Specifications:
- Device: Edimax BR-6208AC V2
- SoC: MT7620A
- Flash: 16 MiB
- RAM: 64 MiB
- Switch: 1 WAN, 3 LAN (10/100 Mbps)
- WiFi: MT7620 2.4 GHz + MT7610E 5 GHz
- LEDs: 1x POWER (green, not configurable)
1x Firmware (green, configurable)
1x Internet (green, configurable)
1x VPN (green, configurable)
1x 2.4G (green, not configurable)
1x 5G (green, not configurable)
Normal installation:
- Upload the sysupgrade image via the default web interface
Installation with U-Boot and TFTP:
- Requires a TFTP server which provides the sysupgrade image
- Requires a connection to the serial port of the device, rate 57600
Signed-off-by: Stefan Weil <sw@weilnetz.de>
MikroTik RB951G-2HnD is a wireless SOHO router that was previously
supported by the ar71xx target, see commit 7a709573d7 ("ar71xx: add
kernel support for the Mikrotik RB951G board").
Specifications
--------------
- SoC: Atheros AR9344 (600 MHz)
- RAM: 128 MB (2x 64 MB)
- Storage: 128 MB NAND flash (various manufacturers)
- Ethernet: Atheros AR8327 switch, 5x 10/100/1000 Mbit/s
- 1x PoE in (port 1, 8-30 V input)
- Wireless: Atheros AR9340 (802.11b/g/n)
- USB: 2.0 (1A)
- 8x LED:
- 1x power (green, not configurable)
- 1x user (green, not configurable)
- 5x GE ports (green, not configurable)
- 1x wireless (green, not configurable)
- 1x button (restart)
Unlike on the RB951Ui-2HnD, none of the LEDs on this device seem to be
GPIO-controllable, which was also the case for older OpenWRT versions
that supported this board via a mach file. The Ethernet port LEDs are
controlled by the switch chip.
See https://mikrotik.com/product/RB951G-2HnD for more details.
Flashing
--------
TFTP boot initramfs image and then perform sysupgrade. Follow
common MikroTik procedures at https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
Mikrotik RouterBOARD 951Ui-2HnD and Mikrotik RouterBOARD RB951G-2HnD are
very similar devices. Extract the DTS bits that are identical for these
two boards to a separate DTSI file.
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
ath79_pll_base was declared as extern but no code exported it.
Anyone including arch/mips/include/asm/mach-ath79/ath79.h and compiled
as a module would break with:
ERROR: modpost: "ath79_pll_base" [drivers/net/ethernet/atheros/ag71xx/ag71xx.ko] undefined!
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Device specifications:
======================
* Qualcomm/Atheros AR9344
* 128 MB of RAM
* 16 MB of SPI NOR flash
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4/5 GHz Wi-Fi
* 4x GPIO-LEDs (1x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* 2x fast ethernet
- lan1
+ builtin switch port 1
+ used as WAN interface
- lan2
+ builtin switch port 2
+ used as LAN interface
* 9-30V DC
* external antennas
Flashing instructions:
======================
Log in to https://192.168.127.253/
Username: admin
Password: moxa
Open Maintenance > Firmware Upgrade and install the factory image.
Serial console access:
======================
Connect a RS232-USB converter to the maintenance port.
Pinout: (reset button left) [GND] [NC] [RX] [TX]
Firmware Recovery:
==================
When the WLAN and SYS LEDs are flashing, the device is in recovery mode.
Serial console access is required to proceed with recovery.
Download the original image from MOXA and rename it to 'awk-1137c.rom'.
Set up a TFTP server at 192.168.127.1 and connect to a lan port.
Follow the instructions on the serial console to start the recovery.
Signed-off-by: Maximilian Martin <mm@simonwunderlich.de>
This commit adds support for Mercusys MR90X(EU) v1 router.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 1 orange and 1 green status LEDs, 4 green gpio-controlled
LEDs on ethernet ports
Button: 1 (Reset)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
slots contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Once inside OpenWrt, set / update env variables:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Installation (without UART)
---------------------------
1. Login as root via SSH (router IP, port 20001, password - your web
interface password)
2. Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
SSH settings from the p.1)
3. Add a newline after "#!/bin/sh":
telnetd -l /bin/login.sh
4. Save "65-iptv" file
5. Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
save
6. Make sure that telnetd is running:
netstat -ltunp | grep 23
7. Login via telnet to router IP, port 23 (no username and password are
required)
8 Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
router (e.g., using WinSCP and SSH settings from the p.1)
9. Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
download and upload the full version of busybox to the router. For
example, from here:
https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
Upload busybox-arm64 to the /tmp dir of the router and run:
in the telnet shell:
cd /tmp
chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
(greater than "initramfs-kernel.bin" size):
ubirmvol /dev/ubi0 -N kernel
ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
already exists) with the necessary values:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
sysupgrade -n /tmp/sysupgrade.bin
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
upload the OEM firmware
Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
etc.)
Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"
ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot Vol ID: 0|
| Volume Name: kernel Vol ID: 1|
| Volume Name: rootfs Vol ID: 2|
+-------------------------------+
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 00:eb:xx:xx:xx:be | label |
| LAN | 00:eb:xx:xx:xx:be | label |
| WAN | 00:eb:xx:xx:xx:bf | label+1 |
| WLAN 2g | 00:eb:xx:xx:xx:be | label |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1 |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
After migrating to kernel 5.15, upgrading causes the units to become
soft-bricked, hanging forever at the kernel startup.
Kernel size limitation of 4000000 bytes is suspected here, but this is
not fully confirmed.
Disable the images to protect users from inadvertent bricking of units,
because recovery of those is painful with Cisco's U-boot, until the root
cause is found and fixed.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
As already documented in the wiki (https://openwrt.org/toh/wavlink/quantum_dax_wn538a8),
this router is based on the Phicomm K3. Just the flashing method is different
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Previously both lan1 and lan2 leds were wrongly labelled as lan2.
Moreover they were connected to the wrong lan port.
Fixes 8fde82095b ("ramips: add support for Wavlink WL-WN535K1")
Reported-by: Nicolò Maria Semprini <nicosemp@gmail.com>
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Hardware
========
CPU Qualcomm Atheros QCA9558
RAM 256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI Qualcomm Atheros QCA9558
Atheros AR9590
Installation
============
1. Attach to the serial console of the AP-105.
Interrupt autoboot and change the U-Boot env.
$ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66;
netget 0x80060000 ap115.bin; go 0x80060000"
$ setenv fb_openwrt "bank 1;
cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
$ setenv bootcmd "run fb_openwrt"
$ saveenv
2. Load the OpenWrt initramfs image on the device using TFTP.
Place the initramfs image as "ap105.bin" in the TFTP server
root directory, connect it to the AP and make the server reachable
at 192.168.1.66/24.
$ run rb_openwrt
3. Once OpenWrt booted, transfer the sysupgrade image to the device
using scp and use sysupgrade to install the firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
The Arcadyan AR7516, AKA Orange Bright Box or EE Bright Box 1, is a wifi
fast ethernet router, 2.4 GHz single band with two internal antennas. It
comes with a horizontal stand black shiny casing.
Newer Bright Box 1 model stands vertically, and comes with a totally
different board inside, not compatible with this firmware.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 8 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43227 802.11bgn (onboard)
- USB: 1x 2.0
- ADSL: yes, unsupported
- Buttons: 2x
- LEDs: 9x, power LED is hardware controlled
- UART: yes
Installation in two steps, new CFE bootloader and firmware:
Install new CFE:
1. Power off the router and press the RESET button
2. Power on the router and wait some seconds
3. Release the RESET button
3. Browse to http://192.168.1.1, this web interface will offer both
firmware (“Software”) upgrade and bootloader upgrade; be sure to
use the bootloader section of the upload form.
4. Upload the new CFE (availabe at the wiki page)
5. Wait about a minute for flashing to finish and reboot into the new bootloader.
Install OpenWrt via new CFE web UI:
1. After installing the new CFE, visit http://192.168.1.1
2. Upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Hardware
--------
SOC: MediaTek MT7986
RAM: 1024MB DDR3
FLASH: 128MB SPI-NAND (Winbond)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: Realtek RTL8221B-VB-CG 2.5 N-Base-T PHY with PoE
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
2. Connect the TFTP server to the WAX220. Conect to the serial console,
interrupt the autoboot process by pressing '0' when prompted.
3. Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.2.1
$ setenv serverip 192.168.2.2
$ tftpboot openwrt.bin
$ bootm
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Signed-off-by: Flole Systems <flole@flole.de>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Zbtlink ZBT-WG1608 is a Wi-Fi router intendent to use with WWAN (4G/5G)
modems.
Specifications:
* SoC: MediaTek MT7621A
* RAM: 256/512 MiB
* Flash: 16/32 MiB (SPI NOR)
* Wi-Fi:
* MediaTek MT7603E : 2.4Ghz
* MediaTek MT7613BE : 5Ghz
* Ethernet: 10/100/1000 Mbps Ethernet x5 ports (4xLAN + WAN)
* M.2: 1x slot with USB&SIM
* EM7455/EM12-G/EM160R/RM500Q-AE
* USB: 1x 3.0 Type-A port
* External storage: 1x microSD (SDXC) slot
* UART: console (115200 baud)
* LED:
* 1 power indicator
* 1 WLAN 2.4G controlled (wlan 2G)
* 3 SoC controlled (wlan 5G, wwan, internet)
* 5 per Eth phy (4xLAN + WAN)
MAC Addresses:
* LAN : f8:5e:3c:xx:xx:e0 (Factory, 0xe000 (hex))
* WAN : f8:5e:3c:xx:xx:e1 (Factory, 0xe006 (hex))
* 2.4 GHz: f8:5e:3c:xx:xx:de (Factory, 0x0004 (hex))
* 5 GHz : f8:5e:3c:xx:xx:df (Factory, 0x8004 (hex))
Installation:
* Vendor's firmware is OpenWrt (LEDE) based, so the sysupgrade image can
be directly used to install OpenWrt. Firmware must be upgraded using the
'force' and 'do not save configuration' command line options (or
correspondig web interface checkboxes) since the vendor firmware is from
the pre-DSA era.
Recovery Mode:
* Press reset button, power up the device, wait for about 10sec.
* Upload sysupgrade image through the firmware recovery mode web page at
192.168.1.1.
Signed-off-by: Kim DoHyoung <azusahmr@k-on.kr>
Aligned to size of mtd-concat partition (firmware)
- in this device we have mtd-concat driver that joins multiple flash partitions
- since sysupgrade works with mtd devices the rootfs partition is already joined
- we can use a bigger sysupgrade image than factory/TFTP install images
Checked on hardware, no issues seen.
No modifications to images other than sysupgrade (i.e. TFTP / recovery images not touched).
Signed-off-by: Russell Morris <rmorris@rkmorris.us>
These patches were earlier mislabled as v6.1 and therefore dropped. They
are in fact from v6.2.
Fixes boot failure on ASUS TUF-AX4200
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The NuCom R5010UNv2 is a wifi fast ethernet router, 2.4 GHz single band
with two external antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 16 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43217 802.11bgn (onboard)
- USB: 1x 2.0
- Buttons: 2x
- ADSL: yes, unsupported
- LEDs: 7x
- UART: yes
Installation via CFE web UI:
1. Power off the router and press the RESET button
2. Power on the router and wait 12 or more seconds
3. Release the RESET button
4. Browse to http://192.168.1.1 and upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The data RAC is left disabled by the bootloader in some SoCs, at least in
the core it boots from. Enabling this feature increases the performance up
to +30% depending on the task.
The kernel enables the whole RAC unconditionally on BMIPS3300 CPUs. Enable
the data RAC in a similar way also for BMIPS4350.
Tested on DGND3700 v1 (BCM6368) and HG556a (BCM6358).
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
In pushing and refreshing 6.1 pull request, dbac8e8819 ("ipq806x: 6.1:
copy patches, files and config from 5.15") wasn't correctly updated and
resulted in missing the dts for Netgear XR450. This caused compilation
error with Netgear R7800 or XR500 if testing kernel version was used.
Fix this by adding back the missing dts for Netgear XR450 from kernel
5.15.
Fixes: dbac8e8819 ("ipq806x: 6.1: copy patches, files and config from 5.15")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Critical thermal trips patch got merged upstream, so use the upstreamed
patch and mark it as backport along with the future 6.5 kernel version.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Without it the WAN port won't be initialized properly.
Fixes: 8f578c15b3 ("rockchip: add NanoPi R2C support")
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Currently, Compex WPQ873 images are not including the ath11k BDF-s at all
and this means that there is no WLAN support, so lets include the BDF as
its already packaged.
Fixes: 07c45c0859 ("ipq807x: add support for Compex WPQ873")
Signed-off-by: Robert Marko <robimarko@gmail.com>
Move default cpufreq governor from ONDEMAND to PERFORMANCE. The temp
increase is just 2°C and Watt usage the change is minimal in the order
of additional millwatt. The SoC and krait in general looks to suffer for
some problem with cache scaling. To have better system stability, force
cpu freq and cache freq to the max value supported by the system. This
follows mvebu platform where cpufreq is broken and cause minimal
temp/watt increase.
User can still tweak the governor to ondemand using sysfs entry if
needed.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Now that qualcommax exists as a target and dependencies have been updated
let move ipq807x support to subtarget of qualcommax.
This is mostly copy/paste with the exception of having to update SSDK and
NSS-DP to use CONFIG_TARGET_SUBTARGET.
This is a preparation for later addition of IPQ60xx and IPQ50xx support.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Currently, ipq807x only covers Qualcomm IPQ807x SoC-s.
However, Qualcomm also has IPQ60xx and IPQ50xx SoC-s under the AX WiSoC-s
and they share a lot of stuff with IPQ807x, especially IPQ60xx so to avoid
duplicating kernel patches and everything lets make a common target with
per SoC subtargets.
Start doing that by renaming ipq807x to qualcommax so that dependencies
on ipq807x target can be updated.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Power LED register is wrong at dts. Fix it.
Fixes: 9ceeaf4c6c ("brcm63xx: switch to hardware led controllers")
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The Comtrend VG-8050 is a wifi gigabit ethernet router, 2.4 GHz single band with
two external antennas.
Hardware:
- SoC: Broadcom BCM63169
- CPU: dual core BMIPS4350 @ 400Mhz
- RAM: 128 MB DDR
- Flash: 128 MB NAND
- LAN switch: Broadcom BCM53125, 5x 1Gbit
- Wifi 2.4 GHz: SoC (BCM63268) 802.11bgn
- USB: 1x 2.0 (optional)
- Buttons: 2x (reset)
- LEDs: yes
- UART: yes
Installation via CFE web UI:
1. Power off the router.
2. Press reset button near the power switch.
3. Keep it pressed while powering up during ~20+ seconds.
4. Browse to http://192.168.1.1 and upload the firmware.
5. Wait a few minutes for it to finish.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
All switch ports are labeled as port@address so let's follow the same pattern.
Fixes: ed79519b8d ("bmips: add support for Netgear DGND3700 v1, DGND3800B")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Sercomm AD1018 is a wifi fast ethernet router, 2.4 GHz single band with
two internal antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 @ 320Mhz
- RAM: 64 MB (v1) / 128 MB (v2) DDR
- Flash: 128 MB NAND
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: miniPCI Broadcom BCM43217 802.11bgn
- USB: 1x 2.0
- Buttons: 3x (reset)
- LEDs: yes
- UART: yes
Installation via OEM web UI:
1. Use the admin credentials to login via web UI
2. Go to Managament->Update firmware and select the OpenWrt CFE firmware
3. Press "Update Firmware" button and wait some minutes until it finish
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This is needed on devices like Sercomm AD1018 for booting recent kernels due
to bigger kernels.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Maintaining bcm63xx is a nightmare due to the amount of devices and patches
required, since every board requires an individual patch due to the lack of
full device tree compatibility.
Moreover, there are a lot of devices supported on this target which won't work
due to not having enough resources (16M-32M of RAM and/or 4M of flash).
Therefore, any development efforts should be focused on bmips and support for
those devices with enough resources should be added on bmips target.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Actiontec R1000H is a gigabit wifi router, 2.4 GHz single band with
two external antennas. It comes with a coaxial HomePNA port.
Hardware:
- SoC: Broadcom BCM6368
- CPU: dual core BMIPS4350 V3.1 @400Mhz
- RAM: 64 MB DDR
- Flash: 32 MB parallel NOR
- LAN switch: Broadcom BCM53115, 5x 1Gbit
- LAN coaxial : 1x HPNA 3.1, CG3211 + CG3213
- Wifi 2.4 GHz: Broadcom BCM4322 802.11bgn
- USB: 1x 2.0
- Buttons: 2x, 1 reset
- LEDs: 7x
- UART: yes
The HPNA hardware probably needs a firmware to make the coaxial port work.
In the OEM firmware, it's apparently sent with an utility (inhpna) through
the ethernet port.
Installation via CFE web UI:
1. Connect the UART serial port.
2. Power on the router and press enter at the console prompt to stop the
bootloader.
4. Browse to http://192.168.1.1 and upload the OpenWrt CFE firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Now that JFFS2 cleanmarkers are supported on the standard nand_do_upgrade
function we can start using it on bcm63xx.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Now that JFFS2 cleanmarkers are supported on the standard nand_do_upgrade
function we can start using it on bmips.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The DGND3700v2 renames the cferam bootloader from cferam to cfeXXX, where XXX
is the number of firmware upgrades performed by the bootloader. Other bcm63xx
devices rename cferam.000 to cferam.XXX, but this device is special because
the cferam name isn't changed on the first firmware flashing but it's changed
on the subsequent ones.
Therefore, we need to look for "cfe" instead of "cferam" to properly detect
the cferam partition and fix the bootlop.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The DGND3700v2 renames the cferam bootloader from cferam to cfeXXX, where XXX
is the number of firmware upgrades performed by the bootloader. Other bcm63xx
devices rename cferam.000 to cferam.XXX, but this device is special because
the cferam name isn't changed on the first firmware flashing but it's changed
on the subsequent ones.
Therefore, we need to look for "cfe" instead of "cferam" to properly detect
the cferam partition and fix the bootlop.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Some devices rename cferam bootloader using specific patterns and don't follow
broadcom standards for renaming cferam files. This requires supporting
different cferam file names.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>