334 Commits

Author SHA1 Message Date
Daniel Golle
ef822ac8d8 uboot-envtools: oxnas: fix wrong eraseblock size for shuttle,kd20
Shuttle KD20 has NAND flash with 0x20000 (128KiB) erase blocks.
Correctly set that in uboot-envtools as well to allow writing to the
bootloader environment using fw_setenv.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit fa676395136b17d753fd90137e58f02a4fcdb09e)
2022-03-27 16:14:00 +01:00
Richard Huynh
9470160c35 mediatek: Add support for Xiaomi Redmi Router AX6S
Also known as the "Xiaomi Router AX3200" in western markets,
but only the AX6S is widely installation-capable at this time.

SoC: MediaTek MT7622B
RAM: DDR3 256 MiB (ESMT M15T2G16128A)
Flash: SPI-NAND 128 MiB (ESMT F50L1G41LB or Gigadevice GD5F1GQ5xExxG)
WLAN: 2.4/5 GHz 4T4R
2.4 GHz: MediaTek MT7622B
5 GHz: MediaTek MT7915E
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531B
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: Marked J1 on board VCC RX GND TX, beginning from "1". 3.3v, 115200n8
Power: 12 VDC, 1.5 A

Notes:
U-Boot passes through the ethaddr from uboot-env partition,
but also has been known to reset it to a generic mac address
hardcoded in the bootloader.

However, bdata is also populated with the ethernet mac addresses,
but is also typically never written to. Thus this is used instead.

Installation:
1. Flash stock Xiaomi "closed beta" image labelled
'miwifi_rb03_firmware_stable_1.2.7_closedbeta.bin'.
(MD5: 5eedf1632ac97bb5a6bb072c08603ed7)

2. Calculate telnet password from serial number and login

3. Execute commands to prepare device
nvram set ssh_en=1
nvram set uart_en=1
nvram set boot_wait=on
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit

4. Download and flash image
On computer:
python -m http.server
On router:
cd /tmp
wget http://<IP>:8000/factory.bin
mtd -r write factory.bin firmware

Device should reboot at this point.

Reverting to stock:
Stock Xiaomi recovery tftp that accepts their signed images,
with default ips of 192.168.31.1 + 192.168.31.100.
Stock image should be renamed to tftp server ip in hex (Eg. C0A81F64.img)
Triggered by holding reset pin on powerup.

A simple implementation of this would be via dnsmasq's
dhcp-boot option or using the vendor's (Windows only)
recovery tool available on their website.

Signed-off-by: Richard Huynh <voxlympha@gmail.com>
(cherry picked from commit 9f9477b2751231d57cdd8c227149b88c93491d93)
2022-03-21 13:11:56 +00:00
Mikhail Zhilkin
f8b02130d2 ramips: add support for Beeline SmartBox Flash
Beeline SmartBox Flash is a wireless AC1300 (WiFi 5) router manufactured
by Arcadyan company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Winbond W632GU6NB
Flash: 128 MiB (NAND), Winbond W29N01HVSINF
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: 1xUSB3.0
Button: 1 (Reset/WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WE42022

Installation
------------
1. Place *factory.trx on any web server (192.168.1.2 in this example)
2. Connect to the router using telnet shell (no password required)
3. Save MAC adresses to U-Boot environment:
   uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
    awk '{print $5}')
   uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
    awk '{print $5}')
   uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
    awk '{print $5}')
   uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
    awk '{print $5}')
4. Ensure that MACs were saved correctly:
   uboot_env --get --name eth2macaddr
   uboot_env --get --name eth3macaddr
   uboot_env --get --name ra0macaddr
   uboot_env --get --name rax0macaddr
5. Download and write the OpenWrt images:
   cd /tmp
   wget http://192.168.1.2/factory.trx
   mtd_write erase /dev/mtd4
   mtd_write write factory.trx /dev/mtd4
6. Set 1st boot partition and reboot:
   uboot_env --set --name bootpartition --value 0
   reboot

Back to Stock
-------------
1. Run in the OpenWrt shell:
   fw_setenv bootpartition 1
   reboot
2. Optional step. Upgrade the stock firmware with any version to
   overwrite the OpenWrt in Slot 1.

MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC               | Source         |
+-----------+-------------------+----------------+
| label     | 30:xx:xx:51:xx:09 | No MACs was    |
| LAN       | 30:xx:xx:51:xx:09 | found on Flash |
| WAN       | 30:xx:xx:51:xx:06 | [1]            |
| WLAN_2g   | 30:xx:xx:51:xx:07 |                |
| WLAN_5g   | 32:xx:xx:41:xx:07 |                |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
   key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
   with saving of the MACs to u-boot-env during the installation was
   applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:36) was found in
   "Factory" 0xfff0. It's the same for all Smartbox Flash devices. OEM
   firmware also uses this MAC when initialazes ethernet driver. In
   OpenWrt we use it only as internal GMAC (eth0), all other MACs are
   unique. Therefore, there is no any barriers to the operation of several
   Smartbox Flash devices even within the same broadcast domain.

Stock firmware image format
---------------------------
+--------------+---------------+----------------------------------------+
| Offset       | 1.0.15        | Description                            |
+==============+===============+========================================+
| 0x0          | 5d 43 6f 74   | TRX magic "]Cot"                       |
+--------------+---------------+----------------------------------------+
| 0x4          | 00 70 ff 00   | Length (reverse)                       |
+--------------+---------------+----------------------------------------+
|              |               | htonl(~crc) from 0xc ("flag_version")  |
| 0x8          | 72 b3 93 16   | to "Length"                            |
+--------------+---------------+----------------------------------------+
| 0xc          | 00 00 01 00   | Flags                                  |
+--------------+---------------+----------------------------------------+
|              |               | Offset (reverse) of Kernel partition   |
| 0x10         | 1c 00 00 00   | from the start of the header           |
+--------------+---------------+----------------------------------------+
|              |               | Offset (reverse) of RootFS partition   |
| 0x14         | 00 00 42 00   | from the start of the header           |
+--------------+---------------+----------------------------------------+
| 0x18         | 00 00 00 00   | Zeroes                                 |
+--------------+---------------+----------------------------------------+
| 0x1c         | 27 05 19 56 … | Kernel data + zero padding             |
+--------------+---------------+----------------------------------------+
|              |               | RootFS data (starting with "hsqs") +   |
| 0x420000     | 68 73 71 73 … | zero padding to "Length"               |
+--------------+---------------+----------------------------------------+
|              |               | Some signature data (format is         |
|              |               | unknown). Necessary for the fw         |
| "Lenght"     | 00 00 00 00 … | update via oem fw web interface.       |
+--------------+---------------+----------------------------------------+
| "Lenght" +   |               | TRX magic "HDR0". U-Boot is            |
| 0x10c        | 48 44 52 30   | checking it at every boot.             |
+--------------+---------------+----------------------------------------+
|              |               | 1.00:                                  |
|              |               |   Zero padding to ("Lenght" + 0x23000) |
|              |               | 1.0.12:                                |
|              |               |   Zero padding to ("Lenght" + 0x2a000) |
| "Lenght" +   |               | 1.0.13, 1.0.15, 1.0.16:                |
| 0x110        | 00 00 00 00   |   Zero padding to ("Lenght" + 0x10000) |
+--------------+---------------+----------------------------------------+

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-03-19 16:14:01 +01:00
Michael Pratt
41be1a2de2 ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC

Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:xb art 0x0
  phy1 2.4G *:xc ---
  phy0 5GHz *:xd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:58 +01:00
Michael Pratt
56716b578e ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC

Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9557 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - QCA9882 WLAN	PCI card 168c:003c, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:e1 art 0x0
  phy1 2.4G *:e2 ---
  phy0 5GHz *:e3 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Michael Pratt
561f46bd02 ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN

Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI on-board 168c:0030, 5 GHz, 2x2
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	1839ZFG V59C1512164QFJ25
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:7d art 0x0
  phy1 2.4G *:7e ---
  phy0 5GHz *:7f ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Martin Kennedy
d1a8690742 realtek: add ZyXEL GS1900-24 v1 support
The ZyXEL GS1900-24 v1 is a 24 port switch with two SFP ports, similar to
the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24 v1
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
  * 1 PWR LED (green, not configurable)
  * 1 SYS LED (green, configurable)
  * 24 ethernet port link/activity LEDs (green, SoC controlled)
  * 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
  * 1 "RESET" button on front panel (soft reset)
  * 1 button ('SW1') behind right hex grate (hardwired power-off)
* Power:     120-240V AC C13
* UART:      Internal populated 10-pin header ('J5') providing RS232;
             connected to SoC UART through a SIPEX 3232EC for voltage
             level shifting.

* 'J5' RS232 Pinout (dot as pin 1):
  2) SoC RXD
  3) GND
  10) SoC TXD

Serial connection parameters: 115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface

* Navigate to Maintenance > Firmware > Management

* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.

* Navigate to Maintenance > Firmware > Upload

* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot
  the switch.

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).

* Set up a TFTP server on your client and make it serve the initramfs
  image.

* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:

  > rtk network on

> Since the GS1900-24 v1 is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only be installed in the first partition anyway (hardcoded in the
  DTS). To ensure we are set to boot from the first partition, issue the
  following commands:

  > setsys bootpartition 0
  > savesys

* Download the image onto the device and boot from it:

  > tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
  > bootm

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2022-03-13 19:24:13 +01:00
INAGAKI Hiroshi
98113220fa uboot-envtools: add support for I-O DATA BSH-G24MB
This patch adds the device-specific configuration to u-boot-envtools for
I-O DATA BSH-G24MB switch.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-03-07 21:44:53 +01:00
Langhua Ye
d15f9b9043 uboot-envtools: mt7622: add support for Ruijie RG-EW3200GX PRO
Add U-Boot environment settings for Ruijie RG-EW3200GX PRO to allow
users to access the bootloader environment using fw_printenv/fw_setenv
while running OpenWrt.

Signed-off-by: Langhua Ye <y1248289414@outlook.com>
2022-03-05 21:06:35 +01:00
Piotr Dymacz
2d5b596b49 uboot-envtools: ath79: add support for ALFA Network Tube-2HQ
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-02-27 16:54:54 +01:00
Lech Perczak
7ac8da0060 ath79: support ZTE MF286A/R
ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.

Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN:
  [MF286A] MDM9230-based category 6 internal LTE modem
  [MF286R] PXA1826-based category 7 internal LTE modem
  in extended  mini-PCIE form factor, with 3 internal antennas and
  2 external antenna connections, single mini-SIM slot.
- FXS: one external ATA port (handled entirely by modem part) with two
  physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
  Signal state) handled entirely by modem. 4 link status LEDs handled by
  the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
  monitoring handled by modem.
- Label MAC device: eth0

The device shares many components with previous model, MF286, differing
mostly by a Wave2 5GHz radio, flash layout and internal LED color.
In case of MF286A, the modem is the same as in MF286. MF286R uses a
different modem based on Marvell PXA1826 chip.

Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully
supported, but it is expected to use comgt-ncm for connection, as it
uses standard 3GPP AT commands for connection establishment.

Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
  converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.

Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.

STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.

STEP 1: gaining root shell:

Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.

Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
  then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
  "http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.

Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.

- Set IP of your computer to 192.168.0.22. (or appropriate subnet if
  changed)
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
  https://busybox.net/downloads/binaries/1.21.1/busybox-mips
  and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
  filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
  field named "addURLFilter", so it looks like this:
  <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
    class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
  execute it. You should be able to log in at port 23, using
  "admin/admin" as credentials.

Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.

STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
It is highly recommended to perform backup using both methods, to avoid
hassle of reassembling firmware images in future, if a restore is
needed.

Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:

  ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
  ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin

And keep them in a safe place, should a restore be needed in future.

Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
  port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:

  cat /proc/mtd

  It should show the following:
  mtd0: 000a0000 00010000 "u-boot"
  mtd1: 00020000 00010000 "u-boot-env"
  mtd2: 00140000 00010000 "reserved1"
  mtd3: 000a0000 00020000 "fota-flag"
  mtd4: 00080000 00020000 "art"
  mtd5: 00080000 00020000 "mac"
  mtd6: 000c0000 00020000 "reserved2"
  mtd7: 00400000 00020000 "cfg-param"
  mtd8: 00400000 00020000 "log"
  mtd9: 000a0000 00020000 "oops"
  mtd10: 00500000 00020000 "reserved3"
  mtd11: 00800000 00020000 "web"
  mtd12: 00300000 00020000 "kernel"
  mtd13: 01a00000 00020000 "rootfs"
  mtd14: 01900000 00020000 "data"
  mtd15: 03200000 00020000 "fota"
  mtd16: 01d00000 00020000 "firmware"

  Differences might indicate that this is NOT a MF286A device but
  one of other variants.
- Copy over all MTD partitions, for example by executing the following:

  for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \
  /var/usb_disk/mtd$i; done

  "Firmware" partition can be skipped, it is a concatenation
  of "kernel" and "rootfs".

- If the count of MTD partitions is different, this might indicate that
  this is not a MF286A device, but one of its other variants.
- (optionally) rename the files according to MTD partition names from
  /proc/mtd
- Unmount the filesystem:

  umount /var/usb_disk; sync

  and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
  firmware. This is especially important, because stock firmware for
  this device is not available officially, and is usually customized by
  the mobile providers.

STEP 3: Booting initramfs image:

Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
  set your computer's IP address as 192.168.0.22. This is the default
  expected by U-boot. You may wish to change that, and alter later
  commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:

  setenv serverip 192.168.0.22
  setenv ipaddr 192.168.0.1
  tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin
  bootm 0x81000000

  (Replace server IP and router IP as needed). There is no  emergency
  TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
  installation.

Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- After backing up the previous MTD contents, write the images to the
  "firmware" MTD device, which conveniently concatenates "kernel" and
  "rootfs" partitions that can fit the initramfs image:

  nandwrite -p /dev/<firmware-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin

- If write is OK, reboot the device, it will reboot to OpenWrt
  initramfs:

  reboot -f

- After rebooting, SSH into the device and use sysupgrade to perform
  proper installation.

Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
  flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
  and name it root_uImage:

  dd if=/dev/zero of=padding.bin bs=8M count=1

  cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin >
  root_uImage

- Set up a TFTP server at 192.0.0.1/8. Router will use random address
  from that range.
- Put the previously generated "root_uImage" into TFTP server root
  directory.
- Deliberately erase "kernel" partition" using stock firmware after
  taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
  initramfs image, which will let you perform actual installation using
  sysupgrade. This might take a considerable time, sometimes the router
  doesn't establish Ethernet link properly right after booting. Be
  patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
  light up. At this moment, perform power-on reset, and wait for OpenWrt
  initramfs to finish booting. Then proceed to actual installation.

STEP 4: Actual installation:
- Set your computer IP to 192.168.1.22/24
- scp the sysupgrade image to the device:

  scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \
  root@192.168.1.1:/tmp/

- ssh into the device and execute sysupgrade:

  sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin

- Wait for router to reboot to full OpenWrt.

STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:

config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth '<auth>' # As required, usually 'none'
        option pincode '<pin>' # If required by SIM
        option apn '<apn>' # As required by ISP
        option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'

For example, the following works for most polish ISPs
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth 'none'
        option apn 'internet'
        option pdptype 'ipv4'

The required minimum is:
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
In this case, the modem will use last configured APN from stock
firmware - this should work out of the box, unless your SIM requires
PIN which can't be switched off.

If you have build with LuCI, installing luci-proto-qmi helps with this
task.

Restoring the stock firmware:

Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware
The only partitions you really care about are "web", "kernel", and
"rootfs". These are required to restore the stock firmware through
factory TFTP recovery.

Because kernel partition was enlarged, compared to stock
firmware, the kernel and rootfs MTDs don't align anymore, and you need
to carve out required data if you only have backup from stock FW:
- Prepare kernel image
  cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin
  truncate -s 4M owrt_kernel_restore.bin
- Cut off first 1MB from rootfs
  dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1
- Prepare image to write to "ubi" meta-partition:
  cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \
  mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \
  owrt_ubi_ubi_restore.bin

You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.

Method 1: Using initramfs:
This method is recmmended if you took your backup from within OpenWrt
initramfs, as the reassembly is not needed.
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
  (scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
  mtd write <kernel_mtd> mtd4_kernel.bin
  rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
  restore them individually. Otherwise you might run out of space in
  tmpfs:

  (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
  rm mtd3_ubiconcat0.bin

  (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
  rm mtd5_ubiconcat1.bin

- If the write was correct, force a device reboot with

  reboot -f

Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
  your drive
- Mount your flash drive

  mkdir /tmp/usb

  mount /dev/sda1 /tmp/usb

- Remount your UBI volume at /overlay to R/O

  mount -o remount,ro /overlay

- Write back the kernel and ubi partitions from USB drive

  cd /tmp/usb
  mtd write mtd4_kernel.bin /dev/<kernel_mtd>

  mtd write mtd9_ubi.bin /dev/<kernel_ubi>

- If everything went well, force a device reboot with
  reboot -f

Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.

Method 3: using built-in TFTP recovery:
This method is recommended if you took backups using stock firmware.
- Assemble a recovery rootfs image from backup of stock partitions by
  concatenating "web", "kernel", "rootfs" images dumped from the device,
  as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
  TFTP pre-installation method.

Quirks and known issuesa
- It was observed, that CH340-based USB-UART converters output garbage
  during U-boot phase of system boot. At least CP2102 is known to work
  properly.
- Kernel partition size is increased to 4MB compared to stock 3MB, to
  accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
  image is at 2.5MB which is dangerously close to the limit. This has no
  effect on booting the system - but keep that in mind when reassembling
  an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
  you used before in stock firmware first. If you need to change it,
  please use protocok '3g' to establish connection once, or use the
  following command to change APN (and optionally IP type) manually:
  echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the blue debug LED hidden
  inside the case. All other LEDs are controlled by modem, on which the
  router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
  correct GPIO mapping. All other LEDs are controlled by modem,
  including this one in stock firmware. GPIO19, mapped there only acts
  as a gate, while the actual signal source seems to be 5GHz Wi-Fi
  radio, however it seems it is not the LED exposed by ath10k as
  ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
  reset of whole board, not only the modem. It is attached to
  gpio-restart driver, to restart the modem on reboot as well, to ensure
  QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
  for OpenWrt operation at all - have fun lurking around.
  The same modem module is used as in older MF286.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-26 17:46:10 +01:00
Lech Perczak
411940ded4 ath79: uboot-envtools: fix partition for ZTE MF286
By mistake, a wrong partition for U-boot environment was introduced for
ZTE MF286 while adding support, when flash layout wasn't finalized. Fix
that, according to the actual flash layout:
dev:    size   erasesize  name
mtd0: 00140000 00020000 "fota-flag"
mtd1: 00140000 00020000 "caldata"
mtd2: 00140000 00020000 "mac"
mtd3: 00f40000 00020000 "ubiconcat0"
mtd4: 00400000 00020000 "kernel"
mtd5: 06900000 00020000 "ubiconcat1"
mtd6: 00080000 00010000 "u-boot"
mtd7: 00020000 00010000 "u-boot-env"
mtd8: 07840000 00020000 "ubi"

Fixes: 8c78a13bfc1f ("ath79: support ZTE MF286")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-20 14:04:38 +01:00
Martin Kennedy
cfe79f2eb8 mpc85xx: Patch HiveAP 330 u-boot to fix boot
When Kernel 5.10 was enabled for mpc85xx, the kernel once again became too
large upon decompression (>7MB or so) to decompress itself on boot (see
FS#4110[1]).

There have been many attempts to fix booting from a compressed kernel on
the HiveAP-330:

- b683f1c36d8a ("mpc85xx: Use gzip compressed kernel on HiveAP-330")
- 98089bb8ba82 ("mpc85xx: Use uncompressed kernel on the HiveAP-330")
- 26cb167a5ca7 ("mpc85xx: Fix Aerohive HiveAP-330 initramfs image")

We can no longer compress the kernel due to size, and the stock bootloader
does not support any other types of compression. Since an uncompressed
kernel no longer fits in the 8MiB kernel partition at 0x2840000, we need to
patch u-boot to autoboot by running variable which isn't set by the
bootloader on each autoboot.

This commit repartitions the HiveAP, requiring a new COMPAT_VERSION,
and uses the DEVICE_COMPAT_MESSAGE to guide the user to patch u-boot,
which changes the variable run on boot to be `owrt_boot`; the user can
then set the value of that variable appropriately.

The following has been documented in the device's OpenWrt wiki page:
<https://openwrt.org/toh/aerohive/hiveap-330>. Please look there
first/too for more information.

The from-stock and upgrade from a previous installation now becomes:

0) setup a network with a dhcp server and a tftp server at serverip
(192.168.1.101) with the initramfs image in the servers root directory.

1) Hook into UART (9600 baud) and enter U-Boot. You may need to enter
a password of administrator or AhNf?d@ta06 if prompted. If the password
doesn't work. Try reseting the device by pressing and holding the reset
button with the stock OS.

2) Once in U-Boot, set the new owrt_boot and tftp+boot the initramfs image:
   Use copy and paste!

 # fw_setenv owrt_boot 'setenv bootargs \"console=ttyS0,$baudrate\";bootm 0xEC040000 - 0xEC000000'
 # save
 # dhcp
 # setenv bootargs console=ttyS0,$baudrate
 # tftpboot 0x1000000 192.168.1.101:openwrt-mpc85xx-p1020-aerohive_hiveap-330-initramfs-kernel.bin
 # bootm

3) Once openwrt booted:
carefully copy and paste this into the root shell. One step at a time

  # 3.0 install kmod-mtd-rw from the internet and load it

  opkg update; opkg install kmod-mtd-rw
  insmod mtd-rw i_want_a_brick=y

  # 3.1 create scripts that modifies uboot

cat <<- "EOF" > /tmp/uboot-update.sh
  . /lib/functions/system.sh
  cp "/dev/mtd$(find_mtd_index 'u-boot')" /tmp/uboot
  cp /tmp/uboot /tmp/uboot_patched
  ofs=$(strings -n80 -td < /tmp/uboot | grep '^ [0-9]* setenv bootargs.*cp\.l' | cut -f2 -d' ')
  for off in $ofs; do
    printf "run owrt_boot;            " | dd of=/tmp/uboot_patched bs=1 seek=${off} conv=notrunc
  done
  md5sum /tmp/uboot*
EOF

  # 3.2 run the script to do the modification

  sh /tmp/uboot-update.sh

  # verify that /tmp/uboot and /tmp/uboot_patched are good
  #
  # my uboot was: (is printed during boot)
  # U-Boot 2009.11 (Jan 12 2017 - 00:27:25), Build: jenkins-HiveOS-Honolulu_AP350_Rel-245
  #
  # d84b45a2e8aca60d630fbd422efc6b39  /tmp/uboot
  # 6dc420f24c2028b9cf7f0c62c0c7f692  /tmp/uboot_patched
  # 98ebc7e7480ce9148cd2799357a844b0  /tmp/uboot-update.sh <-- just for reference

  # 3.3 this produces the /tmp/u-boot_patched file.

  mtd write /tmp/uboot_patched u-boot

3) scp over the sysupgrade file to /tmp/ and run sysupgrade to flash OpenWrt:

  sysupgrade -n /tmp/openwrt-mpc85xx-p1020-aerohive_hiveap-330-squashfs-sysupgrade.bin

4) after the reboot, you are good to go.

Other notes:

- Note that after this sysupgrade, the AP will be unavailable for 7 minutes
  to reformat flash. The tri-color LED does not blink in any way to
  indicate this, though there is no risk in interrupting this process,
  other than the jffs2 reformat being reset.

- Add a uci-default to fix the compat version. This will prevent updates
  from previous versions without going through the installation process.

- Enable CONFIG_MTD_SPLIT_UIMAGE_FW and adjust partitioning to combine
  the kernel and rootfs into a single dts partition to maximize storage
  space, though in practice the kernel can grow no larger than 16MiB due
  to constraints of the older mpc85xx u-boot platform.

- Because of that limit, KERNEL_SIZE has been raised to 16m.

- A .tar.gz of the u-boot source for the AP330 (a.k.a. Goldengate) can
  be found here[2].

- The stock-jffs2 partition is also removed to make more space -- this
  is possible only now that it is no longer split away from the rootfs.

- the console-override is gone. The device will now get the console
  through the bootargs. This has the advantage that you can set a different
  baudrate in uboot and the linux kernel will stick with it!

- due to the repartitioning, the partition layout and names got a makeover.

- the initramfs+fdt method is now combined into a MultiImage initramfs.
  The separate fdt download is no longer needed.

- added uboot-envtools to the mpc85xx target. All targets have uboot and
  this way its available in the initramfs.

[1]: https://bugs.openwrt.org/index.php?do=details&task_id=4110
[2]: magnet:?xt=urn:btih:e53b27006979afb632af5935fa0f2affaa822a59

Tested-by: Martin Kennedy <hurricos@gmail.com>
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
(rewrote parts of the commit message, Initramfs-MultiImage,
dropped bootargs-override, added wiki entry + link, uboot-envtools)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-02-19 19:20:29 +01:00
Raymond Wang
3343ca7e68 ramips: add support for Xiaomi Mi Router CR660x series
Xiaomi Mi Router CR6606 is a Wi-Fi6 AX1800 Router with 4 GbE Ports.
Alongside the general model, it has three carrier customized models:
CR6606 (China Unicom), CR6608 (China Mobile), CR6609 (China Telecom)

Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256MB DDR3 (ESMT M15T2G16128A)
- Flash: 128MB NAND (ESMT F59L1G81MB)
- Ethernet: 1000Base-T x4 (MT7530 SoC)
- WLAN: 2x2 2.4GHz 574Mbps + 2x2 5GHz 1201Mbps (MT7905DAN + MT7975DN)
- LEDs: System (Blue, Yellow), Internet (Blue, Yellow)
- Buttons: Reset, WPS
- UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
- Power: 12VDC, 1A

Jailbreak Notes:
1. Get shell access.
   1.1. Get yourself a wireless router that runs OpenWrt already.
   1.2. On the OpenWrt router:
      1.2.1. Access its console.
      1.2.2. Create and edit
             /usr/lib/lua/luci/controller/admin/xqsystem.lua
             with the following code (exclude backquotes and line no.):
```
     1  module("luci.controller.admin.xqsystem", package.seeall)
     2
     3  function index()
     4      local page   = node("api")
     5      page.target  = firstchild()
     6      page.title   = ("")
     7      page.order   = 100
     8      page.index = true
     9      page   = node("api","xqsystem")
    10      page.target  = firstchild()
    11      page.title   = ("")
    12      page.order   = 100
    13      page.index = true
    14      entry({"api", "xqsystem", "token"}, call("getToken"), (""),
103, 0x08)
    15  end
    16
    17  local LuciHttp = require("luci.http")
    18
    19  function getToken()
    20      local result = {}
    21      result["code"] = 0
    22      result["token"] = "; nvram set ssh_en=1; nvram commit; sed -i
's/channel=.*/channel=\"debug\"/g' /etc/init.d/dropbear; /etc/init.d/drop
bear start;"
    23      LuciHttp.write_json(result)
    24  end
```
      1.2.3. Browse http://{OWRT_ADDR}/cgi-bin/luci/api/xqsystem/token
             It should give you a respond like this:
             {"code":0,"token":"; nvram set ssh_en=1; nvram commit; ..."}
             If so, continue; Otherwise, check the file, reboot the rout-
             er, try again.
      1.2.4. Set wireless network interface's IP to 169.254.31.1, turn
             off DHCP of wireless interface's zone.
      1.2.5. Connect to the router wirelessly, manually set your access
             device's IP to 169.254.31.3, make sure
             http://169.254.31.1/cgi-bin/luci/api/xqsystem/token
             still have a similar result as 1.2.3 shows.
   1.3. On the Xiaomi CR660x:
        1.3.1. Login to the web interface. Your would be directed to a
               page with URL like this:
               http://{ROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/web/home#r-
               outer
        1.3.2. Browse this URL with {STOK} from 1.3.1, {WIFI_NAME}
               {PASSWORD} be your OpenWrt router's SSID and password:
               http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/misy-
               stem/extendwifi_connect?ssid={WIFI_NAME}&password={PASSWO-
               RD}
               It should return 0.
        1.3.3. Browse this URL with {STOK} from 1.3.1:
               http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/xqsy-
               stem/oneclick_get_remote_token?username=xxx&password=xxx&-
               nonce=xxx
   1.4. Before rebooting, you can now access your CR660x via SSH.
        For CR6606, you can calculate your root password by this project:
        https://github.com/wfjsw/xiaoqiang-root-password, or at
        https://www.oxygen7.cn/miwifi.
        The root password for carrier-specific models should be the admi-
        nistration password or the default login password on the label.
        It is also feasible to change the root password at the same time
        by modifying the script from step 1.2.2.
        You can treat OpenWrt Router however you like from this point as
        long as you don't mind go through this again if you have to expl-
        oit it again. If you do have to and left your OpenWrt router unt-
        ouched, start from 1.3.
2. There's no official binary firmware available, and if you lose the
   content of your flash, no one except Xiaomi can help you.
   Dump these partitions in case you need them:
   "Bootloader" "Nvram" "Bdata" "crash" "crash_log"
   "firmware" "firmware1" "overlay" "obr"
   Find the corespond block device from /proc/mtd
   Read from read-only block device to avoid misoperation.
   It's recommended to use /tmp/syslogbackup/ as destination, since files
   would be available at http://{ROUTER_ADDR}/backup/log/YOUR_DUMP
   Keep an eye on memory usage though.
3. Since UART access is locked ootb, you should get UART access by modify
   uboot env. Otherwise, your router may become bricked.
   Excute these in stock firmware shell:
    a. nvram set boot_wait=on
    b. nvram set bootdelay=3
    c. nvram commit
   Or in OpenWrt:
    a. opkg update && opkg install kmod-mtd-rw
    b. insmod mtd-rw i_want_a_brick=1
    c. fw_setenv boot_wait on
    d. fw_setenv bootdelay 3
    e. rmmod mtd-rw

Migrate to OpenWrt:
 1. Transfer squashfs-firmware.bin to the router.
 2. nvram set flag_try_sys1_failed=0
 3. nvram set flag_try_sys2_failed=1
 4. nvram commit
 5. mtd -r write /path/to/image/squashfs-firmware.bin firmware

Additional Info:
 1. CR660x series routers has a different nand layout compared to other
    Xiaomi nand devices.
 2. This router has a relatively fresh uboot (2018.09) compared to other
    Xiaomi devices, and it is capable of booting fit image firmware.
    Unfortunately, no successful attempt of booting OpenWrt fit image
    were made so far. The cause is still yet to be known. For now, we use
    legacy image instead.

Signed-off-by: Raymond Wang <infiwang@pm.me>
2022-02-07 00:03:27 +01:00
Wenli Looi
c32008a37b ath79: add partial support for Netgear EX7300v2
Hardware
--------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless No1: QCN5502 on-chip 2.4GHz 4x4
Wireless No2: QCA9984 pcie 5GHz 4x4
USB: none

Installation
------------
Flash the factory image using the stock web interface or TFTP the
factory image to the bootloader.

What works
----------
- LEDs
- Ethernet port
- 5GHz wifi (QCA9984 pcie)

What doesn't work
-----------------
- 2.4GHz wifi (QCN5502 on-chip)
  (I was not able to make this work, probably because ath9k requires
  some changes to support QCN5502.)

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-02-07 00:03:27 +01:00
Lech Perczak
8c78a13bfc ath79: support ZTE MF286
ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.

Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9230-based category 6 internal LTE modem in extended
  mini-PCIE form factor, with 3 internal antennas and 2 external antenna
  connections, single mini-SIM slot. Modem model identified as MF270,
- FXS: one external ATA port (handled entirely by modem part) with two
  physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
  Signal state) handled entirely by modem. 4 link status LEDs handled by
  the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
  monitoring handled by modem.
- Label MAC device: eth0

Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
  converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.

Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.

STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.

STEP 1: gaining root shell:

Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.

Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
  then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
  "http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.

Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.

- Set IP of your computer to 192.168.1.22.
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
  https://busybox.net/downloads/binaries/1.21.1/busybox-mips
  and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
  filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
  field named "addURLFilter", so it looks like this:
  <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
    class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
  execute it. You should be able to log in at port 23, using
  "admin/admin" as credentials.

Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.

STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.

Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:

  ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
  ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin

And keep them in a safe place, should a restore be needed in future.

Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
  port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:

  cat /proc/mtd

  It should show the following:
  mtd0: 00080000 00010000 "uboot"
  mtd1: 00020000 00010000 "uboot-env"
  mtd2: 00140000 00020000 "fota-flag"
  mtd3: 00140000 00020000 "caldata"
  mtd4: 00140000 00020000 "mac"
  mtd5: 00600000 00020000 "cfg-param"
  mtd6: 00140000 00020000 "oops"
  mtd7: 00800000 00020000 "web"
  mtd8: 00300000 00020000 "kernel"
  mtd9: 01f00000 00020000 "rootfs"
  mtd10: 01900000 00020000 "data"
  mtd11: 03200000 00020000 "fota"

  Differences might indicate that this is NOT a vanilla MF286 device but
  one of its later derivatives.
- Copy over all MTD partitions, for example by executing the following:

  for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \
  /var/usb_disk/mtd$i; done

- If the count of MTD partitions is different, this might indicate that
  this is not a standard MF286 device, but one of its later derivatives.
- (optionally) rename the files according to MTD partition names from
  /proc/mtd
- Unmount the filesystem:

  umount /var/usb_disk; sync

  and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
  firmware. This is especially important, because stock firmware for
  this device is not available officially, and is usually customized by
  the mobile providers.

STEP 3: Booting initramfs image:

Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
  set your computer's IP address as 192.168.1.22. This is the default
  expected by U-boot. You may wish to change that, and alter later
  commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:

  setenv serverip 192.168.1.22
  setenv ipaddr 192.168.1.1
  tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin
  bootm 0x81000000

  (Replace server IP and router IP as needed). There is no  emergency
  TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
  installation.

Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- Split the image into two parts on 3MB partition size boundary, which
  is the size of kernel partition. Pad the output of second file to
  eraseblock size:

  dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
  bs=128k count=24 \
  of=openwrt-ath79-zte_mf286-intermediate-kernel.bin

  dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
  bs=128k skip=24 conv=sync \
  of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin

- Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to
  /tmp. This is CRITICAL for installation, as erasing rootfs will cut
  you off from those tools on flash!

- After backing up the previous MTD contents, write the images to the
  respective MTD devices:

  /tmp/flash_eraseall /dev/<kernel-mtd>

  /tmp/nandwrite /dev/<kernel-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin

  /tmp/flash_eraseall /dev/<kernel-mtd>

  /tmp/nandwrite /dev/<rootfs-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin

- Ensure that no bad blocks were present on the devices while writing.
  If they were present, you may need to vary the split  between
  kernel and rootfs parts, so U-boot reads a valid uImage after skipping
  the bad blocks. If it fails, you will be left with method 3 (below).
- If write is OK, reboot the device, it will reboot to OpenWrt
  initramfs:

  reboot -f

- After rebooting, SSH into the device and use sysupgrade to perform
  proper installation.

Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
  flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
  and name it root_uImage:

  dd if=/dev/zero of=padding.bin bs=8M count=1

  cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin >
  root_uImage

- Set up a TFTP server at 192.0.0.1/8. Router will use random address
  from that range.
- Put the previously generated "root_uImage" into TFTP server root
  directory.
- Deliberately erase "kernel" partition" using stock firmware after
  taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
  initramfs image, which will let you perform actual installation using
  sysupgrade. This might take a considerable time, sometimes the router
  doesn't establish Ethernet link properly right after booting. Be
  patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
  light up. At this moment, perform power-on reset, and wait for OpenWrt
  initramfs to finish booting. Then proceed to actual installation.

STEP 4: Actual installation:
- scp the sysupgrade image to the device:

  scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \
  root@192.168.1.1:/tmp/

- ssh into the device and execute sysupgrade:

  sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin

- Wait for router to reboot to full OpenWrt.

STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:

config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth '<auth>' # As required, usually 'none'
        option pincode '<pin>' # If required by SIM
        option apn '<apn>' # As required by ISP
        option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'

For example, the following works for most polish ISPs
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth 'none'
        option apn 'internet'
        option pdptype 'ipv4'

If you have build with LuCI, installing luci-proto-qmi helps with this
task.

Restoring the stock firmware:

Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware.
The only partitions you really care about are "web", "kernel", and
"rootfs". For easy padding and possibly restoring configuration, you can
concatenate most of them into images written into "ubi" meta-partition
in OpenWrt. To do so, execute something like:

cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \
mtd8-ubi_restore.bin

You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.

Method 1: Using initramfs:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
  (scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
  mtd write <kernel_mtd> mtd4_kernel.bin
  rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
  restore them individually. Otherwise you might run out of space in
  tmpfs:

  (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
  rm mtd3_ubiconcat0.bin

  (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
  rm mtd5_ubiconcat1.bin

- If the write was correct, force a device reboot with

  reboot -f

Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
  your drive
- Mount your flash drive

  mkdir /tmp/usb

  mount /dev/sda1 /tmp/usb

- Remount your UBI volume at /overlay to R/O

  mount -o remount,ro /overlay

- Write back the kernel and ubi partitions from USB drive

  cd /tmp/usb
  mtd write mtd4_kernel.bin /dev/<kernel_mtd>

  mtd write mtd8_ubi.bin /dev/<kernel_ubi>

- If everything went well, force a device reboot with
  reboot -f

Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.

Method 3: using built-in TFTP recovery (LAST RESORT):
- Assemble a recovery rootfs image from backup of stock partitions by
  concatenating "web", "kernel", "rootfs" images dumped from the device,
  as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
  TFTP pre-installation method.

Quirks and known issues
- Kernel partition size is increased to 4MB compared to stock 3MB, to
  accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
  image is at 2.5MB which is dangerously close to the limit. This has no
  effect on booting the system - but keep that in mind when reassembling
  an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
  you used before in stock firmware first. If you need to change it,
  please use protocok '3g' to establish connection once, or use the
  following command to change APN (and optionally IP type) manually:
  echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the green debug LED hidden
  inside the case. All other LEDs are controlled by modem, on which the
  router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
  correct GPIO mapping. All other LEDs are controlled by modem,
  including this one in stock firmware. GPIO19, mapped there only acts
  as a gate, while the actual signal source seems to be 5GHz Wi-Fi
  radio, however it seems it is not the LED exposed by ath10k as
  ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
  reset of whole board, not only the modem. It is attached to
  gpio-restart driver, to restart the modem on reboot as well, to ensure
  QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
  for OpenWrt operation at all - have fun lurking around.
- MAC address shift for 5GHz Wi-Fi used in stock firmware is
  0x320000000000, which is impossible to encode in the device tree, so I
  took the liberty of using MAC address increment of 1 for it, to ensure
  different BSSID for both Wi-Fi interfaces.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-05 12:14:08 +01:00
Daniel Golle
31872a38be
uboot-envtools: add configuration for UniElec U7623 board
Add U-Boot env settings to allow accessing the environment using
fw_printenv and fw_setenv tools on the UniElec U7623 board.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-01-23 20:20:42 +00:00
Sven Eckelmann
8143709c90 ath79: Add support for OpenMesh OM2P v1
Device specifications:
======================

* Qualcomm/Atheros AR7240 rev 2
* 350/350/175 MHz (CPU/DDR/AHB)
* 32 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 18-24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + builtin switch port 4
    + used as LAN interface
* 12-24V 1A DC
* external antenna

The device itself requires the mtdparts from the uboot arguments to
properly boot the flashed image and to support dual-boot (primary +
recovery image). Unfortunately, the name of the mtd device in mtdparts is
still using the legacy name "ar7240-nor0" which must be supplied using the
Linux-specfic DT parameter linux,mtd-name to overwrite the generic name
"spi0.0".

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-16 21:42:19 +01:00
Sven Eckelmann
97f5617259 ath79: Add support for OpenMesh OM5P-AC v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + AR8035 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Sven Eckelmann
72ef594550 ath79: Add support for OpenMesh OM5P-AN
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 1T1R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + 10/100 Mbps Ethernet
    + builtin switch port 1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Nick McKinney
e0a574d4b7 ramips: add support for Linksys EA6350 v4
Specifications:
- SoC: MT7621DAT (880MHz, 2 Cores)
- RAM: 128 MB
- Flash: 128 MB NAND
- Ethernet: 5x 1GiE MT7530
- WiFi: MT7603/MT7613
- USB: 1x USB 3.0

This is another MT7621 device, very similar to other Linksys EA7300
series devices.

Installation:

Upload the generated factory.bin image via the stock web firmware
updater.

Reverting to factory firmware:

Like other EA7300 devices, this device has an A/B router configuration
to prevent bricking.  Hard-resetting this device three (3) times will
put the device in failsafe (default) mode.  At this point, flash the
OEM image to itself and reboot.  This puts the router back into the 'B'
image and allows for a firmware upgrade.

Troubleshooting:

If the firmware will not boot, first restore the factory as described
above.  This will then allow the factory.bin update to be applied
properly.

Signed-off-by: Nick McKinney <nick@ndmckinney.net>
2022-01-08 00:49:59 +01:00
Pawel Dembicki
4e46ae1f69 kirkwood: add support for NETGEAR ReadyNAS Duo v2
NETGEAR ReadyNAS Duo v2 is a NAS based on Marvell kirkwood SoC.

Specification:
 - Processor Marvell 88F6282 (1.6 GHz)
 - 256MB RAM
 - 128MB NAND
 - 1x GBE LAN port (PHY: Marvell 88E1318)
 - 1x USB 2.0
 - 2x USB 3.0
 - 2x SATA
 - 3x button
 - 5x leds
 - serial on J5 connector accessible from rear panel
   (115200 8N1) (VCC,TX,RX,GND) (3V3 LOGIC!)

Installation by USB + serial:
  - Copy initramfs image to fat32 usb drive
  - Connect pendrive to USB 2.0 front socket
  - Connect serial console
  - Stop booting in u-boot
  - Do:
	usb reset
        setenv bootargs 'console=ttyS0,115200n8 earlyprintk'
        setenv bootcmd 'nand read.e 0x1200000 0x200000 0x600000;bootm 0x1200000'
        saveenv
	fatload usb 0:1 0x1200000 openwrt-kirkwood-netgear_readynas-duo-v2-initramfs-uImage
	bootm 0x1200000
  - copy sysupgrade image via ssh.
  - run sysupgrade

Installation by TFTP + serial:
  - Setup TFTP server and copy initramfs image
  - Connect serial console
  - Stop booting in u-boot
  - Do:
	setenv bootargs 'console=ttyS0,115200n8 earlyprintk'
	setenv bootcmd 'nand read.e 0x1200000 0x200000 0x600000;bootm 0x1200000'
	saveenv
	setenv serverip 192.168.1.1
	setenv ipaddr 192.168.1.2
	tftpboot 0x1200000 openwrt-kirkwood-netgear_readynas-duo-v2-initramfs-uImage
	bootm 0x1200000
  - copy sysupgrade image via ssh.
  - run sysupgrade

Known issues:
  - Power button and PHY INTn pin are connected to the same GPIO. It
    causes that every network restart button is pressed in system.
    As workaround, button is used as regular BTN_1.

For more info please look at file:
RND_5.3.13_WW.src/u-boot/board/mv_feroceon/mv_hal/usibootup/usibootup.c
from Netgear GPL sources.

Tested-by: Raylynn Knight <rayknight@me.com>
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2021-12-29 20:35:57 +01:00
Stijn Tintel
3fda16078b qoriq: add support for WatchGuard Firebox M300
This device is based on NXP's QorIQ T2081QDS board, with a quad-core
dual-threaded 1.5 GHz ppc64 CPU and 4GB ECC RAM. The board has 5
ethernet interfaces, of which 3 are connected to the ethernet ports on
the front panel. The other 2 are internally connected to a Marvell
88E6171 switch; the other 5 ports of this switch are also connected to
the ethernet ports on the front panel.

Installation: write the sdcard image to an SD card. Stock U-Boot will
not boot, wait for it to fail then run these commands:

setenv OpenWrt_fdt image-watchguard-firebox-m300.dtb
setenv OpenWrt_kernel watchguard_firebox-m300-kernel.bin
setenv wgBootSysA 'setenv bootargs root=/dev/mmcblk0p2 rw rootdelay=2 console=$consoledev,$baudrate fsl_dpaa_fman.fsl_fm_max_frm=1530; ext2load mmc 0:1 $fdtaddr $OpenWrt_fdt; ext2load mmc 0:1 $loadaddr $OpenWrt_kernel; bootm $loadaddr - $fdtaddr'
saveenv
reset

The default U-Boot boot entry will now boot OpenWrt from the SD card.

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Acked-by: Rui Salvaterra <rsalvaterra@gmail.com>
2021-12-21 21:37:46 +02:00
TruongSinh Tran-Nguyen
febc2b831f
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.

Specifications:
  - SOC: Qualcomm IPQ4019 ARM Quad-Core
  - RAM: 512 MiB
  - Flash: 16 MiB NOR - SPI0
  - EMMC: 8GB EMMC
  - ETH: Qualcomm QCA8075
  - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
  - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
  - WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
  - INPUT: Reset, WPS
  - LED: Power, Internet
  - UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
  - UART2: On board with BLE module
  - SPI1: On board socket for Zigbee module

Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.

What's working:
- WiFi 2G, 5G
- WPA2/WPA3

Not tested:
- Bluetooth LE/Zigbee

Credits goes to the original authors of this patch.

V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade

Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-02 20:43:07 +00:00
Piotr Dymacz
ddfebaff9f uboot-envtools: move imx to imx_cortexa9
Subtarget-specific files under 'uboot-envtools' package are supported
since 6f3a05ebb0 ("uboot-envtools: support uci-default config also per
subtargets").

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-11-03 12:45:40 +01:00
Piotr Dymacz
346db2f3b0 uboot-envtools: rename 'imx6' to 'imx'
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-11-03 12:45:40 +01:00
Daniel Golle
cb5953635e
uboot-envtools: mt7622: make use of find_mmc_part
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-11-01 18:00:47 +00:00
Jihoon Han
84451173f0 ath79: add support for Dongwon T&I DW02-412H
Dongwon T&I DW02-412H is a 2.4/5GHz band 11ac (WiFi-5) router, based on
Qualcomm Atheros QCA9557.

Specifications
--------------

- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: DDR2 128MB
- Flash: SPI NOR 2MB (Winbond W25Q16DVSSIG / ESMT F25L16PA(2S)) +
         NAND 64/128MB
- WiFi:
  - 2.4GHz: QCA9557 WMAC
  - 5GHz: QCA9882-BR4A
- Ethernet: 5x 10/100/1000Mbps
  - Switch: QCA8337N-AL3C
- USB: 1x USB 2.0
- UART:
  - JP2: 3.3V, TX, RX, GND (3.3V is the square pad) / 115200 8N1

Installation
--------------

1.  Connect a serial interface to UART header and
    interrupt the autostart of kernel.
2.  Transfer the factory image via TFTP and write it to the NAND flash.
3.  Update U-Boot environment variable.
    > tftpboot 0x81000000 <your image>-factory.img
    > nand erase 0x1000000
    > nand write 0x81000000 0x1000000 ${filesize}
    > setenv bootpart 2
    > saveenv

Revert to stock firmware
--------------

1.  Revert to stock U-Boot environment variable.
    > setenv bootpart 1
    > saveenv

MAC addresses as verified by OEM firmware
--------------

   WAN: *:XX (label)
   LAN: *:XX + 1
  2.4G: *:XX + 3
    5G: *:XX + 4

The label MAC address was found in art 0x0.

Credits
--------------

Credit goes to the @manatails who first developed how to port OpenWRT
to this device and had a significant impact on this patch.

And thanks to @adschm and @mans0n for guiding me to revise the code
in many ways.

Signed-off-by: Jihoon Han <rapid_renard@renard.ga>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
Tested-by: Sungbo Eo <mans0n@gorani.run>
2021-10-31 21:58:28 +01:00
Eduardo Santos
3c97fb4346 ramips: add support for Xiaomi MiWifi 3C
This commit adds support for Xiaomi MiWiFi 3C device.

Xiaomi MiWifi 3C has almost the same system architecture
as the Xiaomi Mi WiFi Nano, which is already officially
supported by OpenWrt.

The differences are:

 - Numbers of antennas (4 instead of 2). The antenna management
   is done via the µC. There is no configuration needed in the
   software code.
 - LAN port assignments are different. LAN1 and WAN are
   interchanged.

OpenWrt Wiki: https://openwrt.org/toh/xiaomi/mir3c

OpenWrt developers forum page:
https://forum.openwrt.org/t/support-for-xiaomi-mi-3c

Specifications:

 - CPU: MediaTek MT7628AN (575MHz)
 - Flash: 16MB
 - RAM: 64MB DDR2
 - 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
 - Antennas: 4x external single band antennas
 - WAN: 1x 10/100M
 - LAN: 2x 10/100M
 - LED: 1x amber/blue/red. Programmable
 - Button: Reset

MAC addresses as verified by OEM firmware:

use address source
LAN *:92 factory 0x28
WAN *:92 factory 0x28
2g *:93 factory 0x4

OEM firmware uses VLAN's to create the network interface for WAN and LAN.

Bootloader info:
The stock bootloader uses a "Dual ROM Partition System".
OS1 is a deep copy of OS2.
The bootloader start OS2 by default.
To force start OS1 it is needed to set "flag_try_sys2_failed=1".

How to install:
1- Use OpenWRTInvasion to gain telnet, ssh and ftp access.
   https://github.com/acecilia/OpenWRTInvasion
   (IP: 192.168.31.1 - Username: root - Password: root)
2- Connect to router using telnet or ssh.
3- Backup all partitions. Use command  "dd if=/dev/mtd0 of=/tmp/mtd0".
   Copy /tmp/mtd0 to computer using ftp.
4- Copy openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin
   to /tmp in router using ftp.
5- Enable UART access and change start image for OS1.
```
nvram set uart_en=1
nvram set flag_last_success=1
nvram set boot_wait=on
nvram set flag_try_sys2_failed=1
nvram commit
```
6- Installing Openwrt on OS1 and free OS2.
```
mtd erase OS1
mtd erase OS2
mtd -r write /tmp/openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin OS1
```

Limitations: For the first install the image size needs to be less
than 7733248 bits.

Thanks for all community and especially for this device:
minax007, earth08, S.Farid

Signed-off-by: Eduardo Santos <edu.2000.kill@gmail.com>
[wrap lines, remove whitespace errors, add mediatek,mtd-eeprom to
 &wmac, convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-10-31 21:24:47 +01:00
Robert Marko
78cf3e53b1 mvebu: add Globalscale MOCHAbin
Globalscale MOCHAbin is a Armada 7040 based development board.

Specifications:
* Armada 7040 Quad core ARMv8 Cortex A-72 @ 1.4GHz
* 2 / 4 / 8 GB of DDR4 DRAM
* 16 GB eMMC
* 4MB SPI-NOR (Bootloader)
* 1x M.2-2280 B-key socket (for SSD expansion, SATA3 only)
* 1x M.2-2250 B-key socket (for modems, USB2.0 and I2C only)
* 1x Mini-PCIe 3.0 (x1, USB2.0 and I2C)
* 1x SATA 7+15 socket (SATA3)
* 1x 16-pin (2×8) MikroBus Connector
* 1x SIM card slot (Connected to the mini-PCIe and both M.2 slots)
* 2x USB3.0 Type-A ports via SMSC USB5434B hub
* Cortex 2x5 JTAG
* microUSB port for UART (PL2303GL/PL2303SA onboard)
* 1x 10G SFP+
* 1x 1G SFP (Connected to 88E1512 PHY)
* 1x 1G RJ45 with PoE PD (Connected to 88E1512 PHY)
* 4x 1G RJ45 ports via Topaz 88E6141 switch
* RTC with battery holder (SoC provided, requires CR2032 battery)
* 1x 12V DC IN
* 1x Power switch
* 1x 12V fan header (3-pin, power only)
* 1x mini-PCIe LED header (2x0.1" pins)
* 1x M.2-2280 LED header (2x0.1" pins)
* 6x Bootstrap jumpers
* 1x Power LED (Green)
* 3x Tri-color RGB LEDs (Controllable)
* 1x Microchip ATECC608B secure element

Note that 1G SFP and 1G WAN cannot be used at the same time as they are in
parallel connected to the same PHY.

Installation:

Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a72_musl/linux-mvebu_cortexa72/image-armada-7040-mochabin.dtb bin/targets/mvebu/cortexa72/
$ in.tftpd -L -s bin/targets/mvebu/cortexa72/

Connect to the device UART via microUSB port and power on the device.

Power on the device and hit any key to stop the autoboot.

Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device

Set the ethernet device (Example for the 1G WAN):
$ setenv ethact mvpp2-2

Ping server to confirm network is working:
$ ping $serverip
Using mvpp2-2 device
host 192.168.1.15 is alive

Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa72-globalscale_mochabin-initramfs-kernel.bin
$ tftpboot $fdt_addr_r image-armada-7040-mochabin.dtb

Boot the image:
$ booti $kernel_addr_r - $fdt_addr_r

Once the initramfs is booted, transfer openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
to /tmp dir on the device.

Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img of=/dev/mmcblk0 && sync

Reboot the device.

Hit any key to stop the autoboot.

Reset U-boot env and set the bootcmd:
$ env default -a
$ setenv bootcmd 'load mmc 0 ${loadaddr} boot.scr && source ${loadaddr}'

Optionally I would advise to edit the console env variable to remove earlycon as that
causes the kernel to never use the driver for the serial console.
Earlycon should be used only for debugging before the kernel can configure the console
and will otherwise cause various issues with the console.

$ setenv console 'console=ttyS0,115200'

Save and reset
$ saveenv
$ reset

OpenWrt should boot from eMMC now.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2021-10-02 16:45:35 +02:00
Soma Zambelly
c5b44af2fc realtek: add ZyXEL GS1900-24HPv2 support
The ZyXEL GS1900-24HPv2 is a 24 port PoE switch with two SFP ports, similar to the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24HPv2
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       W631GG8MB-12 128 MiB DDR3 SDRAM
             (stock firmware is configured to use only 64 MiB)
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             24 ethernet port link/activity LEDs (green, SoC controlled)
             24 ethernet port PoE status LEDs
             2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:   1 "RESTORE" button on front panel
             1 "RESET" button on front panel
* Power      120-240V AC C13
* UART:      1 serial header (J41) with populated standard pin connector on
             the left edge of the PCB, angled towards the side.
             The casing has a rectangular cutout on the side that provides
             external access to these pins.
             Pinout (front to back):
             + GND
             + TX
             + RX
             + VCC

Serial connection parameters for both devices: 115200 8N1.

Installation
------------

OEM upgrade method:

(Possible on master once https://patchwork.ozlabs.org/project/openwrt/patch/20210624210408.19248-1-bjorn@mork.no/ is merged)

* Log in to OEM management web interface
* Navigate to Maintenance > Firmware > Management
* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.
* Navigate to Maintenance > Firmware > Upload
* Upload the openwrt-realtek-generic-zyxel_gs1900-24hp-v2-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot the switch.
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-24hp-v2-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
   > rtk network on
* Since the GS1900-24HPv2 is a dual-partition device, you want to keep the OEM
  firmware on the backup partition for the time being. OpenWrt can only boot
  from the first partition anyway (hardcoded in the DTS). To make sure we are
  manipulating the first partition, issue the following commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
   > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-24hp-v2-initramfs-kernel.bin
   > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-24hp-v2-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

Signed-off-by: Soma Zambelly <zambelly.soma@gmail.com>
2021-09-13 18:36:15 +02:00
Andrea Poletti
de0c380a5f ramips: add support for Sitecom WLR-4100 v1 002
Sitecom WLR-4100 v1 002 (marked as X4 N300) is a wireless router
Specification:
SoC: MT7620A
RAM: 64 MB DDR2
Flash: MX25L6405D SPI NOR 8 MB
WIFI: 2.4 GHz integrated
Ethernet: 5x 10/100/1000 Mbps QCA8337
USB: 1x 2.0
LEDS: 2x GPIO controlled, 5x switch
Buttons: 1x GPIO controlled
UART: row of 4 unpopulated holes near USB port, starting count from
      white triangle on PCB:

    VCC 3.3V
    GND
    TX
    RX

    baud: 115200, parity: none, flow control: none

Installation

    Connect to one of LAN (yellow) ethernet ports,
    Open router configuration interface,
    Go to Toolbox > Firmware,
    Browse for OpenWrt factory image with dlf extension and hit Apply,
    Wait few minutes, after the Power LED will stop blinking, the router is
    ready for configuration.

Known issues
Some USB 2.0 devices work at full speed mode 1.1 only

MAC addresses

factory partition only contains one (binary) MAC address in 0x4.
u-boot-env contains four (ascii) MAC addresses, of which two appear
to be valid.

  factory     0x4       **:**:**:**:b9:84  binary
  u-boot-env  ethaddr   **:**:**:**:b9:84  ascii
  u-boot-env  wanaddr   **:**:**:**:b9:85  ascii
  u-boot-env  wlanaddr  00:AA:BB:CC:DD:12  ascii
  u-boot-env  iNICaddr  00:AA:BB:CC:DD:22  ascii

The factory firmware only assigns ethaddr. Thus, we take the
binary value which we can use directly in DTS.

Additional information
OEM firmware shell password is: SitecomSenao
useful for creating backup of original firmware.
There is also another revision of this device (v1 001), based on RT3352 SoC

Signed-off-by: Andrea Poletti <polex73@yahoo.it>
[remove config DT label, convert to nvmem, remove MAC address
 setup from u-boot-env, add MAC address info to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-05 23:52:35 +02:00
Marek Behún
713be75439 uboot-envtools: mvebu: update uci defaults for Turris Omnia
From version 2021.09 U-Boot will fixup Turris Omnia's DTB before
booting, separating U-Boot's environment into separate MTD partition
"u-boot-env" [1].

Check if "u-boot-env" MTD partition exists and set the uci defaults
accordingly.

[1] https://lists.denx.de/pipermail/u-boot/2021-July/455017.html

Signed-off-by: Marek Behún <marek.behun@nic.cz>
2021-07-25 13:52:38 +02:00
Daniel Golle
6b2000b6ff uboot-envtools: add configuration for Bananapi BPi-R2
Add fw_env configuration for the BPi-R2 which is a mediatek/mt7623
devboard which can be booted from SD Card or eMMC.
Auto detect the boot device and add environment accordingly.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-07-20 04:11:05 +01:00
Daniel Golle
a71fa5e476 uboot-envtools: move mediatek to mediatek_mt7622
All mediatek boards having fw_env accessible through uboot-envtools
belong to be mt7622 subtarget. Move the file, as subtarget-specific
files are supported for a while now.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-07-20 04:11:05 +01:00
Tee Hao Wei
0c721434ea ramips: add support for Linksys EA8100 v2
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0

This device is very similar to the EA7300 v1/v2, EA7500 v2, and EA8100 v1.

Installation:

Upload the generated factory image through the factory web interface.

(following part taken from EA7300 v2 commit message:)

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

With thanks to Tom Wizetek (@wizetek) for testing.

Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
2021-07-11 16:58:12 +02:00
BERENYI Balazs
03d66d6b8f kirkwood: Add support for Sheevaplug
Globalscale SheevaPlug:
* Marvell Kirkwood 88F6281
* 512 MB SDRAM
* 512 MB Flash
* Gigabit Network
* USB 2.0
* SD slot
* Serial console

The device is supported in mainline uboot/linux the commit adds only
some openwrt config for building an image.

Installation:
1 - Update uboot:
setenv ipaddr '192.168.0.111'
setenv serverip '192.168.0.1'
tftpboot u-boot.kwb
nand erase 0x0 0x100000
nand write 0x800000 0x0 0x100000
reset
2 - Install OpenWRT:
setenv ethaddr 00:50:43:01:xx:xx
saveenv
setenv ipaddr '192.168.0.111'
setenv serverip '192.168.0.1'
tftpboot openwrt-kirkwood-globalscale_sheevaplug-squashfs-factory.bin
nand erase.part ubi
nand write 0x800000 ubi 0x600000
reset

Signed-off-by: BERENYI Balazs <balazs@wee.hu>
Reviewed-by: Pawel Dembicki <paweldembicki@gmail.com>
[add vendor name for uboot-kirkwood, merge patches, copy to 5.10,
add AUTORELEASE for uboot-kirkwood, refresh patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-06 19:05:07 +02:00
Lauro Moreno
da8428d277 ipq806x: add support for Askey RT4230W REV6
This adds support for the Askey RT4230W REV6
(Branded by Spectrum/Charter as RAC2V1K)

At this time, there's no way to reinstall the stock firmware so don't install
this on a router that's being rented.

Specifications:

    Qualcomm IPQ8065
    1 GB of RAM (DDR3)
    512 MB Flash (NAND)
    2x Wave 2 WiFi cards (QCA9984)
    5x 10/100/1000 Mbps Ethernet (Switch: QCA8337)
    1x LED (Controlled by a microcontroller that switches it between red and
        blue with different patterns)
    1x USB 3.0 Type-A
    12V DC Power Input
    UART header on PCB - pinout from top to bottom is RX, TX, GND, 5V
    Port settings are 115200n8

More information: https://forum.openwrt.org/t/askey-rac2v1k-support/15830
https://deviwiki.com/wiki/Askey_RAC2V1K

To check what revision your router is, restore one of these config backups
through the stock firmware to get ssh access then run
"cat /proc/device-tree/model".
https://forum.openwrt.org/t/askey-rac2v1k-support/15830/17
The revision number on the board doesn't seem to be very consistent so that's
why this is needed. You can also run printenv in the uboot console and if
machid is set to 177d, that means your router is rev6.

Note: Don't install this if the router is being rented from an ISP. The defined
partition layout is different from the OEM one and even if you changed the
layout to match, backing up and restoring the OEM firmware breaks /overlay so
nothing will save and the router will likely enter a bootloop.

How to install:

Method 1: Install without opening the case using SSH and tftp

    You'll need:
    RAC2V1K-SSH.zip:
https://github.com/lmore377/openwrt-rt4230w/blob/master/RAC2V1K-SSH.zip
    initramfs and sysupgrade images

    Connect to one of the router's LAN ports

    Download the RAC2V1K-SSH.zip file and restore the config file that
corresponds to your router's firmware (If you're firmware is newer than what's
in the zip file, just restore the 1.1.16 file)

    After a reboot, you should be able to ssh into the router with username:
"4230w" and password: "linuxbox" or "admin". Run the following commannds
     fw_setenv ipaddr 10.42.0.10 #IP of router, can be anything as long as
it's in the same subnet as the server
     fw_setenv serverip 10.42.0.1# #IP of tftp server that's set up in next
steps
     fw_setenv bootdelay 8
     fw_setenv bootcmd "tftpboot initramfs.bin; bootm; bootipq"

    Don't reboot the router yet.

    Install and set up a tftp server on your computer

    Set a static ip on the ethernet interface of your computer (use this for
serverip in the above commands)

    Rename the initramfs image to initramfs.bin, and host it with the tftp
server

    Reboot the router. If you set up everything right, the router led should
switch over to a slow blue glow which means openwrt is booted. If for some
reason the file doesn't get loaded into ram properly, it should still boot to
the OEM firmware.
    After openwrt boots, ssh into it and run these commands:
    fw_setenv bootcmd "setenv mtdids nand0=nand0 && setenv mtdparts
 mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware && ubi
read 0x44000000 kernel 0x6e0000 && bootm"
    fw_setenv bootdelay 2

    After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.

Method 2: Install with serial access (Do this if something fails and you can't
boot after using method 1)

    You'll need:
    initramfs and sysupgrade images
    Serial access:
https://openwrt.org/inbox/toh/askey/askey_rt4230w_rev6#opening_the_case

    Install and set up a tftp server

    Set a static ip on the ethernet interface of your computer

    Download the initramfs image, rename it to initramfs.bin, and host it with
the tftp server

    Connect the wan port of the router to your computer

    Interrupt U-Boot and run these commands:
    setenv serverip 10.42.0.1 (You can use whatever ip you set for the computer)
    setenv ipaddr 10.42.0.10 (Can be any ip as long as it's in the same subnet)
    setenv bootcmd "setenv mtdids nand0=nand0 &&
set mtdparts mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware
&& ubi read 0x44000000 kernel 0x6e0000 && bootm"

    saveenv
    tftpboot initramfs.bin
    bootm

    After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.

Signed-off-by: Lauro Moreno <lmore377@gmail.com>
[add entry in 5.10 patch, fix whitespace issues]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-05 23:39:14 +02:00
Tee Hao Wei
b232680f84 ramips: add support for Linksys EA8100 v1
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0

This device is very similar to the EA7300 v1/v2 and EA7500 v2.

Installation:

Upload the generated factory image through the factory web interface.

(following part taken from EA7300 v2 commit message:)

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

With thanks to Leon Poon (@LeonPoon) for the initial bringup.

Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
[add missing entry in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-05 23:39:14 +02:00
Jonathan Sturges
6d23e474ad ramips: add support for Amped Wireless ALLY router and extender
Amped Wireless ALLY is a whole-home WiFi kit, with a router (model
ALLY-R1900K) and an Extender (model ALLY-00X19K).  Both are devices are
11ac and based on MediaTek MT7621AT and MT7615N chips.  The units are
nearly identical, except the Extender lacks a USB port and has a single
Ethernet port.

Specification:
- SoC: MediaTek MT7621AT (2C/4T) @ 880MHz
- RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
- FLASH: 128MB NAND (Winbond W29N01GVSIAA)
- WiFi: 2.4/5 GHz 4T4R
  - 2.4GHz MediaTek MT7615N bgn
  - 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch
- USB: 1x USB3 (Router only)
- BTN: Reset, WPS
- LED: single RGB
- UART:  through-hole on PCB.
   J1: pin1 (square pad, towards rear)=3.3V, pin2=RX,
   pin3=GND, pin4=TX.  Settings: 57600/8N1.

Note regarding dual system partitions
-------------------------------------

The vendor firmware and boot loader use a dual partition scheme.  The boot
partition is decided by the bootImage U-boot environment variable: 0 for
the 1st partition, 1 for the 2nd.

OpenWrt does not support this scheme and will always use the first OS
partition.  It will set bootImage to 0 during installation, making sure
the first partition is selected by the boot loader.

Also, because we can't be sure which partition is active to begin with, a
2-step flash process is used.  We first flash an initramfs image, then
follow with a regular sysupgrade.

Installation:

Router (ALLY-R1900K)
1) Install the flashable initramfs image via the OEM web-interface.
  (Alternatively, you can use the TFTP recovery method below.)
  You can use WiFi or Ethernet.
  The direct URL is:  http://192.168.3.1/07_06_00_firmware.html
  a. No login is needed, and you'll be in their setup wizard.
  b. You might get a warning about not being connected to the Internet.
  c. Towards the bottom of the page will be a section entitled "Or
  Manually Upgrade Firmware from a File:" where you can manually choose
  and upload a firmware file.
  d: Click "Choose File", select the OpenWRT "initramfs" image and click
  "Upload."
2) The Router will flash the OpenWrt initramfs image and reboot.  After
  booting, LuCI will be available on 192.168.1.1.
3) Log into LuCI as root; there is no password.
4) Optional (but recommended) is to backup the OEM firmware before
  continuing; see process below.
5) Complete the Installation by flashing a full OpenWRT image.  Note:
  you may use the sysupgrade command line tool in lieu of the UI if
  you prefer.
  a.  Choose System -> Backup/Flash Firmware.
  b.  Click "Flash Image..." under "Flash new firmware image"
  c.  Click "Browse..." and then select the sysupgrade file.
  d.  Click Upload to upload the sysupgrade file.
  e.  Important:  uncheck "Keep settings and retain the current
      configuration" for this initial installation.
  f.  Click "Continue" to flash the firmware.
  g.  The device will reboot and OpenWRT is installed.

Extender (ALLY-00X19K)
1) This device requires a TFTP recovery procedure to do an initial load
  of OpenWRT.  Start by configuring a computer as a TFTP client:
  a. Install a TFTP client (server not necessary)
  b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1 or .6
  c. Connect the Ethernet to the sole Ethernet port on the X19K.
2) Put the ALLY Extender in TFTP recovery mode.
  a. Do this by pressing and holding the reset button on the bottom while
  connecting the power.
  b. As soon as the LED lights up green (roughly 2-3 seconds), release
  the button.
3) Start the TFTP transfer of the Initramfs image from your setup machine.
For example, from Linux:
tftp -v -m binary 192.168.1.6 69 -c put initramfs.bin
4) The Extender will flash the OpenWrt initramfs image and reboot.  After
booting, LuCI will be available on 192.168.1.1.
5) Log into LuCI as root; there is no password.
6) Optional (but recommended) is to backup the OEM firmware before
  continuing; see process below.
7) Complete the Installation by flashing a full OpenWRT image.  Note: you
may use the sysupgrade command line tool in lieu of the UI if you prefer.
  a.  Choose System -> Backup/Flash Firmware.
  b.  Click "Flash Image..." under "Flash new firmware image"
  c.  Click "Browse..." and then select the sysupgrade file.
  d.  Click Upload to upload the sysupgrade file.
  e.  Important:  uncheck "Keep settings and retain the current
      configuration" for this initial installation.
  f.  Click "Continue" to flash the firmware.
  g.  The device will reboot and OpenWRT is installed.

Backup the OEM Firmware:
-----------------------

There isn't any downloadable firmware for the ALLY devices on the Amped
Wireless web site. Reverting back to the OEM firmware is not possible
unless we have a backup of the original OEM firmware.

The OEM firmware may be stored on either /dev/mtd3 ("firmware") or
/dev/mtd6 ("oem").  We can't be sure which was overwritten with the
initramfs image, so backup both partitions to be safe.

  1) Once logged into LuCI, navigate to System -> Backup/Flash Firmware.
  2) Under "Save mtdblock contents," first select "firmware" and click
  "Save mtdblock" to download the image.
  3) Repeat the process, but select "oem" from the pull-down menu.

Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
  Follow the TFTP recovery steps for the Extender, and use the
  backup image.

* OpenWrt "Flash Firmware" interface:
  Upload the backup image and select "Force update"
  before continuing.

Signed-off-by: Jonathan Sturges <jsturges@redhat.com>
2021-06-05 23:39:14 +02:00
Robert Marko
b126d9c3a3 ipq40xx: add netgear wac510 support
This adds support for the Netgear WAC510 Insight Managed Smart Cloud
Wireless Access Point, an indoor dual-band, dual-radio 802.11ac
business-class wireless AP with integrated omnidirectional antennae
and two 10/100/1000 Mbps Ethernet ports.

For more information see:
<https://www.netgear.com/business/wifi/access-points/wac510>

Specifications:
SoC:        Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:        256 MiB
Flash1:     2 MiB Winbond W25Q16JV SPI-NOR
Flash2:     128 MiB Winbond W25N01GVZEIG SPI-NAND
Ethernet:   Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port,
            WAN port active IEEE 802.3af/at PoE in
Wireless1:  Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
Wireless2:  Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae
Input:      (Optional) Barrel 12 V 2.5 A Power, Reset button SW1
LEDs:       Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN
Serial:     Header J2
1 - 3.3 Volt (Do NOT connect!)
2 - TX
3 - RX
4 - Ground
WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter!
         The Serial settings are 115200-8-N-1.

Installation via Stock Web Interface:
BTW: The default factory console/web interface login user/password are
admin/password.

In the web interface navigating to Management - Maintenance - Upgrade -
'Firmware Upgrade' will show you what is currently installed e.g.:
Manage Firmware
Current Firmware Version: V5.0.10.2
Backup Firmware Version: V1.2.5.11
Under 'Upgrade Options' choose Local (alternatively SFTP would be
available) then click/select 'Browse File' on the right side, choose
openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar
and hit the Upgrade button below. After a minute or two your browser
should indicate completion printing 'Firmware update complete.' and
'Rebooting AP...'.

Note that OpenWrt will use the WAN PoE port as actual WAN port
defaulting to DHCP client but NOT allowing LuCI access, use LAN port
defaulting to 192.168.1.1/24 to access LuCI.

Installation via TFTP Requiring Serial U-Boot Access:
Connect to the device's serial port and hit any key to stop autoboot.
Upload and boot the initramfs based OpenWrt image as follows:
(IPQ40xx) # setenv serverip 192.168.1.1
(IPQ40xx) # setenv ipaddr 192.168.1.2
(IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb
(IPQ40xx) # bootm

Note: This only runs OpenWrt from RAM and has not installed anything
to flash as of yet. One may permanently install OpenWrt as follows:

Check the MTD device number of the active partition:
root@OpenWrt:/# dmesg | grep 'set to be root filesystem'
[    1.010084] mtd: device 9 (rootfs) set to be root filesystem
Upload the factory image ending with .ubi to /tmp (e.g. using scp or
tftp). Then flash the image as follows (substituting the 9 in mtd9
below with whatever number reported above):
root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi
And reboot.

Dual Image Configuration:
The default U-Boot boot command bootipq uses the U-Boot environment
variables primary/secondary to decide which image to boot. E.g.
primary=0, secondary=3800000 uses rootfs while primary=3800000,
secondary=0 uses rootfs_1.
Switching their values changes the active partition. E.g. from within
U-Boot:
(IPQ40xx) # setenv primary 0
(IPQ40xx) # setenv secondary 3800000
(IPQ40xx) # saveenv
Or from a OpenWrt userspace serial/SSH console:
fw_setenv primary 0
fw_setenv secondary 3800000
Note that if you install two copies of OpenWrt then each will have its
independent configuration not like when switching partitions on the
stock firmware.
BTW: The kernel log shows which boot partition is active:
[    2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB)
vs.
[    2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB)
Note: After 3 failed boot attempts it automatically switches partition.

Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com>
[squashed netgear-tar commit into main and rename netgear-tar for
now, until it is made generic.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-06-05 23:29:46 +02:00
Sven Eckelmann
9a172797e5 ath79: Add support for OpenMesh A40
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
  - eth0
    + Label: Ethernet 1
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + AR8035 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + used as LAN interface
* 1x USB
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2021-06-05 01:17:11 +02:00
Sven Eckelmann
eaf2e32c12 ath79: Add support for OpenMesh A60
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
  - eth0
    + Label: Ethernet 1
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + AR8031 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + used as LAN interface
* 1x USB
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2021-06-05 01:17:11 +02:00
Chukun Pan
57cb387cfe ramips: add support for JCG Q20
JCG Q20 is an AX 1800M router.

Hardware specs:
  SoC: MediaTek MT7621AT
  Flash: Winbond W29N01HV 128 MiB
  RAM: Winbond W632GU6NB-11 256 MiB
  WiFi: MT7915 2.4/5 GHz 2T2R
  Ethernet: 10/100/1000 Mbps x3
  LED: Status (red / blue)
  Button: Reset, WPS
  Power: DC 12V,1A

Flash instructions:
  Upload factory.bin in stock firmware's upgrade page,
  do not preserve settings.

MAC addresses map:
  0x00004 *:3e wlan2g/wlan5g
  0x3fff4 *:3c lan/label
  0x3fffa *:3c wan

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2021-05-26 23:10:45 +02:00
Giulio Lorenzo
b108ed0ab0 ath79: add support for ZiKing CPE46B
ZiKing CPE46B is a POE outdoor 2.4ghz device with an integrated directional
antenna. It is low cost and mostly available via Aliexpress, references can
be found at:
- https://forum.openwrt.org/t/anddear-ziking-cpe46b-ar9331-ap121/60383
- https://git.lsd.cat/g/openwrt-cpe46b

Specifications:

- Atheros AR9330
- 32MB of RAM
- 8MB of flash (SPI NOR)
- 1 * 2.4ghz integrated antenna
- 2 * 10/100/1000 ethernet ports (1 POE)
- 3 * Green LEDs controlled by the SoC
- 3 * Green LEDs controlled via GPIO
- 1 * Reset Button controlled via GPIO
- 1 * 4 pin serial header on the PCB
- Outdoor packaging

Flashing instruction:

You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE. In case of issues with the vendor GUI, the vendor
Telnet console is vulnerable to command injection and can be used to gain
a shell directly on the OEM OpenWrt distribution.

Signed-off-by: Giulio Lorenzo <salveenee@mortemale.org>
[fix whitespaces, drop redundant uart status and serial0, drop
num-chipselects, drop 0x1002 MAC address for wmac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-05-17 01:01:32 +02:00
Bjørn Mork
2449a63208 ramips: mt7621: Add support for ZyXEL NR7101
The ZyXEL NR7101 is an 802.3at PoE powered 5G outdoor (IP68) CPE
with integrated directional 5G/LTE antennas.

Specifications:

 - SoC: MediaTek MT7621AT
 - RAM: 256 MB
 - Flash: 128 MB MB NAND (MX30LF1G18AC)
 - WiFi: MediaTek MT7603E
 - Switch: 1 LAN port (Gigabiti)
 - 5G/LTE: Quectel RG502Q-EA connected by USB3 to SoC
 - SIM: 2 micro-SIM slots under transparent cover
 - Buttons: Reset, WLAN under same cover
 - LEDs: Multicolour green/red/yellow under same cover (visible)
 - Power: 802.3at PoE via LAN port

The device is built as an outdoor ethernet to 5G/LTE bridge or
router. The Wifi interface is intended for installation and/or
temporary management purposes only.

UART Serial:

57600N1
Located on populated 5 pin header J5:

 [o] GND
 [ ] key - no pin
 [o] RX
 [o] TX
 [o] 3.3V Vcc

Remove the SIM/button/LED cover, the WLAN button and 12 screws
holding the back plate and antenna cover together. The GPS antenna
is fixed to the cover, so be careful with the cable.  Remove 4
screws fixing the antenna board to the main board, again being
careful with the cables.

A bluetooth TTL adapter is recommended for permanent console
access, to keep the router water and dustproof. The 3.3V pin is
able to power such an adapter.

MAC addresses:

OpenWrt OEM   Address          Found as
lan     eth2  08:26:97:*:*:BC  Factory 0xe000 (hex), label
wlan0   ra0   08:26:97:*:*:BD  Factory 0x4 (hex)
wwan0   usb0  random

WARNING!!

ISP managed firmware might at any time update itself to a version
where all known workarounds have been disabled.  Never boot an ISP
managed firmware with a SIM in any of the slots if you intend to use
the router with OpenWrt. The bootloader lock can only be disabled with
root access to running firmware. The flash chip is physically
inaccessible without soldering.

Installation from OEM web GUI:

- Log in as "supervisor" on https://172.17.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
  Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot

Installation from OEM ssh:

- Log in as "root" on 172.17.1.1 port 22022
- scp OpenWrt initramfs-recovery.bin image to 172.17.1.1:/tmp
- Prepare bootloader config by running:
    nvram setro uboot DebugFlag 0x1
    nvram setro uboot CheckBypass 0
    nvram commit
- Run "mtd_write -w write initramfs-recovery.bin Kernel" and reboot
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot

Copying OpenWrt to the recovery partition:

- Verify that you are running a working OpenWrt recovery image
  from flash
- ssh to root@192.168.1.1 and run:
    fw_setenv CheckBypass 0
    mtd -r erase Kernel2
- Wait while the bootloader mirrors Image1 to Image2

NOTE: This should only be done after successfully booting the OpenWrt
  recovery image from the primary partition during installation.  Do
  not do this after having sysupgraded OpenWrt!  Reinstalling the
  recovery image on normal upgrades is not required or recommended.

Installation from Z-Loader:

- Halt boot by pressing Escape on console
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
  image at 10.10.10.3
- Type "ATNR 1,initramfs-recovery.bin" at the "ZLB>" prompt
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image

NOTE: ATNR will write the recovery image to both primary and recovery
  partitions in one go.

Booting from RAM:

- Halt boot by pressing Escape on console
- Type "ATGU" at the "ZLB>" prompt to enter the U-Boot menu
- Press "4" to select "4: Entr boot command line interface."
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
  image at 10.10.10.3
- Load it using "tftpboot 0x88000000 initramfs-recovery.bin"
- Boot with "bootm  0x8800017C" to skip the 380 (0x17C) bytes ZyXEL
  header

This method can also be used to RAM boot OEM firmware. The warning
regarding OEM applies!  Never boot an unknown OEM firmware, or any OEM
firmware with a SIM in any slot.

NOTE: U-Boot configuration is incomplete (on some devices?). You may
  have to configure a working mac address before running tftp using
   "setenv eth0addr <mac>"

Unlocking the bootloader:

If you are unebale to halt boot, then the bootloader is locked.

The OEM firmware locks the bootloader on every boot by setting
DebugFlag to 0.  Setting it to 1 is therefore only temporary
when OEM firmware is installed.

- Run "nvram setro uboot DebugFlag 0x1; nvram commit" in OEM firmware
- Run "fw_setenv DebugFlag 0x1" in OpenWrt

  NOTE:
    OpenWrt does this automatically on first boot if necessary

  NOTE2:
    Setting the flag to 0x1 avoids the reset to 0 in known OEM
    versions, but this might change.

  WARNING:
    Writing anything to flash while the bootloader is locked is
    considered extremely risky. Errors might cause a permanent
    brick!

Enabling management access from LAN:

Temporary workaround to allow installing OpenWrt if OEM firmware
has disabled LAN management:

- Connect to console
- Log in as "root"
- Run "iptables -I INPUT -i br0 -j ACCEPT"

Notes on the OEM/bootloader dual partition scheme

The dual partition scheme on this device uses Image2 as a recovery
image only. The device will always boot from Image1, but the
bootloader might copy Image2 to Image1 under specific conditions. This
scheme prevents repurposing of the space occupied by Image2 in any
useful way.

Validation of primary and recovery images is controlled by the
variables CheckBypass, Image1Stable, and Image1Try.

The bootloader sets CheckBypass to 0 and reboots if Image1 fails
validation.

If CheckBypass is 0 and Image1 is invalid then Image2 is copied to
Image1.

If CheckBypass is 0 and Image2 is invalid, then Image1 is copied to
Image2.

If CheckBypass is 1 then all tests are skipped and Image1 is booted
unconditionally.  CheckBypass is set to 1 after each successful
validation of Image1.

Image1Try is incremented if Image1Stable is 0, and Image2 is copied to
Image1 if Image1Try is 3 or larger.  But the bootloader only tests
Image1Try if CheckBypass is 0, which is impossible unless the booted
image sets it to 0 before failing.

The system is therefore not resilient against runtime errors like
failure to mount the rootfs, unless the kernel image sets CheckBypass
to 0 before failing. This is not yet implemented in OpenWrt.

Setting Image1Stable to 1 prevents the bootloader from updating
Image1Try on every boot, saving unnecessary writes to the environment
partition.

Keeping an OpenWrt initramfs recovery as Image2 is recommended
primarily to avoid unwanted OEM firmware boots on failure. Ref the
warning above. It enables console-less recovery in case of some
failures to boot from Image1.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-05-09 09:15:44 +02:00
Daniel Golle
f990bddf6f
uboot-envtools: change size for unifi-6-lr
The previous commit increased the U-Boot environment size of the
UniFi 6 LR to 0x4000. Also change it uboot-envtools accordingly.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-05-07 22:50:22 +01:00
Mauri Sandberg
addf47a9a8 uboot-envtools: add support for Buffalo WZR-HP-G300NH
This adds an entries for wzr-hp-g300nh-rb and wzr-hp-g300nh-s.

Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
2021-04-30 23:51:23 +02:00
Daniel González Cabanelas
4f8da19572 uboot-envtools: mvebu: add Buffalo LS421DE
The Buffalo Linkstation LS421DE NAS lacks an uboot env config file.

Create it via scripts.

Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
2021-04-17 22:44:09 +01:00
Daniel Golle
dcdafbfc1a
uboot-envtools: support environment in spi-nand on bpi-r64
Default to U-Boot env in UBI if root device is not mmc block device.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
2021-04-11 20:19:49 +01:00