Hardware:
SoC: MediaTek MT7629 Cortex-A7 (ARMv7 1.25GHz, Dual-Core)
RAM: DDR3 128MB
Flash: Macronix MX35LF1GE4AB (SPI-NAND 128MB)
WiFi: MediaTek MT7761N (2.4GHz) / MediaTek MT7762N (5GHz) - no driver
Ethernet: SoC (WAN) / MediaTek MT7531 (LAN x4)
UART: [GND, RX, TX, 3.3V] (115200)
Installation:
- Flash recovery image with TFTP recovery
Revert to stock firmware:
- Flash stock firmware with TFTP recovery
TFTP Recovery method:
1. Unplug the router
2. Hold the reset button and plug in
3. Release when the power LED stops flashing and go off
4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0
5. Flash image with TFTP client to 192.168.0.1
Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
The package kmod-btmtkuart is specific for MT7622 and isn't available
for MT7986 (which doesn't have this built-in Bluetooth like MT7622).
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Janusz Dziedzic reported a typo introduced by a recent commit. Fix it.
Fixes: 50c892d67b ("mediatek: bpi-r64: make initramfs/recovery optional")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Only include recovery image in SD card image generated for the
BananaPi BPi-R64 if building with CONFIG_TARGET_ROOTFS_INITRAMFS
This allows to build images larger than 32 MB (the limit for
initramfs/recovery image) by deselecting initramfs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Only include recovery image in SD card image generated for the
BananaPi BPi-R3 if building with CONFIG_TARGET_ROOTFS_INITRAMFS.
This allows to build images larger than 32 MB (the limit for
initramfs/recovery image) by deselecting initramfs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The Bananapi BPi-R3 is a development router board built around the
MediaTek Filogic 830 (MT7986A) SoC.
The board can boot either from microSD, SPI-NAND, SPI-NOR or eMMC.
Only either SPI-NAND or SPI-NOR can be used at the same time, also only
either microSD or eMMC can be used. The various storage options can be
selected using small SMD switches on the board.
Specs:
* MediaTek MT7986A (Filogic 830) 4x ARM Cortex A53
* 4T4R 2.4G 802.11bgnax (MT7975N)
* 4T4R 5G 802.11anac/ax (MT7975P)
* 2 GB DDR4 RAM
* 8 GB eMMC
* 128 MB SPI-NAND flash
* 32 MB SPI-NOR flash
* on-board MT7531 GbE switch
* 2x SFP+ (1 GbE / 2.5 GbE)
* 5x GbE network port
* miniPCIe slot (only USB 2.0 connected)
* uSIM slot (connected to miniPCIe interface)
* M.2 KEY-E PCIe interface (PCIe x2)
* microSD card interface
* 26 PIN GPIO
Hardware details: https://wiki.banana-pi.org/Banana_Pi_BPI-R3
Working:
* all 4 boot methods incl. installation via U-Boot, sysupgrade, ...
* copper LAN and WAN ports
* SFP1 (connected to gmac1, eth1 in Linux)
* WiFi
* LEDs
* Buttons
* PSTORE/ramoops based dual-boot
Not Working (missing driver features):
* SFP2 (connected to MT7531 switch)
Untested:
* M.2/NGFF slot (PCIe x2)
* mPCIe slot (USB 2.0 + SIM)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Initially this covers MT7986 only, but it will later be expanded to cover other
Filogic branded platforms by MediaTek
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add targets:
* Ubiquiti UniFi 6 LR v2
* Ubiquiti UniFi 6 LR v2 (U-Boot mod)
This target does not have a RGB led bar like v1 did
Used target/linux/ramips/dts/mt7621_ubnt_unifi.dtsi as inspiration
The white dome LED is default-on, blue will turn on when the system is
in running state
Signed-off-by: Henrik Riomar <henrik.riomar@gmail.com>
based on current ubnt_unifi-6-lr-ubootmod
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[added SUPPORTED_DEVICES for compatibility with existing setups]
Signed-off-by: Henrik Riomar <henrik.riomar@gmail.com>
Based on current mt7622-ubnt-unifi-6-lr, this is a preparation for
adding a v2 version of this target
* v1 - with led-bar
* v2 - two simple GPIO connected LEDs (in later commits)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[added SUPPORTED_DEVICES for compatibility with existing setups]
Signed-off-by: Henrik Riomar <henrik.riomar@gmail.com>
The config for LEDS_UBNT_LEDBAR doesn't stay in mt7629 kconfig because
of its I2C dependency. Build it as a module and let buildroot handle
this config option instead.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Also known as the "Xiaomi Router AX3200" in western markets,
but only the AX6S is widely installation-capable at this time.
SoC: MediaTek MT7622B
RAM: DDR3 256 MiB (ESMT M15T2G16128A)
Flash: SPI-NAND 128 MiB (ESMT F50L1G41LB or Gigadevice GD5F1GQ5xExxG)
WLAN: 2.4/5 GHz 4T4R
2.4 GHz: MediaTek MT7622B
5 GHz: MediaTek MT7915E
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531B
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: Marked J1 on board VCC RX GND TX, beginning from "1". 3.3v, 115200n8
Power: 12 VDC, 1.5 A
Notes:
U-Boot passes through the ethaddr from uboot-env partition,
but also has been known to reset it to a generic mac address
hardcoded in the bootloader.
However, bdata is also populated with the ethernet mac addresses,
but is also typically never written to. Thus this is used instead.
Installation:
1. Flash stock Xiaomi "closed beta" image labelled
'miwifi_rb03_firmware_stable_1.2.7_closedbeta.bin'.
(MD5: 5eedf1632ac97bb5a6bb072c08603ed7)
2. Calculate telnet password from serial number and login
3. Execute commands to prepare device
nvram set ssh_en=1
nvram set uart_en=1
nvram set boot_wait=on
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit
4. Download and flash image
On computer:
python -m http.server
On router:
cd /tmp
wget http://<IP>:8000/factory.bin
mtd -r write factory.bin firmware
Device should reboot at this point.
Reverting to stock:
Stock Xiaomi recovery tftp that accepts their signed images,
with default ips of 192.168.31.1 + 192.168.31.100.
Stock image should be renamed to tftp server ip in hex (Eg. C0A81F64.img)
Triggered by holding reset pin on powerup.
A simple implementation of this would be via dnsmasq's
dhcp-boot option or using the vendor's (Windows only)
recovery tool available on their website.
Signed-off-by: Richard Huynh <voxlympha@gmail.com>
X32 Pro is another product name for it in the Chinese market.
Specifications:
- SoC: MT7622B
- RAM: 256MB
- Flash: XMC XM25QH128C or Winbond WQ25Q128JVSQ 16MB SPI NOR
- Ethernet: 5x1GbE
- Switch: MT7531BE
- WiFi: 2.4G: MT7622 5G: MT7915AN+MT7975AN
- 3LEDs: System LED(blue) + Mesh LED(green) + Mesh LED(red)
- 2Keys: Mesh button + Reset button
- UART: Marked J19 on board. 3.3v, 115200n1
- Power: 12V 2.5A
MAC addresses as verified by OEM firmware:
use address source
WAN *:F4 ethaddr@product_info
LAN *:F5
5g *:F6
2g *:F7
Flash instruction:
1. Serve the initramfs.img using a TFTP server with address 10.10.10.3.
2. Interrupt the uboot startup process via UART.
3. Select "System Load Linux to SDRAM via TFTP" item.
4. (important) Back up firmware(mtd7) partitions with:
dd if=/dev/mtd7 of=/tmp/firmware.bin
and then download the firmware.bin image via SCP.
5. Flash the OpenWrt sysupgrade firmware.
Recovery stock firmware:
1. Transfer the firmware.bin image to the device.
2. Flash the image with:
mtd write firmware.bin firmware
Signed-off-by: Langhua Ye <y1248289414@outlook.com>
The two options 'emmc' and 'sdmmc' now became identical lines after
introducing CONFIG_TARGET_ROOTFS_PARTSIZE.
Remove the now useless if-clauses.
Fixes: a40b4d335a ("mediatek: use CONFIG_TARGET_ROOTFS_PARTSIZE")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The legacy image for the UniElec U7623-02 until now included
kmod-ata-ahci-mtk. The MT7623 chip doesn't have that IP and that
board uses a PCIe-connected AHCI controller for the SATA port and
mSATA-pins of the mPCIe socket. Hence include kmod-ata-ahci instead.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add U-Boot env settings to allow accessing the environment using
fw_printenv and fw_setenv tools on the UniElec U7623 board.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Users of older OpenWrt versions need sysupgrade using the *emmc.img.gz
file once which will upgrade U-Boot and switch to the new image layout.
Users of the vendor firmware need to first flash the legacy image to
then sunsequently carry out a full-flash upgrade.
Alternatively the board can also be flashed using MediaTek's
proprietary SP Flash Tool.
Configuration as well as persistent MAC address will be lost once at
this point and you will have to redo (or restore) all configuration
manually. To restore the previous persistent MAC address users may set
it manually using
fw_setenv ethaddr 00:11:22:33:44:55
For future upgrades once running OpenWrt past this commit, the usual
*sysupgrade.itb file can be used.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Enable 'rootfs-part' feature to make the size of the partition of the
production image configurable instead of hard-coding it.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Limit bmt remapping range to cover everything up to and including the kernel image,
use the rest of the flash area for ubi.
Fix partition table and sysupgrade support
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Specifications:
- SoC: MT7622
- RAM: 512MB
- Flash: MX35LF1GE4AB 128MB SPI NAND
- Ethernet: RTL8367S 5x1GbE
- WiFi: 2.4G: MT7622 5G: MT7615N x2
- Other ports: USB3.0 x1
Flash instruction:
*important*: upgrade vendor firmware to at least V7.1cu.643_B20200521
1. hold the reset button and power on the device. wait for about 10s
before releasing the reset button.
2. upload sysupgrade.bin via u-boot recovery page on http://192.168.1.1
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The image generation code for the U7623 board expects ext4 filesystem
to be selected in menuconfig and CONFIG_TARGET_ROOTFS_PARTSIZE to be
defined. Now that ext4 isn't enabled any more, the variable was missing
and broke the build.
Set the default (104) instead of using the config variable to fix that.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
When reworking the BPi-R2 the mtk-mmc-img build step was removed
despite it was still needed to build the image for the UniElec U7623
board. Add it back for now until U7623 gets its facelift.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* introduce recovery (=initramfs) vs. production dual boot scheme
* make use of uImage.FIT (instead of FAT partition)
* generate images using build steps (instead of external scripts)
* simplify sysupgrade and config restore (thanks to uImage.FIT)
* make sure mmc devices are ordered persistently (set DT aliases)
This commit breaks sysupgrade from existing installations, you will
have to re-install using the sdcard.img.gz image.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
In order to allow easily updating the bootloader on eMMC also provide
artifacts for that. Support for updating bootloader via TFTP will be
added to the loader CLI menu in a follow-up commit.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Generating the sdcard.img.gz file requires the initramfs/recovery
image to be present. Use the newly introduced 'append-image-stage'
build command to fix the ImageBuilder for the BPi-R64.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Some of bpi-r64 boards have serial NAND attached to SPI bus.
Add SD card image support for installing openwrt to it.
Default to nand upgrade if root device is not mmc block device.
Separate preloader and uboot images for snand are generated.
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
Builds images for the Ubiquiti Network UniFi 6 LR device running the
U-Boot build added by the previous commits.
Everything but MTD partitions is moved to dtsi.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Populate the recovery and production partitions of the generated sdcard
image for the Bananapi BPi-R64.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Ubiquiti's own bootloader expects the configuration mode to be present
with a "@" instead of a "-" for the sperator character. Otherwise
booting of the image fails.
Signed-off-by: David Bauer <mail@david-bauer.net>
The Bananapi BPi-R64 got a SATA interface which cannot be used at the
same time as the second mPCIe slot. The decission is made by hogging
GPIO 90.
Embed two addtional DT overlay blobs into the image to allow bootloader
selection of either SATA or PCIE1 feature.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
kmod-mt7615e kmod-mt7615-firmware and uboot-envtools are already part
of the target's default package set. No need to add them again for
buffalo_wsr-2533dhp2.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds support for the Buffalo WSR-2533DHP2.
The device uses the Broadcom TRX image format with a special magic. To
be able to boot the images or load them they have to be wrapped with
different headers depending how it is loaded.
There are multiple ways to install OpenWrt on this device.
Boot ramdisk from U-Boot
----------------------------
This will load the image and not write it into the flash.
1. Stop boot menu with "space" key
2. Select "System Load Linux to SDRAM via TFTP."
3. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-initramfs-kernel.bin
4. The system boots the image
Write to flash from U-Boot
-----------------------------
This will load the image over tftp and directly write it into the flash.
1. Stop boot menu with "space" key
2. Select "System Load Linux Kernel then write to Flash via TFTP."
3. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory-uboot.bin
4. The system writes this image into the flash and boots into it.
Write to flash from Web UI
-----------------------------
This will load the image over over the Web UI and write it into the flash
1. Open the Web UI
2. Go to "管理" -> "ファームウェア更新"
3. Select "ローカルファイル指定" and click "更新実行"
4. Load this image:
openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory.bin
5. The system writes this image into the flash and boots into it.
Specifications
-------------------
* SoC: MT7622 (4x4 2.4 GHz Wifi)
* Wifi: MT7615 (4x4 5 GHz Wifi)
* Flash: Winbond W29N01HZ 128MB SLC NAND
* RAM 256MB
* Ethernet: Realtek RTL8367S (5 x 1GBit/s, SoC via 2.5GBit/s)
Co-Developed-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
* clean up whitespace to make GPT partitioning more readable
* don't select packages already part of the target default selection
* don't select U-Boot variants (breaks ImageBuilder)
* don't select AHCI on boards without SATA
* don't select kmod-usb2 and kmod-ohci, USB 1.x and USB 2.0 devices
work fine with the in-SoC XHCI host having just kmod-usb3 installed.
* select kmod-btmtkuart for devices with Bluetooth support
* sort DEVICE_PACKAGES
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
dd on Mac OS X apparently fails when using 'M' unit for bs.
dd: bs: illegal numeric value
Use 'k' unit instead for 'pad-to' to fix that.
Reported-by: Georgi Valkov <gvalkov@abv.bg>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
All mt7622 devices except for the UBI-variant of the mt7622-rfb1 carry
metadata appended to the sysupgrade image.
Add it for the mt7622-rfb1-ubi as well and check it on sysupgrade to
avoid accidentally flashing firmware for the wrong device (or variant
or future DEVICE_COMPAT_VERSION).
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
mt7622 uses MBR partition for booting from SD card.
Add hybrid MBR entry with boot flag after PMBR entry.
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
The previous approach of referencing artifacts in follow-up artifacts
can't work with parallel builds in the current way image.mk is built.
Refactor things so this is not needed.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Write everything needed for eMMC install into the gaps between
partitions on SD card. In that way, installation to eMMC only needs
the SD card, no additional files need to be loaded via TFTP any more.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This profile is meant to be used on MT7622 rfb1 AP, indicate that in
the name to make things less confusing.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
**What's new**
* Bring support for the Bananapi BPi-R64 to the level desirable for
a nice hackable routerboard.
* Use ARM Trusted Firmware A from source. (goodbye binary preloader)
* Use Das U-Boot from source. (see previous commit)
* Assemble SD-card image using OpenWrt image-commands.
(no gen_sd_cruz_foo.sh added, this is not Raspbian)
* Updated kernel options to support root filesystem.
* Updated DTS to match OpenWrt LAN ports, known LEDs, buttons, ...
* Detect root device, handle sysupgrade, config restore, ...
* Wire up (known) LEDs and buttons in OpenWrt-fashion.
* Build one set of images from SD-card and eMMC.
* Hopefully provide a good example of how things can be done right
from scratch.
**Installation and images**
* Have an empty SD-card at hand
* Write stuff to the card, as root (card device is /dev/mmcblkX)
- write header, gpt, bl2, atf, u-boot and recovery kernel:
`cat *bpi-r64-boot-sdcard.img *bpi-r64-initramfs-recovery.fit > /dev/mmcblkX`
- rescan partitions:
`blockdev --rereadpt /dev/mmcblkX`
- write main system to production partition:
`cat *bpi-r64-squashfs-sysupgrade.fit > /dev/mmcblkXp5`
* Installation to eMMC works using SD-card bootloader via TFTP
When running OpenWrt of SD-card, issue this to trigger installation
to eMMC:
`fw_setenv bootcmd run emmc_init`
Be prepared to serve the content of bin/targets/mediatek/mt7622 on
TFTP server address 192.168.1.254.
**What's missing**
* The red LED is always on, probably a hardware bug.
* AHCI (probably needs DTS changes)
* Ship SD-card image ready with every needed for eMMC install.
* The eMMC has a second, currently unused boot partition. This would
be ideal to store the WiFi EEPROM and Ethernet MAC address(es).
@sinovoip ideas?
Thanks to Thomas Hühn @thuehn for providing the hardware!
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The vendor flash layout of the Linksys E8450 is problematic as it uses
the SPI-NAND chip without any wear-leveling while at the same time
wasting a lot of space for padding.
Use an all-UBI layout instead, storing the kernel+dtb+squashfs in
uImage.FIT standard format in UBI volume 'fit', the read-write
overlay in UBI volume 'rootfs_data' as well as reduntant U-Boot
environments 'ubootenv' and 'ubootenv2', and a 'recovery'
kernel+dtb+initramfs uImage.FIT for dual-boot.
** WARNING **
THIS PROCEDURE CAN EASILY BRICK YOUR DEVICE PERMANENTLY IF NOT CARRIED
OUT VERY CAREFULLY AND EXACTLY AS DESCRIBED!
Step 0
* Configure your PC to have the static IPv4 address 192.168.1.254/24
* Provide bin/targets/mediatek/mt7622 via TFTP
Now continue EITHER with step 1A or 1B, depending on your preference
(and on having serial console wired up or not).
Step 1A (Using the vendor web interface (or non-UBI OpenWrt install))
In order to update to the new bootloader and UBI-based firmware,
use the web browser of your choice to open the routers web-interface
accessible on http://192.168.1.1
* Navigate to
'Configuration' -> 'Administration' -> 'Firmware Upgrade'
* Upload the file
openwrt-mediatek-mt7622-linksys_e8450-ubi-initramfs-recovery.itb
and proceed with the upgrade.
* Once OpenWrt comes up, use SCP to upload the new bootloader files to
/tmp on the router:
*-mt7622-linksys_e8450-ubi-preloader.bin
*-mt7622-linksys_e8450-ubi-bl31-uboot.fip
* Connect via SSH as you will now need to replace the bootloader in
the Flash.
ssh root@192.168.1.1
(the usual warnings)
* First of all, backup all the flash now:
for mtd in /dev/mtdblock*; do
dd if=$mtd of=/tmp/$(basename $mtd);
done
* Then use SCP to copy /tmp/mtdblock* from the router and keep them
safe. You will need them should you ever want to return to the
factory firmware!
* Now flow the uploaded files:
mtd -e /dev/mtd0 write /tmp/*linksys_e8450-ubi-preloader.bin /dev/mtd0
mtd -e /dev/mtd1 write /tmp/*linksys_e8450-ubi-bl31-uboot.fip /dev/mtd1
If and only if both writes look like the completed successfully
reboot the router. Now continue with step 2.
Step 1B (Using the vendor bootloader serial console)
* Use the serial to backup all /dev/mtd* devices before using the
stock firmware (you got root shell when connected to serial).
* Then reboot and select 'U-Boot Console' in the boot menu.
* Copy the following lines, one by one:
tftpboot 0x40080000 openwrt-mediatek-mt7622-linksys_e8450-ubi-preloader.bin
tftpboot 0x40100000 openwrt-mediatek-mt7622-linksys_e8450-ubi-bl31-uboot.fip
nand erase 0x0 0x180000
nand write 0x40080000 0x0 0x180000
reset
Now continue with step 2
Step 2
Once the new bootchain comes up, the loader will initialize UBI and the
ubootenv volumes. It will then of course fail to find any bootable
volume and hence resort to load kernel via TFTP from server
192.168.1.254 while giving itself the address 192.168.1.1
The requested file is called
openwrt-mediatek-mt7622-linksys_e8450-ubi-initramfs-recovery.itb
and your TFTP server should provide exactly that :)
It will be written to UBI as recovery image and booted.
You can then continue and flash the production OS image, either
by using sysupgrade in the booted initramfs recovery OS, or by using
the bootloader menu and TFTP.
That's it. Go ahead and mess around with a bootchain built almost
completely from source (only DRAM calibration blobs are fitted in bl2,
and the irreplacable on-chip ROM loader remains, of course).
And enjoy U-Boot built with many great features out-of-the-box.
You can access the bootloader environment from within OpenWrt using the
'fw_printenv' and 'fw_setenv' commands. Don't be afraid, once you got
the new bootchain installed the device should be fairly unbrickable
(holding reset button before and during power-on resets things and
allows reflashing recovery image via TFTP)
Special thanks to @dvn0 (Devan Carpenter) for providing amazingly fast
infra for test-builds, allowing for `make clean ; make -j$(nproc)` in
less than two minutes :)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The Linksys E8450, also known as Belkin RT3200, is a dual-band
IEEE 802.11bgn/ac/ax router based on MediaTek MT7622BV and
MediaTek MT7915AN chips.
FCC: K7S-03571 and K7S-03572
Hardware highlights:
- CPU: MediaTek MT7622BV (2x ARM Cortex-A53 @ 1350 MHz max.)
- RAM: 512MB DDR3
- Flash: 128MB SPI-NAND (2k+64)
- Ethernet: MT7531BE switch with 5 1000Base-T ports
CPU port connected with 2500Base-X
- WiFi 2.4 GHz: 802.11bgn 4T4R built-in antennas
MT7622VB built-in
- WiFi 5 GHz: 802.11ac/ax 4T4R built-in antennas
MT7915AN chip on-board via PCIe
MT7975AN front-end
- Buttons: Reset and WPS
- LEDS: 3 user controllable LEDs, 4 wired to switch
- USB: USB2.0, single port
- no Bluetooth (supported by SoC, not wired on board)
- Serial: JST PH 2.0MM 6 Pin connector inside device
----_____________----
[ GND RX - TX - - ]
---------------------
- JTAG: unpopulated ARM JTAG 20-pin connector (works)
This commit adds support for the device in a way that is compatible
with the vendor firmware's bootloader and dual-boot flash layout, the
resulting image can directly be flashed using the vendor firmware.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Switch mt7622 subtarget to Linux 5.10, it has been tested by many of us
on several devices for a couple of weeks already.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
MediaTek targets always use U-Boot's modern uImage.FIT format which
allows bundling several blobs into a single file including hashes,
descriptions and more. In fact, we are already using that to bundle
the Flattened Device Tree blob with the kernel on this and many
other targets.
In the same fashion, we can now make use of the newly introduced
support for building seperate ramdisk to uImage.FIT with a dedicated
initrd blob checked and loaded by U-Boot instead of embedding the
cpio archive into the kernel itself.
This allows for having larger ramdisks, choosing ramdisk compression
independently of kernel compression (while only kernel is decompressed
by the bootloader) and for more easily replacing or modifying the
filesystem contained in an initramfs image.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>