAG: 1 x EJTAG LED: 1 x Green Power/Status LED GPIO: 10 x Input/Output multiplexed The module comes already with the current vanilla OpenWrt firmware. To update, use "sysupgrade -n --force <image>" image directly in vendor firmware. This resets the existing configurations back to default! Signed-off-by: Catrinel Catrinescu <cc@80211.de> [indent, led function+color properties, fix partition unit-address, re-enable pcie port, mention button+led in commit message] Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Sebastian Schaper
|
25df327086 |
ath79: merge D-Link DAP-2695 with dtsi
Further devices from the series have been added in the meantime, introducing `qca955x_dlink_dap-2xxx.dtsi`. Thus, merge support for DAP-2695 with the existing dtsi. This implies factory images can now be flashed via the regular OEM Web UI, as well as the bootloader recovery. Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> |
||
Shiji Yang
|
184dc6e32a |
ath79: add support for Letv LBA-047-CH
Specifications: SOC: QCA9531 650 MHz ROM: 16 MiB Flash (Winbond W25Q128FV) RAM: 128 MiB DDR2 (Winbond W971GG6SB) LAN: 10/100M *2 WAN: 10/100M *1 LED: BGR color *1 Mac address: label C8:0E:77:xx:xx:68 art@0x0 lan C8:0E:77:xx:xx:62 art@0x6 wan C8:0E:77:xx:xx:68 art@0x0 (same as the label) wlan C8:0E:77:xx:xx:B2 art@0x1002 (load automatically) TFTP installation: * Set local IP to 192.168.67.100 and open tftpd64, link lan port to computer. Rename "xxxx-factory.bin" to "openwrt-ar71xx-generic-ap147-16M-rootfs-squashfs.bin". * Make sure firmware file is in the tftpd's directory, push reset button and plug in, hold it for 5 seconds, and then it will download firmware from tftp server automatically. More information: * This device boot from flash@0xe80000 so we need a okli loader to deal with small kernel partition issue. In order to make full use of the storage space, connect a part of the previous kernel partition to the firmware. Stock Modify 0x000000-0x040000(u-boot) 0x000000-0x040000(u-boot) 0x040000-0x050000(u-boot-env) 0x000000-0x050000(u-boot-env) 0x050000-0xe80000(rootfs) 0x050000-0xe80000(firmware part1) 0xe80000-0xff0000(kernel) 0xe80000-0xe90000(okli-loader) 0xe90000-0xff0000(firmware part2) 0xff0000-0x1000000(art) 0xff0000-0x1000000(art) Signed-off-by: Shiji Yang <yangshiji66@qq.com> |
||
David Bauer
|
f85c970c9c |
ath79: use correct USB package for DIR-505
AR9331 requires kmod-usb2-chipidea to use the USB ports. Include the correct package so they can be used with the base image. Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Adrian Schmutzler
|
2d977eb3d5 |
ath79: add recipe for common setup with loader-okli-compile
These instructions are repeated for a few devices now, let's move them to shared definition so we do not repeat ourselves too often. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Adrian Schmutzler
|
d37125b3f3 |
ath79: remove redundant BLOCKSIZE of 64k from devices
BLOCKSIZE = 64k is set in Device/Default, i.e. global default on the target. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sebastian Schaper
|
1c8214d6f2 |
ath79: fix spelling of DEVICE_MODEL for D-Link DAP-2695
Change `DAP-2965` to `DAP-2695` for device selection in menuconfig.
Fixes:
|
||
Jan-Niklas Burfeind
|
d98738b5c1 |
ath79: add support for onion omega
The Onion Omega is a hardware development platform with built-in WiFi. https://onioniot.github.io/wiki/ Specifications: - QCA9331 @ 400 MHz (MIPS 24Kc Big-Endian Processor) - 64MB of DDR2 RAM running at 400 MHz - 16MB of on-board flash storage - Support for USB 2.0 - Support for Ethernet at 100 Mbps - 802.11b/g/n WiFi at 150 Mbps - 18 digital GPIOs - A single Serial UART - Support for SPI - Support for I2S Flash instructions: The device is running OpenWrt upon release using the ar71xx target. Both a sysupgrade and uploading the factory image using u-boots web-UI do work fine. Depending on the ssh client, it might be necessary to enable outdated KeyExchange methods e.g. in the clients ssh-config: Host 192.168.1.1 KexAlgorithms +diffie-hellman-group1-sha1 The stock credentials are: root onioneer For u-boots web-UI manually configure `192.168.1.2/24` on your computer, connect to `192.168.1.1`. MAC addresses as verified by OEM firmware: 2G phy0 label LAN eth0 label - 1 LAN is only available in combination with an optional expansion dock. Based on vendor acked commit: commit |
||
Romain Mahoux
|
e2d08084c3 |
ath79: add support for Compex WPJ558 (16M)
Specifications: - SoC: QCA9558 - DRAM: 128MB DDR2 - Flash: 16MB SPI-NOR - Wireless: on-board abgn 2×2 2.4GHz radio - Ethernet: 2x 10/100/1000 Mbps (1x 802.11af PoE) - miniPCIe slot Flash instruction: - From u-boot tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj558-16m-squashfs-sysupgrade.bin erase 0x9f030000 +$filesize cp.b $fileaddr 0x9f030000 $filesize boot - From cpximg loader The cpximg loader can be started either by holding the reset button during power up. Once it's running, a TFTP-server under 192.168.1.1 will accept the image appropriate for the board revision that is etched on the board. For example, if the board is labelled '6A07': tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj558-16m-squashfs-cpximg-6a07.bin Signed-off-by: Romain Mahoux <romain@mahoux.fr> [convert to nvmem, remove redundant lan_mac in 02_network] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Zoltan HERPAI
|
98eb95dd00 |
ath79: add support for Atheros DB120 reference board
Atheros DB120 reference board. Specifications: SoC: QCA9344 DRAM: 128Mb DDR2 Flash: 8Mb SPI-NOR, 128Mb NAND flash Switch: 5x 10/100Mbps via AR8229 switch (integrated into SoC), 5x 10/100/1000Mbps via QCA8237 via RGMII WLAN: AR9300 (SoC, 2.4G+5G) + AR9340 (PCIe, 5G-only) USB: 1x 2.0 UART: standard QCA UART header JTAG: yes Button: 1x reset LEDs: a lot Slots: 2x mPCIe + 1x mini-PCI, but using them requires additional undocumented changes. Misc: The board allows to boot off NAND, and there is I2S audio support as well - also requiring additional undocumented changes. Installation: 1. Original bootloader Connect the board to ethernet Set up a server with an IP address of 192.168.1.10 Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin available via TFTP tftpboot 0x80060000 openwrt-ath79-generic-atheros_db120-squashfs-factory.bin erase 0x9f050000 +$filesize cp.b $fileaddr 0x9f050000 $filesize 2. pepe2k's u-boot_mod Connect the board to ethernet Set up a server with an IP address of 192.168.1.10 Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin available via TFTP, as "firmware.bin" run fw_upg Reboot the board. Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu> [explicit factory recipe in generic.mk, sorting in 10-ath9k-eeprom, convert to nvmem, use fwconcat* names in DTS, remove unneeded DT labels, remove redundant uart node] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
John Marrett
|
252466a0ce |
ath79: add support for GL.iNet GL-X300B
The GL-X300B is a industrial 4G LTE router based on the Qualcomm QCA9531 SoC. Specifications: - Qualcomm QCA9531 @ 650 MHz - 128 MB of RAM - 16 MB of SPI NOR FLASH - 2x 10/100 Mbps Ethernet - 2.4GHz 802.11b/g/n - 1x USB 2.0 (vbus driven by GPIO) - 4x LED, driven by GPIO - 1x button (reset) - 1x mini pci-e slot (vcc driven by GPIO) - RS-485 Serial Port (untested) Flash instructions: This firmware can be flashed using either sysupgrade from the GL.iNet firmware or the recovery console as follows: - Press and hold the reset button - Connect power to the router, wait five seconds - Manually configure 192.168.1.2/24 on your computer, connect to 192.168.1.1 - Upload the firmware image using the web interface RS-485 serial port is untested and may depend on the following commit in the GL.iNet repo: |
||
Vincent Wiemann
|
55b4b36552 |
ath79: add support for Joy-IT JT-OR750i
Specifications: * QCA9531, 16 MiB flash (Winbond W25Q128JVSQ), 128 MiB RAM * 802.11n 2T2R (external antennas) * QCA9887, 802.11ac 1T1R (connected with diplexer to one of the antennas) * 3x 10/100 LAN, 1x 10/100 WAN * UART header with pinout printed on PCB Installation: * The device comes with a bootloader installed only * The bootloader offers DHCP and is reachable at http://10.123.123.1 * Accept the agreement and flash sysupgrade.bin * Use Firefox if flashing does not work TFTP recovery with static IP: * Rename sysupgrade.bin to jt-or750i_firmware.bin * Offer it via TFTP server at 192.168.0.66 * Keep the reset button pressed for 4 seconds after connecting power TFTP recovery with dynamic IP: * Rename sysupgrade.bin to jt-or750i_firmware.bin * Offer it via TFTP server with a DHCP server running at the same address * Keep the reset button pressed for 6 seconds after connecting power Co-authored-by: Sebastian Schaper <openwrt@sebastianschaper.net> Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com> |
||
Adrian Schmutzler
|
cce8d16bf1 |
treewide: call check-size before append-metadata
sysupgrade metadata is not flashed to the device, so check-size should be called _before_ adding metadata to the image. While at it, do some obvious wrapping improvements. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Acked-by: Paul Spooren <mail@aparcar.org> |
||
Evgeniy Isaev
|
6c148116f7 |
ath79: add support for Xiaomi AIoT Router AC2350
Device specifications * SoC: QCA9563 @ 775MHz (MIPS 74Kc) * RAM: 128MiB DDR2 * Flash: 16MiB SPI-NOR (EN25QH128) * Wireless 2.4GHz (SoC): b/g/n, 3x3 * Wireless 5Ghz (QCA9988): a/n/ac, 4x4 MU-MIMO * IoT Wireless 2.4GHz (QCA6006): currently unusable * Ethernet (AR8327): 3 LAN × 1GbE, 1 WAN × 1GbE * LEDs: Internet (blue/orange), System (blue/orange) * Buttons: Reset * UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1) * Power: 12VDC, 1,5A MAC addresses map (like in OEM firmware) art@0x0 88:C3:97:*:57 wan/label art@0x1002 88:C3:97:*:2D lan/wlan2g art@0x5006 88:C3:97:*:2C wlan5g Obtain SSH Access 1. Download and flash the firmware version 1.3.8 (China). 2. Login to the router web interface and get the value of `stok=` from the URL 3. Open a new tab and go to the following URL (replace <STOK> with the stok value gained above; line breaks are only for easier handling, please put together all four lines into a single URL without any spaces): http://192.168.31.1/cgi-bin/luci/;stok=<STOK>/api/misystem/set_config_iotdev ?bssid=any&user_id=any&ssid=-h%0Anvram%20set%20ssh_en%3D1%0Anvram%20commit %0Ased%20-i%20%27s%2Fchannel%3D.%2A%2Fchannel%3D%5C%5C%22debug%5C%5C%22%2F g%27%20%2Fetc%2Finit.d%2Fdropbear%0A%2Fetc%2Finit.d%2Fdropbear%20start%0A 4. Wait 30-60 seconds (this is the time required to generate keys for the SSH server on the router). Create Full Backup 1. Obtain SSH Access. 2. Create backup of all flash (on router): dd if=/dev/mtd0 of=/tmp/ALL.backup 3. Copy backup to PC (on PC): scp root@192.168.31.1:/tmp/ALL.backup ./ Tip: backup of the original firmware, taken three times, increases the chances of recovery :) Calculate The Password * Locally using shell (replace "12345/E0QM98765" with your router's serial number): On Linux printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \ md5sum - | head -c8 && echo On macOS printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \ md5 | head -c8 * Locally using python script (replace "12345/E0QM98765" with your router's serial number): wget https://raw.githubusercontent.com/eisaev/ax3600-files/master/scripts/calc_passwd.py python3.7 -c 'from calc_passwd import calc_passwd; print(calc_passwd("12345/E0QM98765"))' * Online https://www.oxygen7.cn/miwifi/ Debricking (lite) If you have a healthy bootloader, you can use recovery via TFTP using programs like TinyPXE on Windows or dnsmasq on Linux. To switch the router to TFTP recovery mode, hold down the reset button, connect the power supply, and release the button after about 10 seconds. The router must be connected directly to the PC via the LAN port. Debricking You will need a full dump of your flash, a CH341 programmer, and a clip for in-circuit programming. Install OpenWRT 1. Obtain SSH Access. 2. Create script (on router): echo '#!/bin/sh' > /tmp/flash_fw.sh echo >> /tmp/flash_fw.sh echo '. /bin/boardupgrade.sh' >> /tmp/flash_fw.sh echo >> /tmp/flash_fw.sh echo 'board_prepare_upgrade' >> /tmp/flash_fw.sh echo 'mtd erase rootfs_data' >> /tmp/flash_fw.sh echo 'mtd write /tmp/openwrt.bin firmware' >> /tmp/flash_fw.sh echo 'sleep 3' >> /tmp/flash_fw.sh echo 'reboot' >> /tmp/flash_fw.sh echo >> /tmp/flash_fw.sh chmod +x /tmp/flash_fw.sh 3. Copy `openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin` to the router (on PC): scp openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin \ root@192.168.31.1:/tmp/openwrt.bin 4. Flash OpenWRT (on router): /bin/ash /tmp/flash_fw.sh & 5. SSH connection will be interrupted - this is normal. 6. Wait for the indicator to turn blue. Signed-off-by: Evgeniy Isaev <isaev.evgeniy@gmail.com> [improve commit message formatting slightly] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
David Bauer
|
6cf1dfd7e1 |
ath79: add support for Teltonika RUT230 v1
This commit adds support for the Teltonika RUT230 v1, a Atheros AR9331 based router with a Quectel UC20 UMTS modem. Hardware -------- Atheros AR9331 16 MB SPI-NOR XTX XT25F128B 64M DDR2 memory Atheros AR9331 1T1R 802.11bgn Wireless Boootloader: pepe2k U-Boot mod Hardware-Revision ----------------- There are two board revisions of the RUT230, a v0 and v1. A HW version is silkscreened on the top of the PCBs front side as well as shown in the Teltonika UI. However, this looks to be a different identifier, as the GPl dump shows this silkscreened / UI shown version are internally treated identically. Th following mapping has been obtained from the latest GPl dump. HW Ver 01 - 04 --> v0 HW Ver > 05 --> v1 My board was a HW Ver 09 and is treated as a v1. Installation ------------ While attaching power, hold down the reset button and release it after the signal LEDs flashed 3 times. Attach your Computer with the devices LAN port and assign yourself the IPv4 address 192.168.1.10/24. Open a web browser, navigate to 192.168.1.1. Upload the OpenWrt factory image. The device will install OpenWrt and automatically reboots afterwards. You can use the smae procedure with the stock firmware to return back to the vendor firmware. Signed-off-by: David Bauer <mail@david-bauer.net> |
||
INAGAKI Hiroshi
|
a4e2766a5b |
ath79: add support for NEC Aterm WF1200CR
NEC Aterm WF1200CR is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on QCA9561. Specification: - SoC : Qualcomm Atheros QCA9561 - RAM : DDR2 128 MiB (W971GG6SB-25) - Flash : SPI-NOR 8 MiB (MX25L6433FM2I-08G) - WLAN : 2.4/5 GHz 2T2R - 2.4 GHz : QCA9561 (SoC) - 5 GHz : QCA9888 - Ethernet : 2x 10/100 Mbps - Switch : QCA9561 (SoC) - LEDs/Keys : 8x/3x (2x buttons, 1x slide-switch) - UART : through-hole on PCB - JP1: Vcc, GND, NC, TX, RX from "JP1" marking - 115200n8 - Power : 12 VDC, 0.9 A Flash instruction using factory image (stock: < v1.3.2): 1. Boot WF1200CR normally with "Router" mode 2. Access to "http://192.168.10.1/" and open firmware update page ("ファームウェア更新") 3. Select the OpenWrt factory image and click update ("更新") button to perform firmware update 4. Wait ~150 seconds to complete flashing Alternate flash instruction using initramfs image (stock: >= v1.3.2): 1. Prepare the TFTP server with the IP address 192.168.1.10 and place the OpenWrt initramfs image to the TFTP directory with the name "0101A8C0.img" 2. Connect serial console to WF1200CR 3. Boot WF1200CR and interrupt with any key after the message "Hit any key to stop autoboot: 2", the U-Boot starts telnetd after the message "starting telnetd server from server 192.168.1.1" 4. login the telnet (address: 192.168.1.1) 5. Perform the following commands to modify "bootcmd" variable temporary and check the value (to ignore the limitation of available commands, "tp; " command at the first is required as dummy, and the output of "printenv" is printed on the serial console) tp; set bootcmd 'set autostart yes; tftpboot' tp; printenv 6. Save the modified variable with the following command and reset device tp; saveenv tp; reset 7. The U-Boot downloads initramfs image from TFTP server and boots it 8. On initramfs image, download the sysupgrade image to the device and perform the following commands to erase stock firmware and sysupgrade mtd erase firmware sysupgrade <sysupgrade image> 9. After the rebooting by completion of sysupgrade, start U-Boot telnetd and login with the same way above (3, 4) 10. Perform the following commands to reset "bootcmd" variable to the default and reset the device tp; run seattle tp; reset (the contents of "seattle": setenv bootcmd 'bootm 0x9f070040' && saveenv) 11. Wait booting-up the device Known issues: - the following 6x LEDs are connected to the gpio controller on QCA9888 chip and the implementation of control via the controller is missing in ath10k/ath10k-ct - "ACTIVE" (Red/Green) - "2.4GHz" (Red/Green) - "5GHz" (Red/Green) Note: - after the version v1.3.2 of stock firmware, "offline update" by uploading image by user is deleted and the factory image cannot be used - the U-Boot on WF1200CR doesn't configure the port-side LEDs on WAN/LAN and the configuration is required on OpenWrt - gpio-hog: set the direction of GPIO 14(WAN)/19(LAN) to output - pinmux: set GPIO 14/19 as switch-controlled LEDs Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> |
||
Felix Matouschek
|
624b85e646 |
ath79: add support for Devolo dLAN pro 1200+ WiFi ac
This patch adds support for the Devolo dLAN pro 1200+ WiFi ac. This device is a plc wifi AC2400 router/extender with 2 Ethernet ports, has a QCA7500 PLC and uses the HomePlug AV2 standard. Other than the PLC the hardware is identical to the Devolo Magic 2 WIFI. Therefore it uses the same dts, which was moved to a dtsi to be included by both boards. This is a board that was previously included in the ar71xx tree. Hardware: SoC: AR9344 CPU: 560 MHz Flash: 16 MiB (W25Q128JVSIQ) RAM: 128 MiB DDR2 Ethernet: 2xLAN 10/100/1000 PLC: QCA75000 (Qualcomm HPAV2) PLC Uplink: 1Gbps MIMO PLC Link: RGMII 1Gbps (WAN) WiFi: Atheros AR9340 2.4GHz 802.11bgn Atheros AR9882-BR4A 5GHz 802.11ac Switch: QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2 Button: 3x Buttons (Reset, wifi and plc) LED: 3x Leds (wifi, plc white, plc red) GPIO Switch: 11-PLC Pairing (Active Low) 13-PLC Enable 21-WLAN power MACs Details verified with the stock firmware: Radio1: 2.4 GHz &wmac *:4c Art location: 0x1002 Radio0: 5.0 GHz &pcie *:4d Art location: 0x5006 Ethernet ðernet *:4e = 2.4 GHz + 2 PLC uplink --- *:4f = 2.4 GHz + 3 Label MAC address is from PLC uplink The Powerline (PLC) interface of the dLAN pro 1200+ WiFi ac requires 3rd party firmware which is not available from standard OpenWrt package feeds. There is a package feed on github which you must add to OpenWrt buildroot so you can build a firmware image which supports the plc interface. See: https://github.com/0xFelix/dlan-openwrt (forked from Devolo and added compatibility for OpenWrt 21.02) Flash instruction (TFTP): 1. Set PC to fixed ip address 192.168.0.100 2. Download the sysupgrade image and rename it to uploadfile 3. Start a tftp server with the image file in its root directory 4. Turn off the router 5. Press and hold Reset button 6. Turn on router with the reset button pressed and wait ~15 seconds 7. Release the reset button and after a short time the firmware should be transferred from the tftp server 8. Allow 1-2 minutes for the first boot. Signed-off-by: Felix Matouschek <felix@matouschek.org> [add "plus" to compatible and device name] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Zoltan HERPAI
|
1eb481206d |
ath79: add support for Qualcomm AP143 reference boards
Specifications: SoC: QCA9533 DRAM: 32Mb DDR1 Flash: 8/16Mb SPI-NOR LAN: 4x 10/100Mbps via AR8229 switch (integrated into SoC) on GMII WAN: 1x 10/100Mbps via MII WLAN: QCA9530 USB: 1x 2.0 UART: standard QCA UART header JTAG: yes Button: 1x WPS, 1x reset LEDs: 8x LEDs A version with 4Mb flash is also available, but due to lack of enough space it's not supported. As the original flash layout does not provide enough space for the kernel (1472k), the firmware uses OKLI and concat flash to overcome the limitation without changing the boot address of the bootloaders. Installation: 1. Original bootloader Connect the board to ethernet Set up a server with an IP address of 192.168.1.10 Make the openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin available via TFTP tftpboot 0x80060000 openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin erase 0x9f050000 +$filesize cp.b $fileaddr 0x9f050000 $filesize Reboot the board. 2. pepe2k's u-boot_mod Connect the board to ethernet Set up a server with an IP address of 192.168.1.10 Make the openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin available via TFTP, as "firmware.bin" run fw_upg Reboot the board. For the 16M version of the board, please use openwrt-ath79-generic-qca_ap143-16m-squashfs-factory.bin Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu> [use fwconcatX names, drop redundant uart status, fix IMAGE_SIZE, set up IMAGE/factory.bin without metadata] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> |
||
Sven Eckelmann
|
9a172797e5 |
ath79: Add support for OpenMesh A40
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2T2R 2.4 GHz Wi-Fi (11n) * 2T2R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8035 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |
||
Sven Eckelmann
|
eaf2e32c12 |
ath79: Add support for OpenMesh A60
Device specifications: ====================== * Qualcomm/Atheros QCA9558 ver 1 rev 0 * 720/600/240 MHz (CPU/DDR/AHB) * 128 MB of RAM * 16 MB of SPI NOR flash - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 3T3R 2.4 GHz Wi-Fi (11n) * 3T3R 5 GHz Wi-Fi (11ac) * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default)) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x ethernet - eth0 + Label: Ethernet 1 + AR8035 ethernet PHY (RGMII) + 10/100/1000 Mbps Ethernet + 802.3af POE + used as WAN interface - eth1 + Label: Ethernet 2 + AR8031 ethernet PHY (SGMII) + 10/100/1000 Mbps Ethernet + used as LAN interface * 1x USB * internal antennas Flashing instructions: ====================== Various methods can be used to install the actual image on the flash. Two easy ones are: ap51-flash ---------- The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the image to the u-boot when the device boots up. initramfs from TFTP ------------------- The serial console must be used to access the u-boot shell during bootup. It can then be used to first boot up the initramfs image from a TFTP server (here with the IP 192.168.1.21): setenv serverip 192.168.1.21 setenv ipaddr 192.168.1.1 tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr The actual sysupgrade image can then be transferred (on the LAN port) to the device via scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/ On the device, the sysupgrade must then be started using sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin Signed-off-by: Sven Eckelmann <sven@narfation.org> |