On Mikrotik SPI NOR devices, the firmware partition must be erased when
flashing from stock firmware, otherwise leftover bits (in particular a
kernel signature) can trigger a boot loop.
When booted from initramfs (the only way to install OpenWRT on these
devices), this patch unconditionally erases the firmware partition in
the do_upgrade() stage for all supported SPI NOR devices.
This is forward-ported from ed49d0876 and 20452a8db
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
The node needs to be terminated by a semicolon.
Fixes: 8484a764df ("ath79: ar724x: make sure builtin-switch is
enabled in DT")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Both TL-WPA8630(P) v1 and v2 feature a button labelled "WiFi".
While this is implemented as KEY_RFKILL for v1 in ar71xx and ath79,
the v2 sets it up as WPS button.
According to the manual, the behavior in OEM firmware is:
"Press and hold the button for 1 second to copy wireless settings
from the main router to the extender. Go to Wi-Fi Clone for more
information. Press and hold the button for at least 5 seconds to
turn the wireless function on or off."
Consequently, and since this is historic behavior on v1 in OpenWrt,
we set this button to KEY_RFKILL on both revisions.
Fixes: ab74def0db ("ath79: add support for TP-Link TL-WPA8630P v2")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
On ar7240/ar7241 the mdioX node with the builtin-switch is enabled
in the DTSI files, but the parent ethX node is left disabled. It
only gets enabled per device or device family, and has not been
enabled at all yet for the TP-Link WA devices with ar7240, making
the switch unavailable there.
This patch makes sure ð0/ð1 nodes are enabled together with
the &mdio0/&mdio1 nodes containing the builtin-switch.
For ar7240_tplink_tl-wa.dtsi, ð0 is properly hidden again via
compatible = "syscon", "simple-mfd";
This partially fixes FS#2887, however it seems dmesg still does
not show cable (dis)connect in dmesg for ar7240 TP-Link WA
devices.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ALLNET ALL-WAP02860AC is a dual-band wireless access point.
Specification
SoC: Qualcomm Atheros QCA9558
RAM: 128 MB DDR2
Flash: 16 MB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9880 Mini PCIe card
Ethernet: 1x 10/100/1000 Mbps AR8035-A, PoE capable (802.3at)
LEDS: 5x, which four are GPIO controlled
Buttons: 1x GPIO controlled
UART: 4 pin header near Mini PCIe card, starting count from white
triangle on PCB
1. VCC 3.3V, 2. GND, 3. TX, 4. RX
baud: 115200, parity: none, flow control: none
MAC addresses
Calibration data does not contain valid MAC addresses.
The calculated MAC addresses are chosen in accordance with OEM firmware.
Because of:
a) constrained environment (SNMP) when connecting through Telnet
or SSH,
b) hard-coded kernel and rootfs sizes,
c) checksum verification of kerenel and rootfs images in bootloder,
creating factory image accepted by OEM web interface is difficult,
therefore, to install OpenWrt on this device UART connection is needed.
The teardown is simple, unscrew four screws to disassemble the casing,
plus two screws to separate mainboard from the casing.
Before flashing, be sure to have a copy of factory firmware, in case You
wish to revert to original firmware.
Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to LAN port.
3. Connect to UART port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Alter U-Boot environment with following commands:
setenv failsafe_boot bootm 0x9f0a0000
saveenv
6. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
bootm 0x81000000
7. Wait about 1 minute for OpenWrt to boot.
8. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
9. After flashing, the access point will reboot to OpenWrt. Wait few
minutes, until the Power LED stops blinking, then it's ready for
configuration.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[add MAC address comment to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports the TP-Link TL-WPA8630 v1 from ar71xx to ath79.
Specifications:
SoC: QCA9563
CPU: 750 MHz
Flash/RAM: 8 / 128 MiB
Ethernet: 3x 1G ports (QCA8337 switch)
WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac (ath10k)
Buttons, LEDs and network setup appear to be almost identical
to the v2 revision.
Powerline interface is connected to switch port 5 (Label LAN4).
Installation:
No "fresh" device was available for testing the factory image.
It is not known whether flashing via OEM firmware GUI is possible
or not. A discussion from 2018 [1] about that indicates a few
adjustments are necessary, but it is not clear whether those
are already implemented with the TPLINK_HEADER_VERSION = 2 or not.
Note that for the TL-WPA8630P v1, the TPLINK_HWID needs to be
changed to 0x86310001 to allow factory flashing.
[1] https://forum.openwrt.org/t/solved-tl-wpa8630p-lede-does-not-install/8161/27
Recovery:
Recovery is only possible via serial.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The commands to read ath9k caldata on mikrotik subtarget are
mostly repetitive, so let's put them into a function to make
writing and reading them easier.
This function will only be required when patching the MAC address.
For cases where it is put correctly into the calibration data by
the vendor, caldata_sysfsload_from_file can be used directly as
done for ath10k at the moment.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The missing "size" property was acceptable in the context of a single
DTS as the underlying device is known to have a 64KB flash, and thus
the bios partition fit exactly between the preceding and following ones.
However as this block has moved in a DTSI, for the sake of clarity and
explicitness the size property is added to ensure that if the flash
happens to be larger than expected, the bios partition remains properly
sized.
Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This harmonizes the appearance of ethX nodes in qca953x DTSes by:
- having the same order of nodes and properties
- removing redundant status property on eth1 (set in qca953x.dtsi)
This is meant to help both copy-pasters and reviewers, since
deviations and errors can be spotted easier.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MikroTik SXT Lite5 (product code RBSXT5nDr2, also SXT 5nD r2) is
an outdoor 5GHz CPE with a 16 dBi integrated antenna built around the
Atheros AR9344 SoC. It is based on the "sxt5n" board platform.
Specifications:
- SoC: Atheros AR9344
- RAM: 64 MB
- Storage: 128 MB NAND
- Wireless: Atheros AR9340 (SoC) 802.11a/n 2x2:2
- Ethernet: Atheros AR8229 switch (SoC), 1x 10/100 port,
8-32 Vdc PoE in
- 6 user-controllable LEDs:
· 1x power (blue)
· 1x wlan (green)
· 4x rssi (green)
- 1 GPIO-controlled buzzer
See https://mikrotik.com/product/RBSXT5nDr2 for more details.
Notes:
The device was already supported in the ar71xx target. There, the
Ethernet port was handled by GMAC1. Here in ath79 it is handled by
GMAC0, which allows to get link information (loss, speed, duplex) on
the eth0 interface.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Acknowledgments:
Michael Pratt (@mpratt14) for helping on the network settings.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[rebase, use mikrotik LED label prefix, make names consistent,
add reg for bootloader2, use led_user for boot indication etc.,
minor cosmetic changes]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MikroTik RouterBOARD 921GS-5HPacD-15s (mANTBox 15s) is an outdoor
antenna for 5 GHz with an built-in router. This ports the board from
ar71xx.
See https://mikrotik.com/product/RB921GS-5HPacD-15S for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9558 (720 MHz)
- RAM: 128 MB
- Storage: 128 MB NAND
- Wireless: external QCA9892 802.11a/ac 2x2:2
- Ethernet: 1x 1000/100/10 Mbps, integrated, via AR8031 PHY, passive PoE in
- SFP: 1x host
Working:
- NAND storage detection
- Ethernet
- Wireless
- 1x user LED (blinks during boot, sysupgrade)
- Reset button
- Sysupgrade
Untested:
- SFP cage (probably not working)
Installation (untested):
- Boot initramfs image via TFTP and then flash sysupgrade image
As the embedded RB921-pcb is a stripped down version of the RB922 this patch
adds a common dtsi for this series and includes this to the final dts-files.
Signed-off-by: Sven Roederer <devel-sven@geroedel.de>
[move ath10k-leds closer to ath10k definition in DTS files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MikroTik RouterBOARD LHG 2nD (sold as LHG 2) is a 2.4 GHz
802.11b/g/n outdoor device with a feed and an integrated dual
polarization grid dish antenna based on the LHG-HB platform.
See https://mikrotik.com/product/lhg_2 for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- RAM: 64 MB
- Storage: 16 MB NOR
- Wireless: Atheros AR9531 (SoC) 802.11b/g/n 2x2:2, 18 dBi antenna
- Ethernet: Atheros AR8229 (SoC), 1x 10/100 port, 12-28 Vdc PoE in
- 8 user-controllable LEDs:
· 1x power (blue)
· 1x user (green)
· 1x lan (green)
· 1x wlan (green)
· 4x rssi (green)
Note:
The rssihigh LED is disabled, as it shares GPIO 16 with the reset
button.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[rebase, remove rssiled setup, adjust commit message, add DTSIs]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: Qualcomm Atheros QCA9557
RAM: 128 MB (Nanya NT5TU32M16EG-AC)
Flash: 16 MB (Macronix MX25L12845EMI-10G)
Ethernet: 5x 10/100/1000 (1x WAN, 4x LAN)
Wireless: QCA9557 2.4GHz (nbg), QCA9882 5GHz (ac)
USB: 2x USB 2.0 port
Buttons: 1x Reset
Switches: 1x Wifi
LEDs: 11 (Pwr, WAN, 4x LAN, 2x Wifi, 2x USB, WPS)
MAC addresses:
WAN *:3f uboot-env ethaddr + 3
LAN *:3e uboot-env ethaddr + 2
2.4GHz *:3c uboot-env ethaddr
5GHz *:3d uboot-env ethaddr + 1
The label contains all four MAC addresses, however the one without
increment is first, so this one is taken for label MAC address.
Notes:
The Wifi is controlled by an on/off button, i.e. has to be implemented
by a switch (EV_SW). Despite, it appears that GPIO_ACTIVE_HIGH needs
to be used, just like recently fixed for the NBG6716.
Both parameters have been wrong at ar71xx.
Flash Instructions:
At first the U-Boot variables need to be changed in order to boot the
new combined image format. ZyXEL uses a split kernel + root setup and
the current kernel is too large to fit into the partition. As resizing
didnt do the trick, I've decided to use the prefered combined image
approach to be future-kernel-enlargement-proof (thanks to blocktrron for
the assistance).
First add a new variable called boot_openwrt:
setenv boot_openwrt bootm 0x9F120000
After that overwrite the bootcmd and save the environment:
setenv bootcmd run boot_openwrt
saveenv
After that you can flash the openwrt factory image via TFTP. The servers
IP has to be 192.168.1.33. Connect to one of the LAN ports and hold the
WPS Button while booting. After a few seconds the NBG6616 will look for
a image file called 'ras.bin' and flash it.
Return to vendor firmware is possible by resetting the bootcmd:
setenv bootcmd run boot_flash
saveenv
and flashing the vendor image via the TFTP method as described above.
Accessing the U-Boot Shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
| NBG6616> ?
| ATEN x,(y) set BootExtension Debug Flag (y=password)
| ATSE x show the seed of password generator
| ATSH dump manufacturer related data in ROM
| ATRT (x,y,z,u) ATRT RAM read/write test (x=level, y=start addr, z=end addr, u=iterations
| ATGO boot up whole system
| ATUR x upgrade RAS image (filename)
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
| NBG6616> ATSE NBG6616
| 00C91D7EAC3C
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
| # bash ./tool.sh 00C91D7EAC3C
| ATEN 1,10FDFF5
Copy and paste the result into the shell to unlock zloader.
| NBG6616> ATEN 1,10FDFF5
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
| NBG6616> ATGU
| NBG6616#
Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[move keys to DTSI, adjust usb_power DT label, remove kernel config
change, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
A bunch of kernel modules depends on kmod-usb-net, but does not
select it. Make AddDepends/usb-net selective, so we can drop
some redundant +kmod-usb-net definitions for DEVICE_PACKAGES.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
SPI Flash chip supports up to 33 MHz wihout fast read opcode.
Available frequencies are 112.5, 56.25, 37.5, 28.125, 22.5 etc.
This patch increases the nominal maximum frequency to 33 MHz,
reaching an effective increase from 22.5 to 28.125 MHz.
Formula to calculate SPI frequency:
Freq = 225 MHz / 2 / div
Before:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 3.58s
user 0m 0.00s
sys 0m 3.57s
After:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 2.95s
user 0m 0.00s
sys 0m 2.93s
Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>
[minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TL-WPA8630P v2 is a HomePlug AV2 compatible device with a QCA9563 SoC
and 2.4GHz and 5GHz WiFi modules.
Specifications
--------------
- QCA9563 750MHz, 2.4GHz WiFi
- QCA9888 5GHz WiFi
- 8MiB SPI Flash
- 128MiB RAM
- 3 GBit Ports (QCA8337)
- PLC (QCA7550)
MAC address assignment
----------------------
WiFi 2.4GHz and LAN share the same MAC address as printed on the label.
5GHz WiFi uses LAN-1, based on assumptions from similar devices.
LAN Port assignment
-------------------
While there are 3 physical LAN ports on the device, there will be 4
visible ports in OpenWrt. The fourth port (internal port 5) is used
by the PowerLine Communication SoC and thus treated like a regular
LAN port.
Versions
--------
Note that both TL-WPA8630 and TL-WPA8630P, as well as the different
country-versions, differ in partitioning, and therefore shouldn't be
cross-flashed.
This adds support for the two known partitioning variants of the
TL-WPA8630P, where the variants can be safely distinguished via the
tplink-safeloader SupportList. For the non-P variants (TL-WPA8630),
at least two additional partitioning schemes exist, and the same
SupportList entry can have different partitioning.
Thus, we don't support those officially (yet).
Also note that the P version for Germany (DE) requires the international
image version, but is properly protected by SupportList.
In any case, please check the OpenWrt Wiki pages for the device
before flashing anything!
Installation
------------
Installation is possible from the OEM web interface. Make sure to
install the latest OEM firmware first, so that the PLC firmware is
at the latest version. However, please also check the Wiki page
for hints according to altered partitioning between OEM firmware
revisions.
Additional thanks to Jon Davies and Joe Mullally for bringing
order into the partitioning mess.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
[minor DTS adjustments, add label-mac-device, drop chosen, move
common partitions to DTSI, rename de to int, add AU support strings,
adjust TPLINK_BOARD_ID, create common node in generic-tp-link.mk,
adjust commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA901ND v3 from ar71xx to ath79.
Most of the hardware is shared with the TL-WA850/860RE v1 range
extenders. It completes the TL-WA901ND series in ath79.
Specifications:
Board: AP123 / AR9341
Flash/RAM: 4/32 MiB
CPU: 535 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
This has not been tested on device, but port from ar71xx is
straightforward and the device will be disabled by default anyway.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The ath79 target has CONFIG_LEDS_GPIO=y set in kernel config, so
no need to pull the kmod-leds-gpio module for specific devices.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the WNDR4300TN, marketed by Belgian ISP
Telenet. The hardware is the same as the WNDR4300 v1, without the
fifth ethernet port (WAN) and the USB port. The circuit board has
the traces, but the components are missing.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2.4 GHz)
* Ethernet: 4x 1000Base-T
* LED: Power, LAN, WiFi 2.4GHz, WiFi 5GHz, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.0.51/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Telenet
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the gray circle around it, next to the Telenet logo)
and turn the router on while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
Signed-off-by: Davy Hollevoet <github@natox.be>
[use DT label reference for adding LEDs in DTSI files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Move the image preparation and nand-utils package selection into
common device definitions for NOR/NAND devices.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The gl-e750 is a portable travel router that gives you safe access to
the internet while traveling.
Specifications:
- SoC: Qualcomm Atheros AR9531 (650MHz)
- RAM: 128 MB DDR2
- Flash: 16 MB SPI NOR (W25Q128FVSG) + 128 MB SPI NAND (GD5F1GQ4UFYIG)
- Ethernet: 10/100: 1xLAN
- Wireless: QCA9531 2.4GHz (bgn) + QCA9887 5GHz (ac)
- USB: 1x USB 2.0 port
- Switch: 1x switch
- Button: 1x reset button
- OLED Screen: 128*64 px
MAC addresses based on vendor firmware:
LAN *:a0 art 0x0
2.4GHz *:a1 art 0x1002
5GHz *:a2 art calculated from art 0x0 + 2
Flash firmware:
Since openwrt's kernel already exceeds 2MB, upgrading from the official
version of GL-inet (v3.100) using the sysupgrade command will break the
kernel image. Users who are using version 3.100 can only upgrade via
uboot. The official guidance for GL-inet is as follows:
https://docs.gl-inet.com/en/3/troubleshooting/debrick/
In the future, GL-inet will modify the firmware to support the sysupgrade
command, so users will be able to upgrade directly with the sysupgrade
command in future releases.
OLED screen control:
OLED controller is connected to QCA9531 through serial port, and can send
instructions to OLED controller directly through serial port.
Refer to the links below for a list of supported instructions:
https://github.com/gl-inet/GL-E750-MCU-instruction
Signed-off-by: Luochongjun <luochongjun@gl-inet.com>
[fix alphabetic sorting in 10-fix-wifi-mac, drop check-kernel-size]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
It has been decided that the 19.07 release will be last one to include
4/32 devices.
This disables default build for the remaining devices with 4M flash
on ath79. Note that this will leave exactly one enabled device for
ath79/tiny subtarget, PQI Air-Pen, which was moved there due to
kernel size restrictions.
All 4M TP-Link devices have already been disabled in
8819faff47 ("ath79: do not build TP-Link tiny images by default")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Netgear currently has a special definition for tiny devices, which
is only used by two devices. Despite, it sets ups the IMAGE/default
definition individually for all devices, although there is actually
only one exception.
This merges the common parts into a single netgear_generic definition
(in contrast to netgear_ath79_nand), and adjusts the individual
definitions accordingly.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: QCA9563
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 Gigabit ethernet ports
3×3 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 24V passive or 36V-56V passive with optional IEEE 802.3af/at
USB 3.0 header
Installation:
To install, either start tftp in bin/targets/ath79/generic/ and use
the u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj563-squashfs-sysupgrade.bin
erase 0x9f680000 +1
erase 0x9f030000 +$filesize
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add
SSH key in luci for root access) or with the built-in cpximg loader.
The cpximg loader can be started either by holding the reset button
during power up or by entering the u-boot prompt and entering 'cpximg'.
Once it's running, a TFTP-server under 192.168.1.1 will accept the image
appropriate for the board revision that is etched on the board.
For example, if the board is labelled '7A02':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj563-squashfs-cpximg-7a02.bin
MAC addresses:
<&uboot 0x2e010> *:71 (label)
<&uboot 0x2e018> *:72
<&uboot 0x2e020> *:73
<&uboot 0x2e028> *:74
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
The Mikrotik RBwAPG-5HacT2HnD has only a single ethernet interface
(lan), and the vendor uses the base (label) MAC address for it.
Signed-off-by: Bjoern Dobe <bjoern@dobecom.de>
[commit title/message improvement]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
AR8327 datasheet[1] calls the register at address 0x0010
"Power-on Strapping Register". As it has nothing to do with "strip",
let's rename it to "POWER_ON_STRAP" to make it easier to grasp.
[1] https://lafibre.info/images/doc/201106_spec_AR8327.pdf
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The bootloader only writes the first 2MB of the image to the NOR flash
when installing the NAND factory image. The bootloader is capable of
booting larger kernels as it boots from the memory mapped SPI flash.
Disable the NAND factory image. The NAND can be bootstrapped by writing
the NAND initramfs image using the NOR upgrade method in the bootloader
web-recovery and sysupgrading from there. The NOR variant is not
affected.
Also refactor the partition definitions in the DTS to make them less
annoying to read.
Signed-off-by: David Bauer <mail@david-bauer.net>
The TL-WR841ND v8 feature a WiFi switch instead of a button.
This adds the corresponding input-type to prevent booting into
failsafe regularly.
This has been defined correctly in ar71xx, but was overlooked
when migrating to ath79. In contrast, the TL-WR842ND v2, which
has the key set up as switch in ar71xx, actually has a button.
The TL-MR3420 v2 has a button as well and is set up correctly
for both targets. (Information based on TP-Link user guide)
Note:
While looking into this, I found that support PR for TL-MR3420 v2
switched reset button to ACTIVE_HIGH. However, the other two
device still use ACTIVE_LOW. This seems strange, but I cannot
verify it lacking the affected devices.
Fixes: FS#2733
Fixes: 9601d94138 ("add support for TP-Link TL-WR841N/ND v8")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This harmonizes the model names for the ath79 Ubiquiti devices by
applying a few minor cosmetic adjustments:
- Removes hyphens where they are not found in the product names
(Ubiquiti uses hyphens only for the abbreviated version names
like UAP-AC-PRO which we don't use anyway.)
- Add (XM) suffix for DTS model strings to help with distinguishing
them from their XW counterparts.
- Remove DEVICE_VARIANT for LAP-120 which actually was an alternate
device name.
- Generally make DTS model names and those from generic-ubnt.mk
more consistent.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti PowerBridge M, which has the same
board/LEDs as the Bullet M XM, but different case and antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- Internal antenna: 25 dBi
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other Bullet M (XM) boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_powerbridge-m-squashfs-factory.bin
Signed-off-by: Vieno Hakkerinen <vieno@hakkerinen.eu>
Since commit 6f2e1b7485 (ath79: disable delays on AT803X config init)
the incoming incoming traffic on the ubnt,lap-120 devices Ethernet
port was not making it through. Using rgmii-id instead of rgmii (same
configuration as ubnt,litebeam-ac-gen2) fixes it.
Fixes FS#2893.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
upstream changed dt-bindings for marvell 88e6060 to use mdio-device
and dropped support for legacy bindings.
fix it in our local dts.
Fixes: FS#2524
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Linux phy subsystem provides support for a phy regulator defined via
phy-supply property. Use it to turn on usb power only when usb is
probed.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The support for this device's Marvell MV88E6060 switch has been
reported to be broken with kernels 4.19/5.4 (see bug report).
Since this a 4/32 device and it has been confirmed to be working
with stable 19.07 release (kernel 4.14), and since fixing it does
not seem trivial, let's just disable it in master.
Fixes: FS#2524
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Port device support for DAP-1330 from the ar71xx target to ath79.
Additionally, images are generated for the European through-socket
case variant DAP-1365. Both devices run the same vendor firmware, the
only difference being the DAP_SIGNATURE field in the factory header.
The vendor's Web UI will display a model string stored in the flash.
Specifications:
* QCA9533, 8 MiB Flash, 64 MiB RAM
* One Ethernet Port (10/100)
* Wall-plug style case (DAP-1365 with additional socket)
* LED bargraph RSSI indicator
Installation:
* Web UI: http://192.168.0.50 (or different address obtained via DHCP)
There is no password set by default
* Recovery Web UI: Keep reset button pressed during power-on
until LED starts flashing red, upgrade via http://192.168.0.50
* Some modern browsers may have problems flashing via the Web UI,
if this occurs consider booting to recovery mode and flashing via:
curl -F \
files=@openwrt-ath79-generic-dlink_dap-1330-a1-squashfs-factory.bin \
http://192.168.0.50/cgi/index
The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Arduino Yun is a microcontroller development board, based on Atmel
ATmega32u4 and Atheros AR9331.
Specifications:
- MCU: ATmega32U4
- SoC: AR9331
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: SoC internal
- Ethernet: 1x 10/100Mbps
- USB: 1x 2.0
- MicroSD: 1x SDHC
Notes:
- Stock firmware is based on OpenWrt AA.
- The SoC UART can be accessed only through the MCU.
YunSerialTerminal is recommended for access to serial console.
- Stock firmware uses non-standard 250000 baudrate by default.
- The MCU can be reprogrammed from the SoC with avrdude linuxgpio.
Installation:
1. Update U-Boot environment variables to adapt to new partition scheme.
> setenv bootcmd "run addboard; run addtty; run addparts; run addrootfs; bootm 0x9f050000 || bootm 0x9fea0000"
> setenv mtdparts "spi0.0:256k(u-boot)ro,64k(u-boot-env),15936k(firmware),64k(nvram),64k(art)ro"
> saveenv
2. Boot into stock firmware normally and perform sysupgrade with
sysupgrade image.
# sysupgrade -n -F /tmp/sysupgrade.bin
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The DCH-G020 is a Smart Home Gateway for Z-Wave devices.
Specifications:
* QCA9531, 16 MiB Flash, 64 MiB RAM
* On-Board USB SD3503A Z-Wave dongle
* GL850 USB 2.0 Hub (one rear port, internal Z-Wave)
* Two Ethernet Ports (10/100)
Installation:
* Web UI: http://192.168.0.60 (or different address obtained via DHCP)
Login with 'admin' and the 6-digit PIN Code from the bottom label
* Recovery Web UI: Keep reset button pressed during power-on
until LED starts flashing red, upgrade via http://192.168.0.60
* Some modern browsers may have problems flashing via the Web UI,
if this occurs consider booting to recovery mode and flashing via:
curl -F \
files=@openwrt-ath79-generic-dlink_dch-g020-a1-squashfs-factory.bin \
http://192.168.0.60/cgi/index
Known issues:
* Real-Time-Clock is not working as there is currently no matching driver
It is still included in the dts as compatible = "pericom,pt7c43390";
* openzwave was tested on v19.07 (running MinOZW as a proof-of-concept),
but the package grew too big as lots of device pictures were included,
thus any use of Z-Wave is up to the user (e.g. extroot and domoticz)
The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specification:
• 650/600/216 MHz (CPU/DDR/AHB)
• 64 MB of RAM (DDR2)
• 32 MB of FLASH
• 2T2R 2.4 GHz
• 2x 10/100 Mbps Ethernet
• 1x USB 2.0 Host socket
• 1x miniPCIe slot
• UART for serial console
• 14x GPIO
Flash instructions:
Upgrading from ar71xx target:
• Upload image into the board:
scp openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
root@192.168.1.1/tmp/
• Run sysupgrade
sysupgrade -F /tmp/openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
Upgrading from u-boot:
• Set up tftp server with
openwrt-ath79-generic-8dev_lima-initramfs-kernel.bin
• Go to u-boot (reboot and press ESC when prompted)
• Set TFTP server IP
setenv serverip 192.168.1.254
• Set device ip from the same subnet
setenv ipaddr 192.168.1.1
• Copy new firmware to board
tftpboot 0x82000000 initramfs.bin
• Boot OpenWRT
bootm 0x82000000
• Upload image openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin into
the board
• Run sysupgrade.
Signed-off-by: Andrey Bondar <a.bondar@8devices.com>
Fixes following build failures:
WARNING: Image file glinet_gl-ar750s-nor-kernel.bin is too big
WARNING: Image file glinet_gl-ar750s-nor-nand-kernel.bin is too big
Signed-off-by: Petr Štetiar <ynezz@true.cz>
As the reported major bugs are ironed out, switch to the new kernel to
begin testing with a broader audience.
Signed-off-by: David Bauer <mail@david-bauer.net>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
Fixes:
- CVE-2020-10757
The "mtd: rawnand: Pass a nand_chip object to nand_release()" commit was
backported which needed some adaptations to other code.
Run tested: ath79
Build tested: ath79
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for the ar71xx supported GL.iNet GL-MiFi to ath79.
Specifications:
- Atheros AR9331
- 64 MB of RAM
- 16 MB of FLASH (SPI NOR)
- 2x 10/100/1000 Mbps Ethernet
- 2.4GHz (AR9330), 802.11b/g/n
- 1x USB 2.0 (vbus driven by GPIO)
- 4x LED, driven by GPIO
- 1x button (reset)
- 1x mini pci-e slot (vcc driven by GPIO)
Flash instructions:
Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.
Note on MAC addresses:
Even though the platform is capable to providing separate MAC addresses
to the interfaces vendor firmware does not seem to take advantage of
that. It appears that there is only single unique pre-programmed
address in the art partition and vendor firmware uses that for
every interface (eth0/eth1/wlan0). Similar behaviour has also been
implemented in this patch.
Note on GPIOs:
In vendor firmware the gpio controlling mini pci-e slot is named
3gcontrol while it actually controls power supply to the entire mini
pci-e slot. Therefore a more descriptive name (minipcie) was chosen.
Also during development of this patch it became apparent that the
polarity of the signal is actually active low rather than active high
that can be found in vendor firmware.
Acknowledgements:
This patch is based on earlier work[1] done by Kyson Lok. Since the
initial mailing-list submission the patch has been modified to comply
with current openwrt naming schemes and dts conventions.
[1] http://lists.openwrt.org/pipermail/openwrt-devel/2018-September/019576.html
Signed-off-by: Antti Seppälä <a.seppala@gmail.com>
All definitions of gpio in SoC DTSI files do not set status, i.e.
have it enabled. This drops all remaining redundant "status = okay"
definitions in descendent files (mostly older ones).
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
All other SoC DTSI files have gpio enabled by default, only
ar9330/ar9331 disable it by default, only to have it enabled again
afterwards for each individual device.
So, do not disable it in the first place, and drop all device-specific
status statements afterwards.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: AR9344
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 Gigabit ethernet ports
2×2 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 48V IEEE 802.3af/at - 24V passive optional
USB 2.0 header
Installation:
To install, either start tftp in bin/targets/ath79/generic/ and use
the u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj344-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
erase 0x9f680000 +1
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add
SSH key in luci for root access) or with the built-in cpximg loader.
The cpximg loader can be started either by holding the reset button
during power up or by entering the u-boot prompt and entering 'cpximg'.
Once it's running, a TFTP-server under 192.168.1.1 will accept the image
appropriate for the board revision that is etched on the board.
For example, if the board is labelled '6A08':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj344-16m-squashfs-cpximg-6a08.bin
MAC addresses:
<&uboot 0x2e010> *:99 (label)
<&uboot 0x2e018> *:9a
<&uboot 0x2e020> *:9b
<&uboot 0x2e028> *:9c
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[minor commit message adjustments, drop gpio in DTS, DTS style fixes,
sorting, drop unused cpximg recipe]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The replaces the custom uImageArcher build step with the generic uImage
build step. The only different between these two is the difference in
the generated name.
Tested on: TP-Link Archer C59 v1
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
For quite some time, the tiny (4M flash) TP-Link sysupgrade and
factory images cannot be built anymore by the buildbots, just
the initramfs-kernel.bin files are still there.
Disable these images for the buildbots and prevent useless builds.
Note that these devices still build fine with default settings,
even for kernel 5.4.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Generate additional images that are compatible to the cpximg loader.
The cpximg loader can be started either by holding the reset button during
power up or by entering the u-boot prompt and entering 'cpximg'.
Once it's running, a TFTP-server under 192.168.1.1 will accept the image
appropriate for the board revision that is etched on the board.
For example, if the board is labelled '7A04':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj531-16m-squashfs-cpximg-7A04.bin
These files can also be used with the sysupgrade utility in stock images (add
SSH key in luci for root access).
Signed-off-by: Leon M. George <leon@georgemail.eu>
[fix sorting of definitions]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: QCA9531
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 100MBit ethernet ports
2×2 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 24V - 48V IEEE 802.3af optional
USB 2.0 header
Installation:
To install, start a tftp server in bin/targets/ath79/generic/ and use the
u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj531-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
erase 0x9f680000 +1
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add SSH key
in luci for root access).
Another way is to hold the reset button during power up or running 'cpximg' in
the u-boot prompt.
Once the last LED starts flashing regularly, a TFTP-server under 192.168.1.1
will accept the image appropriate for the board revision that is etched on the
board.
For example, if the board is labelled '7A04':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj531-16m-squashfs-cpximg-7A04.bin
MAC addresses:
<&uboot 0x2e010> *:cb (label)
<&uboot 0x2e018> *:cc
<&uboot 0x2e020> *:cd
<&uboot 0x2e028> *:ce
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[commit title/message facelift, fix rssileds, add led aliases]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
switch-bcm53xx-mdio does not exists, use kmod-switch-bcm53xx-mdio
instead.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Tobias Schramm <tobleminer@gmail.com>
In ath79, for several SoCs the console bootargs are defined to the
very same value in every device's DTS. Consolidate these definitions
in the SoC dtsi files and drop further redundant definitions elsewhere.
The only device without any bootargs set has been OpenMesh OM5P-AC V2.
This will now inherit the setting from qca955x.dtsi
Note that while this tidies up master a lot, it might develop into a
frequent pitfall for backports.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the AVM FRITZ!WLAN Repeater DVB-C
SOC: Qualcomm Atheros QCA9556
RAM: 64 MiB
FLASH: 16 MB SPI-NOR
WLAN: QCA9556 3T3R 2.4 GHZ b/g/n and
QCA9880 3T3R 5 GHz n/ac
ETH: Atheros AR8033 1000 Base-T
DVB-C: EM28174 with MaxLinear MXL251 tuner
BTN: WPS Button
LED: Power, WLAN, TV, RSSI0-4
Tested and working:
- Ethernet (correct MAC, gigabit, iperf3 about 200 Mbit/s)
- 2.4 GHz Wi-Fi (correct MAC)
- 5 GHz Wi-Fi (correct MAC)
- WPS Button (tested using wifitoggle)
- LEDs
- Installation via EVA bootloader (FTP recovery)
- OpenWrt sysupgrade (both CLI and LuCI)
- Download of "urlader" (mtd0)
Not working:
- Internal USB
- DVB-C em28174+MxL251 (depends on internal USB)
Installation via EVA bootloader (FTP recovery):
Set NIC to 192.168.178.3/24 gateway 192.168.178.1 and power on the device,
connect to 192.168.178.1 through FTP and sign in with adam2/adam2:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Wait for "Transfer complete" together with the transfer details.
Wait two minutes to make sure flash is complete (just to be safe).
Then restart the device (power off and on) to boot into OpenWrt.
Revert your NIC settings to reach OpenWrt at 192.168.1.1
Signed-off-by: Natalie Kagelmacher <nataliek@pm.me>
[fixed sorting - removed change to other board -
prettified commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
Currently it's not possible to tftpboot initramfs image on archer-c7-v5
as the image contains tplink-v1-header which leads to:
ath> bootm
## Booting image at 81000000 ...
Bad Magic Number
as U-Boot expects uImage wrapped image. This is caused by following
inheritance issue:
define Device/Init
KERNEL_INITRAMFS = $$(KERNEL)
define Device/tplink-v1
KERNEL := kernel-bin | append-dtb | lzma
KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma | tplink-v1-header
define Device/tplink-safeloader
$(Device/tplink-v1)
define Device/tplink-safeloader-uimage
$(Device/tplink-safeloader)
KERNEL := kernel-bin | append-dtb | lzma | uImageArcher lzma
define Device/tplink_archer-c7-v5
$(Device/tplink-safeloader-uimage)
where tplink-v1 defines KERNEL_INITRAMFS with tplink-v1-header and it's
then used by all devices inheriting from tplink-safeloader. Fix this by
overriding KERNEL_INITRAMFS to KERNEL variable again.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Inputs assigned to "mode select" switch on the side of the device
were missing linux,input-type property.
This would cause them do incorrectly generate EV_KEY events.
Fix this by setting the linux,input-type = <EV_SW> property on them.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
TP-Link CPE610 v2 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on Atheros AR9344
Specifications:
- 560/450/225 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 64 MB of DDR2 RAM
- 8 MB of SPI-NOR Flash
- 23dBi high-gain directional 2×2 MIMO antenna and a
dedicated metal reflector
- Power, LAN, WLAN5G green LEDs
- 3x green RSSI LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
This ports support for these devices from ar71xx.
Specification:
- System-On-Chip: Qualcomm Atheros QCA9533
- CPU/Speed: v3: 560 MHz, v4: 650 MHz
- Flash: 4096 KiB
- RAM: 32 MiB
- Ethernet: 1 port @ 100M
- Wireless: SoC-integrated: QCA9533 2.4GHz 802.11bgn
In contrast to the implementation in ar71xx (reset and WiFi button),
the device actually features reset and WPS buttons.
Flashing instructions:
Upload the ...-factory.bin file via OEM web interface.
TFTP Recovery:
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to
wa801ndv3_tp_recovery.bin
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
TFTP recovery has only been tested with v3, and the Wiki states
that the procedure won't work for v4, which cannot be verified
or falsified at the moment.
Tested by Tim Ward (see forum):
https://forum.openwrt.org/t/ath79-support-for-tp-link-tl-wa901nd-v3-v4-v5/61246/13
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The status is set to "okay" for all devices on ar9344, so just move
this to the parent DTSI.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Define the kernel config symbol CONFIG_MFD_RB4XX_CPLD=n
to fix build breakage on non-mikrotik targets.
The driver was added for all ath79, but the symbol was only
defined for mikrotik subtarget.
Fixes: fa70b3a4bb ("ath79: add Mikrotik rb4xx series drivers")
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
[rearrange commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: Atheros AR9344
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 2.4GHz N based built into SoC
- Ethernet: 1x 10/100 Mbps with 24V POE IN, 1x 10/100 Mbps
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This drops the shebang from all target files for /lib and
/etc/uci-defaults folders, as these are sourced and the shebang
is useless.
While at it, fix the executable flag on a few of these files.
This does not touch ar71xx, as this target is just used for
backporting now and applying cosmetic changes would just complicate
things.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the MikroTik RouterBOARD RB493G, ported
from the ar71xx target.
See https://routerboard.com/RB493G for details
Specification:
- SoC Qualcomm Atheros AR7161
- RAM: 256 MiB
- Storage: 128MiB NAND
- Ethernet: 9x 1000/100/10 Mbps
- USB 1x 2.0 / 1.0 type A
- PCIe: 3x Mini slot
- MicroSD slot
Working:
- Board/system detection
- Ethernet
- SPI
- NAND
- LEDs
- USB
- Sysupgrade
Enabled (but untested due to lack of hardware):
- PCIe - ath79_pci_irq struct has the slot/pin/IRQ mappings if needed
Installation methods:
- tftp boot initramfs image, scp then flash via "sysupgrade -n"
- nand boot existing OpenWrt, scp then flash via "sysupgrade -n"
Notes:
- initramfs image will not work if uncompressed image size over ~8.5Mb
- The "rb4xx" drivers have been enabled
Signed-off-by: Christopher Hill <ch6574@gmail.com>
This adds 3 Mikrotik rb4xx series drivers as follows:
rb4xx-cpld: This is in the mfd subsystem, and is the parent CPLD device
that interfaces between the SoC SPI bus and its two children below.
rb4xx-gpio: This is the GPIO expander.
rb4xx-nand: This is the NAND driver.
The history of this code comes in three phases.
1. The first is a May 2015 attempt to push the equivalient ar71xx rb4xx
drivers upstream. See https://lore.kernel.org/patchwork/patch/940880/.
Module-author: Gabor Juhos <juhosg@openwrt.org>
Module-author: Imre Kaloz <kaloz@openwrt.org>
Module-author: Bert Vermeulen <bert@biot.com>
2. Next several ar71xx patches were applied bringing the code current.
commit 7bbf4117c6
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
commit af79fdbe4a
commit 889272d92d
commit e21cb649a2
commit 7c09fa4a74
Signed-off-by: Felix Fietkau <nbd@nbd.name>
3. Finally a heavy refactor to split the driver into the three new
subsystems, and updated to work with the device tree configuration, plus
updates and review feedback incorporated
Reviewed-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Christopher Hill <ch6574@gmail.com>
Currently, ag71xx will trigger a warning when TX xor RX-Delay modes are
enabled.
Handle them identical to the already implemented RGMII modes, as they
are only different for the attached PHY.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware:
* SoC: Qualcomm Atheros QCA9558
* RAM: 256MB
* Flash: 16MB SPI NOR
* Ethernet: 2x 10/100/1000 (1x 802.3at PoE-PD)
* WiFi 2.4GHz: Qualcomm Atheros QCA9558
* WiFi 5GHz: Qualcomm Ahteros QCA9880-2R4E
* LEDS: 1x 5GHz, 1x 2.4GHz, 1x LAN1(POE), 1x LAN2, 1x POWER
* Buttons: 1x RESET
* UART: 1x RJ45 RS-232 Console port
Installation via stock firmware:
* Install the factory image via the stock firmware web interface
Installation via bootloader Emergency Web Server:
* Connect your PC to the LAN1(PoE) port
* Configure your PC with IP address 192.168.0.90
* Open a serial console to the Console port (115200,8n1)
* Press "q" within 2s when "press 'q' to stop autoboot" appears
* Open http://192.168.0.50 in a browser
* Upload either the factory or the sysupgrade image
* Once you see "write image into flash...OK,dest addr=0x9f070000" you
can power-cycle the device. Ignore "checksum bad" messages.
Setting the MAC addresses for the ethernet interfaces via
/etc/board.d/02_network adds the following snippets to
/etc/config/network:
config device 'lan_eth0_1_dev'
option name 'eth0.1'
option macaddr 'xx:xx:xx:xx:xx:xx'
config device 'wan_eth1_2_dev'
option name 'eth1.2'
option macaddr 'xx:xx:xx:xx:xx:xx'
This would result in the proper MAC addresses being set for the VLAN
subinterfaces, but the parent interfaces would still have a random MAC
address. Using untagged VLANs could solve this, but would still leave
those extra snippets in /etc/config/network, and then the device VLAN
setup would differ from the one used in ar71xx. Therefore, the MAC
addresses of the ethernet interfaces are being set via preinit instead.
The bdcfg partition contains 4 MAC address labels:
- lanmac
- wanmac
- wlanmac
- wlanmac_a
The first 3 all contain the same MAC address, which is also the one on
the label.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Many target use a repetitive if-include scheme for their subtarget
image files, though their names are consistent with the subtarget
names.
This patch removes these redundant conditions and just uses the
variable for the include where the target setup allows it.
For sunxi, this includes a trivial rename of the subtarget image
Makefiles.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear WNDRMAC v1 is a hardware variant of the Netgear WNDR3700 v2
Specifications
==============
* SoC: Atheros AR7161
* RAM: 64mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v1)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v1.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3700 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3700#troubleshooting_and_recovery
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[update DTSI include name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear WNDRMAC v2 is a hardware variant of the Netgear WNDR3800
Specifications
==============
* SoC: Atheros AR7161
* RAM: 128mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Serial console: Yes, 115200 / 8N1 (JTAG)
* USB: 1x2.0
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v2)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v2.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3800 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3800#recovery_flash_in_failsafe_mode
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[do not add device to uboot-envtools, update DTSI name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This renames the DTSI for Netgear WNDR devices based on ar7161 to
indicate that the file is not limited to WNDR3700 models.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds ar71xx's GPIO setup for the 2.4GHz and 5GHz antennae
demultiplexer:
| 158 /* 2.4 GHz uses the first fixed antenna group (1, 0, 1, 0) */
| 159 ap9x_pci_setup_wmac_gpio(0, (0xf << 6), (0xa << 6));
| 160
| 161 /* 5 GHz uses the second fixed antenna group (0, 1, 1, 0) */
| 162 ap9x_pci_setup_wmac_gpio(1, (0xf << 6), (0x6 << 6));
This should restore the range and throughput of the 2.4GHz radio
on all the derived wndr3700 variants and versions with the AR7161 SoC.
A special case is the 5GHz radio. The original wndr3700(v1) will
benefit from this change. However the wndr3700v2 and later revisions
were unaffected by the missing bits, as there is no demultiplexer
present in the later designs.
This patch uses gpio-hogs within the device-tree for all
wndr3700/wndr3800/wndrmac variants.
Notes:
Based on the PCB pictures, the WNDR3700(v1) really had eight
independent antennae. Four antennae for each radio and all of
those were printed on the circut board.
The WNDR3700v2 and later have just six antennae. Four of those
are printed on the circuit board and serve the 2.4GHz radio.
Whereas the remaining two are special 5GHz Rayspan Patch Antennae
which are directly connected to the 5GHz radio.
Hannu Nyman dug pretty deep and unearthed a treasure of information
regarding the history of how these values came to be in the OpenWrt
archives: <https://dev.archive.openwrt.org/ticket/6533.html>.
Mark Mentovai came across the fixed antenna group when he was looking
into the driver:
fixed_antenna_group 1, (0, 1, 0, 1)
fixed_antenna_group 2, (0, 1, 1, 0)
fixed_antenna_group 3, (1, 0, 0, 1)
fixed_antenna_group 4, (1, 0, 1, 0)
Fixes: FS#3088
Reported-by: Luca Bensi
Reported-by: Maciej Mazur
Reported-by: Hannu Nyman <hannu.nyman@iki.fi>
Debugged-by: Hannu Nyman <hannu.nyman@iki.fi>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This is only a cosmetic correction, as the driver works as expected.
However, the error message confuses users about a missing reset definition.
On a defered init we don't see the following error message now:
[ 0.078292] ar7200-usb-phy usb-phy: phy reset is missing
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Johann Neuhauser <johann@it-neuhauser.de>
TP-Link RE450 v3 is a dual band router/range-extender based on
Qualcomm/Atheros QCA9563 + QCA9880.
This device is nearly identical to RE450 v2 besides a modified flash
layout (hence I think force-flashing a RE450v2 image will lead to at
least loss of MAC address).
Specification:
- 775 MHz CPU
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 1x 10/100/1000 Mbps Ethernet (AR8033 PHY)
- 7x LED, 4x button-
- possible UART header on PCB¹
Flash instruction:
Apply factory image in OEM firmware web-gui.
¹ Didn't check to connect as I didn't even manage to connect on
RE450v2 (AFAIU it requires disconnecting some resistors, which I was
too much of a coward to do). But given the similarities to v2 I
think it's the same or very similar procedure (and most likely also
the only way to debrick).
Signed-off-by: Andreas Wiese <aw-openwrt@meterriblecrew.net>
[remove dts-v1 and compatible in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- SoC: Qualcomm Atheros QCA9533 (560 MHz, MIPS 24Kc)
- RAM: 32 MiB
- Storage: 4 MiB of Flash on board
- Wireless: Built into QCA9533 (Honey Bee), PHY modes b/g/n
- Ethernet: 1x100M (port0)
Installation through OEM Web Interface:
- Connect to TL-WR802N by Ethernet or Wi-Fi
- Go to web interface:
[V1] http://192.168.0.1
[V2] http://192.168.0.254
Default user is "admin" & password is "admin".
On V2, there is no DHCP server running by default, so remember to set
IP manually.
- Go to "System Tools -> Firmware Upgrade"
- Browse for firmware:
[V1] "*.factory.bin"
[V2] "*.factory-us.bin" or "*.factory-eu.bin" for eu model
Web interface may complain if filename is too long. In such case,
rename .bin to something shorter.
- Click upgrade
Installation through tftp:
Note: T_OUT, T_IN and GND on the board must be connected to USB TTL
Serial Configuration 115200 8n1
- Boot the TL-WR802N
- When "Autobooting in 1 seconds" appears type "tpl" followed by enter
- Connect to the board Ethernet port
(IPADDR: 192.168.1.1, ServerIP: 192.168.1.10)
- tftpboot 0x80000000 <Firmware Image Name>
- Record the result of "printenv bootcmd"
- Enter "erase <Result of 'printenv bootcmd'> +0x3c0000"
(e.g erase 0x9f020000 +0x3c0000)
- Enter "cp.b 0x80000000 <Result of 'printenv bootcmd'> 0x3c0000"
(e.g cp.b 0x80000000 0x9f020000 0x3c0000)
- Enter "bootm <Result of 'printenv bootcmd'>"
(e.g bootm 0x9f020000)
Notes:
When porting from ar71xx target to ath79, I found out that on V2,
reset button is on GPIO12 and active low, instead of GPIO11 and
active high. By cross-flashing V1 firmware to V2, I confirmed
the same is true for V1.
Also according to manual of V1, this one also has green
LED instead of blue - both of those issues were fixed accordingly.
The MAC address assignment has been checked with OEM firmware.
Installation manual based on ar71xx support by Thomas Roberts
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[slightly adjust commit message, add MAC address comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Ubiquiti WA devices with newer hw version 2011K require UBNT_VERSION
to be at least 8.5.3, otherwise the image is rejected:
New ver: WA.ar934x.v8.5.0-42.OpenWrt-r10947-65030d81f3
Versions: New(525568) 8.5.0, Required(525571) 8.5.3
Invalid version 'WA.ar934x.v8.5.0-42.OpenWrt-r10947-65030d81f3'
For consistency, also increase version number for XC devices.
Tested-by: Pedro <pedrowrt@cas.cat>
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Since the wireless LED was used for boot and set up with a DT
trigger, the WiFi indication hasn't worked on ath79 at all.
In addition, a look into the manual revealed that the OEM
configuration is as follows:
LED 1 (green): power
LED 2 (green): configurable
LED 3 (red): wireless
So, let's just keep the WiFi trigger and convert the rest to its
"intended" use.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the COMFAST CF-E130N v2, an outdoor wireless
CPE with a single Ethernet port and a 802.11bgn radio.
Specifications:
- QCA9531 SoC
- 1x 10/100 Mbps Ethernet with PoE-in support
- 64 MB of RAM (DDR2)
- 16 MB of FLASH
- 5 dBi built-in antenna
- POWER/LAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI.
The U-boot bootloader also contains a backup TFTP client to upload the
firmware from. Upon boot, it checks its ethernet network for the IP
192.168.1.10. Host a TFTP server and provide the image to be flashed as
file firmware_auto.bin.
MAC address setup:
The art partition contains four consecutive MAC addresses:
0x0 aa:bb:cc:xx:xx:c4
0x6 aa:bb:cc:xx:xx:c6
0x1002 aa:bb:cc:xx:xx:c5
0x5006 aa:bb:cc:xx:xx:c7
However, the manufacturer in its infinite wisdom decided that one address
is enough and both eth0 and WiFi get the MAC address from 0x0 (yes, that's
overwriting the existing and valid address in 0x1002). This is obviously
also the address on the device's label.
Signed-off-by: Pavel Balan <admin@kryma.net>
[fix configs partition, fix IMAGE_SIZE, add MAC address comment, rename
ATH_SOC to SOC]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
AHB is 258 MHz for this device (CPU_PLL / 3), but there is no difference
between 64 MHz and 50 MHz for spi-max-frequency, thus increase to 50 MHz.
Tested on revisions C1 and C3.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
GPIO 11 needs to be pulled high for the external gigabit switch to work,
this is currently solved via gpio-hog. Replace with phy0 reset-gpios.
Tested on revisions C1 and C3. Reset button is still working for reboot,
to enter failsafe, and to enter bootloader http recovery.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The device has a total of 8 LEDs, 5 of which are controlled by the switch
(LAN 1-4, WAN). Only power, wifi and wps are controlled by the SoC.
* led_power is on GPIO 5 (not 15), boot flashing sequence is now visible
* remove led 'internet', since it is only connected to the switch
* remove ucidef_set_led_switch for WAN from 01_leds, as it has no effect
Tested on revisions C1 and C3.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[adjust commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The UBIFS_FS_ZSTD is exposed when UBIFS is enabled.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[adjust commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Between 4.19 and 5.4, the kernel moved the partition parsers into
the parsers subdirectory. This led to some necessary rebasing of
our local patches for parsers, which partially has been performed
without caring about where the code was inserted.
This commit tries to adjust our local patches so that parsers are
inserted at the "proper" positions with respect to alphabetic sorting
(if possible). Thus, the commit is cosmetic.
While this might look useless now, it will make life easier when
adding other parsers in the future or for rebasing on kernel changes.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the WNDR4300SW, marketed by California ISP
SureWest (hence the 'SW' suffix). Hardware wise, it's identical to the
WNDR4300 v1.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2,4 GHz)
* Ethernet: 5x 1000Base-T
* LED: Power, WAN, LAN, WiFi, USB, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.1.1/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Netgear
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the red circle around it) and turn the router on
while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Hardware
--------
SoC: Atheros AR9344
RAM: 128M DDR2
FLASH: 2x Macronix MX25L12845EM
2x 16MiB SPI-NOR
WLAN2: Atheros AR9344 2x2 2T2R
WLAN5: Atheros AR9580 2x2 2T2R
SERIAL: Cisco-RJ45 on the back (115200 8n1)
Installation
------------
The U-Boot CLI is password protected (using the same credentials as the
OS). Default is admin/new2day.
1. Download the OpenWrt initramfs-image. Place it into a TFTP server
root directory and rename it to 1401A8C0.img. Configure the TFTP
server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point. Attach power and
interrupt the boot procedure when prompted (bootdelay is 1 second).
4. Configure the U-Boot environment for booting OpenWrt from Ram and
flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xbf230000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x85000000; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
Wait for the image to boot.
6. Transfer the OpenWrt sysupgrade image to the device. Write the image
to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysuograde.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
This ports support for the TL-WA901ND v4 and v5 from ar71xx to ath79.
They are similar to the TP9343-based TL-WR940N v3/v4 and TL-WR941ND v6.
Specifications:
SoC: TP9343
Flash/RAM: 4/32 MiB
CPU: 750 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to * (see below)
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
* The image name for TFTP recovery is wa901ndv4_tp_recovery.bin for
both variants.
In ar71xx, a MAC address with offset 1 was used for ethernet port.
That's probably wrong, but this commit sticks to it until we know
the correct value.
Like in ar71xx, this builds the default factory.bin with EU country
code.
Thanks to Leonardo Weiss for testing on the v5.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Increase SPI frequency to 33.333 MHz. It's maximum frequency supported
by SPI Flash memory chip without Fast read opcode.
Before:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 3.21s
user 0m 0.00s
sys 0m 3.21s
After:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 2.52s
user 0m 0.00s
sys 0m 2.52s
Tested on TP-Link TL-WR1043ND V2.
Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>