ath11k is the upstream driver for Qualcomm 802.11ax radios, both for the
internal AHB and PCI based cards.
This commit does however only provide PCI support while AHB will follow
but its SoC specific so it will require an OpenWrt target first.
It differs a bit from ath10k as it requires stuff like QRTR, MHI and QMI
helpers.
PCI variant requires qrtr-mhi and mhi-bus which backports do provide,
however we are dropping those in a patch as they will conflict with
support for the AHB variant as that one requires qrtr-smd which in turn
requires RPMSG and GLINK and its not feasable to provide those in
backports as they are really SoC specific.
QRTR and MHI in kernel 5.10 are not usable and backporting the changes
is not easy as they have changed drastically from 5.10 to 5.15 ath11k will
only be available on targets that use kernel 5.15.
Signed-off-by: Robert Marko <robimarko@gmail.com>
QRTR is Qualcomm IPC router protocol and ath11k requires it for both
AHB and PCI support, so package it as a kernel module so it can be
added as a dependency to the ath11k module.
Only kernel 5.15 is currently supported due to various things missing in
5.10 whose backporting is out of scope for this patch.
SMD, TUN and MHI variants are packaged.
SMD variant depends on the ipq807x
target as it has dependency on the RPMSG drivers which are Qualcomm
and SoC specific anyway.
Signed-off-by: Robert Marko <robimarko@gmail.com>
General specification:
- SoC Type: MediaTek MT7620N (580MHz)
- ROM: 8 MB SPI-NOR (W25Q64FV)
- RAM: 64 MB DDR (M13S5121632A)
- Switch: MediaTek MT7530
- Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
- Wireless 2.4 GHz: b/g/n
- Buttons: 1 button (RESET)
- Bootloader: U-Boot 1.1.3, MediaTek U-Boot: 5.0.0.5
- Power: 12 VDC, 1.0 A
Flash by the native uploader in 2 stages:
1. Use the native uploader to flash an initramfs image. Choose
openwrt-ramips-mt7620-snr_cpe-w4n-mt-initramfs-kernel.bin file by
"Administration/Management/Firmware update/Choose File" in vendor's
web interface (ip: 192.168.1.10, login: Admin, password: Admin).
Wait ~160 seconds.
2. Flash a sysupgrade image via the initramfs image. Choose
openwrt-ramips-mt7620-snr_cpe-w4n-mt-squashfs-sysupgrade.bin
file by "System/Backup/Flash Firmware/Flash image..." in
LuCI web interface (ip: 192.168.1.1, login: root, no password).
Wait ~240 seconds.
Flash by U-Boot TFTP method:
1. Configure your PC with IP 192.168.1.131
2. Set up TFTP server and put the
openwrt-ramips-mt7620-snr_cpe-w4n-mt-squashfs-sysupgrade.bin
image on your PC
3. Connect serial port (57600 8N1) and turn on the router.
Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2:
Load system code then write to Flash via TFTP.").
Press Y key when show "Warning!! Erase Linux in Flash then burn
new one. Are you sure? (Y/N)"
Input device IP (192.168.1.1) ==:192.168.1.1
Input server IP (192.168.1.131) ==:192.168.1.131
Input Linux Kernel filename () ==:
openwrt-ramips-mt7620-snr_cpe-w4n-mt-squashfs-sysupgrade.bin
3. Wait ~120 seconds to complete flashing
Signed-off-by: Alexey Bartenev <41exey@proton.me>
libxxhash is now available in the OpenWrt package feed and gdb will link
against it if gdb finds this library. Explicitly deactivate the usage
of xxhash.
This should fix the build of gdb in build bots.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The compatible in the device tree is "haoyu,a10-marsboard",
modify the board_name to keep it consistent.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Make use of KERNEL_MAKE in kernel packages were easily possible.
This moves some more code to common places and reduces the number of
lines.
It is defined like this:
KERNEL_MAKE = $(MAKE) $(KERNEL_MAKEOPTS)
KERNEL_MAKEOPTS = -C $(LINUX_DIR) $(KERNEL_MAKE_FLAGS)
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In this implementation, the flash partition layout is adjusted to avoid
modifying the uboot environment of mtdparts. This ensures that the 30M
ubi_kernel partition remains aligned with the stock ubi partition, and
the kernel volume is placed in it. This allows the stock uboot to boot
from it without changing the mtdparts, which is useful for reverting back
to the stock firmware using Xiaomi Firmware Tools. In actual testing,
modifying mtdparts has been found to break Xiaomi Firmware Tools.
1. use ARTIFACTS to generate initramfs-factory.ubi for easy installation.
2. The NAND flash layout is changed to allow for reverting back to the
stock firmware.
3. Before performing sysupgrade, do some cleanup in platform_pre_upgrade
to ensure a clean installation of OpenWRT.
4. Setup the uboot env to ensure that the system always boot, which can
be helpful for users who may forget to do this before sysupgrade in
the initramfs.
New flash instructions:
1. Gain ssh access. Please refer to:
https://openwrt.org/toh/xiaomi/redmi_ax6000#installation)
2. Check which system current u-boot is loading from:
COMMAND: `cat /proc/cmdline`
sample OUTPUT: `console=ttyS0,115200n1 loglevel=8 firmware=1 uart_en=1`
if firmware=1, current system is ubi1
if firmware=0, current system is ubi0
3. Setup nvram and write the firmware:
If the current system is ubi1, please set it up so that the next time
it will boot from ubi, and write the firmware to ubi:
```
nvram set boot_wait=on
nvram set uart_en=1
nvram set flag_boot_rootfs=0
nvram set flag_last_success=0
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit
ubiformat /dev/mtd8 -y -f /tmp/initramfs-factory.ubi
```
If the current system is ubi, please set it up so that the next time
it will boot from ubi1, and write the firmware to ubi1:
```
nvram set boot_wait=on
nvram set uart_en=1
nvram set flag_boot_rootfs=1
nvram set flag_last_success=1
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit
ubiformat /dev/mtd9 -y -f /tmp/initramfs-factory.ubi
```
4. After rebooting, the system should now boot into the openwrt initramfs.
Flash the squashfs-sysupgrade.bin via using ssh or luci.
```
sysupgrade -n /tmp/squashfs-sysupgrade.bin
```
Done.
For existing users of the Redmi AX6000 running OpenWrt, here are the steps to
switch to this new layout:
1. Flash initramfs-factory.ubi
```
mtd -r -e ubi write /tmp/initramfs-factory.ubi ubi
```
2. After rebooting, the system will boot into the new openwrt-initramfs.
Log in and perform a sysupgrade to complete the process.
```
sysupgrade -n /tmp/squashfs-sysupgrade.bin
```
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
There are some devices putting kernel and rootfs on separated
ubi volumes. To make OpenWrt compatible with their bootloader,
we need to put kernel and rootfs into separated ubi volumes.
Add support for CI_KERN_UBIPART and CI_ROOT_UBIPART for this
situation.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
split ubi reformat/attach into nand_attach_ubi in preparation
for reusing this code in other functions.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Two WS2812B (NeoPixel) clones are used in Xiaomi Redmi AX6000 as
indicator lights. Add a driver for controlling it using SPI MOSI.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
When reloading modules and running wifi, a phy can sometimes be renamed
while in the middle of a hotplug call that tries to detect new phys
This can lead to bogus wifi-device sections being created
Signed-off-by: Felix Fietkau <nbd@nbd.name>
8d15809 cli: print current HT mode
8f86dd6 cli: use IWINFO_HTMODE_COUNT
f36b72b cli: use IWINFO_KMGMT_NAMES
91be7e0 cli: use IWINFO_CIPHER_NAMES
49b6ec9 cli: fix printing the scan channel width
b1c8873 cli: fix marking the active channel
9e14e64 utils: add iwinfo_band2ghz() and iwinfo_ghz2band() helpers
e084781 utils: add helper functions to get names by values
d09a77a utils: add iwinfo_htmode_is_{ht|vht|he} helpers
8752977 utils: add and use iwinfo_format_hwmodes()
02f433e lib: add IWINFO_80211_COUNT and IWINFO_80211_NAMES
1d30df1 lib: add IWINFO_BAND_COUNT and IWINFO_BAND_NAMES
aefd0ef lib: use common IWINFO_CIPHER_NAMES strings
a5b30de lib: add IWINFO_OPMODE_COUNT and use it for IWINFO_OPMODE_NAMES
9f29e79 lib: constify and fixup the string array definitions
fddc015 nl80211: mark frequencies where HE operation in not allowed
6d50a7c nl80211: add support for HE htmodes
4ba5713 nl80211: properly get available bands for the hwmode
91b2ada nl80211: update the kernel header nl80211.h
3f619a5 nl80211: fix frequency/channel conversion for the 6G band
a77d915 nl80211: don't guess if a name is an ifname
c27ce71 devices: add usb device MediaTek MT7921AU
14f864e nl80211: add ability to describe USB devices
a5a75fd nl80211: remove ancient wpa_supplicant ctrl socket path
dd4e1ff nl80211: fix wpa supplicant ctrl socket permissions
d638163 fix -Wdangling-else warnings
4aa6c5a fix -Wreturn-type warning
3112726 fix -Wpointer-sign warning
ebd5f84 fix -Wmaybe-uninitialized warning
5469898 fix -Wunused-variable warnings
462b679 fix -Wduplicate-decl-specifier warnings
ccaabb4 fix -Wformat-truncation warnings
50380db enable useful compiler warnings via -Wall
Fixes: https://github.com/openwrt/openwrt/issues/10158
Fixes: https://github.com/openwrt/openwrt/issues/10687
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Etisalat S3 is a wireless WiFi 5 router manufactured by Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1x USB3.0
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Status (RGB)
- 1x 2.4G (blue, hardware, mt76-phy0)
- 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface under admin account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following line:
<PARAMETER name="Password" type="string" value="<your router serial \
is here>" writable="1" encryption="1" password="1"/>
5. Insert the following line after and save:
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (SuperUser:ETxxxxxxxxxx, where
ETxxxxxxxxxx is the serial number from the backplate label)
9. Navigate to Settings -> WAN -> Add static IP interface (e.g.
10.0.0.1/255.255.255.0)
10. Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
10.0.0.0/255.255.255.0 and interface created before
11. Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
ethernet cable to the WAN port of the router
12. Connect to the router using SSH shell under SuperUser account
13. Run in SSH shell:
sh
14. Make a mtd backup (optional, see related section)
15. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
16. Login to the router web interface under admin account
17. Remove dots from the OpenWrt factory image filename
18. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 10.0.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:50 |
| WAN | label + 11 | *:5b |
| 2g | label + 2 | *:52 |
| 5g | label + 3 | *:53 |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Co-authored-by: Karim Dehouche <karimdplay@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
hostapd's compile time option CONFIG_IEEE80211N was removed almost 3 years
ago, 80.211n/HT is always included since then.
Noticed because `hostapd -v11n` confusingly returned an error.
See hostapd's commit:
f3bcd69603 "Remove CONFIG_IEEE80211N build option"
Signed-off-by: Andre Heider <a.heider@gmail.com>
eee80211_frequency_to_channel() isn't used anymore, which is a leftover from:
2a31e9ca97 "hostapd: add op-class to get_status output"
Signed-off-by: Andre Heider <a.heider@gmail.com>
enable option `CONFIG_CRYPTO_LZ4HC` to match default kernel config
this only adds the `lz4hc_compress` module, and has no effect on the
`lz4_decompress` module which already supports any flavor
Signed-off-by: Tony Butler <spudz76@gmail.com>
Allow registration if the SIM is roaming or partner mode, by adding two
new options to the protocol.
Until now, such registration failed because umbim returns exit codes 4 and
5 for such situations.
Signed-off-by: Julio Gonzalez Gil <git@juliogonzalez.es>
378a9dd libtracefs: version 1.6.2
e6daa60 libtracefs: Add unit test to test mounting of tracefs_{tracing,debug}_dir()
32acbbf libtracefs: Have tracefs_{tracing,debug}_dir() mount {tracefs,debugfs} if not mounted
Signed-off-by: Nick Hainke <vincent@systemli.org>
9217ab4 ustream-openssl: Disable renegotiation in TLSv1.2 and earlier
2ce1d48 ci: fix building with i.MX6 SDK
584f1f6 ustream-openssl: wolfSSL: provide detailed information in debug builds
aa8c48e cmake: add a possibility to set library version
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This fixes CVE-2022-1304:
An out-of-bounds read/write vulnerability was found in e2fsprogs 1.46.5.
This issue leads to a segmentation fault and possibly arbitrary code
execution via a specially crafted filesystem.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
700a925 fw4: prevent null access when no ipsets are defined
6443ec7 config: drop input traffic by default
119ee1a ruleset: drop ctstate invalid traffic for masq-enabled zones
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Add patch to fix compilation error with USE_CPUID_DEVICE enabled and musl
used as libc. Musl doesn't add limits.h header by default and this is
required if USE_CPUID_DEVICE is used.
The package currently compile because fortify headers include limits.h
by default.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Raise CONFIG_LMB_MAX_REGIONS to 64 as there are going to be more than
8 (the default value) reserved regions to allow supporting offloading
Wireless-to-Ethernet traffic on MT7986.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add new UCI list 'addn_mount' allowing the expose additional filesystem
paths to the jailed dnsmasq process. This is useful e.g. in case of
manually configured includes to the configuration file or symlinks
pointing outside of the exposed paths as used by e.g. the safe-search
package in the packages feed.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
At this moment LS1012A-FRDM have uncompressed initramfs image.
Error was caused, because gzip extract area overlap image.
Let's change loadaddr and enable gzip initramfs images again.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
FCC ID: A8J-EAP1750H
Engenius EAP1750H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9558 SOC
- QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:fb art 0x0
phy1 2.4G *:fc ---
phy0 5GHz *:fd ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
if your TFTP server supports setting block size
higher block size is better.
**Format of OEM firmware image:**
The OEM software of EAP1750H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1750h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1750h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
With this patch you can change the pulse digit time by loading the Lantiq
FXS driver kernel module called ltq-tapi. This is relevant for old
rotaryphones that uses pulsedialing.
The default values are:
30-80ms for the low pulse
30-80ms for the high pulse
300ms for minimum Interdigit time
this is OK but on some Phones it can be usefull to customize the values
If you want to change the values to high and low pulse to 40-90ms and
minimum interdigit time to 400ms
than change /etc/modules.d/20-ltq-tapi to (without linebrakes):
drv_tapi min_digit_low=40 min_digit_high=90 max_digit_low=40 \
max_digit_high=90 min_interdigit=400
Signed-off-by: Jonas Albrecht <plonkbong100@protonmail.com>
The symbolic link introduced in 22e9d8bc89 is wrong.
Fixes: 22e9d8bc89 ("cypress-firmware: use symlink to provide firmware in brcm")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Fix mmc_write_vol hush script used by many boards to avoid timeouts on
slow SD cards:
Instead of erasing a complete partition, only erase blocks for the
to-be-written image when writing to MMC.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
NVRAM packages for the same wireless chip are consolidated into one as
they contain only small text files and symlinks.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
NVRAM packages for the same wireless chip are consolidated into one as
they contain only small text files and symlinks.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
Since all NVRAM files in external repo are now upstreamed and to lower
future maintenance cost, disassociate the package from external source
repo.
All upstream pending NVRAM files shall be stored locally from now on.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
[Remove outdated URL, add SPDX-License-Identifier]
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
use defaults if no build opts selected
(allows build with defaults when mbedtls not selected and configured)
Signed-off-by: Glenn Strauss <gstrauss@gluelogic.com>
According to commit 6f6c2fb321, AP6335 module used in PICO-PI-IMX7D works
only with firmware from `linux-firmware`. However, firmware from
`cypress-firmware` suite is directly from the chip company (Infineon) and
is actually newer.
Instead of dropping the firmware from Infineon, create a package named
`brcmfmac-firmware-4339-sdio`, and keep the Infineon version of
`cypress-firmware-4339-sdio` around.
This gives us devs the option to choose. Also, it means that
- packages `brcmfmac-firmware-*` uniformly come from `linux-firmware`
- packages `cypress-firmware-*` uniformly come from `cypress-firmware`
so hopefully brings more clarity.
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
This is to align the implementation with upstream `linux-firmware`.
Some Raspberry Pi boards do not have dedicated NVRAM in `linux-firmware`
source repository, their NVRAM is provided through a symbolic link to
NVRAM of another board with an identical wireless design.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
This is to align the implementation with upstream `linux-firmware`.
Instead of moving these firmware files to `brcm` subdirectory and changing
their names, leave them in `cypress` subdirectory, keep their names intact
and use symbolic links to provide compatibility with Broadcom FullMAC
driver.
This gives more context to where the firmware comes from.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
This is to align the implementation with upstream `linux-firmware`.
Some Raspberry Pi boards do not have dedicated NVRAM in `linux-firmware`
source repository, their NVRAM is provided through a symbolic link to
NVRAM of another board with an identical wireless design.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
PROVIDES for these packages will cause ambiguity and circular dependency
in planned changes.
For example, if there is a package `brcmfmac-firmware-43455-sdio-rpi-cm4`
that depends on `brcmfmac-firmware-43455-sdio-rpi-4b`, there is no way to
tell which one of below packages the system will go for.
- package named `brcmfmac-firmware-43455-sdio-rpi-4b`
- package named `cypress-nvram-43455-sdio-rpi-4b` that PROVIDES
`brcmfmac-firmware-43455-sdio-rpi-4b`
When ambiguity is unacceptable, PROVIDES (aliases) shall be removed and
packages shall only be used through their exact name.
So remove PROVIDES and keep only CONFLICTS.
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
Some copper SFP modules come with Marvell's 88E1xxx PHY and need this
module to function. Package it, so users can easily install this PHY
driver and use e.g. FINISAR CORP. FCLF-8521-3-HC SFP.
Without marvell PHY driver:
sfp sfp2: module FINISAR CORP. FCLF-8521-3-HC rev A sn XXXXXXX dc XXXXXX
mt7530 mdio-bus:1f sfp2: validation with support 0000000,00000000,00000000 failed: -22
sfp sfp2: sfp_add_phy failed: -22
With marvell PHY driver:
sfp sfp2: module FINISAR CORP. FCLF-8521-3-HC rev A sn XXXXXXX dc XXXXXX
mt7530 mdio-bus:1f sfp2: switched to inband/sgmii link mode
mt7530 mdio-bus:1f sfp2: PHY [i2c:sfp2:16] driver [Marvell 88E1111] (irq=POLL)
mt7530 mdio-bus:1f sfp2: Link is Up - 1Gbps/Full - flow control rx/tx
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Ruckus ZoneFlex 7025 is a single 2.4GHz radio 802.11n 1x1 enterprise
access point with built-in Ethernet switch, in an electrical outlet form factor.
Hardware highligts:
- CPU: Atheros AR7240 SoC at 400 MHz
- RAM: 64MB DDR2
- Flash: 16MB SPI-NOR
- Wi-Fi: AR9285 built-in 2.4GHz 1x1 radio
- Ethernet: single Fast Ethernet port inside the electrical enclosure,
coupled with internal LSA connector for direct wiring,
four external Fast Ethernet ports on the lower side of the device.
- PoE: 802.3af PD input inside the electrical box.
802.3af PSE output on the LAN4 port, capable of sourcing
class 0 or class 2 devices, depending on power supply capacity.
- External 8P8C pass-through connectors on the back and right side of the device
- Standalone 48V power input on the side, through 2/1mm micro DC barrel jack
Serial console: 115200-8-N-1 on internal JP1 header.
Pinout:
---------- JP1
|5|4|3|2|1|
----------
Pin 1 is near the "H1" marking.
1 - RX
2 - n/c
3 - VCC (3.3V)
4 - GND
5 - TX
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7025-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7025_fw1_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7025_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7025_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7025_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7025_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7025_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),7168k(rcks_wlan.main),7168k(rcks_wlan.bkup),1280k(datafs),256k(u-boot-env)
mtdids=nor0=ar7100-nor0
bootdelay=2
filesize=52e000
fileaddr=81000000
ethact=eth0
stdin=serial
stdout=serial
stderr=serial
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=192.168.0.1
serverip=192.168.0.2
stderr=serial
ethact=eth0
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sICOLMEGMAA3UtYm9vdC1lbnYtbmV3LmJpbgDt0E1u00AUAGDfgm2XDUrTsUV/pTkFSxZoEk+o
lcQJtlNaLsURwU4FikDiBN+3eDNvLL/3Zt5/+vFuud8Pq10dp3V3EV4e1uFDGBXTQeq+9HG1b/v9
NsdheP0Y5mV5U4Vw0Y1f1/3wesix/3pM/dO6v2jaZojX/bJpr6dtsUzHuktDjm//FHl4SnXdxfAS
wmN4SWkMy+UYVqsx1PUYci52Q31I3dDHP5vU3ZUhXLX7LjxWN7eby+PVNNxsflfe3m8uu9Wm//xt
m9rFLjXtv6fLzfEwm5fVfdhc1mlI6342Pytzldvn2dS1qfs49Tjvd3qFOm/Ta6yKdbPNffM9x5sq
Ty805acL3Zfh5HTD1RDHJRT9WLGNfe6atJ2S/XE4y3LX/c6mSzZDs29P3edhmqXOz+1xF//s0y7H
t3GL5nDqWT5Ui/Gii7Aoi7HQ81jrcHZY/dXkfLLiJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8
xy8jb4zOAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin -g 10.42.0.1
Verify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Concatenate the firmware backups, if you took them during installation using method 2:
$ cat ruckus_zf7025_fw1_backup.bin ruckus_zf7025_fw2_backup.bin > ruckus_zf7025_backup.bin
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
# mtd write ruckus_zf7025_backup.bin /dev/mtd1
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- The 2.4 GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Inspired by commit 9565c5726a, and by
facts that all Ubiquiti XM devices share flash layout, and images are
mostly compatible between all of them - enable uboot-envtools support for
whole XM line.
Build tested on: Ubiquiti Airrouter, Bullet-M (7240,7241), Nanobridge-M,
Nanostation-M (+ Loco), Picostation-M, Powerbridge-M, Rocket-M.
Runtime tested on: Ubiquiti Nanobridge M5 (XM).
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Rostelecom RT-SF-1 is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
ZigBee: 3.0, EFR32 MG1B232GG
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Status (RGB)
- 1x 2.4G (blue, hardware, mt76-phy0)
- 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Remove dots from the OpenWrt factory image filename
2. Login to the router web interface
3. Update firmware using web interface with the OpenWrt factory image
4. If OpenWrt is booted, then no further steps are required. Enjoy!
Otherwise (Stock firmware has booted again) proceed to the next step.
5. Update firmware using web interface with any version of the Stock
firmware
6. Update firmware using web interface with the OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses
-------------
+-----+------------+------------+
| use | address | example |
+-----+------------+------------+
| LAN | label | *:72, *:d2 |
| WAN | label + 11 | *:7d, *:dd |
| 2g | label + 2 | *:74, *:d4 |
| 5g | label + 3 | *:75, *:d5 |
+-----+------------+------------+
The label MAC address was found in Factory 0x21000
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
enable additional crypto algorithms for hostap
hostap uses local implementations if not provided by crypto library,
so might as well enable in the crypto library for shared use by others.
Signed-off-by: Glenn Strauss <gstrauss@gluelogic.com>
Passing all arguments to /etc/init.d/$service restores the
behaviour of openwrt 21.02. This is relevant for services
such as etherwake which take more then one argument, e.g.:
"service etherwake start <list of devices to wake>"
Signed-off-by: Andrew Ammerlaan <andrewammerlaan@gentoo.org>
It's not just required for the PCI version, but for USB and presumably
SDIO as well.
Tested with 0e8d:7961 Comfast CF-953AX (MT7921AU).
Signed-off-by: Andre Heider <a.heider@gmail.com>
Realtek bluetooth devices need firmware. Add packages for some of
these.
Tested on a WNDR3700v4 with rtl8761bu firmware.
Signed-off-by: Quintin Hill <stuff@quintin.me.uk>
USB adaptors with the RTL8761B chipset are cheap and readily available
but so far support is missing in Openwrt. Enable the relevant kernel
options and add a module to the kmod-bluetooth package. Increases size
of kmod-bluetooth ipk from 279140 bytes to 285320 bytes on my ath79 build.
Tested on a WNDR3700v4 with rtl8761bu firmware.
Signed-off-by: Quintin Hill <stuff@quintin.me.uk>
This add --filter-A and --filter-AAAA options, to remove IPv4 or IPv6
addresses from DNS answers. these options is supported since version 2.87.
Co-authored-by: NueXini <nuexini@alumni.tongji.edu.cn>
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Changes:
712460c linux-firmware: Update firmware file for Intel Bluetooth 9462
90d5f7e linux-firmware: Update firmware file for Intel Bluetooth 9462
48954ba linux-firmware: Update firmware file for Intel Bluetooth 9560
0e205fd linux-firmware: Update firmware file for Intel Bluetooth 9560
06b941e linux-firmware: Update firmware file for Intel Bluetooth AX201
ba958ff linux-firmware: Update firmware file for Intel Bluetooth AX201
02bdea2 linux-firmware: Update firmware file for Intel Bluetooth AX211
7044d46 linux-firmware: Update firmware file for Intel Bluetooth AX211
1b99bcd linux-firmware: Update firmware file for Intel Bluetooth AX210
4668ae9 linux-firmware: Update firmware file for Intel Bluetooth AX200
5bdfdba linux-firmware: Update firmware file for Intel Bluetooth AX201
b0f995c amdgpu: update DMCUB firmware for DCN 3.1.6
d991031 rtl_bt: Update RTL8822C BT UART firmware to 0xFFB8_ABD6
fd62f01 rtl_bt: Update RTL8822C BT USB firmware to 0xFFB8_ABD3
b15fc21 WHENCE: mrvl: prestera: Add WHENCE entries for newly updated 4.1 FW images
bf5a337 mrvl: prestera: Update Marvell Prestera Switchdev FW to v4.1
4a733c2 iwlwifi: add new FWs from core74_pv-60 release
7d2bb50 qcom: drop split a530_zap firmware file
7d56713 qcom/vpu-1.0: drop split firmware in favour of the mbn file
1431496 qcom/venus-4.2: drop split firmware in favour of the mbn file
cf95783 qcom/venus-4.2: replace split firmware with the mbn file
1fe6f49 qcom/venus-1.8: replace split firmware with the mbn file
abc0302 linux-firmware: Add firmware for Cirrus CS35L41 on new ASUS Laptop
20d9516 iwlwifi: add new PNVM binaries from core74-44 release
06dbfbc iwlwifi: add new FWs from core69-81 release
05df8e6 qcom: update venus firmware files for VPU-2.0
cd6fcdb qcom: remove split SC7280 venus firmware images
1612706 qcom: update venus firmware file for v5.4
ad9fdba qcom: replace split SC7180 venus firmware images with symlink
dae5d46 rtw89: 8852b: update fw to v0.27.32.1
a8e86ec rtlwifi: update firmware for rtl8192eu to v35.7
9aa8db1 rtlwifi: Add firmware v4.0 for RTL8188FU
8f86b5a i915: Add HuC 7.10.3 for DG2
48407ff cnm: update chips&media wave521c firmware.
bd31846 brcm: add symlink for Pi Zero 2 W NVRAM file
771968c linux-firmware: Add firmware for Cirrus CS35L41 on ASUS Laptops
6f9620e linux-firmware: Add firmware for Cirrus CS35L41 on Lenovo Laptops
1d18cb9 linux-firmware: Add firmware for Cirrus CS35L41 on HP Laptops
e497757 rtw89: 8852b: add initial fw v0.27.32.0
98b5577 iwlwifi: add new FWs from core72-129 release
604026c iwlwifi: update 9000-family firmwares to core72-129
Signed-off-by: Nick Hainke <vincent@systemli.org>
dtim_period is a bss property, not a device one.
It is already handled properly in mac80211.sh
Fixes: 30c64825c7 ("hostapd: add dtim_period, local_pwr_constraint, spectrum_mgmt_required")
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
FLASH1: 4 MiB NOR
FLASH2: 128 MiB NAND
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5G 802.11n/ac W2 2x2
USB: 1 x USB 3.0 port
Button: 1 x Reset button
Switch: 1 x Mode switch
LED: 1 x Blue LED + 1 x White LED
Install via uboot tftp or uboot web failsafe.
By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-a1300-squashfs-nand-factory.ubi
(IPQ40xx) # nand erase 0 0x8000000
(IPQ40xx) # nand write 0x84000000 0 $filesize
By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1
Afterwards upgrade can use sysupgrade image.
Signed-off-by: Weiping Yang <weiping.yang@gl-inet.com>
Get rid of drivers that are either limited to 802.11b/g or don't even support
cfg80211/mac80211. Most of these are either limited to boards that we don't even
support anymore because of firmware size, or were only used for custom hacks by
a really small number of users in the past.
Let's get rid of those to reduce the maintenance effort and the number of useless
packages
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Add kernel package 'mt7916-firmware' with firmware files for MT7916E devices.
These share the same driver as the MT7915 chipset, but use their own firmware.
Tested using a pair of AsiaRF AW7916-NPD cards.
Signed-off-by: Andrew Powers-Holmes <aholmes@omnom.net>
Add build option for nftables sets. By default disable iptables ipset
support. By default enable nftable nftset support since this is what
fw4 uses.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
dnsmasq: nftset: serve from ipset config
Use existing ipset configs as source for nftsets to be compatible with
existing configs. As the OS can either have iptables XOR nftables
support, it's fine to provide both to dnsmasq. dnsmasq will silently
fail for the present one. Depending on the dnsmasq compile time options,
the ipsets or nftsets option will not be added to the dnsmasq config
file.
dnsmasq will try to add the IP addresses to all sets, regardless of the
IP version defined for the set. Adding an IPv6 to an IPv4 set and vice
versa will silently fail.
Signed-off-by: Mathias Kresin <dev@kresin.me>
dnsmasq: support populating nftsets in addition to ipsets
Tell dnsmasq to populate nftsets instead of ipsets, if firewall4 is present in
the system. Keep the same configuration syntax in /etc/config/dhcp, for
compatibility purposes.
Huge thanks to Jo-Philipp Wich for basically writing the function.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
dnsmasq: obtain nftset ip family from nft
Unfortunately dnsmasq nft is noisy if an attempt to add a mismatched ip address
family to an nft set is made.
Heuristic to guess which ip family a nft set might belong by inferring
from the set name.
In order of preference:
If setname ends with standalone '4' or '6' use that, else
if setname has '4' or '6' delimited by '-' or '_' use that (eg
foo-4-bar) else
If setname begins with '4' or '6' standalone use that.
By standalone I mean not as part of a larger number eg. 24
If the above fails then use the existing nft set query mechanism and if
that fails, well you're stuffed!
With-thanks-to: Jo-Philipp Wich <jo@mein.io> who improved my regexp
knowledge.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
dnsmasq: specify firewall table for nftset
Permit ipsets to specify an nftables table for the set. New config
parameter is 'table'. If not specified the default of 'fw4' is used.
config ipset
list name 'BK_4,BK_6'
option table 'dscpclassify'
option table_family 'ip'
option family '4'
list domain 'ms-acdc.office.com'
list domain 'windowsupdate.com'
list domain 'update.microsoft.com'
list domain 'graph.microsoft.com'
list domain '1drv.ms'
list domain '1drv.com'
The table family can also be specified, usually 'ip' or 'ip6' else the
default 'inet' capable of both ipv4 & ipv6 is used.
If the table family is not specified then finally a family option is
available to specify either '4' or '6' for ipv4 or ipv6 respectively.
This is all in addition to the existing heuristic that will look in the
nftset name for an ip family clue, or in total desperation, query the
value from the nftset itself.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
When running sysupgrade from an existing configuration, move existing
ipset definitions to a dedicated config section. Later on, it will allow
to serve ipset as well as nftable sets from the same configuration.
Signed-off-by: Mathias Kresin <dev@kresin.me>
SIM AX18T and Haier HAR-20S2U1 Wi-Fi6 AX1800 routers are designed based
on Tenbay WR1800K. They have the same hardware circuits and u-boot.
SIM AX18T has three carrier customized models: SIMAX1800M (China Mobile),
SIMAX1800T (China Telecom) and SIMAX1800U (China Unicom). All of these
models run the same firmware.
Specifications:
SOC: MT7621 + MT7905 + MT7975
ROM: 128 MiB
RAM: 256 MiB
LED: status *3 R/G/B
Button: reset *1 + wps/mesh *1
Ethernet: lan *3 + wan *1 (10/100/1000Mbps)
TTL Baudrate: 115200
TFTP Server: 192.168.1.254
TFTP IP: 192.168.1.28 or 192.168.1.160 (when envs is broken)
MAC Address:
use address source
label 30:xx:xx:xx:xx:62 wan
lan 30:xx:xx:xx:xx:65 factory.0x8004
wan 30:xx:xx:xx:xx:62 factory.0x8004 -3
wlan2g 30:xx:xx:xx:xx:64 factory.0x0004
wlan5g 32:xx:xx:xx:xx:64 factory.0x0004 set 7th bit
TFTP Installation (initramfs image only & recommend):
1. Set local tftp server IP: 192.168.1.254 and NetMask: 255.255.255.0
2. Rename initramfs-kernel.bin to "factory.bin" and put it in the root
directory of the tftp server. (tftpd64 is a good choice for Windows)
3. Start the TFTP server, plug in the power supply, and wait for the
system to boot.
4. Backup "firmware" partition and rename it to "firmware.bin", we need
it to back to stock firmware.
5. Use "fw_printenv" command to list envs.
If "firmware_select=2" is observed then set u-boot enviroment:
/# fw_setenv firmware_select 1
6. Apply sysupgrade.bin in OpenWrt LuCI.
Web UI Installation:
1. Apply update by uploading initramfs-factory.bin to the web UI.
2. Use "fw_printenv" command to list envs.
If "firmware_select=2" is observed then set u-boot enviroment:
/# fw_setenv firmware_select 1
3. Apply squashfs-sysupgrade.bin in OpenWrt LuCI.
Recovery to stock firmware:
a. Upload "firmware.bin" to OpenWrt /tmp, then execute:
/# mtd -r write /tmp/firmware.bin firmware
b. We can also write factory image "UploadBrush-bin.img" to firmware
partition to recovery. Upload image file to /tmp, then execute:
/# mtd erase firmware
/# mtd -r write /tmp/UploadBrush-bin.img firmware
How to extract stock firmware image:
Download stock firmware, then use openssl:
openssl aes-256-cbc -d -salt -in [Downloaded_Firmware] \
-out "firmware.tar.tgz" -k QiLunSmartWL
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Do not use find_vpid(), but get_task_pid() to get the pid from
pThrCntrl->tid. This is now a ponter to struct task_struct instead of
an integer.
This fixes the build of ltq-tapi with lantiq/xway.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Do not include asm/irq.h directly, but include linux/interrupt.h instead.
This fixes the build of ltq-tapi with lantiq/xway.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This backports a commit which fixes a use after free bug in awk.
CVE-2022-30065 description:
A use-after-free in Busybox 1.35-x's awk applet leads to denial of
service and possibly code execution when processing a crafted awk
pattern in the copyvar function.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This backports a commit from upstream dnsmasq to fix CVE-2022-0934.
CVE-2022-0934 description:
A single-byte, non-arbitrary write/use-after-free flaw was found in
dnsmasq. This flaw allows an attacker who sends a crafted packet
processed by dnsmasq, potentially causing a denial of service.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In a254279a6c LS1012A-IOT kernel image was switched to FIT.
But u-boot config is lack of FIT and ext4 support.
This patch enables it.
It also fix envs, because for some reason this board need to use "loadaddr"
variable in brackets.
Fixes: #9894
Fixes: a254279a6c ("layerscape: Change to combined rootfs on sd images")
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
In my commit da5c45f4d8 ("kernel: remove handling of xfrm[4|6]_mode_*
modules") I missed a few default config options and description entries.
Those should be gone as well.
Fixes: da5c45f4d8 ("kernel: remove handling of xfrm[4|6]_mode_* modules")
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
Changes between 1.1.1r and 1.1.1s [1 Nov 2022]
*) Fixed a regression introduced in 1.1.1r version not refreshing the
certificate data to be signed before signing the certificate.
[Gibeom Gwon]
Changes between 1.1.1q and 1.1.1r [11 Oct 2022]
*) Fixed the linux-mips64 Configure target which was missing the
SIXTY_FOUR_BIT bn_ops flag. This was causing heap corruption on that
platform.
[Adam Joseph]
*) Fixed a strict aliasing problem in bn_nist. Clang-14 optimisation was
causing incorrect results in some cases as a result.
[Paul Dale]
*) Fixed SSL_pending() and SSL_has_pending() with DTLS which were failing to
report correct results in some cases
[Matt Caswell]
*) Fixed a regression introduced in 1.1.1o for re-signing certificates with
different key sizes
[Todd Short]
*) Added the loongarch64 target
[Shi Pujin]
*) Fixed a DRBG seed propagation thread safety issue
[Bernd Edlinger]
*) Fixed a memory leak in tls13_generate_secret
[Bernd Edlinger]
*) Fixed reported performance degradation on aarch64. Restored the
implementation prior to commit 2621751 ("aes/asm/aesv8-armx.pl: avoid
32-bit lane assignment in CTR mode") for 64bit targets only, since it is
reportedly 2-17% slower and the silicon errata only affects 32bit targets.
The new algorithm is still used for 32 bit targets.
[Bernd Edlinger]
*) Added a missing header for memcmp that caused compilation failure on some
platforms
[Gregor Jasny]
Build system: x86_64
Build-tested: bcm2711/RPi4B
Run-tested: bcm2711/RPi4B
Signed-off-by: John Audia <therealgraysky@proton.me>
Calling /etc/init.d/uhttpd reload directly in the acme hotplug script
can inadvertently start a stopped instance.
Signed-off-by: Glen Huang <i@glenhuang.com>
This is necessary with firewall4 to avoid a hard-to-diagnose race
condition during boot, causing DNAT rules not to be taken into account
correctly.
The root cause is that, during boot, the ruleset is mostly empty, and
interface-related rules (including DNAT rules) are added incrementally.
If a packet hits the input chain before the DNAT rules are setup, it can
create buggy conntrack entries that will persist indefinitely.
This new default should be safe because firewall4 explicitly accepts
authorized traffic and rejects the rest. Thus, in normal operations, the
default policy is not used.
Fixes: #10749
Ref: https://github.com/openwrt/openwrt/issues/10749
Signed-off-by: Baptiste Jonglez <git@bitsofnetworks.org>
The sector number must be stored in hex. Otherwise, the number (like 16)
will be parsed as hex and any write to the partition will end up with an
error like:
MTD erase error on /dev/mtd5: Invalid argument
Fixes: 9adfeccd84 ("uboot-envtools: Add support for IPQ806x AP148 and DB149")
Fixes: 54b275c8ed ("ipq40xx: add target")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@fungible.com>
Add a package for drm_ttm_helper.ko. CONFIG_DRM_TTM_HELPER is compiled
into the kernel on armvirt/64, x86/64, x86/generic and x86/legacy
because also some DRM drivers are compiled into the kernel. On x86/geode
it is not compiled into the kernel, but kmod-drm-amdgpu and
kmod-drm-radeon depend on it.
This fixes the x86/geode build.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
For kernel versions before 5.2, the required IPsec modes have to be
enabled explicitly (they are built-in for newer kernels).
Commit 1556ed155a ("kernel: mode_beet mode_transport mode_tunnel xfram
modules") tried to handle this, but it does not really work.
Since we don't support these kernel versions anymore and the code is
also broken, let's remove it.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
[Remove old generic config options too]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
a92c0a7 dhcpv6-ia: make tmp lease file hidden
4a673e1 fix null pointer dereference for INFORM messages
860ca90 odhcpd: Support for Option NTP and SNTP
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com>
The kernel module gpio-mcp23s08 has been replaced by the new
pinctrl-mcp23s08* kernel modules.
There are now 3 kernel modules for this device
- Common module for both I2C and SPI kmod-pinctrl-mcp23s08
- Module for I2C kmod-pinctrl-mcp23s08-i2c
- Module for SPI kmod-pinctrl-mcp23s08-spi
Signed-off-by: Florian Eckert <fe@dev.tdt.de>
Adding a new method to `ubus call dsl` to retrieve DSL statistics
used to feed the DSL charts (bit allocation, SNR, QLN and HLOG)
Signed-off-by: Roland Barenbrug <roland@treslong.com>
[fix pointer error, clean up]
Signed-off-by: Andre Heider <a.heider@gmail.com>
DSL_G997_LineStatusData_t defines special invalid values, skip these
metrics.
Signed-off-by: Roland Barenbrug <roland@treslong.com>
[split patch]
Signed-off-by: Andre Heider <a.heider@gmail.com>
Add support for the Linksys EA4500 v3 wireless router
Hardware
--------
SoC: Qualcomm Atheros QCA9558
RAM: 128M DDR2 (Winbond W971GG6KB-25)
FLASH: 128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN: QCA9558 3T3R 802.11 bgn
QCA9580 3T3R 802.11 an
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1, same as ea4500 v2
USB: 1 single USB 2.0 host port
BUTTON: Reset - WPS
LED: 1x system-LED
LEDs besides the ethernet ports are controlled
by the ethernet switch
MAC Address:
use address(sample 1) source
label 94:10:3e:xx:xx:6f caldata@cal_macaddr
lan 94:10:3e:xx:xx:6f $label
wan 94:10:3e:xx:xx:6f $label
WiFi4_2G 94:10:3e:xx:xx:70 caldata@cal_ath9k_soc
WiFi4_5G 94:10:3e:xx:xx:71 caldata@cal_ath9k_pci
Installation from Serial Console
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.1.0/24
(e.g. 192.168.1.66) to the ethernet port. Serve the OpenWrt
initramfs image as "openwrt.bin"
3. To test OpenWrt only, go to step 4 and never execute step 5;
To install, auto_recovery should be disabled first, and boot_part
should be set to 1 if its current value is not.
ath> setenv auto_recovery no
ath> setenv boot_part 1
ath> saveenv
4. Boot the initramfs image using U-Boot
ath> setenv serverip 192.168.1.66
ath> tftpboot 0x84000000 openwrt.bin
ath> bootm
5. Copy the OpenWrt sysupgrade image to the device using scp and
install it like a normal upgrade (with no need to keeping config
since no config from "previous OpenWRT installation" could be kept
at all)
# sysupgrade -n /path/to/openwrt/sysupgrade.bin
Note: Like many other routers produced by Linksys, it has a dual
firmware flash layout, but because I do not know how to handle
it, I decide to disable it for more usable space. (That is why
the "auto_recovery" above should be disabled before installing
OpenWRT.) If someone is interested in generating factory
firmware image capable to flash from stock firmware, as well as
restoring the dual firmware layout, commented-out layout for the
original secondary partitions left in the device tree may be a
useful hint.
Installation from Web Interface
------------
1. Login to the router via its web interface (default password: admin)
2. Find the firmware update interface under "Connectivity/Basic"
3. Choose the OpenWrt factory image and click "Start"
4. If the router still boots into the stock firmware, it means that
the OpenWrt factory image has been installed to the secondary
partitions and failed to boot (since OpenWrt on EA4500 v3 does not
support dual boot yet), and the router switched back to the stock
firmware on the primary partitions. You have to install a stock
firmware (e.g. 3.1.6.172023, downloadable from
https://www.linksys.com/support-article?articleNum=148385 ) first
(to the secondary partitions) , and after that, install OpenWrt
factory image (to the primary partitions). After successful
installation of OpenWrt, auto_recovery will be automatically
disabled and router will only boot from the primary partitions.
Signed-off-by: Edward Chow <equu@openmail.cc>
Several Broadcom targets were using the nand_do_upgrade_success
shell function which has been removed by commit e25e6d8e54
("base-files: fix and clean up nand sysupgrade code"). Refactor the
new nand_do_upgrade to bring back nand_do_upgrade_success with the
behavior expected by those users.
Fixes: e25e6d8e54 ("base-files: fix and clean up nand sysupgrade code")
Reported-by: Chen Minqiang <ptpt52@gmail.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128 MB
RAM: K4A4G165WF-BCWE 512 MB
Ethernet: 4x 10/100/1000 Mbps
WiFi1: MT7976GN 2.4GHz ax 4x4
WiFi2: MT7976AN 5GHz ax 4x4
Button: Mesh, Reset
Flash instructions:
1. Gain ssh and serial port access, see the link below:
https://openwrt.org/toh/xiaomi/redmi_ax6000#installation
2. Use ssh or serial port to log in to the router, and
execute the following command:
nvram set boot_wait=on
nvram set flag_boot_rootfs=0
nvram set flag_boot_success=1
nvram set flag_last_success=1
nvram set flag_try_sys1_failed=8
nvram set flag_try_sys2_failed=8
nvram commit
3. Set a static ip on the ethernet interface of your computer
(e.g. default: ip 192.168.31.100, gateway 192.168.31.1)
4. Download the initramfs image, rename it to initramfs.bin,
and host it with the tftp server.
5. Interrupt U-Boot and run these commands:
setenv mtdparts nmbm0:1024k(bl2),256k(Nvram),256k(Bdata),2048k(factory),2048k(fip),256k(crash),256k(crash_log),112640k(ubi)
saveenv
tftpboot initramfs.bin
bootm
6. After openwrt boots up, use scp or luci web
to upload sysupgrade.bin to upgrade.
Revert to stock firmware:
Restore mtdparts back to default, then use the
vendor's recovery tool (Windows only).
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
When firmware images only contained compressed kernels and squashfs roots,
uncompressed tar files were a good option. We are now using UBIFS images,
both raw and tarred, as well as ubinized (full UBI partition) images, all
of which benefit greatly from compression.
For example, a raw ubinized backup taken from a running Askey RT4230W REV6
(such full backups can be restored via the LUCI's sysupgrade UI) is over
400 MB, but compresses to less than 10 MB.
This commit adds support for gzipped versions of all file types already
accepted by the nand sysupgrade mechanism, be them raw or tarred.
Signed-off-by: Rodrigo Balerdi <lanchon@gmail.com>
It has been reported that ubinized nand sysupgrade fails under certain
circumstances, being unable to detach the existing ubi partition due to
volumes within the partition being mounted.
This is an attempt to solve such issues by unmounting and removing
ubiblock devices and unmounting ubi volumes within the target partition
prior to detaching and formatting it.
Signed-off-by: Rodrigo Balerdi <lanchon@gmail.com>
- Never return from 'nand_do_upgrade', not even in case of errors, as that
would cause execution of sysupgrade code not intended for NAND devices.
- Unify handling of sysupgrade success and failure.
- Detect and report more error conditions.
- Fix outdated/incorrect/unclear comments.
Signed-off-by: Rodrigo Balerdi <lanchon@gmail.com>
Commit e8b5429609 included an unintended change and we now call
scan_wifi before a network reload.
Restore the original behaviour and call scan_wifi only after a network
reload.
Fixes: e8b5429609 ("base-files: wifi: tidy up the reconf code")
Signed-off-by: Bob Cantor <bobc@confidesk.com>
Commit b82cc80713 included an unintended change and we now call
scan_wifi before a network reload.
Restore the original behaviour and call scan_wifi only after a network
reload.
Fixes: b82cc80713 ("base-files: wifi: swap the order of some ubus calls")
Signed-off-by: Bob Cantor <bobc@confidesk.com>
CONFIG_MAC80211_MESH isn't defined for this package, rendering the patch
useless. Match protecting the access of sta_info.mesh with the very same
define declaring it.
Fixes 45109f69a6 "mac80211: fix compile error when mesh is disabled"
Signed-off-by: Andre Heider <a.heider@gmail.com>
This updates mac80211 to version 5.15.74-1 which is based on kernel
5.15.74.
The removed patches were applied upstream.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>