Commit Graph

795 Commits

Author SHA1 Message Date
Nick Hainke
88527294cd ath79: add Netgear WNDAP360
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A

Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
   (9600,8N1)
   screen  /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
   setenv ipaddr 192.168.1.1
   setenv serverip 192.168.1.42
   saveenv
4. Reset the device
   reset
5. Hit again the spacebar
6. Now load the image via tftp:
   tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
   bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.

https://openwrt.org/toh/netgear/wndap360

The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:

&ath9k0 {
       nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
       nvmem-cell-names = "mac-address", "calibration";
};

&ath9k1 {
       nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
       nvmem-cell-names = "mac-address", "calibration";
};

&art {
	...
	cal_art_1000: cal@1000 {
		reg = <0x1000 0xeb8>;
	};

	cal_art_5000: cal@5000 {
		reg = <0x5000 0xeb8>;
	};
};

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-04-30 23:56:47 +02:00
PtilopsisLeucotis
6e9c814022 ath79: add USB power control for GL-AR300M series
Add USB power control in DTS for GL.iNet models:
- AR300M;
- AR300M-Ext;
- AR300M16;
- AR300M16-Ext.

Signed-off-by: PtilopsisLeucotis <PtilopsisLeucotis@yandex.com>
2022-04-30 23:56:47 +02:00
Foica David
063e9047cc ath79: add support for TP-Link Deco M4R v1 and v2
This commit adds support for the TP-Link Deco M4R (it can also be M4,
TP-Link uses both names) v1 and v2. It is similar hardware-wise to the
Archer C6 v2. Software-wise it is very different. V2 has a bit different
layout from V1 but the chips are the same and the OEM firmware is the same
for both versions.

Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR

Flashing:

The device's bootloader only accepts images that are signed using
TP-Link's RSA key, therefore this way of flashing is not possible. The
device has a web GUI that should be accessible after setting up the device
using the app (it requires the app to set it up first because the web GUI
asks for the TP-Link account password) but for unknown reasons, the web
GUI also refuses custom images.

There is a debug firmware image that has been shared on the device's
OpenWrt forum thread that has telnet unlocked, which the bootloader will
accept because it is signed. It can be used to transfer an OpenWrt image
file over to the device and then be used with mtd to flash the device.

Pre-requisites:

- Debug firmware.
- A way of transferring the file to the router, you can use an FTP server
  as an example.
- Set a static IP of 192.168.0.2/255.255.255.0 on your computer.
- OpenWrt image.

Installation:

- Unplug your router and turn it upside down. Using a long and thin object
  like a SIM unlock tool, press and hold the reset button on the router and
  replug it. Keep holding it until the LED flashes yellow.
- Open 192.168.0.1. You should see the bootloader recovery's webpage.
  Choose the debug firmware that you downloaded and flash it. Wait until the
  router reboots (at this stage you can remove the static IP).

- Open a terminal window and connect to the router via telnet (the primary
  router should have a 192.168.0.1 IP address, secondary routers are
  different).
- Transfer the file over to the router, you can use curl to download it
  from the internet (use the insecure flag and make sure your source accepts
  insecure downloads) or from an FTP server.
- The router's default mtd partition scheme has kernel and rootfs
  separated. We can use dd to split the OpenWrt image file and flash it with
  mtd:

   dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256
   dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256

- Once the images are ready, you have to flash the device using mtd
  (make sure to flash the correct partitions or you may be left with a
  hard bricked router):

   mtd write kernel.bin kernel
   mtd write rootfs.bin rootfs

- Flashing is done, reboot the device now.

Signed-off-by: Foica David <superh552@gmail.com>
2022-04-30 23:56:47 +02:00
Sander Vanheule
8fa4361f55 ath79: add support for TP-Link EAP265 HD
The EAP265 HD is a rebadged EAP245v3, so images are compatible with both
devices.

Link: https://fccid.io/TE7EAP265HD/Letter/6-Request-for-FCC-Change-ID-4823578.pdf
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-04-27 20:29:37 +02:00
David Musil
e20de22442 ath79: add support for MikroTik RouterBOARD wAP-2nD (wAP)
The MikroTik RouterBOARD wAP-2nd (sold as wAP) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.

Specifications:
 - SoC: Qualcomm Atheros QCA9533
 - Flash: 16 MB (SPI)
 - RAM: 64 MB
 - Ethernet: 1x 10/100 Mbps (PoE in)
 - WiFi: AR9531 2T2R 2.4 GHz (SoC)
 - 3x green LEDs (1x lan, 1x wlan, 1x user)

 See https://mikrotik.com/product/RBwAP2nD for more info.

Flashing:
 TFTP boot initramfs image and then perform sysupgrade. Follow common
 MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Note: following 781d4bfb39
 The network setup avoids using the integrated switch and connects the
 single Ethernet port directly. This way, link speed (10/100 Mbps) is
 properly reported by eth0.

Signed-off-by: David Musil <0x444d@protonmail.com>
2022-04-18 07:24:09 +02:00
Andrew Powers-Holmes
6f1efb2898 ath79: add support for Sophos AP100/AP55 family
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.

The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.

Specifications common to all models:
 - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
 - 128 MB RAM
 - 16 MB SPI flash
 - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
 - Green and Red status LEDs sharing a single external light-pipe
 - Reset button on PCB[1]
 - Piezo beeper on PCB[2]
 - Serial UART header on PCB
 - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC

Unique to AP100 and AP100C:
 - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
 - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP55 and AP55C:
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP100 and AP55:
 - External RJ45 serial console port[3]
 - USB 2.0 Type A port, power controlled via GPIO 11

Flashing instructions:

This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.

To flash via XG appliance:
 - Register on Sophos' website for a no-cost Home Use XG firewall license
 - Download and install the XG software on a compatible PC or virtual
   machine, complete initial appliance setup, and enable SSH console access
 - Connect the target AP device to the XG appliance's LAN interface
 - Approve the AP from the XG Web UI and wait until it shows as Active
   (this can take 3-5 minutes)
 - Connect to the XG appliance over SSH and access the Advanced Console
   (Menu option 5, then menu option 3)
 - Run `sudo awetool` and select the menu option to connect to an AP via
   SSH. When prompted to enable SSH on the target AP, select Yes.
 - Wait 2-3 minutes, then select the AP from the awetool menu again. This
   will connect you to a root shell on the target AP.
 - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
 - Run `mtd -r write /tmp/openwrt.bin astaro_image`
 - When complete, the access point will reboot to OpenWRT.

To flash via U-Boot serial console:
 - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
   netmask 255.255.255.0
 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
 - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
 - Connect the AP ethernet to your PC's ethernet port
 - Connect a terminal to the UART at 115200 8/N/1 as usual
 - Power on the AP and press a key to cancel autoboot when prompted
 - Run the following commands at the U-Boot console:
    - `tftpboot`
    - `cp.b $fileaddr 0x9f070000 $filesize`
    - `boot`
 - The access point will boot to OpenWRT.

MAC addresses as verified by OEM firmware:

use   address     source
LAN   label       config 0x201a (label)
2g    label + 1   art 0x1002    (also found at config 0x2004)
5g    label + 9   art 0x5006

Increments confirmed across three AP55C, two AP55, and one AP100C.

These changes have been tested to function on both current master and
21.02.0 without any obvious issues.

[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
    any GPIO. Shorting an unpopulated resistor next to the driver circuitry
    should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
    works in OpenWRT without additional configuration, at least on my
    three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
    the device's top cover. On AP100C/AP55C models, the PCB must be removed
    for access; three screws secure it to the case.
    Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX

Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
2022-04-16 16:59:29 +02:00
Ryan Mounce
c2140e32ce ath79: add support for MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)
This patch adds support for the MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)

Specifications:
- SoC: QCA9558
- RAM: 128 MB
- Flash: 16 MB SPI
- 2.4GHz WLAN: 3x3:3 802.11n on SoC
- 5GHz WLAN: 3x3:3 802.11ac on QCA9880 connected via PCIe
- Switch: 5x 1000/100/10 on QCA8337 connected via RGMII
- SFP cage: connected via SGMII (tested with genuine & generic GLC-T)
- USB: 1x type A, GPIO power switch
- PoE: Passive input on Ether1, GPIO switched passthrough to Ether5
- Reset button
- "SFP" LED connected to SoC
- Ethernet LEDs connected to QCA8337 switch
- Green WLAN LED connected to QCA9880

Not working:
- Red WLAN LED

Installation:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
2022-04-16 16:59:29 +02:00
Yousong Zhou
5c147d36ba ath79: port HiWiFi HC6361 from ar71xx
The device was added for ar71xx target and dropped during the ath79
transition, mainly because of the ascii mac address stored in bdinfo
partition

Device page, http://wiki.openwrt.org/toh/hiwifi/hc6361

The vendor u-boot image accepts sysupgrade.bin image with specific
requirements, including having squashfs signature "hsqs" at file offset
0x140000.  This is not possible now that OpenWrt kernel image is at
least 2MB with the signature at offset 0x240000.

Installation of current build of OpenWrt now requires a bootstrap step
of installing an earlier version first.

 - If the vendor u-boot accepts sysupgrade image, hc6361 image of LEDE
   release should work
 - If the vendor u-boot accepts only verified flashsmt image, install
   the one in the above device page.  The image is based on Barrier
   Breaker

   SHA256SUM of the flashsmt image

	81b193b95ea5f8e5c30cd62fa9facf275f39233be4fdeed7038f3deed2736156

After the bootstrap step, current build of OpenWrt can be installed
there fine.

Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
2022-04-16 01:27:09 +00:00
Thibaut VARÈNE
8084ec8061 ath79: cleanup mikrotik routerboot partitions
For some reason useless labels and aliases have been propagated through
copy-paste. Before the issue spreads any further, this patch cleans up
all relevant DTS files to the canonical form, bringing ath79 in line
with other mikrotik platforms (ramips and ipq40xx).

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Thibaut VARÈNE
a05dcb0724 ath79: add support for Yuncore A930
Specification:

- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Thibaut VARÈNE
c91df224f5 ath79: add support for Yuncore XD3200
Specification:

- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)

LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Matthias Schiffer
aee9ccf5c1
ath79: fix label MAC address for Ubiquiti UniFi AP Outdoor+
The label has the MAC address of eth0, not the WLAN PHY address. We can
merge the definition back into ar7241_ubnt_unifi.dtsi, as both DTS
derived from it use the same interface for their label MAC addresses
after all.

Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
2022-03-30 17:48:30 +02:00
David Bauer
4551bfd91f ath79: fix link for long cables with OCEDO Raccoon
The OCEDO Raccoon had significant packet-loss with cables longer than 50
meter. Disabling EEE restores normal operation.

Also change the ethernet config to reduce loss on sub-1G links.

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-03-25 23:58:09 +01:00
Matthias Schiffer
dc23df8a8c
ath79: change Ubiquiti UniFi AP model name to include "AP"
While it hasn't always been clear whether the "AP" is part of the model
name on the Ubiquiti website, we include it for all other pre-AC
variants (AP Pro and the AP Outdoor+). Add it to the original UniFi AP
as well for consistency.

Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
2022-03-24 09:30:35 +01:00
Matthias Schiffer
2a02b70499
ath79: fix label MAC address for Ubiquiti UniFi
The label has the MAC address of eth0, not the WLAN PHY address.

Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
2022-03-24 09:22:06 +01:00
Pascal Coudurier
0905b07139 ath79: improve support for GL.iNet GL-XE300
- fix eth0 eth1 sharing same mac so it conforms to the behavior stated
  in the original commit and the way it is in vendor firmware :
  WAN is label, LAN is label +1 and WLAN is label +2
- add default leds config
- add default network config

Signed-off-by: Pascal Coudurier <coudu@wanadoo.fr>
2022-03-17 21:55:10 +01:00
Michael Pratt
41be1a2de2 ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC

Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:xb art 0x0
  phy1 2.4G *:xc ---
  phy0 5GHz *:xd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:58 +01:00
Michael Pratt
56716b578e ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC

Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9557 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - QCA9882 WLAN	PCI card 168c:003c, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:e1 art 0x0
  phy1 2.4G *:e2 ---
  phy0 5GHz *:e3 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Michael Pratt
561f46bd02 ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN

Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI on-board 168c:0030, 5 GHz, 2x2
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	1839ZFG V59C1512164QFJ25
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:7d art 0x0
  phy1 2.4G *:7e ---
  phy0 5GHz *:7f ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Sven Schwermer
591a2b9525 ath79: Add LED labels for Airtight C-75
Keep labels since OpenWrt userland tooling (get_dt_led) depends on them
to find the LED instances referenced by the led-* aliases.

The label for the amber power LED was removed in 4eefdc7adb.

Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
2022-03-13 12:39:58 +09:00
Jeffery To
62125c3ad5 ath79: fix button labels for WZR-HP-AG300H and WZR-600DHP
These were present in ar71xx but overlooked when porting to ath79.

Fixes: 480bf28273 ("ath79: add support for Buffalo WZR-HP-AG300H")

Signed-off-by: Jeffery To <jeffery.to@gmail.com>
2022-03-08 18:33:42 +01:00
Thibaut VARÈNE
eb38af7881 ath79: add support for MikroTik RouterBOARD mAP lite
The MikroTik RouterBOARD mAPL-2nd (sold as mAP Lite) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.

See https://mikrotik.com/product/RBmAPL-2nD for more info.

Specifications:
 - SoC: Qualcomm Atheros QCA9533
 - RAM: 64 MB
 - Storage: 16 MB NOR
 - Wireless: Atheros AR9531 (SoC) 802.11b/g/n 2x2:2, 1.5 dBi antenna
 - Ethernet: Atheros AR8229 (SoC), 1x 10/100 port, 802.3af/at PoE in
 - 4 user-controllable LEDs:
   · 1x power (green)
   · 1x user (green)
   · 1x lan (green)
   · 1x wlan (green)

Flashing:
 TFTP boot initramfs image and then perform sysupgrade. Follow common
 MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Note: following 781d4bfb39
 The network setup avoids using the integrated switch and connects the
 single Ethernet port directly. This way, link speed (10/100 Mbps) is
 properly reported by eth0.

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-03-08 18:33:42 +01:00
Sven Schwermer
4eefdc7adb ath79: Add green power LED to Airtight C-75
In addition to the missing green LED definition, the polarity of the
amber power LED was incorrect which is fixed here.

Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
2022-03-08 18:33:42 +01:00
Piotr Dymacz
9c335accfe ath79: add support for TP-Link Archer A9 v6
TP-Link Archer A9 v6 (FCCID: TE7A9V6) is an AC1900 Wave-2 gigabit home
router based on a combination of Qualcomm QCN5502 (most likely a 4x4:4
version of the QCA9563 WiSOC), QCA9984 and QCA8337N.

The vendor's firmware content reveals that the same device might be
available on the US market under name 'Archer C90 v6'. Due to lack of
access to such hardware, support introduced in this commit was tested
only on the EU version (sold under 'Archer A9 v6' name).

Based on the information on the PL version of the vendor website, this
device has been already phased out and is no longer available.

Specifications:

- Qualcomm QCN5502 (775 MHz)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 5x Gbps Ethernet (Qualcomm QCA8337N over SGMII)
- Wi-Fi:
  - 802.11b/g/n on 2.4 GHz: Qualcomm QCN5502* in 4x4:4 mode
  - 802.11a/n/ac on 5 GHz: Qualcomm QCA9984 in 3x3:3 mode
  - 3x non-detachable, dual-band external antennas (~3.5 dBi for 5 GHz,
    ~2.2 dBi for 2.4 GHz, IPEX/U.FL connectors)
  - 1x internal PCB antenna for 2.4 GHz (~1.8 dBi)
- 1x USB 2.0 Type-A
- 11x LED (4x connected to QCA8337N, 7x connected to QCN5502)
- 2x button (reset, WPS)
- UART (4-pin, 2.54 mm pitch) header on PCB (not populated)
- 1x mechanical power switch
- 1x DC jack (12 V)

  *) unsupported due to missing support for QCN550x in ath9k

UART system serial console notice:

The RX signal of the main SOC's UART on this device is shared with the
WPS button's GPIO. The first-stage U-Boot by default disables the RX,
resulting in a non-functional UART input.
If you press and keep 'ENTER' on the serial console during early
boot-up, the first-stage U-Boot will enable RX input.

Vendor firmware allows password-less access to the system over serial.

Flash instruction (vendor GUI):

1. It is recommended to first upgrade vendor firmware to the latest
   version (1.1.1 Build 20210315 rel.40637 at the time of writing).
2. Use the 'factory' image directly in the vendor's GUI.

Flash instruction (TFTP based recovery in second-stage U-Boot):

1. Rename 'factory' image to 'ArcherA9v6_tp_recovery.bin'
2. Setup a TFTP server on your PC with IP 192.168.0.66/24.
3. Press and hold the reset button for ~5 sec while turning on power.
4. The device will download image, flash it and reboot.

Flash instruction (web based recovery in first-stage U-Boot):

1. Use 'CTRL+C' during power-up to enable CLI in first-stage U-Boot.
2. Connect a PC with IP set to 192.168.0.1 to one of the LAN ports.
3. Issue 'httpd' command and visit http://192.168.0.1 in browser.
4. Use the 'factory' image.

If you would like to restore vendor's firmware, follow one of the
recovery methods described above.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-02-27 16:54:55 +01:00
Piotr Dymacz
131671bc54 ath79: add support for ALFA Network Tube-2HQ
ALFA Network Tube-2HQ is a successor of the Tube-2H/P series (EOL) which
was based on the Atheros AR9331. The new version uses Qualcomm QCA9531.

Specifications:

- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 64 or 128 MB of RAM (DDR2)
- 16+ MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
  (802.3at/af PoE support with optional module)
- 1T1R 2.4 GHz Wi-Fi with external PA (SE2623L, up to 27 dBm) and LNA
- 1x Type-N (male) antenna connector
- 6x LED (5x driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- UART (4-pin, 2.00 mm pitch) header on PCB

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:

1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
   device, wait for first blink of all LEDs (indicates network setup),
   then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-02-27 16:54:54 +01:00
Piotr Dymacz
53ac6ee552 ath79: utilize ath9k 'nvmem-cells' on ALFA Network boards
Drop custom 'mtd-cal-data' and switch to 'nvmem-cells' based solution
for fetching radio calibration data and its MAC address.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-02-27 15:09:36 +01:00
Piotr Dymacz
f645bacd06 ath79: reduce 'nvmem-cells' definitions on ALFA Network QCA9531 boards
All the QCA9531 based boards from ALFA Network are based on the same
design and share a common DTSI: 'qca9531_alfa-network_r36a.dtsi'.

Instead of defining 'nvmem-cells' for the MAC address in every device's
DTS, move definition to the common DTSI file.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-02-27 15:09:36 +01:00
Lech Perczak
7ac8da0060 ath79: support ZTE MF286A/R
ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.

Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN:
  [MF286A] MDM9230-based category 6 internal LTE modem
  [MF286R] PXA1826-based category 7 internal LTE modem
  in extended  mini-PCIE form factor, with 3 internal antennas and
  2 external antenna connections, single mini-SIM slot.
- FXS: one external ATA port (handled entirely by modem part) with two
  physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
  Signal state) handled entirely by modem. 4 link status LEDs handled by
  the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
  monitoring handled by modem.
- Label MAC device: eth0

The device shares many components with previous model, MF286, differing
mostly by a Wave2 5GHz radio, flash layout and internal LED color.
In case of MF286A, the modem is the same as in MF286. MF286R uses a
different modem based on Marvell PXA1826 chip.

Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully
supported, but it is expected to use comgt-ncm for connection, as it
uses standard 3GPP AT commands for connection establishment.

Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
  converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.

Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.

STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.

STEP 1: gaining root shell:

Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.

Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
  then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
  "http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.

Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.

- Set IP of your computer to 192.168.0.22. (or appropriate subnet if
  changed)
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
  https://busybox.net/downloads/binaries/1.21.1/busybox-mips
  and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
  filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
  field named "addURLFilter", so it looks like this:
  <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
    class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
  execute it. You should be able to log in at port 23, using
  "admin/admin" as credentials.

Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.

STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
It is highly recommended to perform backup using both methods, to avoid
hassle of reassembling firmware images in future, if a restore is
needed.

Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:

  ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
  ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin

And keep them in a safe place, should a restore be needed in future.

Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
  port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:

  cat /proc/mtd

  It should show the following:
  mtd0: 000a0000 00010000 "u-boot"
  mtd1: 00020000 00010000 "u-boot-env"
  mtd2: 00140000 00010000 "reserved1"
  mtd3: 000a0000 00020000 "fota-flag"
  mtd4: 00080000 00020000 "art"
  mtd5: 00080000 00020000 "mac"
  mtd6: 000c0000 00020000 "reserved2"
  mtd7: 00400000 00020000 "cfg-param"
  mtd8: 00400000 00020000 "log"
  mtd9: 000a0000 00020000 "oops"
  mtd10: 00500000 00020000 "reserved3"
  mtd11: 00800000 00020000 "web"
  mtd12: 00300000 00020000 "kernel"
  mtd13: 01a00000 00020000 "rootfs"
  mtd14: 01900000 00020000 "data"
  mtd15: 03200000 00020000 "fota"
  mtd16: 01d00000 00020000 "firmware"

  Differences might indicate that this is NOT a MF286A device but
  one of other variants.
- Copy over all MTD partitions, for example by executing the following:

  for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \
  /var/usb_disk/mtd$i; done

  "Firmware" partition can be skipped, it is a concatenation
  of "kernel" and "rootfs".

- If the count of MTD partitions is different, this might indicate that
  this is not a MF286A device, but one of its other variants.
- (optionally) rename the files according to MTD partition names from
  /proc/mtd
- Unmount the filesystem:

  umount /var/usb_disk; sync

  and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
  firmware. This is especially important, because stock firmware for
  this device is not available officially, and is usually customized by
  the mobile providers.

STEP 3: Booting initramfs image:

Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
  set your computer's IP address as 192.168.0.22. This is the default
  expected by U-boot. You may wish to change that, and alter later
  commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:

  setenv serverip 192.168.0.22
  setenv ipaddr 192.168.0.1
  tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin
  bootm 0x81000000

  (Replace server IP and router IP as needed). There is no  emergency
  TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
  installation.

Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- After backing up the previous MTD contents, write the images to the
  "firmware" MTD device, which conveniently concatenates "kernel" and
  "rootfs" partitions that can fit the initramfs image:

  nandwrite -p /dev/<firmware-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin

- If write is OK, reboot the device, it will reboot to OpenWrt
  initramfs:

  reboot -f

- After rebooting, SSH into the device and use sysupgrade to perform
  proper installation.

Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
  flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
  and name it root_uImage:

  dd if=/dev/zero of=padding.bin bs=8M count=1

  cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin >
  root_uImage

- Set up a TFTP server at 192.0.0.1/8. Router will use random address
  from that range.
- Put the previously generated "root_uImage" into TFTP server root
  directory.
- Deliberately erase "kernel" partition" using stock firmware after
  taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
  initramfs image, which will let you perform actual installation using
  sysupgrade. This might take a considerable time, sometimes the router
  doesn't establish Ethernet link properly right after booting. Be
  patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
  light up. At this moment, perform power-on reset, and wait for OpenWrt
  initramfs to finish booting. Then proceed to actual installation.

STEP 4: Actual installation:
- Set your computer IP to 192.168.1.22/24
- scp the sysupgrade image to the device:

  scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \
  root@192.168.1.1:/tmp/

- ssh into the device and execute sysupgrade:

  sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin

- Wait for router to reboot to full OpenWrt.

STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:

config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth '<auth>' # As required, usually 'none'
        option pincode '<pin>' # If required by SIM
        option apn '<apn>' # As required by ISP
        option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'

For example, the following works for most polish ISPs
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth 'none'
        option apn 'internet'
        option pdptype 'ipv4'

The required minimum is:
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
In this case, the modem will use last configured APN from stock
firmware - this should work out of the box, unless your SIM requires
PIN which can't be switched off.

If you have build with LuCI, installing luci-proto-qmi helps with this
task.

Restoring the stock firmware:

Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware
The only partitions you really care about are "web", "kernel", and
"rootfs". These are required to restore the stock firmware through
factory TFTP recovery.

Because kernel partition was enlarged, compared to stock
firmware, the kernel and rootfs MTDs don't align anymore, and you need
to carve out required data if you only have backup from stock FW:
- Prepare kernel image
  cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin
  truncate -s 4M owrt_kernel_restore.bin
- Cut off first 1MB from rootfs
  dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1
- Prepare image to write to "ubi" meta-partition:
  cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \
  mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \
  owrt_ubi_ubi_restore.bin

You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.

Method 1: Using initramfs:
This method is recmmended if you took your backup from within OpenWrt
initramfs, as the reassembly is not needed.
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
  (scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
  mtd write <kernel_mtd> mtd4_kernel.bin
  rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
  restore them individually. Otherwise you might run out of space in
  tmpfs:

  (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
  rm mtd3_ubiconcat0.bin

  (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
  rm mtd5_ubiconcat1.bin

- If the write was correct, force a device reboot with

  reboot -f

Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
  your drive
- Mount your flash drive

  mkdir /tmp/usb

  mount /dev/sda1 /tmp/usb

- Remount your UBI volume at /overlay to R/O

  mount -o remount,ro /overlay

- Write back the kernel and ubi partitions from USB drive

  cd /tmp/usb
  mtd write mtd4_kernel.bin /dev/<kernel_mtd>

  mtd write mtd9_ubi.bin /dev/<kernel_ubi>

- If everything went well, force a device reboot with
  reboot -f

Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.

Method 3: using built-in TFTP recovery:
This method is recommended if you took backups using stock firmware.
- Assemble a recovery rootfs image from backup of stock partitions by
  concatenating "web", "kernel", "rootfs" images dumped from the device,
  as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
  TFTP pre-installation method.

Quirks and known issuesa
- It was observed, that CH340-based USB-UART converters output garbage
  during U-boot phase of system boot. At least CP2102 is known to work
  properly.
- Kernel partition size is increased to 4MB compared to stock 3MB, to
  accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
  image is at 2.5MB which is dangerously close to the limit. This has no
  effect on booting the system - but keep that in mind when reassembling
  an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
  you used before in stock firmware first. If you need to change it,
  please use protocok '3g' to establish connection once, or use the
  following command to change APN (and optionally IP type) manually:
  echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the blue debug LED hidden
  inside the case. All other LEDs are controlled by modem, on which the
  router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
  correct GPIO mapping. All other LEDs are controlled by modem,
  including this one in stock firmware. GPIO19, mapped there only acts
  as a gate, while the actual signal source seems to be 5GHz Wi-Fi
  radio, however it seems it is not the LED exposed by ath10k as
  ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
  reset of whole board, not only the modem. It is attached to
  gpio-restart driver, to restart the modem on reboot as well, to ensure
  QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
  for OpenWrt operation at all - have fun lurking around.
  The same modem module is used as in older MF286.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-26 17:46:10 +01:00
Alex Henrie
fe1ecf1fcb ath79: add Zyxel EMG2926-Q10A
The Zyxel EMG2926-Q10A is 99% the Zyxel NBG6716, but the bootloader
expects a different product name when flashing over TFTP. Also, the
EMG2926-Q10A always has 128 MiB of NAND flash whereas the NBG6716
reportedly can have either 128 MiB or 256 MiB.

Signed-off-by: Alex Henrie <alexhenrie24@gmail.com>
2022-02-26 13:36:30 +01:00
Sungbo Eo
3e3e78de11 ath79: utilize nvmem on Netgear EX7300 v2
mtd-mac-address should no longer be used after commit 5ae2e78639
("kernel: drop support for mtd-mac-address"). Convert it to nvmem-cells.

While at it, also convert OpenWrt's custom mtd-cal-data property and
userspace pre-calibration data extraction to the nvmem implementation.

Note: nvmem-cells in QCN5502 wmac has not been tested.

Fixes: c32008a37b ("ath79: add partial support for Netgear EX7300v2")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-02-20 13:45:06 +09:00
Daniel González Cabanelas
73ea763c0d ath79: Add support for Ubiquiti NanoBeam AC Gen1 XC
The Ubiquiti NanoBeam AC Gen1 XC (NBE-5AC-19) is an outdoor 802.11ac CPE
with a waterproof casing (ultrasonically welded) and bulb shaped.

Hardware:
 - SoC: Qualcomm Atheros QCA9558
 - RAM: 128 MB DDR2
 - Flash: 16 MB SPI NOR
 - Ethernet: 1x GbE, AR8033 phy connected via SGMII
 - PSU: 24 Vdc passive PoE
 - WiFi 5 GHz: Qualcomm Atheros QCA988X
 - Buttons: 1x reset
 - LEDs: 1x power, 1x Ethernet, 4x RSSI, all blue
 - Internal antenna: 19 dBi planar

Installation from stock airOS firmware:
 - Follow instructions for XC-type Ubiquiti devices on OpenWrt wiki at
   https://openwrt.org/toh/ubiquiti/common

Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
2022-02-19 13:10:01 +01:00
Mauri Sandberg
b99aee5080 ath79: use gpio-cascade for Buffalo WZR-HP-G300NH
Switch to a generic GPIO cascade driver.

Signed-off-by: Mauri Sandberg <maukka@ext.kapsi.fi>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [missing commit description]
2022-02-19 13:10:01 +01:00
Jakob Riepler
e0683839b8 ath79: add support for Mikrotik LHG 5
The MikroTik LHG 5 series (product codes RBLHG-5nD, RBLHG-5HPnD and
RBLHG-5HPnD-XL) devices are an outdoor 5GHz CPE with a 24.5dBi or 27dBi
integrated antenna built around the Atheros AR9344 SoC.
It is very similar to the SXT Lite5 series which this patch is based
upon.

Specifications:
 - SoC: Atheros AR9344
 - RAM: 64 MB
 - Storage: 16 MB SPI NOR
 - Wireless: Atheros AR9340 (SoC) 802.11a/n 2x2:2
 - Ethernet: Atheros AR8229 switch (SoC), 1x 10/100 port,
    8-32 Vdc PoE in
 - 8 user-controllable LEDs:
  - 1x power (blue)
  - 1x user (white)
  - 1x ethernet (green)
  - 5x rssi (green)

 See https://mikrotik.com/product/RBLHG-5nD for more details.

Notes:
 The device was already supported in the ar71xx target.

Flashing:
 TFTP boot initramfs image and then perform a sysupgrade. Follow common
 MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Jakob Riepler <jakob+openwrt@chaosfield.at>
2022-02-07 00:03:27 +01:00
Wenli Looi
c32008a37b ath79: add partial support for Netgear EX7300v2
Hardware
--------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless No1: QCN5502 on-chip 2.4GHz 4x4
Wireless No2: QCA9984 pcie 5GHz 4x4
USB: none

Installation
------------
Flash the factory image using the stock web interface or TFTP the
factory image to the bootloader.

What works
----------
- LEDs
- Ethernet port
- 5GHz wifi (QCA9984 pcie)

What doesn't work
-----------------
- 2.4GHz wifi (QCN5502 on-chip)
  (I was not able to make this work, probably because ath9k requires
  some changes to support QCN5502.)

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-02-07 00:03:27 +01:00
Saiful Islam
43ec6d64bb ath79: add support for TP-Link TL-WR841HP v2
Specifications:
- AR9344 SoC, 8 MB nor flash, 64 MB DDR2 RAM
- 2x2 9dBi antenna, wifi 2.4Ghz 300Mbps
- 4x Ethernet LAN 10/100, 1x Ethernet WAN 10/100
- 1x WAN, 4x LAN, Wifi, PWR, WPS, SYSTEM Leds
- Reset/WPS button
- Serial UART at J4 onboard: 3.3v GND RX TX, 1152008N1

MAC addresses as verified by OEM firmware:

vendor   OpenWrt   address
LAN      eth0      label
WAN      eth1      label + 1
WLAN     phy0      label

The label MAC address was found in u-boot 0x1fc00.

Installation:
To install openwrt,
- set the device's SSID to each of the following lines,
  making sure to include the backticks.
- set the ssid and click save between each line.

`echo "httpd -k"> /tmp/s`
`echo "sleep 10">> /tmp/s`
`echo "httpd -r&">> /tmp/s`
`echo "sleep 10">> /tmp/s`
`echo "httpd -k">> /tmp/s`
`echo "sleep 10">> /tmp/s`
`echo "httpd -f">> /tmp/s`
`sh /tmp/s`

- Now, wait 60 sec.
- After the reboot sequence, the router may have fallen back to
  its default IP address with the default credentials (admin:admin).
- Log in to the web interface and go the the firmware upload page.
  Select "openwrt-ath79-generic-tplink_tl-wr841hp-v2-squashfs-factory.bin"
  and you're done : the system now accepts the openwrt.

Forum support topic:
https://forum.openwrt.org/t/support-for-tplink-tl-wr841hp-v2/69445/

Signed-off-by: Saiful Islam <si87868@gmail.com>
2022-02-07 00:03:27 +01:00
Lech Perczak
8c78a13bfc ath79: support ZTE MF286
ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.

Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9230-based category 6 internal LTE modem in extended
  mini-PCIE form factor, with 3 internal antennas and 2 external antenna
  connections, single mini-SIM slot. Modem model identified as MF270,
- FXS: one external ATA port (handled entirely by modem part) with two
  physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
  Signal state) handled entirely by modem. 4 link status LEDs handled by
  the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
  monitoring handled by modem.
- Label MAC device: eth0

Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
  converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.

Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.

STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.

STEP 1: gaining root shell:

Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.

Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
  then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
  "http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.

Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.

- Set IP of your computer to 192.168.1.22.
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
  https://busybox.net/downloads/binaries/1.21.1/busybox-mips
  and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
  filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
  field named "addURLFilter", so it looks like this:
  <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
    class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
  execute it. You should be able to log in at port 23, using
  "admin/admin" as credentials.

Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.

STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.

Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:

  ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
  ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin

And keep them in a safe place, should a restore be needed in future.

Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
  port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:

  cat /proc/mtd

  It should show the following:
  mtd0: 00080000 00010000 "uboot"
  mtd1: 00020000 00010000 "uboot-env"
  mtd2: 00140000 00020000 "fota-flag"
  mtd3: 00140000 00020000 "caldata"
  mtd4: 00140000 00020000 "mac"
  mtd5: 00600000 00020000 "cfg-param"
  mtd6: 00140000 00020000 "oops"
  mtd7: 00800000 00020000 "web"
  mtd8: 00300000 00020000 "kernel"
  mtd9: 01f00000 00020000 "rootfs"
  mtd10: 01900000 00020000 "data"
  mtd11: 03200000 00020000 "fota"

  Differences might indicate that this is NOT a vanilla MF286 device but
  one of its later derivatives.
- Copy over all MTD partitions, for example by executing the following:

  for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \
  /var/usb_disk/mtd$i; done

- If the count of MTD partitions is different, this might indicate that
  this is not a standard MF286 device, but one of its later derivatives.
- (optionally) rename the files according to MTD partition names from
  /proc/mtd
- Unmount the filesystem:

  umount /var/usb_disk; sync

  and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
  firmware. This is especially important, because stock firmware for
  this device is not available officially, and is usually customized by
  the mobile providers.

STEP 3: Booting initramfs image:

Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
  set your computer's IP address as 192.168.1.22. This is the default
  expected by U-boot. You may wish to change that, and alter later
  commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:

  setenv serverip 192.168.1.22
  setenv ipaddr 192.168.1.1
  tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin
  bootm 0x81000000

  (Replace server IP and router IP as needed). There is no  emergency
  TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
  installation.

Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- Split the image into two parts on 3MB partition size boundary, which
  is the size of kernel partition. Pad the output of second file to
  eraseblock size:

  dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
  bs=128k count=24 \
  of=openwrt-ath79-zte_mf286-intermediate-kernel.bin

  dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
  bs=128k skip=24 conv=sync \
  of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin

- Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to
  /tmp. This is CRITICAL for installation, as erasing rootfs will cut
  you off from those tools on flash!

- After backing up the previous MTD contents, write the images to the
  respective MTD devices:

  /tmp/flash_eraseall /dev/<kernel-mtd>

  /tmp/nandwrite /dev/<kernel-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin

  /tmp/flash_eraseall /dev/<kernel-mtd>

  /tmp/nandwrite /dev/<rootfs-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin

- Ensure that no bad blocks were present on the devices while writing.
  If they were present, you may need to vary the split  between
  kernel and rootfs parts, so U-boot reads a valid uImage after skipping
  the bad blocks. If it fails, you will be left with method 3 (below).
- If write is OK, reboot the device, it will reboot to OpenWrt
  initramfs:

  reboot -f

- After rebooting, SSH into the device and use sysupgrade to perform
  proper installation.

Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
  flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
  and name it root_uImage:

  dd if=/dev/zero of=padding.bin bs=8M count=1

  cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin >
  root_uImage

- Set up a TFTP server at 192.0.0.1/8. Router will use random address
  from that range.
- Put the previously generated "root_uImage" into TFTP server root
  directory.
- Deliberately erase "kernel" partition" using stock firmware after
  taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
  initramfs image, which will let you perform actual installation using
  sysupgrade. This might take a considerable time, sometimes the router
  doesn't establish Ethernet link properly right after booting. Be
  patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
  light up. At this moment, perform power-on reset, and wait for OpenWrt
  initramfs to finish booting. Then proceed to actual installation.

STEP 4: Actual installation:
- scp the sysupgrade image to the device:

  scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \
  root@192.168.1.1:/tmp/

- ssh into the device and execute sysupgrade:

  sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin

- Wait for router to reboot to full OpenWrt.

STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:

config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth '<auth>' # As required, usually 'none'
        option pincode '<pin>' # If required by SIM
        option apn '<apn>' # As required by ISP
        option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'

For example, the following works for most polish ISPs
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth 'none'
        option apn 'internet'
        option pdptype 'ipv4'

If you have build with LuCI, installing luci-proto-qmi helps with this
task.

Restoring the stock firmware:

Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware.
The only partitions you really care about are "web", "kernel", and
"rootfs". For easy padding and possibly restoring configuration, you can
concatenate most of them into images written into "ubi" meta-partition
in OpenWrt. To do so, execute something like:

cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \
mtd8-ubi_restore.bin

You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.

Method 1: Using initramfs:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
  (scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
  mtd write <kernel_mtd> mtd4_kernel.bin
  rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
  restore them individually. Otherwise you might run out of space in
  tmpfs:

  (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
  rm mtd3_ubiconcat0.bin

  (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
  rm mtd5_ubiconcat1.bin

- If the write was correct, force a device reboot with

  reboot -f

Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
  your drive
- Mount your flash drive

  mkdir /tmp/usb

  mount /dev/sda1 /tmp/usb

- Remount your UBI volume at /overlay to R/O

  mount -o remount,ro /overlay

- Write back the kernel and ubi partitions from USB drive

  cd /tmp/usb
  mtd write mtd4_kernel.bin /dev/<kernel_mtd>

  mtd write mtd8_ubi.bin /dev/<kernel_ubi>

- If everything went well, force a device reboot with
  reboot -f

Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.

Method 3: using built-in TFTP recovery (LAST RESORT):
- Assemble a recovery rootfs image from backup of stock partitions by
  concatenating "web", "kernel", "rootfs" images dumped from the device,
  as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
  TFTP pre-installation method.

Quirks and known issues
- Kernel partition size is increased to 4MB compared to stock 3MB, to
  accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
  image is at 2.5MB which is dangerously close to the limit. This has no
  effect on booting the system - but keep that in mind when reassembling
  an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
  you used before in stock firmware first. If you need to change it,
  please use protocok '3g' to establish connection once, or use the
  following command to change APN (and optionally IP type) manually:
  echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the green debug LED hidden
  inside the case. All other LEDs are controlled by modem, on which the
  router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
  correct GPIO mapping. All other LEDs are controlled by modem,
  including this one in stock firmware. GPIO19, mapped there only acts
  as a gate, while the actual signal source seems to be 5GHz Wi-Fi
  radio, however it seems it is not the LED exposed by ath10k as
  ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
  reset of whole board, not only the modem. It is attached to
  gpio-restart driver, to restart the modem on reboot as well, to ensure
  QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
  for OpenWrt operation at all - have fun lurking around.
- MAC address shift for 5GHz Wi-Fi used in stock firmware is
  0x320000000000, which is impossible to encode in the device tree, so I
  took the liberty of using MAC address increment of 1 for it, to ensure
  different BSSID for both Wi-Fi interfaces.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-05 12:14:08 +01:00
Sungbo Eo
ad5bf16001 ath79: convert remaining mtd-mac-address-increment
Commit d284e6ef0f ("treewide: convert mtd-mac-address-increment* to
generic implementation") renamed "mtd-mac-address-increment" property
to "mac-address-increment". Convert remaining usages that have been
added after that.

Fixes: af8a059bb4 ("ath79: add support for GL.iNet GL-XE300")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-02-01 14:55:40 +09:00
Sungbo Eo
c7a559980a ath79: improve support for Dongwon T&I DW02-412H
* Move &nand node to DTSI
* Utilize nvmem for fetching caldata
* Rename build recipe, clean before build
* Simplify KERNEL definition

Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-02-01 14:54:16 +09:00
Tamas Balogh
b21bc3479d ath79: ASUS RP-AC66 use flash till the end
This makes available the additional space,
which was occupied by OEM's jffs2 partition before:
"0x000000f80000-0x000001000000 : jffs2"

Reverting to the OEM firmware will also recover
this partition, i.e. it is not needed and can be
used by OpenWrt.

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-01-30 01:16:14 +09:00
Victorien Molle
af8a059bb4 ath79: add support for GL.iNet GL-XE300
The GL.iNet GL-XE300 is a 4G LTE Wireless router, based on QCA9531 SoC.

Specifications:

 - SoC: QCA9531 (650MHz)
 - RAM: DDR2 128M
 - Flash: SPI NOR 16M + SPI NAND 128M
 - WiFi: 2.4GHz with 2 antennas
 - Ethernet:
   - 1x LAN (10/100M)
   - 1x WAN (10/100M)
 - LTE:
 - USB: 1x USB 2.0 port
 - UART:
   - 3.3V, TX, RX, GND / 115200 8N1

MAC addresses as verified by OEM firmware:

 use    address   source
 LAN    *:c5      art 0x0 (label)
 WAN    *:c6      label + 1
 WLAN   *:c7      art 0x1002

Installation via U-Boot rescue:

1. Press and hold reset and power buttons simultaneously
2. Wait for the LAN led to blink 5 times
3. Release reset and power buttons
4. The rescue page is accessible via http://192.168.1.1
5. Select the OpenWrt factory image and start upgrade
6. Wait for the router to flash new firmware and reboot

Revert to stock firmware:

 i. Download the stock firmware from GL.Inet website
 ii. Use the same method explained above to flash the stock firmware

Signed-off-by: Victorien Molle <victorien.molle@wifirst.fr>
[update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
2022-01-22 01:17:16 +01:00
Denis Kalashnikov
ec85e48a11 ath79: add support for reset key on MikroTik RB912UAG-2HPnD
On MikroTik RB91x board series a reset key shares SoC gpio
line #15 with NAND ALE and NAND IO7. So we need a custom
gpio driver to manage this non-trivial connection schema.
Also rb91x-nand needs to have an ability to disable a polling
of the key while it works with NAND.

While we've been integrating rb91x-key into a firmware, we've
figured out that:
* In the gpio-latch driver we need to add a "cansleep" suffix to
several gpiolib calls,
* When gpio-latch and rb91x-nand fail to get a gpio and an error
is -EPROBE_DEFER, they shouldn't report about this, since this
actually is not an error and occurs when the gpio-latch probe
function is called before the rb91x-key probe.
We fix these related things here too.

Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-01-19 16:40:12 +01:00
Sven Eckelmann
8143709c90 ath79: Add support for OpenMesh OM2P v1
Device specifications:
======================

* Qualcomm/Atheros AR7240 rev 2
* 350/350/175 MHz (CPU/DDR/AHB)
* 32 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 18-24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + builtin switch port 4
    + used as LAN interface
* 12-24V 1A DC
* external antenna

The device itself requires the mtdparts from the uboot arguments to
properly boot the flashed image and to support dual-boot (primary +
recovery image). Unfortunately, the name of the mtd device in mtdparts is
still using the legacy name "ar7240-nor0" which must be supplied using the
Linux-specfic DT parameter linux,mtd-name to overwrite the generic name
"spi0.0".

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-16 21:42:19 +01:00
Sven Eckelmann
1699c1dc7f ath79: Add support for OpenMesh OM5P-AC v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/200 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 4x GPIO-LEDs (3x wifi, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + AR8031 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

This device support is based on the partially working stub from commit
53c474abbd ("ath79: add new OF only target for QCA MIPS silicon").

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-16 20:51:14 +01:00
Tamas Balogh
872b65ecc8 ath79: patch Asus RP-AC66 clean up and fix for sysupgrade image
- clean up leftovers regarding MAC configure in dts
- fix alphabetical order in caldata
- IMAGE_SIZE for sysupgrade image

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-01-15 17:41:19 +01:00
Koen Vandeputte
9571d9d4b1 ath79: qca955x: remove double declaration
No need to mention the same value twice

Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-01-13 09:33:29 +01:00
Koen Vandeputte
f11df68956 ath79: rb912: remove unused property
ar934x does not define property 'rgmii-enabled' in the parsing code
remove it

Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-01-13 09:33:29 +01:00
Koen Vandeputte
2a00054618 ath79: rb912: fix pll init issues
It was reported that some rb912 boards (ar934x) have issues with some ethernet speeds.
Investigation shows that the board failed to adapt the ethernet pll values as shown here:

[    5.284359] ag71xx 19000000.eth: failed to read pll-handle property

added custom prints in code and triggering a link switch:

[   62.821446] Atheros AG71xx: fast reset
[   62.826442] Atheros AG71xx: update pll 2
[   62.830494] Atheros AG71xx: no pll regmap!

Comparison with another very similar board (rb922 - QCA955x) showed a missing
reference clock frequency in dts, which seems to cause a pll init issue.
Unfortunately, no errors are printed when this occurs.

Adding the frequency property fixes the pll init as it can be parsed now
by the ethernet driver.

[   55.861407] Atheros AG71xx: fast reset
[   55.866403] Atheros AG71xx: update pll 2
[   55.870462] Atheros AG71xx: ath79_set_pllval: regmap: 0x81548000, pll_reg: 0x2c, pll_val: 0x02000000

Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-01-13 09:33:29 +01:00
Oskari Lemmela
fdda3130f2 mikrotik: make soft_config writable
Parent mtd partition needs to be writable

Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
2022-01-13 09:33:29 +01:00
Sven Eckelmann
97f5617259 ath79: Add support for OpenMesh OM5P-AC v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + AR8035 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Sven Eckelmann
72ef594550 ath79: Add support for OpenMesh OM5P-AN
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 1T1R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + 10/100 Mbps Ethernet
    + builtin switch port 1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00