Commit Graph

1079 Commits

Author SHA1 Message Date
Ben Gainey
4123f177f9 ramips: add support for the Wavlink WL-WN579X3
About the device
----------------

SoC: MediaTek MT7620a @ 580MHz
RAM: 64M
FLASH: 8MB
WiFi: SoC-integrated: MediaTek MT7620a bgn
WiFi: MediaTek MT7612EN nac
GbE: 2x (RTL8211F)
BTN: - WPS
- Reset
- Router/Repeater/AP (3-way slide-switch)
LED: - WPS (blue)
- 3-segment Wifi signal representation (blue)
- WiFi (blue)
- WAN (blue)
- LAN (blue)
- Power (blue)
UART: UART is present as Pads with through-holes on the PCB. They are
located next to the reset button and are labelled Vcc/TX/RX/GND as
appropriate. Use 3.3V, 57600-8N1.

Installation
------------

Using the webcmd interface
--------------------------

Warning: Do not update to the latest Wavlink firmware (version
20201201) as this removes the webcmd console and you will need to
use the serial port instead.

You will need to have built uboot/sqauashfs image for this device,
and you will need to provide an HTTP service where the image can
be downloaded from that is accessible by the device.
You cannot use the device manufacturers firmware upgrade interface
as it rejects the OpenWrt image.

1. Log into the device's admin portal. This is necessary to
   authenticate you as a user in order to be able to access the
   webcmd interface.
2. Navigate to http://<device-ip>/webcmd.shtml - you can access
   the console directly through this page, or you may wish to
   launch the installed `telnetd` and use telnet instead.
   * Using telnet is recommended since it provides a more
     convenient shell interface that the web form.
   * Launch telnetd from the form with the command `telnetd`.
   * Check the port that telnetd is running on using
     `netstat -antp|grep telnetd`, it is likely to be 2323.
   * Connect to the target using `telnet`. The username should
     be `admin2860`, and the password is your admin password.
3. On the target use `curl` to download the image.
   e.g.  `curl -L -O http://<some-other-lan-ip>/openwrt-ramips-mt7620-\
          wavlink_wl-wn579x3-squashfs-sysupgrade.bin`.
   Check the hash using `md5sum`.
4. Use the mtd_write command to flash the image.
   * The flash partition should be mtd4, but check
     /sys/class/mtd/mtd4/name first. The partition should be
     called 'Kernel'.
   * To flash use the following command:
     `mtd_write -r -e /dev/mtd<n> write <image-file> /dev/mtd<n>`
     Where mtd<n> is the Kernel partition, and <image-file> is
     the OpenWrt image previously downloaded.
   * The command above will erase, flash and then reboot the
     device. Once it reboots it will be running OpenWrt.

Connect via ssh to the device at 192.168.1.1 on the LAN port.
The WAN port will be configured via DHCP.

Using the serial port
---------------------

The device uses uboot like many other MT7260a based boards. To
use this interface, you will need to connect to the serial
interface, and provide a TFTP server. At boot follow the
bootloader menu and select option 2 to erase/flash the image.
Provide the address and filename details for the tftp server.
The bootloader will do the rest.

Once the image is flashed, the board will boot into OpenWrt. The
console is available over the serial port.

Signed-off-by: Ben Gainey <ba.gainey@googlemail.com>
(cherry picked from commit a509b80065)
2022-04-19 14:48:21 +02:00
Shiji Yang
92af15077f ramips: split Youku YK1 to YK-L1 and YK-L1c
Device specifications:
* Model: Youku YK-L1/L1c
* CPU: MT7620A
* RAM: 128 MiB
* Flash: 32 MiB (YK-L1)/ 16 MiB (YK-L1c)
* LAN: 2* 10M/100M Ports
* WAN: 1* 10M/100M Port
* USB: 1* USB2.0
* SD: 1* MicroSD socket
* UART: 1* TTL, Baudrate 57600

Descriptions:
  Previous supported device YOUKU yk1 is actually Youku YK-L1. Though they look
  really different, the only hardware difference between the two models is flash
  size, YK-L1 has 32 MiB flash but YK-L1c has 16MiB. It seems that YK-L1c can
  compatible with YK-L1's firmware but it's better to split it to different models.

  It is easy to identify the models by looking at the label on the bottom of the
  device. The label has the model number "YK-L1" or "YK-L1c". Due to different flash
  sizes, YK-L1c that using previous YK-L1's firmware needs to apply "force update"
  to install compatible firmware, so please backup config file before system upgrade.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[use more specific name for DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 4a9f389ed2)
2022-04-19 14:48:21 +02:00
Shiji Yang
55f8eb84d2 ramips: improve pinctrl for Youku YK-L1
1. rename led pin "air" to a more common name "wlan" and use "phy0tpt" to trigger it.
2. led "wan" can be triggered by ethernet pinctrl by default so just drop it.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit 882a6116d3)
2022-04-19 14:48:21 +02:00
Shiji Yang
92489b4f82 ramips: speed up spi frequency for Youku YK-L1
Youku YK-L1 has a huge storage space up to 32 MB. It is better to
use a higher spi clock to read or write serial nor flash chips.
Youku YK-L1 has Winbond w25q256fvfg on board that can support
104 MHz spi clock so 48 MHz is safe enough.
The real frequency can only be sysclk(580MHz ) /3 /(2^n) so 80 MHz
defined in dts file will set only 48 MHz in spi bus.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit bf7ddb18f1)
2022-04-19 14:48:21 +02:00
DENG Qingfang
bea1891182 ramips: remove obsolete mx25l25635f compatible hack
The kernel bump to 5.4 has removed the mx25l25635f hack, and the
mx25l25635f compatible is no longer required.

Signed-off-by: DENG Qingfang <dqfext@gmail.com>
(cherry picked from commit 06af45ec05)
2022-04-19 14:48:21 +02:00
Michael Pratt
169c9e3a88 ramips: fix reboot for remaining 32 MB boards
The following devices have a Winbond W25Q256FV flash chip,
which does not have the RESET pin enabled by default,
and otherwise would require setting a bit in a status register.

Before moving to Linux 5.4, we had the patch:
0053-mtd-spi-nor-add-w25q256-3b-mode-switch.patch
which kept specific flash chips with explicit 3-byte and 4-byte address modes
to stay in 3-byte address mode while idle (after an erase or write)
by using a custom flag SPI_NOR_4B_READ_OP that was part of the patch.

this was obsoleted by the patch:
481-mtd-spi-nor-rework-broken-flash-reset-support.patch
which uses the newer upstream flag SNOR_F_BROKEN_RESET
for devices with a flash chip that cannot be hardware reset with RESET pin
and therefore must be left in 3-byte address mode when idle.

The new patch requires that the DTS of affected devices
have the property "broken-flash-reset", which was not yet added for most of them.

This commit adds the property for remaining affected devices in ramips target,
specifically because of the flash chip model.

However, it is possible that there are other devices
where the flash chip uses an explicit 4-byte address mode
and the RESET pin is not connected to the SOC on the board,
and those DTS would also need this property.

Ref: 22d982ea00 ("ramips: add support for switching between 3-byte and 4-byte addressing")
Ref: dfa521f129 ("generic: spi-nor: rework broken-flash-reset")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[pepe2k@gmail.com: backported to 21.02]
Fixes: #9655, #9636, #9547
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit 74516f4357)
2022-04-08 10:31:32 +02:00
Sungbo Eo
952de38ef4 Revert "ramips: increase spi-max-frequency for ipTIME mt7620 devices"
This reverts commit 13a185bf8a.

There was a report that one A1004ns device fails to detect its flash
chip correctly:

[    1.470297] spi-nor spi0.0: unrecognized JEDEC id bytes: e0 10 0c 40 10 08
[    1.484110] spi-nor: probe of spi0.0 failed with error -2

It also uses a different flash chip model:
* in my hand: Winbond W25Q128FVSIG (SOIC-8)
* reported: Macronix MX25L12845EMI-10G (SOP-16)

Reducing spi-max-frequency solved the detection failure. Hence revert.

Reported-by: Koasing <koasing@gmail.com>
Tested-by: Koasing <koasing@gmail.com>
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
(cherry picked from commit 9968a909c2)
2022-02-27 21:40:32 +09:00
Bruno Randolf
b4c40a7efc
ramips: minew g1-c: Allow dynamic RAM sizes
Allow RAM size to be passed thru U-Boot. There are 128MB and 64MB
versions of Minew G1-C. This is also in line with the behaviour of
most other RAMIPS boards.

Signed-off-by: Bruno Randolf <br1@einfach.org>
2021-11-01 15:35:25 +01:00
Alexander Couzens
7f7bf36ec5
ramips: add support for minew g1-c
The minew g1-c is a smart home gateway / BLE gateway.
A Nordic nRF52832 is available via USB UART (cp210x) to support BLE.
The LED ring is a ring of 24x ws2812b connect to a generic GPIO (unsupported).
There is a small LED which is only visible when the device is open which
will be used as LED until the ws2812b is supported.
The board has also a micro sdcard/tfcard slot (untested).
The Nordic nRF52832 exposes SWD over a 5pin header (GND, VCC, SWD, SWC, RST).
The vendor uses an older OpenWrt version, sysupgrade can be used via
serial or ssh.

CPU:		MT7628AN / 580MHz
RAM:		DDR2 128 MiB RAM
Flash:		SPI NOR 16 MiB W25Q128
Ethernet:	1x 100 mbit (Port 0) (PoE in)
USB:		USB hub, 2x external, 1x internal to USB UART
Power:		via micro usb or PoE 802.11af
UART:		3.3V, 115200 8n1

Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2021-09-21 14:08:51 +02:00
Adam Elyas
8078d953b8 ramips: fix LAN LED trigger assignment for Xiaomi Router 3 Pro
The default trigger for the amber lights on lan1 and lan3 were
mistakenly swapped after the device's migration to DSA. This
caused activity on one port to trigger the amber light on the
other port. Swapping their default trigger in the DTS file
fixes that.

Signed-off-by: Adam Elyas <adamelyas@outlook.com>
[minor commit title adjustment, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit edaf432bf4)
2021-06-12 11:01:43 +02:00
Liu Yu
e422a3af69 ramips: fix Ethernet random MAC address for HILINK HLK-7628N
Set the ethernet address from flash.

MAC addresses as verified by OEM firmware:

  use   interface  source
  2g    wlan0      factory 0x04 (label)
  LAN   eth0.1     factory 0x28 (label+1)
  WAN   eth0.2     factory 0x2e (label+2)

Fixes: 671c9d16e3 ("ramips: add support for HILINK HLK-7628N")

Signed-off-by: Liu Yu <f78fk@live.com>
[drop old MAC address setup from 02_network, cut out state_default
changes, face-lift commit message, add Fixes:]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit ae9c5cd37b)
2021-06-12 11:01:43 +02:00
Andreas Böhler
46b53ce83b ramips: Add support for SERCOMM NA502
The SERCOMM NA502 is a smart home gateway manufactured by SERCOMM and sold
under different brands (among others, A1 Telekom Austria SmartHome
Gateway). It has multi-protocol radio support in addition to LAN and WiFi.

Note: BLE is currently unsupported.

Specifications
--------------

  - MT7621ST 880MHz, Single-Core, Dual-Thread
  - MT7603EN 2.4GHz WiFi
  - MT7662EN 5GHz WiFi + BLE
  - 128MiB NAND
  - 256MiB DDR3 RAM
  - SD3503 ZWave Controller
  - EM357 Zigbee Coordinator

MAC address assignment
----------------------

LAN MAC is read from the config partition, WiFi 2.4GHz is LAN+2 and matches
the OEM firmware. WiFi 5GHz with LAN+1 is an educated guess since the
OEM firmware does not enable 5GHz WiFi.

Installation
------------
Attach serial console, then boot the initramfs image via TFTP.
Once inside OpenWrt, run sysupgrade -n with the sysupgrade file.

Attention: The device has a dual-firmware design. We overwrite kernel2,
since kernel1 contains an automatic recovery image.

If you get NAND ECC errors and are stuck with bad eraseblocks, try to
erase the mtd partition first with

mtd unlock ubi
mtd erase ubi

This should only be needed once.

Signed-off-by: Andreas Böhler <dev@aboehler.at>
[use kiB for IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>

(cherry picked from commit a3d8c1295e)
2021-06-10 17:09:35 +02:00
Tee Hao Wei
97df795b78 ramips: add support for Linksys EA8100 v1
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0

This device is very similar to the EA7300 v1/v2 and EA7500 v2.

Installation:

Upload the generated factory image through the factory web interface.

(following part taken from EA7300 v2 commit message:)

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

With thanks to Leon Poon (@LeonPoon) for the initial bringup.

Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
[add missing entry in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit b232680f84)
2021-06-10 17:09:35 +02:00
Jonathan Sturges
5e6837cf8f ramips: add support for Amped Wireless ALLY router and extender
Amped Wireless ALLY is a whole-home WiFi kit, with a router (model
ALLY-R1900K) and an Extender (model ALLY-00X19K).  Both are devices are
11ac and based on MediaTek MT7621AT and MT7615N chips.  The units are
nearly identical, except the Extender lacks a USB port and has a single
Ethernet port.

Specification:
- SoC: MediaTek MT7621AT (2C/4T) @ 880MHz
- RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
- FLASH: 128MB NAND (Winbond W29N01GVSIAA)
- WiFi: 2.4/5 GHz 4T4R
  - 2.4GHz MediaTek MT7615N bgn
  - 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch
- USB: 1x USB3 (Router only)
- BTN: Reset, WPS
- LED: single RGB
- UART:  through-hole on PCB.
   J1: pin1 (square pad, towards rear)=3.3V, pin2=RX,
   pin3=GND, pin4=TX.  Settings: 57600/8N1.

Note regarding dual system partitions
-------------------------------------

The vendor firmware and boot loader use a dual partition scheme.  The boot
partition is decided by the bootImage U-boot environment variable: 0 for
the 1st partition, 1 for the 2nd.

OpenWrt does not support this scheme and will always use the first OS
partition.  It will set bootImage to 0 during installation, making sure
the first partition is selected by the boot loader.

Also, because we can't be sure which partition is active to begin with, a
2-step flash process is used.  We first flash an initramfs image, then
follow with a regular sysupgrade.

Installation:

Router (ALLY-R1900K)
1) Install the flashable initramfs image via the OEM web-interface.
  (Alternatively, you can use the TFTP recovery method below.)
  You can use WiFi or Ethernet.
  The direct URL is:  http://192.168.3.1/07_06_00_firmware.html
  a. No login is needed, and you'll be in their setup wizard.
  b. You might get a warning about not being connected to the Internet.
  c. Towards the bottom of the page will be a section entitled "Or
  Manually Upgrade Firmware from a File:" where you can manually choose
  and upload a firmware file.
  d: Click "Choose File", select the OpenWRT "initramfs" image and click
  "Upload."
2) The Router will flash the OpenWrt initramfs image and reboot.  After
  booting, LuCI will be available on 192.168.1.1.
3) Log into LuCI as root; there is no password.
4) Optional (but recommended) is to backup the OEM firmware before
  continuing; see process below.
5) Complete the Installation by flashing a full OpenWRT image.  Note:
  you may use the sysupgrade command line tool in lieu of the UI if
  you prefer.
  a.  Choose System -> Backup/Flash Firmware.
  b.  Click "Flash Image..." under "Flash new firmware image"
  c.  Click "Browse..." and then select the sysupgrade file.
  d.  Click Upload to upload the sysupgrade file.
  e.  Important:  uncheck "Keep settings and retain the current
      configuration" for this initial installation.
  f.  Click "Continue" to flash the firmware.
  g.  The device will reboot and OpenWRT is installed.

Extender (ALLY-00X19K)
1) This device requires a TFTP recovery procedure to do an initial load
  of OpenWRT.  Start by configuring a computer as a TFTP client:
  a. Install a TFTP client (server not necessary)
  b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1 or .6
  c. Connect the Ethernet to the sole Ethernet port on the X19K.
2) Put the ALLY Extender in TFTP recovery mode.
  a. Do this by pressing and holding the reset button on the bottom while
  connecting the power.
  b. As soon as the LED lights up green (roughly 2-3 seconds), release
  the button.
3) Start the TFTP transfer of the Initramfs image from your setup machine.
For example, from Linux:
tftp -v -m binary 192.168.1.6 69 -c put initramfs.bin
4) The Extender will flash the OpenWrt initramfs image and reboot.  After
booting, LuCI will be available on 192.168.1.1.
5) Log into LuCI as root; there is no password.
6) Optional (but recommended) is to backup the OEM firmware before
  continuing; see process below.
7) Complete the Installation by flashing a full OpenWRT image.  Note: you
may use the sysupgrade command line tool in lieu of the UI if you prefer.
  a.  Choose System -> Backup/Flash Firmware.
  b.  Click "Flash Image..." under "Flash new firmware image"
  c.  Click "Browse..." and then select the sysupgrade file.
  d.  Click Upload to upload the sysupgrade file.
  e.  Important:  uncheck "Keep settings and retain the current
      configuration" for this initial installation.
  f.  Click "Continue" to flash the firmware.
  g.  The device will reboot and OpenWRT is installed.

Backup the OEM Firmware:
-----------------------

There isn't any downloadable firmware for the ALLY devices on the Amped
Wireless web site. Reverting back to the OEM firmware is not possible
unless we have a backup of the original OEM firmware.

The OEM firmware may be stored on either /dev/mtd3 ("firmware") or
/dev/mtd6 ("oem").  We can't be sure which was overwritten with the
initramfs image, so backup both partitions to be safe.

  1) Once logged into LuCI, navigate to System -> Backup/Flash Firmware.
  2) Under "Save mtdblock contents," first select "firmware" and click
  "Save mtdblock" to download the image.
  3) Repeat the process, but select "oem" from the pull-down menu.

Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
  Follow the TFTP recovery steps for the Extender, and use the
  backup image.

* OpenWrt "Flash Firmware" interface:
  Upload the backup image and select "Force update"
  before continuing.

Signed-off-by: Jonathan Sturges <jsturges@redhat.com>

(cherry picked from commit 6d23e474ad)
2021-06-10 17:09:35 +02:00
Aashish Kulkarni
7cdddfb266 ramips: add support for Linksys E5600
This submission relied heavily on the work of Linksys EA7300 v1/ v2.

Specifications:

* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: 128M DDR3-1600
* Flash: 128M NAND
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7613BE (2.4 GHz & 5 GHz)
* Antennae: 2 internal fixed in the casing and 2 on the PCB
* LEDs: Blue (x4 Ethernet)
  Blue+Orange (x2 Power + WPS and Internet)
* Buttons: Reset (x1)
  WPS (x1)

Installation:

Flash factory image through GUI.

This device has 2 partitions for the firmware called firmware and
alt_firmware. To successfully flash and boot the device, the device
should have been running from alt_firmware partition. To get the device
booted through alt_firmware partition, download the OEM firmware from
Linksys website and upgrade the firmware from web GUI. Once this is done,
flash the OpenWrt Factory firmware from web GUI.

Reverting to factory firmware:

1. Boot to 'alt_firmware'(where stock firmware resides) by doing one of
   the following:
   Press the "wps" button as soon as power LED turns on when booting.
   (OR) Hard-reset the router consecutively three times to force it to
   boot from 'alt_firmware'.
2. To remove any traces of OpenWRT from your router simply flash the OEM
   image at this point.

Signed-off-by: Aashish Kulkarni <aashishkul@gmail.com>

[fix hanging indents and wrap to 74 characters per line,
 add kmod-mt7663-firmware-sta package for 5GHz STA mode to work,
 remove sysupgrade.bin and concatenate IMAGES instead in mt7621.mk,
 set default-state "on" for power LED]
Signed-off-by: Sannihith Kinnera <digislayer@protonmail.com>

[move check-size before append-metadata, remove trailing whitespace]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Sannihith Kinnera <digislayer@protonmail.com>
(cherry picked from commit 251c995cbb)
2021-06-10 17:09:35 +02:00
Chukun Pan
9fa5b3afc9 ramips: add support for JCG Q20
JCG Q20 is an AX 1800M router.

Hardware specs:
  SoC: MediaTek MT7621AT
  Flash: Winbond W29N01HV 128 MiB
  RAM: Winbond W632GU6NB-11 256 MiB
  WiFi: MT7915 2.4/5 GHz 2T2R
  Ethernet: 10/100/1000 Mbps x3
  LED: Status (red / blue)
  Button: Reset, WPS
  Power: DC 12V,1A

Flash instructions:
  Upload factory.bin in stock firmware's upgrade page,
  do not preserve settings.

MAC addresses map:
  0x00004 *:3e wlan2g/wlan5g
  0x3fff4 *:3c lan/label
  0x3fffa *:3c wan

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit 57cb387cfe)
2021-06-10 17:09:35 +02:00
Leon M. George
d11f40a0f7 ramips: add support for cudy WR2100
Specifications

  SoC:       MT7621
  CPU:       880 MHz
  Flash:     16 MiB
  RAM:       128 MiB
  WLAN:      2.4 GHz b/g/n, 5 GHz a/n/ac
             MT7603E / MT7615E
  Ethernet:  5x Gbit ports

Installation

There are two known options:
1) The Luci-based UI.
2) Press and hold the reset button during power up.
   The router will request 'recovery.bin' from a TFTP server at
   192.168.1.88.

Both options require a signed firmware binary.
The openwrt image supplied by cudy is signed and can be used to
install unsigned images.

R4 & R5 need to be shorted (0-100Ω) for the UART to work.

Signed-off-by: Leon M. George <leon@georgemail.eu>
[remove non-required switch-port node - remove trgmii phy-mode]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 3501db9b9b)
2021-06-10 17:09:35 +02:00
Georgi Vlaev
31be361269 ramips: add support for TP-Link Archer C6U v1 (EU)
This patch adds support for TP-Link Archer C6U v1 (EU).
The device is also known in some market as Archer C6 v3.
This patch supports only Archer C6U v1 (EU).

Specifications:
--------------

* SoC: Mediatek MT7621AT 2C2T, 880MHz
* RAM: 128MB DDR3
* Flash: 16MB SPI NOR flash (Winbond 25Q128)
* WiFi 5GHz: Mediatek MT7613BEN (2x2:2)
* WiFi 2.4GHz: Mediatek MT7603EN (2x2:2)
* Ethernet: MT7630, 5x 1000Base-T.
* LED: Power, WAN, LAN, WiFi 2GHz and 5GHz, USB
* Buttons: Reset, WPS.
* UART: Serial console (115200 8n1), J1(GND:3)
* USB: One USB2 port.

Installation:
------------

Install the OpenWrt factory image for C6U is from the
TP-Link web interface.

1) Go to "Advanced/System Tools/Firmware Update".
2) Click "Browse" and upload the OpenWrt factory image:
openwrt-ramips-mt7621-tplink_archer-c6u-v1-squashfs-factory.bin.
3) Click the "Upgrade" button, and select "Yes" when prompted.

Recovery to stock firmware:
--------------------------

The C6U bootloader has a failsafe mode that provides a web
interface (running at 192.168.0.1) for reverting back to the
stock TP-Link firmware. The failsafe interface is triggered
from the serial console or on failed kernel boot. Unfortunately,
there's no key combination that enables the failsafe mode. This
gives us two options for recovery:

1) Recover using the serial console (J1 header).
The recovery interface can be selected by hitting 'x' when
prompted on boot.

2) Trigger the bootloader failsafe mode.
A more dangerous option is force the bootloader into
recovery mode by erasing the OpenWrt partition from the
OpenWrt's shell - e.g "mtd erase firmware". Please be
careful, since erasing the wrong partition can brick
your device.

MAC addresses:
-------------

OEM firmware configuration:
D8:07:B6:xx:xx:83 : 5G
D8:07:B6:xx:xx:84 : LAN (label)
D8:07:B6:xx:xx:84 : 2.4G
D8:07:B6:xx:xx:85 : WAN

Signed-off-by: Georgi Vlaev <georgi.vlaev@konsulko.com>
(cherry picked from commit a46ad596a3)
2021-06-10 17:09:35 +02:00
Vinay Patil
30915e5a70 ramips: add support for TP-Link Archer A6 v3
The patch adds support for the TP-Link Archer A6 v3
The router is sold in US and India with FCC ID TE7A6V3

Specification
-------------
MediaTek MT7621 SOC
RAM:         128MB DDR3
SPI Flash:   W25Q128 (16MB)
Ethernet:    MT7530 5x 1000Base-T
WiFi 5GHz:   Mediatek MT7613BE
WiFi 2.4GHz: Mediatek MT7603E
UART/Serial: 115200 8n1

Device Configuration & Serial Port Pins
---------------------------------------
ETH Ports:    LAN4 LAN3 LAN2 LAN1 WAN
             _______________________
             |                     |
Serial Pins: |   VCC GND TXD RXD   |
             |_____________________|

LEDs:         Power Wifi2G Wifi5G LAN WAN

Build Output
------------
The build will generate following set of files
[1] openwrt-ramips-mt7621-tplink_archer-a6-v3-initramfs-kernel.bin
[2] openwrt-ramips-mt7621-tplink_archer-a6-v3-squashfs-factory.bin
[3] openwrt-ramips-mt7621-tplink_archer-a6-v3-squashfs-sysupgrade.bin

How to Use - Flashing from TP-Link Web Interface
------------------------------------------------
* Go to "Advanced/System Tools/Firmware Update".
* Click "Browse" and upload the OpenWrt factory image: factory.bin[2]
* Click the "Upgrade" button, and select "Yes" when prompted.

TFTP Booting
------------
Setup a TFTP boot server with address 192.168.0.5.
While starting U-boot press '4' key to stop autoboot.
Copy the initramfs-kernel.bin[1] to TFTP server folder, rename as test.bin
From u-boot command prompt run tftpboot followed by bootm.

Recovery
--------
Archer A6 V3 has recovery page activated if SPI booting from flash fails.
Recovery page can be activated from serial console only.
Press 'x' while u-boot is starting
Note: TFTP boot can be activated only from u-boot serial console.
Device recovery address: 192.168.0.1

Thanks to: Frankis for Randmon MAC address fix.

Signed-off-by: Vinay Patil <post2vinay@gmail.com>
[remove superfluous factory image definition, whitespacing]
Signed-off-by: David Bauer <mail@david-bauer.net>

(cherry picked from commit f8f8935adb)
2021-06-10 17:09:35 +02:00
Bjørn Mork
8c986d2ab9 ramips: mt7621: Add support for ZyXEL NR7101
The ZyXEL NR7101 is an 802.3at PoE powered 5G outdoor (IP68) CPE
with integrated directional 5G/LTE antennas.

Specifications:

 - SoC: MediaTek MT7621AT
 - RAM: 256 MB
 - Flash: 128 MB MB NAND (MX30LF1G18AC)
 - WiFi: MediaTek MT7603E
 - Switch: 1 LAN port (Gigabiti)
 - 5G/LTE: Quectel RG502Q-EA connected by USB3 to SoC
 - SIM: 2 micro-SIM slots under transparent cover
 - Buttons: Reset, WLAN under same cover
 - LEDs: Multicolour green/red/yellow under same cover (visible)
 - Power: 802.3at PoE via LAN port

The device is built as an outdoor ethernet to 5G/LTE bridge or
router. The Wifi interface is intended for installation and/or
temporary management purposes only.

UART Serial:

57600N1
Located on populated 5 pin header J5:

 [o] GND
 [ ] key - no pin
 [o] RX
 [o] TX
 [o] 3.3V Vcc

Remove the SIM/button/LED cover, the WLAN button and 12 screws
holding the back plate and antenna cover together. The GPS antenna
is fixed to the cover, so be careful with the cable.  Remove 4
screws fixing the antenna board to the main board, again being
careful with the cables.

A bluetooth TTL adapter is recommended for permanent console
access, to keep the router water and dustproof. The 3.3V pin is
able to power such an adapter.

MAC addresses:

OpenWrt OEM   Address          Found as
lan     eth2  08:26:97:*:*:BC  Factory 0xe000 (hex), label
wlan0   ra0   08:26:97:*:*:BD  Factory 0x4 (hex)
wwan0   usb0  random

WARNING!!

ISP managed firmware might at any time update itself to a version
where all known workarounds have been disabled.  Never boot an ISP
managed firmware with a SIM in any of the slots if you intend to use
the router with OpenWrt. The bootloader lock can only be disabled with
root access to running firmware. The flash chip is physically
inaccessible without soldering.

Installation from OEM web GUI:

- Log in as "supervisor" on https://172.17.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
  Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot

Installation from OEM ssh:

- Log in as "root" on 172.17.1.1 port 22022
- scp OpenWrt initramfs-recovery.bin image to 172.17.1.1:/tmp
- Prepare bootloader config by running:
    nvram setro uboot DebugFlag 0x1
    nvram setro uboot CheckBypass 0
    nvram commit
- Run "mtd_write -w write initramfs-recovery.bin Kernel" and reboot
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot

Copying OpenWrt to the recovery partition:

- Verify that you are running a working OpenWrt recovery image
  from flash
- ssh to root@192.168.1.1 and run:
    fw_setenv CheckBypass 0
    mtd -r erase Kernel2
- Wait while the bootloader mirrors Image1 to Image2

NOTE: This should only be done after successfully booting the OpenWrt
  recovery image from the primary partition during installation.  Do
  not do this after having sysupgraded OpenWrt!  Reinstalling the
  recovery image on normal upgrades is not required or recommended.

Installation from Z-Loader:

- Halt boot by pressing Escape on console
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
  image at 10.10.10.3
- Type "ATNR 1,initramfs-recovery.bin" at the "ZLB>" prompt
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image

NOTE: ATNR will write the recovery image to both primary and recovery
  partitions in one go.

Booting from RAM:

- Halt boot by pressing Escape on console
- Type "ATGU" at the "ZLB>" prompt to enter the U-Boot menu
- Press "4" to select "4: Entr boot command line interface."
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
  image at 10.10.10.3
- Load it using "tftpboot 0x88000000 initramfs-recovery.bin"
- Boot with "bootm  0x8800017C" to skip the 380 (0x17C) bytes ZyXEL
  header

This method can also be used to RAM boot OEM firmware. The warning
regarding OEM applies!  Never boot an unknown OEM firmware, or any OEM
firmware with a SIM in any slot.

NOTE: U-Boot configuration is incomplete (on some devices?). You may
  have to configure a working mac address before running tftp using
   "setenv eth0addr <mac>"

Unlocking the bootloader:

If you are unebale to halt boot, then the bootloader is locked.

The OEM firmware locks the bootloader on every boot by setting
DebugFlag to 0.  Setting it to 1 is therefore only temporary
when OEM firmware is installed.

- Run "nvram setro uboot DebugFlag 0x1; nvram commit" in OEM firmware
- Run "fw_setenv DebugFlag 0x1" in OpenWrt

  NOTE:
    OpenWrt does this automatically on first boot if necessary

  NOTE2:
    Setting the flag to 0x1 avoids the reset to 0 in known OEM
    versions, but this might change.

  WARNING:
    Writing anything to flash while the bootloader is locked is
    considered extremely risky. Errors might cause a permanent
    brick!

Enabling management access from LAN:

Temporary workaround to allow installing OpenWrt if OEM firmware
has disabled LAN management:

- Connect to console
- Log in as "root"
- Run "iptables -I INPUT -i br0 -j ACCEPT"

Notes on the OEM/bootloader dual partition scheme

The dual partition scheme on this device uses Image2 as a recovery
image only. The device will always boot from Image1, but the
bootloader might copy Image2 to Image1 under specific conditions. This
scheme prevents repurposing of the space occupied by Image2 in any
useful way.

Validation of primary and recovery images is controlled by the
variables CheckBypass, Image1Stable, and Image1Try.

The bootloader sets CheckBypass to 0 and reboots if Image1 fails
validation.

If CheckBypass is 0 and Image1 is invalid then Image2 is copied to
Image1.

If CheckBypass is 0 and Image2 is invalid, then Image1 is copied to
Image2.

If CheckBypass is 1 then all tests are skipped and Image1 is booted
unconditionally.  CheckBypass is set to 1 after each successful
validation of Image1.

Image1Try is incremented if Image1Stable is 0, and Image2 is copied to
Image1 if Image1Try is 3 or larger.  But the bootloader only tests
Image1Try if CheckBypass is 0, which is impossible unless the booted
image sets it to 0 before failing.

The system is therefore not resilient against runtime errors like
failure to mount the rootfs, unless the kernel image sets CheckBypass
to 0 before failing. This is not yet implemented in OpenWrt.

Setting Image1Stable to 1 prevents the bootloader from updating
Image1Try on every boot, saving unnecessary writes to the environment
partition.

Keeping an OpenWrt initramfs recovery as Image2 is recommended
primarily to avoid unwanted OEM firmware boots on failure. Ref the
warning above. It enables console-less recovery in case of some
failures to boot from Image1.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
Tested-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 2449a63208)
2021-06-10 17:09:35 +02:00
Lech Perczak
27bcde303b ramips: add support for ZTE MF283+
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.

Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
  switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
  internally wired in parallel by 0-Ohm resistors, handled entirely by
  internal WWAN modem.
- USB: internal miniPCIe slot for modem,
  unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
  pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
  settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
  phone (bicolor, controlled by modem), Signal,
  4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.

Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.

There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.

(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
  omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
  like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
  persistent environment for next installation.
- If you ever might want to return to vendor firmware,
  BACK UP CONTENTS OF YOUR FLASH NOW.
  For this router, commonly used by mobile networks,
  plain vendor images are not officially available.
  To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
  most important, and copy them over network to your PC. But in case
  anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
  and execute sysupgrade.

(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
  (no quotes), for example using tftpd:
  cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
  5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
  minute.

Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery

(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
  installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
  your backup taken before OpenWrt installation, and /dev/mtd3 is the
  "firmware" partition.

(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
  with firmware backup you took during installation, or by vendor
  firmware obtained elsewhere.

A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
  despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
  WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
  for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
  modem, so it work independently of OpenWrt.
  Tested to work even before OpenWrt booted.
  I managed to open up modem's shell via ADB,
  and found from its kernel logs, that FXS and its LED is indeed controlled
  by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
  each and every one of them manually, so this might not be complete -
  it looks like bicolor LED is used for FXS, possibly to support
  dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
  read command, due to using 4k sectors throughout the target. I decided
  to keep it at the moment, to avoid breaking existing devices - I
  identified one potentially affected, should this be limited to under
  4MB of Flash. The difference between sysupgrade durations is whopping
  3min vs 8min, so this is worth pursuing.

In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.

Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.

A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
  submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
  uqmi did connect successfully, once I selected correct PDP context
  type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
  added to 51-android.rules like so:

SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"

While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>

(cherry picked from commit 59d065c9f8)
[Manually remove no longer needed patches for modem]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2021-06-02 21:29:16 +02:00
Shiji Yang
ceeaf0b63d ramips: fix mac addresses of Youku YK1
MAC addresses read from official firmware

        value       location
Wlan    xx 71 de    factory@0x04
Lan     xx 71 dd    factory@0x28
Wan     xx 71 df    factory@0x2e
Label   xx 71 dd    factory@0x28

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[fix sorting in 02_network, redact commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit e57e460dc7)
2021-05-14 23:32:22 +02:00
David Bentham
d33f4f8565 ramips: reduce spi-max-frequency for Xiaomi MI Router 4AG
Reduce spi-max-frequency for Xiaomi MI Router 4AG model

Xiaomi MI Router 4AG MTD uses two flash chips (no specific on router versions when produced from factory) - GD25Q128C and W25Q128BV.

These flash chips are capable of high frequency, but due to poor board design or manufacture process.

We are seeing the following errors in the linux kernel bootup:

`spi-nor spi0.0: unrecognized JEDEC id bytes: cc 60 1c cc 60 1c
 spi-nor: probe of spi0.0 failed with error -2`

This causes the partitions not to be detected

`VFS: Cannot open root device "(null)" or unknown-block(0,0): error -6`

Then creates a bootloop and a bricked router.

The solution to limit this race condition is to reduce the frequency from 80 mhz to 50 mhz.

Signed-off-by: David Bentham <db260179@gmail.com>
(cherry picked from commit 17e690017d)
2021-04-18 12:04:38 +02:00
INAGAKI Hiroshi
0444a93bdf ramips: add support for ELECOM WRC-1750GST2
ELECOM WRC-1750GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 256 MiB (NT5CC128M16JR-EK)
- Flash		: SPI-NOR 32 MiB (MX25L25645GMI-08G)
- WLAN		: 2.4/5 GHz 3T3R (2x MediaTek MT7615)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LEDs/Keys	: 4x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX, from ethernet port side
  - 57600n8
- Power		: 12 VDC, 1.5 A

Flash instruction using factory image:

1. Boot WRC-1750GST2 normally with "Router" mode
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing

MAC addresses:

LAN	: 04:AB:18:xx:xx:23 (Factory, 0xE000 (hex))
WAN	: 04:AB:18:xx:xx:24 (Factory, 0xE006 (hex))
2.4GHz	: 04:AB:18:xx:xx:25 (Factory, 0x4    (hex))
5GHz	: 04:AB:18:xx:xx:26 (Factory, 0x8004 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
(cherry picked from commit b3ca1f30ef)
2021-03-22 21:07:34 +01:00
Stijn Segers
0a19f77f32 ramips: overwrite reset gpio properties in DIR-860L DTS
As suggested by Sergio, this adds GPIOs 19 and 8 explicitly into the
DIR-860L DTS, so the PCI-E ports get reset and the N radio (radio1)
on PCI-E port 1 comes up reliably.

Fixes the following error that popped up in dmesg:

    [    1.638942] mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)

Suggested-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Reviewed-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
(cherry picked from commit 06356f0020)
2021-02-24 20:23:52 +01:00
Stijn Segers
7a0cd1ede4 ramips: overwrite reset gpio properties in EX6150 DTS
The Netgear EX6150 can, just like the D-Link DIR-860L rev B1, fail to
initialise both radios in some cases. Add the reset GPIOs explicitly
so the PCI-E devices get re-initialised properly. See also FS #3632.

Error shows up in dmesg as follows:

  [    1.560764] mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)

Tested-by: Kurt Roeckx <kurt@roeckx.be>
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[removed period from commit title]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit af1b6799c6)
2021-02-20 09:39:58 +01:00
Sander Vanheule
a7c0c9bb7e ramips: mt7621: add TP-Link EAP235-Wall support
The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access
point with four gigabit ethernet ports.

When connecting to the device's serial port, it is strongly advised to
use an isolated UART adapter. This prevents linking different power
domains created by the PoE power supply, which may damage your devices.

The device's U-Boot supports saving modified environments with
`saveenv`. However, there is no u-boot-env partition, and saving
modifications will cause the partition table to be overwritten. This is
not an issue for running OpenWrt, but will prevent the vendor FW from
functioning properly.

Device specifications:
* SoC: MT7621DAT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (MT7603EN): b/g/n, 2x2
* Wireless 5GHz (MT7613BEN): a/n/ac, 2x2
* Ethernet: 4× GbE
  * Back side: ETH0, PoE PD port
  * Bottom side: ETH1, ETH2, ETH3
* Single white device LED
* LED button, reset button (available for failsafe)
* PoE pass-through on port ETH3 (enabled with GPIO)

Datasheet of the flash chip specifies a maximum frequency of 33MHz, but
that didn't work. 20MHz gives no errors with reading (flash dump) or
writing (sysupgrade).

Device mac addresses:
Stock firmware uses the same MAC address for ethernet (on device label)
and 2.4GHz wireless. The 5GHz wireless address is incremented by one.
This address is stored in the 'info' ('default-mac') partition at an
offset of 8 bytes.
From OEM ifconfig:
    eth     a4:2b:b0:...:88
    ra0     a4:2b:b0:...:88
    rai0    a4:2b:b0:...:89

Flashing instructions:
* Enable SSH in the web interface, and SSH into the target device
* run `cliclientd stopcs`, this should return "success"
* upload the factory image via the web interface

Debricking:
U-boot can be interrupted during boot, serial console is 57600 baud, 8n1
This allows installing a sysupgrade image, or fixing the device in
another way.
* Access serial header from the side of the board, close to ETH3,
  pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3.
* Interrupt bootloader by holding '4' during boot, which drops the
  bootloader into its shell
* Change default 'serverip' and 'ipaddr' variables (optional)
* Download initramfs with `tftpboot`, and boot image with `bootm`
    # tftpboot 84000000 openwrt-initramfs.bin
    # bootm

Revert to stock:
Using the tplink-safeloader utility from the firmware-utils package,
TP-Link's firmware image can be converted to an OpenWrt-compatible
sysupgrade image:
  $ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \
      -z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin

This can then be flashed using the OpenWrt sysupgrade interface. The
image will appear to be incompatible and must be force flashed, without
keeping the current configuration.

Known issues:
- DFS support is incomplete (known issue with MT7613)
- MT7613 radio may stop responding when idling, reboot required.
  This was an issue with the ddc75ff704 version of mt76, but appears to
  have improved/disappeared with bc3963764d.
  Error notice example:
  [ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout

Hardware was kindly provided for porting by Stijn Segers.

Tested-by: Stijn Segers <foss@volatilesystems.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
(cherry picked from commit 1e75909a35)
2021-02-19 20:09:28 +01:00
Kurt Roeckx
539966554d ramips: mark toggle input on EX6150 as a switch
The Netgear EX6150 has an Access Point/Extender switch. Set it as
an EV_SW. Otherwise when it's set to Access Point, it will trigger
failsafe mode during boot.

Fixes: FS#3590
Signed-off-by: Kurt Roeckx <kurt@roeckx.be>
2021-02-15 00:00:38 +01:00
INAGAKI Hiroshi
08768b44d9 ramips: add support for ELECOM WRC-1167FS
ELECOM WRC-1167FS is a 2.4/5 GHz band 11ac (WiFi-5) router, based on
MT7628AN.

Specification:

- SoC		: MediaTek MT7628AN
- RAM		: DDR2 64 MiB (NT5TU32M16FG-AC)
- Flash		: SPI-NOR 16 MiB (W25Q128JVSIQ)
- WLAN		: 2.4/5 GHz 2T2R
  - 2.4 GHz	: MediaTek MT7628AN (SoC)
  - 5 GHz	: MediaTek MT7612E
- Ethernet	: 10/100 Mbps x2
  - Switch	: MT7628AN (SoC)
- LEDs/Keys	: 6x, 3x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J1: 3.3V, GND, TX, RX from "J1" marking
  - 57600n8
- Power		: 12 VDC, 1 A

Flash instruction using factory image:

1. Boot WRC-1167FS normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button to
   perform firmware update
4. Wait ~120 seconds to complete flashing

Notes:

- Last 0x800000 (8 MiB) in SPI-NOR flash is not used on stock firmware

- Additional padding in factory image is required to avoid incomplete
  flashing on stock firmware

MAC addresses:

- LAN	: BC:5C:4C:xx:xx:68 (Config, ethaddr (text) / Factory, 0x28   (hex))
- WAN	: BC:5C:4C:xx:xx:69 (Config, wanaddr (text) / Factory, 0x22   (hex))
- 2.4GHz: BC:5C:4C:xx:xx:6A (Config, rmac    (text) / Factory, 0x4    (hex))
- 5GHz	: BC:5C:4C:xx:xx:6B (Config, rmac2   (text) / Factory, 0x8004 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2021-02-11 16:37:53 +01:00
Andrew Pikler
cd2b661453 ramips: add support for Cudy WR1300
Specifications:
 - SoC: MediaTek MT7621AT
 - RAM: 128 MB (DDR3)
 - Flash: 16 MB (SPI NOR)
 - WiFi: MediaTek MT7603E, MediaTek MT7612E
 - Switch: 1 WAN, 4 LAN (Gigabit)
 - Ports: 1 USB 3.0
 - Buttons: Reset, WPS
 - LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
 - Power: DC 12V 1A tip positive

UART Serial:
  115200 baud
  Located on unpopulated 4 pin header near J4:

  J4
  [o] Rx
  [o] Tx
  [o] GND
  [ ] Vcc - Do not connect

Installation:

Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.

Recovery:
 - Loads only signed manufacture firmware due to bootloader RSA verification
 - serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
 - connect to any lan ethernet port
 - power on the device while holding the reset button
 - wait at least 8 seconds before releasing reset button for image to
   download
 - See http://www.cudytech.com/newsinfo/547425.html

MAC addresses as verified by OEM firmware:

use   address   source
LAN   *:f0      label
WAN   *:f1      label + 1
2g    *:f0      label
5g    *:f2      label + 2

The label MAC address is found in bdinfo 0xde00.

Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
2021-02-09 13:58:18 +01:00
Chukun Pan
82032f3509 ramips: add support for JCG Y2
JCG Y2 is an AC1300M router

Hardware specs:
  SoC: MediaTek MT7621AT
  Flash: Winbond W25Q128JVSQ 16MiB
  RAM: Nanya NT5CB128M16 256MiB
  WLAN: 2.4/5 GHz 2T2R (1x MediaTek MT7615)
  Ethernet: 10/100/1000 Mbps x5
  LED: POWER, INTERNET, 2.4G, 5G
  Button: Reset
  Power: DC 12V,1A

Flash instructions:
  Upload factory.bin in stock firmware's upgrade page.

MAC addresses map:
  0x0004  *:c8  wlan2g/wlan5g/label
  0xe000  *:c7  lan
  0xe006  *:c6  wan

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2021-02-09 13:10:33 +01:00
INAGAKI Hiroshi
88fbddb49d ramips: add support for I-O DATA WN-DX1200GR
I-O DATA WN-DX1200GR is a 2.4/5 GHz band 11ac (WiFi-5) router, based on
MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: raw NAND 128 MiB
- WLAN		: 2.4/5 GHz 2T2R
  - 2.4 GHz	: MediaTek MT7603E
  - 5 GHz	: MediaTek MT7613BE
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LEDs/keys	: 2x/3x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J5: 3.3V, TX, RX, NC, GND from triangle-mark
  - 57600n8
- Power		: 12 VDC, 1 A

Flash instruction using initramfs image:

1. Boot WN-DX1200GR normally
2. Access to "http://192.168.0.1/" and open firmware update page
   ("ファームウェア")
3. Select the OpenWrt initramfs image and click update ("更新") button
   to perform firmware update
4. On the initramfs image, perform sysupgrade with the
   squashfs-sysupgrade image
5. Wait ~120 seconds to complete flashing

Notes:

- currently, mt7615e driver in mt76 doesn't fully support MT7613
  (MT7663) wifi chip
  - the eeprom data in flash is not used by mt7615e driver and the
    driver reports the tx-power up to 3dBm
  - the correct MAC address for MT7613BE in eeprom data cannot be
    assigned to the phy

- last 0x80000 (512 KiB) in NAND flash is not used on stock firmware

- stock firmware requires "customized uImage header" (called as "combo
  image") by MSTC (MitraStar Technology Corp.), but U-Boot doesn't

  - uImage magic ( 0x0 - 0x3 ) : 0x434F4D43 ("COMC")
  - header crc32 ( 0x4 - 0x7 ) : with "data length" and "data crc32"
  - image name   (0x20 - 0x37) : model ID and firmware versions
  - data length  (0x38 - 0x3b) : kernel + rootfs
  - data crc32   (0x3c - 0x3f) : kernel + rootfs

MAC addresses:

LAN:	50:41:B9:xx:xx:08 (Ubootenv, ethaddr (text) / Factory, 0x1E000 (hex))
WAN:	50:41:B9:xx:xx:0A (Factory,  0x1E006 (hex))
2.4GHz:	50:41:B9:xx:xx:08 (Factory,  0x4     (hex))
5GHz:	50:41:B9:xx:xx:09 (Factory,  0x8004  (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[add check whether dflag_offset is set]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-07 21:58:51 +01:00
Adrian Schmutzler
3f4d1dad00 ramips: replace full-text licenses by SPDX identifier
This replaces several full-text and abbreviated licenses found in
DTS files by the corresponding SPDX identifiers.

This should make it easier to identify the license both by humans
and machines.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 18:18:00 +01:00
David Bentham
4a18039785 ramips: add support for UniElec U7621-01
UniElec U7621-01 is a router platform board, the smaller model of
the U7621-06.
The device has the following specifications:

- MT7621AT (880 MHz)
- 256 of RAM (DDR3)
- 16 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x 2.4Ghz MT7603E
- 1x 5Ghz MT7612
- 1x miniPCIe slots (PCIe bus only)
- 1x miniSIM slot
- 1x USB 2.0 (uses the usb 3.0 driver)
- 8x LEDs (1x GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x DC jack for main power (12 V)

The following has been tested and is working:

- Ethernet switch
- 1x 2.4Ghz MT7603E (wifi)
- 1x 5Ghz MT7612 (wifi)
- miniPCIe slots (tested with Wi-Fi cards and LTE modem cards)
- miniSIM slot (works with normal size simcard)
- sysupgrade
- reset button

Installation:

This board has no locked down bootloader. The seller can be asked to
install openwrt v18.06, so upgrades are standard sysupgrade method.

Recovery:

This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.

LEDs list (left to right):

- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- CTS2_N (GPIO10, configured as "status" LED)
- LED_WLAN# (connected with pin 44 in wifi1 slot)

Signed-off-by: David Bentham <db260179@gmail.com>
[add DEVICE_VARIANT, fix DEVICE_PACKAGES, remove &gpio]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 17:31:51 +01:00
Ewan Parker
ddafcc7947 ramips: add support for Hi-Link HLK-7688A
Specifications:

  - SoC: MediaTek MT7688AN
  - RAM: 128 MB
  - Flash: 32 MB
  - Ethernet: 5x 10/100 (1x WAN, 4x LAN)
  - Wireless: built in 2.4GHz (bgn)
  - USB: 1x USB 2.0 port
  - Buttons: 1x Reset
  - LEDs: 1x (WiFi)

Flash instructions:

  - Configure TFTP server with IP address 10.10.10.3
  - Name the firmware file as firmware.bin
  - Connect any Ethernet port to the TFTP server's LAN
  - Choose option 2 in U-Boot
  - Alternatively choose option 7 to upload firmware to the built-in
    web server

MAC addresses as verified by OEM firmware:

  use   address   source
  2g    *:XX      factory 0x4
  LAN   *:XX+1    factory 0x28
  WAN   *:XX+1    factory 0x2e

Notes:

This board is ostensibly a module containing the MediaTek MT7688AN SoC,
128 MB DDR2 SDRAM and 32 MB flash storage.  The SoC can be operated in
IoT Gateway Mode or IoT Device Mode.

From some vendors the U-Boot that comes installed operates on UART 2
which is inaccessible in gateway mode and operates unreliably in the
Linux kernel when using more than 64 MB of RAM.  For those, updating
U-Boot is recommended.

Signed-off-by: Ewan Parker <ewan@ewan.cc>
[add WLAN to 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 14:54:47 +01:00
INAGAKI Hiroshi
eb11cd9ea3 ramips: add support for ELECOM WRC-2533GHBK-I
ELECOM WRC-2533GHBK-I is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: SPI-NOR 16 MiB
- WLAN		: 2.4/5 GHz 4T4R (2x MediaTek MT7615)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 4x/3x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, RX, GND, TX from SoC side
  - 57600n8
- Power		: 12VDC, 1.5A

Flash instruction using factory image:

1. Boot WRC-2533GHBK-I normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing

MAC addresses:

LAN	: BC:5C:4C:xx:xx:89 (Config, ethaddr (text))
WAN	: BC:5C:4C:xx:xx:88 (Config, wanaddr (text))
2.4GHz	: BC:5C:4C:xx:xx:8A (Factory, 0x4    (hex))
5GHz	: BC:5C:4C:xx:xx:8B (Factory, 0x8004 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
2021-01-29 15:32:07 +01:00
Bjørn Mork
402408b368 kernel: mtdsplit_uimage: replace "edimax, uimage" parser
The "edimax,uimage"" parser can be replaced by the generic
parser using device specific openwrt,partition-magic and
openwrt,offset properties.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-01-22 21:03:11 +01:00
Bjørn Mork
01a1e21863 kernel: mtdsplit_uimage: replace "openwrt, okli" parser
The only difference between the "openwrt,okli" and the generic
parser is the magic.  Set this in device tree for all affected
devices and  remove the "openwrt,okli" parser.

Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-01-22 21:03:11 +01:00
Bjørn Mork
5ab5bacda2 kernel: mtdsplit_uimage: replace "fonfxc" and "sge" parsers
Convert users of the "fonfxc" and "sge" parsers to the generic
"openwrt,uimage", using device specific "openwrt,padding" properties.

Tested-by: Stijn Segers <foss@volatilesystems.org> [DIR-878 A1]
Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-01-22 21:03:11 +01:00
Adrian Schmutzler
b3eccbca7c ramips: fix port labels for Xiaomi Mi Router 4
The OEM assignment of LAN ports is swapped.

Fixes: c2a7bb520a ("ramips: mt7621: add support for Xiaomi Mi Router 4")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:56:43 +01:00
Dmytro Oz
c2a7bb520a ramips: mt7621: add support for Xiaomi Mi Router 4
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).

Specifications:

Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A

UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it

MAC addresses as verified by OEM firmware:

use   address   source
LAN   *:c2      factory 0xe000 (label)
WAN   *:c3      factory 0xe006
2g    *:c4      factory 0x0000
5g    *:c5      factory 0x8000

Flashing instructions:

1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:

setenv uart_en 1
saveenv
boot

3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/

Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion

Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:53:19 +01:00
Adrian Schmutzler
93be5926a2 ramips: mt7621: create DTSI for Xiaomi NAND devices
This creates a DTSI for Xiaomi devices with 128M NAND.

This allows to consolidate the partitions and a few other nodes for
AC2100 family and Mi Router 3G.

Note that the Mi Router 3 Pro has 256M NAND and differently sized
partitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:52:02 +01:00
David Bauer
b4c0d377f6 ramips: limit 5GHz channels for UniFi 6 Lite
The MT7915 radio currently advertises 2.4GHz channels while the antenna
path only supports 5 GHz. Limit the radio to 5GHz channels to prevent
users from configuring non-supported channels.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-06 00:00:01 +01:00
David Bauer
fb4d7a9680 ramips: add support for Ubiquiti UniFi 6 Lite
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz

Not Working
-----------
 - Bluetooth (connected to UART3)

UART
----

UART is located in the lower left corner of the board. Pinout is

0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND

Console is 115200 8N1.

Boot
----

1. Connect to the serial console and connect power.

2. Double-press ESC when prompted

3. Set the fdt address

   $ fdt addr $(fdtcontroladdr)

4. Remove the signature node from the control FDT

   $ fdt rm /signature

5. Transfer and boot the OpenWrt initramfs image to the device.
   Make sure to name the file C0A80114.img and have it reachable at
   192.168.1.1/24

   $ tftpboot; bootm

Installation
------------

1. Connect to the booted device at 192.168.1.20 using username/password
   "ubnt".

2. Update the bootloader environment.

   $ fw_setenv devmode TRUE
   $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
     fdt rm /signature; bootubnt"
   $ fw_setenv bootcmd "run boot_openwrt"

3. Transfer the OpenWrt sysupgrade image to the device using SCP.

4. Check the mtd partition number for bs / kernel0 / kernel1

   $ cat /proc/mtd

5. Set the bootselect flag to boot from kernel0

   $ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4

6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1

   $ dd if=openwrt.bin of=/dev/mtdblock6
   $ dd if=openwrt.bin of=/dev/mtdblock7

7. Reboot the device. It should boot into OpenWrt.

Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.

The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.

The bootloader is made up of three different parts.

1. The SPL performing early board initialization and providing a XModem
   recovery in case the PBL is missing

2. The PBL being the primary U-Boot application and containing the
   control FDT. It is LZMA packed with a uImage header.

3. A Ubiquiti standalone U-Boot application providing the main boot
   routine as well as their recovery mechanism.

In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.

The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.

Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.

Only (!) proceed if you understand this!

1. Extract the bootloader from the U-Boot partition using the OpenWrt
   initramfs image.

2. Split the bootloader into it's 3 components:

   $ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
   $ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
   $ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416

3. Strip the uImage header from the PBL

   $ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1

4. Decompress the PBL

   $ lzma -d pbl.lzma --single-stream

   The decompressed PBL sha256sum should be
   d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235

5. Open the decompressed PBL using your favorite hexeditor. Locate the
   control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
   label for the signature node is located. Rename the "signature"
   string at this offset to "signaturr".

   The patched PBL sha256sum should be
   d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97

6. Compress the patched PBL

   $ lzma -z pbl --lzma1=dict=67108864

   The resulting pbl.lzma file should have the sha256sum
   7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42

7. Create the PBL uimage

   $ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
     -n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
     -T firmware -d pbl.lzma patched_pbl.uimage

   The resulting patched_pbl.uimage should have the sha256sum
   b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce

8. Reassemble the complete bootloader

   $ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
     conv=sync
   $ cat spl.bin > patched_uboot.bin
   $ cat aligned_pbl.uimage >> patched_uboot.bin
   $ cat ubnt.uimage >> patched_uboot.bin

   The resulting patched_uboot.bin should have the sha256sum
   3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b

9. Transfer your patched bootloader to the device. Also install the
   kmod-mtd-rw package using opkg and load it.

   $ insmod mtd-rw.ko i_want_a_brick=1

   Write the patched bootloader to mtd0

   $ mtd write patched_uboot.bin u-boot

10. Erase the kernel1 partition, as the bootloader might otherwise
    decide to boot from there.

    $ mtd erase kernel1

11. Transfer the OpenWrt sysupgrade image to the device and install
    using sysupgrade.

FIT configurations
------------------

In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.

config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-05 16:25:13 +01:00
Adrian Schmutzler
1fb40a72da treewide: use more descriptive names for concatenated partitions
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.

However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.

As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.

This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.

While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-27 20:33:45 +01:00
INAGAKI Hiroshi
7ba2f5c96f ramips: add support for ELECOM WRC-1167GST2
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 256 MiB
- Flash		: SPI-NOR 32 MiB
- WLAN		: 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 6x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX from ethernet port side
  - 57600n8
- Power		: 12VDC, 1A

MAC addresses:

LAN	: 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN	: 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz	: 04:AB:18:**:**:09 (none)
5 GHz	: 04:AB:18:**:**:0A (none)

Flash instruction using factory image:

1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing

Notes:

- there is no way to configure the correct MAC address for secondary phy
  (5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
  ieee80211-freq-limit
  (fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
  mtd-mac-address-increment

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
INAGAKI Hiroshi
a04d733e56 ramips: add support for ELECOM WRC-1167GS2-B
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: SPI-NOR 16 MiB
- WLAN		: 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 6x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX from ethernet port side
  - 57600n8
- Power		: 12VDC, 1A

MAC addresses:

LAN	: 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN	: 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz	: 04:AB:18:**:**:15 (none)
5 GHz	: 04:AB:18:**:**:16 (Factory, 0x4 (hex))

Flash instruction using factory image:

1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing

Notes:

- there is no way to configure the correct MAC address for secondary phy
  (5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
  ieee80211-freq-limit
  (fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
  mtd-mac-address-increment

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
Adrian Schmutzler
d0b7e186e6 ramips: mt7621: create DTSI for ELECOM WRC GS devices with 2 PCI
This creates a dedicated DTSI for ELECOM WRC GS devices with 2 PCI
WiFi chips in preparation for the 1 chip - dual radio devices, so
the latter can reuse part of the common definitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
Andrew Pikler
28262f815e ramips: add support for D-Link DIR-882 R1
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0

The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed

Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"

- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.

Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
2020-12-22 19:11:50 +01:00
Michael Pratt
a459696eb1 ramips: add support for Senao Engenius ESR600H
FCC ID: A8J-ESR750H

Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.

**Specification:**

  - RT3662F			MIPS SOC, 5 GHz WMAC (2x2)
  - RT5392L			PCI on-board, 2.4 GHz (2x2)
  - AR8327			RGMII, 7-port GbE, 25 MHz clock
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 64 MB RAM
  - UART at J12			(unpopulated)
  - 2 internal antennas		(5 GHz)
  - 2 external antennas		(2.4 GHz)
  - 9 LEDs, 1 button		(power, wps, wifi2g, wifi5g, 5 LAN/WAN)
  - USB 2 port			(GPIO controlled power)

**MAC addresses:**

  MAC Addresses are labeled as WAN and WLAN
  U-boot environment has the the vendor MAC address for ethernet
  MAC addresses in "factory" are part of wifi calibration data

  eth0.2	WAN	*:13:e7		u-boot-env wanaddr
  eth0.1	----	*:13:e8		u-boot-env wanaddr + 1
  phy0		WLAN	*:14:b8		factory 0x8004
  phy1		----	*:14:bc		factory 0x4

**Installation:**

  Method 1: Firmware upgrade page

  OEM webpage at 192.168.0.1
  username and password "admin"
  Navigate to Network Setting --> Tools --> Firmware
  Click Browse and select the factory.dlf image
  Click Continue to confirm and wait 6 minutes or more...

  Method 2: Serial console to load TFTP image:

  (see TFTP recovery)

**Return to OEM:**

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is serial access to uboot

  Unlike most Engenius boards, public images are not available...
  so the only way to return to OEM is to have a copy
  of the MTD partition "firmware" BEFORE flashing openwrt.

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here
  however it requires serial console access
  (soldering pins to the UART pinouts)

  build your own image...
  with 'ramdisk' selected under 'Target Images'

  rename initramfs-kernel.bin to 'uImageESR-600H'
  make the file available on a TFTP server at 192.168.99.8
  interrupt boot by holding or pressing '4' in serial console
  as soon as board is powered on

  `tftpboot 0x81000000`
  `bootm 0x81000000`
  perform a sysupgrade

**Format of OEM firmware image:**

  This Engenius board uses the Senao proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

  .dlf file extension is also required for OEM software to accept it

**Note on using OKLI:**

  the kernel is now too large for the bootloader to handle
  so OKLI is used via the `kernel-loader` image command
  recently in master several other ramips boards have the same problem

  'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'

  see commit ad19751edc

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00