The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can reference the same file.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the pre-calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can refer to the same file.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration".
Update the nvmem-cell name to make the 5GHz radio work again.
Fixes: d4b3b23942 ("ath79: TP-Link EAP245 v3: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Move the ethernet phy definition from the eap2x5-1port include to the
device-specific DTS files. This is to prepare for new devices that have
a different ethernet phy, at another MDIO address.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference to the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference from the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using an nvmem-cell.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle with an nvmem-cell reference for the
2.4GHz ath9k radio. This affects the following devices:
- TP-Link EAP225 v1
- TP-Link EAP225 v3
- TP-Link EAP225-Outdoor v1
- TP-Link EAP245 v1
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Small update to my previous path 'fix I2C on GL-AR300M devices'.
This update allow using GPIO17 as regular GPIO in case it not used
as I2C SDA line.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
With the pinctrl configuration set properly by the previous commit, the
LED stays lit regardless of status of 2.4GHz radio, even if 5GHz radio
is disabled. Map GPIO19 as LED for ath9k, this way the LED will show
activity for both bands, as it is bound by logical AND with output of
ath10k-phy0 LED. This works well because during management traffic,
phy*tpt triggers typically cause LEDs to blink in unison.
Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The default configuration of pinctrl for GPIO19 set by U-boot was not a
GPIO, but an alternate function, which prevented the GPIO hog from
working. Set GPIO19 into GPIO mode to allow the hog to work, then the
ath10k LED output can control the state of actual LED properly.
Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Update the name of for the Ubiquiti NanoBeam M5 to match the
auto-generated one at runtime. Otherwise sysupgrade complains about
mismatching device names.
This also required renaming the DTS.
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Ubiquiti NanoBeam M5 devices are CPE equipment for customer locations
with one Ethernet port and a 5 GHz 300Mbps wireless interface.
Specificatons:
- Atheros AR9342
- 535 MHz CPU
- 64 MB RAM
- 8 MB Flash
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
- 6 LEDs of which four are rssi
- 1 reset button
- UART (4-pin) header on PCB
Notes:
The device was supported by OpenWrt in ar71xx.
Flash instructions (web/ssh/tftp):
Loading the image via ssh vias a stock firmware prior "AirOS 5.6".
Downgrading stock is possible.
* Flashing is possible via AirOS software update page:
The "factory" ROM image is recognized as non-native and then installed correctly.
AirOS warns to better be familiar with the recovery procedure.
* Flashing can be done via ssh, which is becoming difficult due to legacy
keyexchange methods.
This is an exempary ssh-config:
KexAlgorithms +diffie-hellman-group1-sha1
HostKeyAlgorithms ssh-rsa
PubkeyAcceptedKeyTypes ssh-rsa
User ubnt
The password is ubnt.
Connecting via IPv6 link local worked best for me.
1. scp the factory image to /tmp
2. fwupdate.real -m /tmp/firmware_image_file.bin -d
* Alternatively tftp is possible:
1. Configure PC with static IP 192.168.1.2/24.
2. Enter the rescue mode. Power off the device, push the reset button on
the device (or the PoE) and keep it pressed.
Power on the device, while still pushing the reset button.
3. When all the leds blink at the same time, release the reset button.
4. Upload the firmware image file via TFTP:
tftp 192.168.1.20
tftp> bin
tftp> trace
Packet tracing on.
tftp> put firmware_image.bin
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
The MikroTik hAP (product code RB951Ui-2nD) is
an indoor 2.4Ghz AP with a 2 dBi integrated antenna built around the
Atheros QCA9531 SoC.
Specifications:
- SoC: Atheros QCA9531
- RAM: 64 MB
- Storage: 16 MB NOR - Winbond 25Q128FVSG
- Wireless: Atheros QCA9530 (SoC) 802.11b/g/n 2x2
- Ethernet: Atheros AR934X switch, 5x 10/100 ports,
10-28 V passive PoE in port 1, 500 mA PoE out on port 5
- 8 user-controllable LEDs:
· 1x power (green)
· 1x user (green)
· 4x LAN status (green)
· 1x WAN status (green)
· 1x PoE power status (red)
See https://mikrotik.com/product/RB951Ui-2nD for more details.
Notes:
The device was already supported in the ar71xx target.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Maciej Krüger <mkg20001@gmail.com>
The MikroTik RB952Ui-5ac2nD (sold as hAP ac lite) is an indoor 2.4Ghz
and 5GHz AP/router with a 2 dBi integrated antenna.
See https://mikrotik.com/product/RB952Ui-5ac2nD for more details.
Specifications:
- SoC: QCA9533
- RAM: 64MB
- Storage: 16MB NOR
- Wireless: QCA9533 802.11b/g/n 2x2 / QCA9887 802.11a/n/ac 2x2
- Ethernet: AR934X switch, 5x 10/100 ports,
10-28 V passive PoE in port 1, 500 mA PoE out on port 5
- 6 user-controllable LEDs:
- 1x user (green)
- 5x port status (green)
Flashing:
TFTP boot initramfs image and then perform sysupgrade. The "Internet"
port (port number 1) must be used to upload the TFTP image, then
connect to any other port to access the OpenWRT system.
Follow common MikroTik procedure as in
https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
On GL-AR300M Series GPIO17 described as I2C SDA in Device Tree.
Because of GPIO_OUT_FUNCTION4 register was not initialized on start,
GPIO17 was uncontrollable, it always in high state. According to QCA9531
documentation, default setting of GPIO17 is SYS_RST_L. In order to make
GPIO17 controllable, it should write value 0x00 on bits [15:8] of
GPIO_OUT_FUNCTION4 register, located at 0x1804003C address.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A
Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
(9600,8N1)
screen /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
setenv ipaddr 192.168.1.1
setenv serverip 192.168.1.42
saveenv
4. Reset the device
reset
5. Hit again the spacebar
6. Now load the image via tftp:
tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.
https://openwrt.org/toh/netgear/wndap360
The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:
&ath9k0 {
nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
nvmem-cell-names = "mac-address", "calibration";
};
&ath9k1 {
nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
nvmem-cell-names = "mac-address", "calibration";
};
&art {
...
cal_art_1000: cal@1000 {
reg = <0x1000 0xeb8>;
};
cal_art_5000: cal@5000 {
reg = <0x5000 0xeb8>;
};
};
Signed-off-by: Nick Hainke <vincent@systemli.org>
Add USB power control in DTS for GL.iNet models:
- AR300M;
- AR300M-Ext;
- AR300M16;
- AR300M16-Ext.
Signed-off-by: PtilopsisLeucotis <PtilopsisLeucotis@yandex.com>
This commit adds support for the TP-Link Deco M4R (it can also be M4,
TP-Link uses both names) v1 and v2. It is similar hardware-wise to the
Archer C6 v2. Software-wise it is very different. V2 has a bit different
layout from V1 but the chips are the same and the OEM firmware is the same
for both versions.
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
Flashing:
The device's bootloader only accepts images that are signed using
TP-Link's RSA key, therefore this way of flashing is not possible. The
device has a web GUI that should be accessible after setting up the device
using the app (it requires the app to set it up first because the web GUI
asks for the TP-Link account password) but for unknown reasons, the web
GUI also refuses custom images.
There is a debug firmware image that has been shared on the device's
OpenWrt forum thread that has telnet unlocked, which the bootloader will
accept because it is signed. It can be used to transfer an OpenWrt image
file over to the device and then be used with mtd to flash the device.
Pre-requisites:
- Debug firmware.
- A way of transferring the file to the router, you can use an FTP server
as an example.
- Set a static IP of 192.168.0.2/255.255.255.0 on your computer.
- OpenWrt image.
Installation:
- Unplug your router and turn it upside down. Using a long and thin object
like a SIM unlock tool, press and hold the reset button on the router and
replug it. Keep holding it until the LED flashes yellow.
- Open 192.168.0.1. You should see the bootloader recovery's webpage.
Choose the debug firmware that you downloaded and flash it. Wait until the
router reboots (at this stage you can remove the static IP).
- Open a terminal window and connect to the router via telnet (the primary
router should have a 192.168.0.1 IP address, secondary routers are
different).
- Transfer the file over to the router, you can use curl to download it
from the internet (use the insecure flag and make sure your source accepts
insecure downloads) or from an FTP server.
- The router's default mtd partition scheme has kernel and rootfs
separated. We can use dd to split the OpenWrt image file and flash it with
mtd:
dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256
dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256
- Once the images are ready, you have to flash the device using mtd
(make sure to flash the correct partitions or you may be left with a
hard bricked router):
mtd write kernel.bin kernel
mtd write rootfs.bin rootfs
- Flashing is done, reboot the device now.
Signed-off-by: Foica David <superh552@gmail.com>
The MikroTik RouterBOARD wAP-2nd (sold as wAP) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- Flash: 16 MB (SPI)
- RAM: 64 MB
- Ethernet: 1x 10/100 Mbps (PoE in)
- WiFi: AR9531 2T2R 2.4 GHz (SoC)
- 3x green LEDs (1x lan, 1x wlan, 1x user)
See https://mikrotik.com/product/RBwAP2nD for more info.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Note: following 781d4bfb39
The network setup avoids using the integrated switch and connects the
single Ethernet port directly. This way, link speed (10/100 Mbps) is
properly reported by eth0.
Signed-off-by: David Musil <0x444d@protonmail.com>
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.
The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.
Specifications common to all models:
- Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
- 128 MB RAM
- 16 MB SPI flash
- 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
- Green and Red status LEDs sharing a single external light-pipe
- Reset button on PCB[1]
- Piezo beeper on PCB[2]
- Serial UART header on PCB
- Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC
Unique to AP100 and AP100C:
- 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
- 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP55 and AP55C:
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP100 and AP55:
- External RJ45 serial console port[3]
- USB 2.0 Type A port, power controlled via GPIO 11
Flashing instructions:
This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.
To flash via XG appliance:
- Register on Sophos' website for a no-cost Home Use XG firewall license
- Download and install the XG software on a compatible PC or virtual
machine, complete initial appliance setup, and enable SSH console access
- Connect the target AP device to the XG appliance's LAN interface
- Approve the AP from the XG Web UI and wait until it shows as Active
(this can take 3-5 minutes)
- Connect to the XG appliance over SSH and access the Advanced Console
(Menu option 5, then menu option 3)
- Run `sudo awetool` and select the menu option to connect to an AP via
SSH. When prompted to enable SSH on the target AP, select Yes.
- Wait 2-3 minutes, then select the AP from the awetool menu again. This
will connect you to a root shell on the target AP.
- Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
- Run `mtd -r write /tmp/openwrt.bin astaro_image`
- When complete, the access point will reboot to OpenWRT.
To flash via U-Boot serial console:
- Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
netmask 255.255.255.0
- Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
- Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
- Connect the AP ethernet to your PC's ethernet port
- Connect a terminal to the UART at 115200 8/N/1 as usual
- Power on the AP and press a key to cancel autoboot when prompted
- Run the following commands at the U-Boot console:
- `tftpboot`
- `cp.b $fileaddr 0x9f070000 $filesize`
- `boot`
- The access point will boot to OpenWRT.
MAC addresses as verified by OEM firmware:
use address source
LAN label config 0x201a (label)
2g label + 1 art 0x1002 (also found at config 0x2004)
5g label + 9 art 0x5006
Increments confirmed across three AP55C, two AP55, and one AP100C.
These changes have been tested to function on both current master and
21.02.0 without any obvious issues.
[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
any GPIO. Shorting an unpopulated resistor next to the driver circuitry
should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
works in OpenWRT without additional configuration, at least on my
three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
the device's top cover. On AP100C/AP55C models, the PCB must be removed
for access; three screws secure it to the case.
Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX
Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
This patch adds support for the MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)
Specifications:
- SoC: QCA9558
- RAM: 128 MB
- Flash: 16 MB SPI
- 2.4GHz WLAN: 3x3:3 802.11n on SoC
- 5GHz WLAN: 3x3:3 802.11ac on QCA9880 connected via PCIe
- Switch: 5x 1000/100/10 on QCA8337 connected via RGMII
- SFP cage: connected via SGMII (tested with genuine & generic GLC-T)
- USB: 1x type A, GPIO power switch
- PoE: Passive input on Ether1, GPIO switched passthrough to Ether5
- Reset button
- "SFP" LED connected to SoC
- Ethernet LEDs connected to QCA8337 switch
- Green WLAN LED connected to QCA9880
Not working:
- Red WLAN LED
Installation:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
The device was added for ar71xx target and dropped during the ath79
transition, mainly because of the ascii mac address stored in bdinfo
partition
Device page, http://wiki.openwrt.org/toh/hiwifi/hc6361
The vendor u-boot image accepts sysupgrade.bin image with specific
requirements, including having squashfs signature "hsqs" at file offset
0x140000. This is not possible now that OpenWrt kernel image is at
least 2MB with the signature at offset 0x240000.
Installation of current build of OpenWrt now requires a bootstrap step
of installing an earlier version first.
- If the vendor u-boot accepts sysupgrade image, hc6361 image of LEDE
release should work
- If the vendor u-boot accepts only verified flashsmt image, install
the one in the above device page. The image is based on Barrier
Breaker
SHA256SUM of the flashsmt image
81b193b95ea5f8e5c30cd62fa9facf275f39233be4fdeed7038f3deed2736156
After the bootstrap step, current build of OpenWrt can be installed
there fine.
Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
For some reason useless labels and aliases have been propagated through
copy-paste. Before the issue spreads any further, this patch cleans up
all relevant DTS files to the canonical form, bringing ath79 in line
with other mikrotik platforms (ramips and ipq40xx).
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Specification:
- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Specification:
- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)
LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
The label has the MAC address of eth0, not the WLAN PHY address. We can
merge the definition back into ar7241_ubnt_unifi.dtsi, as both DTS
derived from it use the same interface for their label MAC addresses
after all.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
The OCEDO Raccoon had significant packet-loss with cables longer than 50
meter. Disabling EEE restores normal operation.
Also change the ethernet config to reduce loss on sub-1G links.
Signed-off-by: David Bauer <mail@david-bauer.net>
While it hasn't always been clear whether the "AP" is part of the model
name on the Ubiquiti website, we include it for all other pre-AC
variants (AP Pro and the AP Outdoor+). Add it to the original UniFi AP
as well for consistency.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
- fix eth0 eth1 sharing same mac so it conforms to the behavior stated
in the original commit and the way it is in vendor firmware :
WAN is label, LAN is label +1 and WLAN is label +2
- add default leds config
- add default network config
Signed-off-by: Pascal Coudurier <coudu@wanadoo.fr>
FCC ID: 2AG6R-AN700APIAC
Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3
- QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated, RX shorted to ground
- 4 antennas 5 dBi, internal omni-directional plates
- 4 LEDs power, 2G, 5G, wps
- 1 button reset
NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
therefore, the power LED is off for default state
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:xb art 0x0
phy1 2.4G *:xc ---
phy0 5GHz *:xd ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
Method 1: Firmware upgrade page:
(if you cannot access the APs webpage)
factory reset with the reset button
connect ethernet to a computer
OEM webpage at 192.168.20.253
username and password 'araknis'
make a new password, login again...
Navigate to 'File Management' page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm
wait about 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
192.168.20.253
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
Method 1: Serial to load Failsafe webpage (above)
Method 2: delete a checksum from uboot-env
this will make uboot load the failsafe image at next boot
because it will fail the checksum verification of the image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait a minute
connect to ethernet and navigate to
192.168.20.253
select OEM firmware image and click upgrade
Method 3: backup mtd partitions before upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs-kernel.bin to '0101A8C0.img'
make available on TFTP server at 192.168.1.101
power board, interrupt boot with serial console
execute `tftpboot` and `bootm 0x81000000`
NOTE: TFTP may not be reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software is built using SDKs from Senao
which is based on a heavily modified version
of Openwrt Kamikaze or Altitude Adjustment.
One of the many modifications is sysupgrade being performed by a custom script.
Images are verified through successful unpackaging, correct filenames
and size requirements for both kernel and rootfs files, and that they
start with the correct magic numbers (first 2 bytes) for the respective headers.
Newer Senao software requires more checks but their script
includes a way to skip them.
The OEM upgrade script is at
/etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be less than 1536k
and the OEM upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied at the PHY side,
using the at803x driver `phy-mode` setting through the DTS.
Therefore, the Ethernet Configuration registers for GMAC0
do not need the bits for RGMII delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: 2AG6R-AN500APIAC
Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9557 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- QCA9882 WLAN PCI card 168c:003c, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated, RX shorted to ground
- 4 antennas 5 dBi, internal omni-directional plates
- 4 LEDs power, 2G, 5G, wps
- 1 button reset
NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
therefore, the power LED is off for default state
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:e1 art 0x0
phy1 2.4G *:e2 ---
phy0 5GHz *:e3 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
Method 1: Firmware upgrade page:
(if you cannot access the APs webpage)
factory reset with the reset button
connect ethernet to a computer
OEM webpage at 192.168.20.253
username and password 'araknis'
make a new password, login again...
Navigate to 'File Management' page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm
wait about 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
192.168.20.253
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
Method 1: Serial to load Failsafe webpage (above)
Method 2: delete a checksum from uboot-env
this will make uboot load the failsafe image at next boot
because it will fail the checksum verification of the image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait a minute
connect to ethernet and navigate to
192.168.20.253
select OEM firmware image and click upgrade
Method 3: backup mtd partitions before upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs-kernel.bin to '0101A8C0.img'
make available on TFTP server at 192.168.1.101
power board, interrupt boot with serial console
execute `tftpboot` and `bootm 0x81000000`
NOTE: TFTP may not be reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software is built using SDKs from Senao
which is based on a heavily modified version
of Openwrt Kamikaze or Altitude Adjustment.
One of the many modifications is sysupgrade being performed by a custom script.
Images are verified through successful unpackaging, correct filenames
and size requirements for both kernel and rootfs files, and that they
start with the correct magic numbers (first 2 bytes) for the respective headers.
Newer Senao software requires more checks but their script
includes a way to skip them.
The OEM upgrade script is at
/etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be less than 1536k
and the OEM upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied at the PHY side,
using the at803x driver `phy-mode` setting through the DTS.
Therefore, the Ethernet Configuration registers for GMAC0
do not need the bits for RGMII delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: U2M-AN300APIN
Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- AR9382 WLAN PCI on-board 168c:0030, 5 GHz, 2x2
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM 1839ZFG V59C1512164QFJ25
- UART console J10, populated, RX shorted to ground
- 4 antennas 5 dBi, internal omni-directional plates
- 4 LEDs power, 2G, 5G, wps
- 1 button reset
NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
therefore, the power LED is off for default state
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:7d art 0x0
phy1 2.4G *:7e ---
phy0 5GHz *:7f ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
Method 1: Firmware upgrade page:
(if you cannot access the APs webpage)
factory reset with the reset button
connect ethernet to a computer
OEM webpage at 192.168.20.253
username and password 'araknis'
make a new password, login again...
Navigate to 'File Management' page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm
wait about 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
192.168.20.253
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
Method 1: Serial to load Failsafe webpage (above)
Method 2: delete a checksum from uboot-env
this will make uboot load the failsafe image at next boot
because it will fail the checksum verification of the image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait a minute
connect to ethernet and navigate to
192.168.20.253
select OEM firmware image and click upgrade
Method 3: backup mtd partitions before upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs-kernel.bin to '0101A8C0.img'
make available on TFTP server at 192.168.1.101
power board, interrupt boot with serial console
execute `tftpboot` and `bootm 0x81000000`
NOTE: TFTP may not be reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software is built using SDKs from Senao
which is based on a heavily modified version
of Openwrt Kamikaze or Altitude Adjustment.
One of the many modifications is sysupgrade being performed by a custom script.
Images are verified through successful unpackaging, correct filenames
and size requirements for both kernel and rootfs files, and that they
start with the correct magic numbers (first 2 bytes) for the respective headers.
Newer Senao software requires more checks but their script
includes a way to skip them.
The OEM upgrade script is at
/etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be less than 1536k
and the OEM upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied at the PHY side,
using the at803x driver `phy-mode` setting through the DTS.
Therefore, the Ethernet Configuration registers for GMAC0
do not need the bits for RGMII delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Keep labels since OpenWrt userland tooling (get_dt_led) depends on them
to find the LED instances referenced by the led-* aliases.
The label for the amber power LED was removed in 4eefdc7adb.
Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
These were present in ar71xx but overlooked when porting to ath79.
Fixes: 480bf28273 ("ath79: add support for Buffalo WZR-HP-AG300H")
Signed-off-by: Jeffery To <jeffery.to@gmail.com>
The MikroTik RouterBOARD mAPL-2nd (sold as mAP Lite) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.
See https://mikrotik.com/product/RBmAPL-2nD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- RAM: 64 MB
- Storage: 16 MB NOR
- Wireless: Atheros AR9531 (SoC) 802.11b/g/n 2x2:2, 1.5 dBi antenna
- Ethernet: Atheros AR8229 (SoC), 1x 10/100 port, 802.3af/at PoE in
- 4 user-controllable LEDs:
· 1x power (green)
· 1x user (green)
· 1x lan (green)
· 1x wlan (green)
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Note: following 781d4bfb39
The network setup avoids using the integrated switch and connects the
single Ethernet port directly. This way, link speed (10/100 Mbps) is
properly reported by eth0.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
In addition to the missing green LED definition, the polarity of the
amber power LED was incorrect which is fixed here.
Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
TP-Link Archer A9 v6 (FCCID: TE7A9V6) is an AC1900 Wave-2 gigabit home
router based on a combination of Qualcomm QCN5502 (most likely a 4x4:4
version of the QCA9563 WiSOC), QCA9984 and QCA8337N.
The vendor's firmware content reveals that the same device might be
available on the US market under name 'Archer C90 v6'. Due to lack of
access to such hardware, support introduced in this commit was tested
only on the EU version (sold under 'Archer A9 v6' name).
Based on the information on the PL version of the vendor website, this
device has been already phased out and is no longer available.
Specifications:
- Qualcomm QCN5502 (775 MHz)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 5x Gbps Ethernet (Qualcomm QCA8337N over SGMII)
- Wi-Fi:
- 802.11b/g/n on 2.4 GHz: Qualcomm QCN5502* in 4x4:4 mode
- 802.11a/n/ac on 5 GHz: Qualcomm QCA9984 in 3x3:3 mode
- 3x non-detachable, dual-band external antennas (~3.5 dBi for 5 GHz,
~2.2 dBi for 2.4 GHz, IPEX/U.FL connectors)
- 1x internal PCB antenna for 2.4 GHz (~1.8 dBi)
- 1x USB 2.0 Type-A
- 11x LED (4x connected to QCA8337N, 7x connected to QCN5502)
- 2x button (reset, WPS)
- UART (4-pin, 2.54 mm pitch) header on PCB (not populated)
- 1x mechanical power switch
- 1x DC jack (12 V)
*) unsupported due to missing support for QCN550x in ath9k
UART system serial console notice:
The RX signal of the main SOC's UART on this device is shared with the
WPS button's GPIO. The first-stage U-Boot by default disables the RX,
resulting in a non-functional UART input.
If you press and keep 'ENTER' on the serial console during early
boot-up, the first-stage U-Boot will enable RX input.
Vendor firmware allows password-less access to the system over serial.
Flash instruction (vendor GUI):
1. It is recommended to first upgrade vendor firmware to the latest
version (1.1.1 Build 20210315 rel.40637 at the time of writing).
2. Use the 'factory' image directly in the vendor's GUI.
Flash instruction (TFTP based recovery in second-stage U-Boot):
1. Rename 'factory' image to 'ArcherA9v6_tp_recovery.bin'
2. Setup a TFTP server on your PC with IP 192.168.0.66/24.
3. Press and hold the reset button for ~5 sec while turning on power.
4. The device will download image, flash it and reboot.
Flash instruction (web based recovery in first-stage U-Boot):
1. Use 'CTRL+C' during power-up to enable CLI in first-stage U-Boot.
2. Connect a PC with IP set to 192.168.0.1 to one of the LAN ports.
3. Issue 'httpd' command and visit http://192.168.0.1 in browser.
4. Use the 'factory' image.
If you would like to restore vendor's firmware, follow one of the
recovery methods described above.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network Tube-2HQ is a successor of the Tube-2H/P series (EOL) which
was based on the Atheros AR9331. The new version uses Qualcomm QCA9531.
Specifications:
- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 64 or 128 MB of RAM (DDR2)
- 16+ MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
(802.3at/af PoE support with optional module)
- 1T1R 2.4 GHz Wi-Fi with external PA (SE2623L, up to 27 dBm) and LNA
- 1x Type-N (male) antenna connector
- 6x LED (5x driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- UART (4-pin, 2.00 mm pitch) header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
device, wait for first blink of all LEDs (indicates network setup),
then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>