While flashing sysupgrade image from U-Boot, then the rootfs_data
overlay filesystem formatting is left for the fstools during firstboot,
but that wont work as mkfs.f2fs is missing in the sysupgrade image:
mount_root: overlay filesystem in /dev/loop0 has not been formatted yet
mount_root: no usable overlay filesystem found, using tmpfs overlay
sh: mkfs.f2fs: not found
Filesystem Size Used Available Use% Mounted on
/dev/loop0 139.6M 46.9M 92.6M 34% /overlay
Number Start (sector) End (sector) Size Code Name
20 98850 406349 150.1 MiB FFFF rootfs
So lets fix it by adding f2fs support to the sysupgrade image.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
(cherry picked from commit ba415af570)
The original configuration might be copied from bcm2710 which uses
cortex A53 rather than A72 in BCM2711, without errata might be harmful
to system stability and security.
Signed-off-by: Yangyu Chen <cyy@cyyself.name>
(cherry picked from commit d549809c05)
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The documentation links have changed and are no longer valid.
(cherry picked from commit 189838517e)
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Kernel 5.15 introduced a significant change to spi-nor subsystem [1],
which would the SPI-NOR core to no longer unprotect the Flash chips if
their protection bits are non-volatile, which is the case for MX25L6405D
and MX25L12805D, used in Ubiquiti XW and WA lines of devices [2].
However, their bootloader forcibly enables this protection before
continuing to boot, making the kernel not unprotect the flash upon boot,
causing JFFS2 to be unable write to the filesystem. Because sysupgrade
seems to unlock the flash explicitly, the upgrade will work, but the
system will be unable to save configrationm showing the following symptom
in the kernel log:
[ 86.168016] jffs2_scan_eraseblock(): End of filesystem marker found at 0x0
[ 86.192344] jffs2_build_filesystem(): unlocking the mtd device...
[ 86.192443] done.
[ 86.200669] jffs2_build_filesystem(): erasing all blocks after the end marker...
[ 86.220646] jffs2: Newly-erased block contained word 0x19852003 at offset 0x001e0000
[ 86.292388] jffs2: Newly-erased block contained word 0x19852003 at offset 0x001d0000
[ 86.324867] jffs2: Newly-erased block contained word 0x19852003 at offset 0x001c0000
[ 86.355316] jffs2: Newly-erased block contained word 0x19852003 at offset 0x001b0000
[ 86.402855] jffs2: Newly-erased block contained word 0x19852003 at offset 0x001a0000
Disable the write protection unconditionally for ath79/generic subtarget,
so the XW and WA devices can function again. However, this is only a
stopgap solution - it probably should be investigated if there is a way
to selectively unlock the area used by rootfs_data - but given the lock
granularity, this seems unlikely.
With this patch in place, rootfs_data partition on my Nanostation Loco
M5 XW is writable again.
Fixes: #12882Fixes: #13750
Fixes: 579703f38c ("ath79: switch to 5.15 as default kernel")
Link: http://www.infradead.org/pipermail/linux-mtd/2020-October/082805.html
Link: https://forum.openwrt.org/t/powerbeam-m5-xw-configuration-loss-after-reboot/141925
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit f024f4b1b0)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The current dts file of dgs-1210-10p doesn't support link states
for the sfp ports (they are always up).
This patch tries to give better support for this and was run tested
on dgs-1210-10p.
It was already commited to the main branch.
Signed-off-by: Michel Thill <jmthill@gmail.com>
(cherry picked from commit 135e107620)
(based on support for ASUS RT-AX59U by liushiyou006)
SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Upgrade from AsusWRT to OpenWRT using UART
Download the OpenWrt initramfs image.
Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.
Connect the PC with TFTP server to the RT-AX59U.
Set a static ip on the ethernet interface of your PC.
(ip address: 192.168.1.70, subnet mask:255.255.255.0)
Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.
Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 rtax59u.bin
$ bootm 0x46000000
Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Upgrade from AsusWRT to OpenWRT using WebUI
Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq
Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file
Wait for OpenWRT to boot (192.168.1.1).
Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command
MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.
: Stock : OpenWrt
WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
WLAN 2g (2) : : CA:xx:xx:0D:xx:D4
WLAN 2g (3) : : CE:xx:xx:0D:xx:D4
WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
WLAN 5g (2) : : CE:xx:xx:1D:xx:D5
WLAN 5g (3) : : C2:xx:xx:1D:xx:D5
WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
WLAN 2g (2) : : 0A:xx:xx:76:xx:BE
WLAN 2g (3) : : 0E:xx:xx:76:xx:BE
WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
WLAN 5g (2) : : 0E:xx:xx:76:xx:BF
WLAN 5g (3) : : 02:xx:xx:76:xx:BF
Signed-off-by: Xavier Franquet <xavier@franquet.es>
(cherry picked from commit 782eb05008)
Enabling SMP on the xway target results in two issues:
* some danube chipset-based devices fail on boot,
* on devices based on the arx100 chipset, enabling smp
results in a degradation of NAT performance.
After these two issues are fixed, SMP can be re-enabled.
This reverts commit 084c20f6c5.
Fixes: #13934Fixes: #14283
Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
Fine tuning PR: openwrt/openwrt#14355 Ref: 5a82bb909b
("mediatek: GL-MT6000: Add missing LED state definitions")
As the only LED is using white in the stock firmware when the device is
running and blue for the bootloader I suggest following changes:
- Using blue for the BL and preinit+failsafe
- White for normal operation (like the original FW) and sysupgrade
With this changes it's clear by looking to the LED in which operation
mode the device is and a possible BL stuck can be seen easily.
Tested with [GL-MT6000](https://openwrt.org/toh/gl.inet/gl-mt6000).
Signed-off-by: Thomas Schröder <tschroeder_github@outlook.com>
Tested-by: Hannu Nyman <hannu.nyman@iki.fi>
(cherry picked from commit 4d7bac1dca)
Read back the reset register in order to flush the cache. This fixes
spurious reboot hangs on TP-Link TL-WDR3600 and TL-WDR4300 with Zentel
DRAM chips.
This issue was fixed in the past, but switching to the reset-driver
specific implementation removed the cache barrier which was previously
implicitly added by reading back the register in question.
Link: https://github.com/freifunk-gluon/gluon/issues/2904
Link: https://github.com/openwrt/openwrt/issues/13043
Link: https://dev.archive.openwrt.org/ticket/17839
Link: f8a7bfe1cb2c ("MIPS: ath79: fix system restart")
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 2fe8ecd880)
Hardware
--------
CPU: Qualcomm Atheros QCA9563
RAM: 128M DDR2
FLASH: 16MB SPI-NOR
WiFi: Qualcomm Atheros QCA9563 2x2:2 802.11n 2.4GHz
Qualcomm Atheros QCA9880 2x2:2 802.11ac 5GHz
Antennas
--------
The device features internal antennas as well as external antenna
connectors. By default, the internal antennas are used.
Two GPIOs are exported by name, which can be used to control the
antenna-path mux. Writing a logical 0 enables the external antenna
connectors.
Installation
------------
1. Download the OpenWrt sysupgrade image to the device. You can use scp
for this task. The default username and password are "ubnt" and the
device is reachable at 192.168.1.20.
$ scp -O openwrt-sysupgrade.bin ubnt@192.168.1.20:/tmp/firmware.bin
2. Connect to the device using SSH.
$ ssh ubnt@192.168.1.20
3. Disable the write-protect
$ echo "5edfacbf" > /proc/ubnthal/.uf
4. Verify kernel0 and kernel1 match mtd2 and mtd3
$ cat /proc/mtd
5. Write the sysupgrade image to kernel0 and kernel1
$ dd if=/tmp/firmware.bin of=/dev/mtdblock2
$ dd if=/tmp/firmware.bin of=/dev/mtdblock3
6. Write the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtd4
7. Reboot the device
$ reboot
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit bf94e0a383)
This allows us to embrace alphabetical sorting for the UK-Ultra.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit c9e58f85f6)
Setting/clearing bits on the first byte of the mac address causes collisions
when using multiple SSIDs on both PHYs. Change the allocation to alter the
last byte instead.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry picked from commit 38bec08e87)
Adjust LED names and provide the OpenWrt status indicator aliases
to actually use LEDs by the OpenWrt boot & sysupgrade processes.
* Name both LEDs clearly by the color
* Add the missing OpenWrt LED status indicator aliases and
remove the now unnecessary default status from blue LED
After this commit, the LEDs are used as:
* bootloader, really early Linux boot: blue LED is on
* preinit/failsafe: white LED blinks rapidly
* late boot: white LED blinks slowly
* boot completed, running normally: blue LED is on
* sysupgrade: white LED blinks
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
(cherry picked from commit 5a82bb909b)
The COVR-X1860 are MT7621-based AX1800 devices (similar to DAP-X1860, but
with two Ethernet ports and external power supply) that are sold in sets
of two (COVR-X1862) and three (COVR-X1863).
Specification:
- MT7621
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- 256MB RAM
- 128 MB flash
- 3 LEDs (red, orange, white), routed to one indicator in the top of the device
- 2 buttons (WPS in the back and Reset at the bottom of the device)
MAC addresses:
- LAN MAC (printed on the device) is stored in config2 partition as ASCII (entry factory_mac=xx:xx:xx:xx:xx:xx)
- WAN MAC: LAN MAC + 3
- 2.4G MAC: LAN MAC + 1
- 5G MAC: LAN MAC + 2
The pins for the serial console are already labeled on the board (VCC, TX, RX, GND). Serial settings: 3.3V, 115200,8n1
Flashing via OEM Web Interface:
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-factory.bin via the OEM web interface firmware update
- The configuration wizard can be skipped by directly going to http://192.168.0.1/UpdateFirmware_Simple.html
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-recovery.bin
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/openwrt/firmware-utils/blob/master/src/dlink-sge-image.c and https://raw.githubusercontent.com/openwrt/firmware-utils/master/src/dlink-sge-image.h
- Compile a binary from the downloaded file, e.g. gcc dlink-sge-image.c -lcrypto -o dlink-sge-image
- Run ./dlink-sge-image COVR-X1860 <OriginalFirmware> <OutputFile> -d
- Example for firmware 102b01: ./dlink-sge-image COVR-X1860 COVR-X1860_RevA_Firmware_102b01.bin COVR-X1860_RevA_Firmware_102b01_Decrypted.bin -d
The pull request is based on the discussion in https://forum.openwrt.org/t/add-support-for-d-link-covr-x1860
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit 0a18259e4a)
Signed-off-by: Florian Maurer <f.maurer@outlook.de>
MT7621 gets a new PCIe driver in the 5.15+ kernel. Allocating wrong PCIe
port will cause the PCIe NIC to not work properly. This commit fixes
the wrong port numbers on Unielec u7621-01.
According to the bootlog, MT7612E (5 GHz) is connected to pcie2, and
MT7603E (2 GHz) is connected to pcie1:
[ 1.294844] mt7621-pci 1e140000.pcie: pcie0 no card, disable it (RST & CLK)
[ 1.308635] mt7621-pci 1e140000.pcie: PCIE1 enabled
[ 1.318277] mt7621-pci 1e140000.pcie: PCIE2 enabled
Also correct the led activity for the MT7603e - not used on the MT7612e
Signed-off-by: David Bentham <db260179@gmail.com>
(cherry picked from commit 39e55bdbe2)
Signed-off-by: David Bentham <db260179@gmail.com>
The default strength is not enough to provide stable connection
under 3.3v LDO voltage.
Fixes: 3f3586a06d ("rockchip: add Orange Pi R1 Plus LTS support")
Fixes: #13117Fixes: #13759
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit 3645ac8a10)
[rebased onto openwrt-23.05 branch]
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
The rt305x series SOC have two UART devices,
and the one at bus address 0x500 is disabled by default.
Some boards do not even have a pinout for the first one,
so use the same one that the kernel uses at 0xc00 instead.
This allows the lzma-loader printing to be visible
alongside the kernel log in the same console.
Tested-by: Lech Perczak <lech.perczak@gmail.com> # zte,mf283plus
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit bc00c78b43)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Before this was reworked, in the file for mt7621 subtarget
(target/linux/ramips/image/lzma-loader/src/board-mt7621.c)
the "Transmitter shift register empty" bit TEMT was used instead of
the "Transmitter holding register empty" bit THRE,
but after the rework, this value was labeled as the THRE bit instead.
Functionally there is no difference, but this is confusing to read,
as it suggests that the subtargets have different bits for the same
register in UART when in reality they are exactly the same.
One can use either bit, or both, at user's descretion
in order to determine whether the UART TX buffer is ready.
The generic kernel early-printk uses both,
(arch/mips/kernel/early_printk_8250.c)
while the ralink-specific early-printk uses only THRE,
(arch/mips/ralink/early_printk.c).
Define both bits and rewrite macros for readability,
keep the same values, as changing which to use should be tested first.
Ref: c31319b66 ("ramips: lzma-loader: Refactor loader")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 2e47913c64)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The native bus address for UART was entered for rt305x UART_BASE,
but the bootloaders have memory space remapped with the same
virtual memory map the kernel uses for program addressing at boot time.
In UBoot, the remapped address is often defined as TEXT_BASE.
In the kernel, for rt305x this remapped address is RT305X_SYSC_BASE.
(arch/mips/include/asm/mach-ralink/rt305x.h)
Because the ralink I/O busses begin at a low address of 0x10000000,
they are remapped using KSEG0 or KSEG1, which for all 32-bit MIPS SOCs
(arch/mips/include/asm/addrspace.h)
are offsets of 0x80000000 and 0xa0000000 respectively.
This is consistent with the other UART_BASE macros here
and with MIPS memory map documentation.
Before the recent rework of the lzma-loader for ramips,
the original board-$(PLATFORM).c files also did not
use KSEG1ADDR for UART_BASE despite being defined,
which made this mistake easier to occur.
Fix this by defining KSEG1ADDR again and actually use it.
Copy and paste from the kernel's macros for consistency.
Link: https://training.mips.com/basic_mips/PDF/Memory_Map.pdf
Fixes: c31319b66 ("ramips: lzma-loader: Refactor loader")
Reported-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 4c1e9bd858)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The ESW core needs to be reset together with FE core, so after the
relevant reset controller lines are moved under FE, drop rst_esw and all
related code, which would not execute anyway, because rst_esw would be
NULL. While at that, ensure that if reset line for EPHY cannot be
claimed, a proper error message is reported.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Co-developed-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Split out of the bigger commit, provide commit mesage, refactor error
handling]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit f393ffcac1)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Provide commit description, split into logical changes]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit f87b66507e)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
This is behaviour of downstream driver as well, however I
haven't observed bug reports about this SoC in the wild, so this
commit's purpose is to align this chip with all other SoC's - MT7620
were already using this arrangement.
Fixes: #9284
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit fc92fecfc7)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
This is behaviour of downstream driver as well, however I
haven't observed bug reports about this SoC in the wild, so this
commit's purpose is to align this chip with all other SoC's - MT7620
were already using this arrangement.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit c5a399f372)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Provide commit description, split into logical changes]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 8d75b1de0f)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Enabling the FE core too early causes the system to hang during boot
uncondtionally, after the reset is released. Increate it to 1-1.2ms
range.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Split previous commit, provide rationale]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 7eb0458c1f)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Use devm_reset_control_array_get_exclusive to register multiple
reset lines in FE driver. This is required to reattach ESW reset to FE
driver again, based on device tree bindings.
While at that, remove unused fe_priv.rst_ppe field, and add error
message if getting the reset fails.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Co-developed-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Split out of the bigger commit, provide commit mesage, refactor error
handling]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 3f1be8edee)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
There are broken devices in the wild that handle duplicate IP address
detection by sending out ARP requests for the IP that they received from a
DHCP server and refuse the address if they get a reply.
When proxyarp is enabled, they would go into a loop of requesting an address
and then NAKing it again.
Fixes: https://github.com/openwrt/openwrt/issues/14309
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(cherry picked from commit c1ad78318c)
Rostelecom RT-FE-1A is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: No
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Power (green, unmanaged)
- 1x Status (green, gpio)
- 1x 2.4G (green, hardware, mt76-phy0)
- 1x 2.4G (blue, gpio)
- 1x 5G (green, hardware, mt76-phy1)
- 1x 5G (blue, gpio)
- 5x Ethernet (green, hardware, 4x LAN & WAN)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (default http://192.168.0.1/)
under "admin" account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following block:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="<some value>" writable="1" encryption="1" password="1" />
</OBJECT>
5. Replace <some value> by a new superadmin password and add a line
which enabling superadmin login after. For example, the block after
the changes:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="s0meP@ss" writable="1" encryption="1" password="1" />
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
</OBJECT>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (superadmin:xxxxxxxxxx, where
xxxxxxxxxx is a new password from the p.5)
9. Enable SSH access to the router (Settings -> Access control -> SSH)
10. Connect to the router using SSH shell using superadmin account
11. Run in SSH shell:
sh
12. Make a mtd backup (optional, see related section)
13. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
14. Login to the router web interface under admin account
15. Remove dots from the OpenWrt factory image filename
16. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 192.168.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 192.168.0.2
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | f4:*:66 |
| WAN | label + 11 | f4:*:71 |
| 2g | label + 2 | f4:*:68 |
| 5g | label + 3 | f4:*:69 |
+-----+------------+---------+
The label MAC address was found in Factory, 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit f3cdc9f988)
This fixes a well known "LZMA ERROR 1" error on Sercomm NA502,
reported on the OpenWrt forum. [1]
[1]: https://forum.openwrt.org/t/176942
Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
(cherry picked from commit d41b8a570f)
Add support for wireless offload package in default configuration for
-Cudy WR3000
-Confiabits MT7981
For some reason those ware missing. I confirm this work for my Cudy WR3000
Signed-off-by: Robert Senderek <robert.senderek@10g.pl>
(cherry picked from commit b42eea0c2f)
The label-mac of the repeater is the address used on the 2.4 GHz radio,
not the ethernet MAC.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 47818fbc01)
The Puzzle devices come with an I2C-connected Epson RX8130 RTC.
Disable the (dysfunctional) RTC units of the SoC and add driver
kmod-rtc-ds1307 to support the Epson RX8130 instead.
Tested-by: Thomas Huehn <thomas.huehn@hs-nordhausen.de>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 6d546b3b4c)
Confiabits MT7981 is a Wi-Fi 6 router based on MediaTek MT7981.
Specification:
- SoC: MediaTek MT7981B
- CPU: 2x 1.3 GHz Cortex-A53
- Flash: 128 MiB SPI NAND
- RAM: 256 MiB
- WLAN: 2.4 GHz, 5 GHz (MediaTek MT7976CN, 802.11ax)
- Ethernet: 4x 10/100/1000 Mbps MT7531AE (3xLAN, 1xWAN)
- USB 2.0 port
- Buttons: 1 Reset button, 1 Mesh button.
- LEDs: 7x light-blue, 2x warm-white
- Serial console: internal 4-pin header, 115200 8n1
- Power: 12 VDC, 1.5 A
MAC addresses in stock firmware and in this commit:
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| WAN | 00:0c:43:xx:xx:e1 | label+1 |
| LAN | 00:0c:43:xx:xx:e0 | label |
| WLAN 2g | 00:0c:43:xx:xx:e0 | label |
| WLAN 5g | 02:0c:43:xx:xx:e0 | |
+---------+-------------------+-----------+
The label MAC was found in 'Factory', 0x4
Installation:
The stock firmware is OpenWrt-based. If you can reach LuCI or SSH, just use the sysupgrade image
with the 'Keep settings' option turned off.
Signed-off-by: Luis Mita <luis@luismita.com>
(cherry picked from commit 2af07eb853)
In 749237967a downstream dts was replaced with upstream accepted
patch. But in upstream version last partition was called "rootfs"
instead "ubi". OpenWrt require "ubi" label for ubi rootfs.
This patch restore proper label.
Fixes: 749237967a ("kirkwood: Replace dtses with upstream accepted")
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
(cherry picked from commit 9075cfd609)
This service was unfunctional due to not having its executable bit
set.
Fixes#13500.
Signed-off-by: Eric J. Anderson <eric.j.ason256@gmail.com>
(cherry picked from commit 807acbce66)
We have a report in the forum, that lan/wan is non-functional
on the EAP102 (https://forum.openwrt.org/t/edgecore-eap102/178449)
Fixing that by swapping label and phy-handle of the dp-nodes and
updating the lan/wan bmp.
Note: the original commiter of the device support seems absent for a
long time in the forum and on the OpenWrt github group.
Tested-by: Antonio Della Selva <antonio.dellaselva@uniurb.it>
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Reviewed-by: Robert Marko <robimarko@gmail.com>
(cherry picked from commit 9b598ec8d5)
[ fix conflicts errors ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Acelink EW-7886CAX is an MT7986A (AKA Filogic 830) based access point.
It has 512 MiB of RAM, one 2.5 Gbps PoE (802.3at) Ethernet port and
on-SoC Wi-Fi. There is no printed MAC label (on my unit).
My unit came with Mediatek's firmware (based on OpenWrt 21.02)
installed. It was possible to simply upgrade using OpenWrt's sysupgrade
tool.
Another verified upgrade method is using U-Boot (requires UART). During
every boot there is "U-Boot Boot Menu". Selecting option "2. Upgrade
firmware" allows using U-Boot's tftp client to load and flash factory
image.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
(cherry picked from commit 07765f28b7)
Quite a few `fiilogic` devices use the `mt7531` switch.
Some of them have a DT node that looks like:
```
switch: switch@0 {
compatible = "mediatek,mt7531";
reg = <31>;
...
};
```
This commit changes the DT node name to `switch@1f`.
Signed-off-by: Rani Hod <rani.hod@gmail.com>
(cherry picked from commit aaeb379023)
Fix the issue of dts buswidth cannot be applied properly with spi driver.
Fix the name of buswidth to bus-width in dts in order to fit the format
in linux spi kernel[1] so that spi-tx-bus-width & spi-rx-bus-width can be
parsed properly.
[1] Documentation/devicetree/bindings/spi/spi-controller.yaml
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
(cherry picked from commit 36746893ac)
The PGIO configuration should be added for the ZBT-Z8102AX and not the ZBT-Z8103AX
Fixes: c8c2f52262 ("mediatek: add support for Zbtlink ZBT-Z8102AX")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit d99aed31a0)
Specifications:
SoC: MediaTek MT7981B
RAM: 1024MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 4 LAN (Gigabit)
USB: two M.2 slots for 5G modems via USB 3.0 hub, external USB 3.0 port
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Based on patch adding support for similar Zbtlink ZBT-Z8103AX device by
Ian Ishmael C. Oderon.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit c8c2f52262)
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: Winbond 128MB
RAM: DDR3 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset
Power: DC 12V 1A
Flash instructions:
1. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
2. Attach UART, pause at u-boot menu.
3. Select "Upgrade ATF BL2", then use preloader.bin
4. Select "Upgrade ATF FIP", then use bl31-uboot.fip
5. Download the initramfs image, and type "reset",
waiting for tftp recovery to complete.
6. After openwrt boots up, perform sysupgrade.
Note:
1. Since NMBM is disabled, we must back up all partitions.
2. Although we can upgrade new firmware in the stock firmware,
we need the special fit image signature of MediaTek and
dual boot (hack kernel) to make u-boot boot it. So just
abandon these hacks and flash it via the serial port.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit 626344c992)