The SFP cages 9F and 10F share the same SCL line. Currently, there
isn't a good way to model this. Thus, only one SFP port can be fully
supported.
Cage 10F is fully supported with an I2C bus and sfp handle. Linux
automatically handles enabling or disabling the TX laser.
Cage 9F is only parially supported, without the sfp handle. The SDA
line is hogged as an input, so that it remains high. SCL transitions
sould not affect modules connected to this cage. The default value of
the tx-disable line is high (active). It is exported as a gpio, but
the laser is off by default. To enable the laser:
echo 0 > /sys/class/gpio/sff-p9-tx-disable/value
Thus, both modules can be used for networking, but only 10F will be
able to detect and identify a plugged in SFP module.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Add support for the Engenius EWS2910P PoE switch. This is an RTL8380
based switch with two SFP slots, and PoE 802.3af one every RJ-45 port.
The specs say 802.3af, but the vendor firmware configures the PSE for
a budget of 31W, indicating 802.3at support.
Specifications:
---------------
* SoC: Realtek RTL8380M
* Flash: 32 MiB SPI flash Macronix MX25L25635E
* RAM: 256 MiB (As reported by bootloader)
* Ethernet: 16x 10/100/1000 Mbps with PoE
2x SFP slots
* Buttons: 1 "Reset" button on front panel
1 "LED mode: button on front panel
1 "On/Off" Toggle switch on the back
* Power: 48V-54V DC barrel jack
* UART: 1 serial header (JP1) with populated 2.54mm pitch header
Labeled GRTV for ground, rx, tx, and 3.3V respectively
* PoE: 1 STM ST32F100 microcontroller
2 BCM59111 PSE chips
Works:
------
- (8) RJ-45 ethernet ports
- Switch functions
- LEDs and buttons
Not yet enabled:
----------------
- SFP ports (will be enabled in a subsequent change)
- Power-over-Ethernet (requires realtek-poe package)
Install via web interface:
-------------------------
The factory firmware will accept and flash the initramfs image. It is
recommended to flash to "Partition 0". Flashing to "Partition 1" is
not supported at this point.
The factory web GUI will show the following warning:
" Warning: The firmware version is v0.00.00-c0.0.00
The firmware image you are uploading is older than the current
firmware of the switch. The device will reset back to default
settings. Are you sure you want to proceed?"
This is expected when flashing OpenWrt. After the initramfs image
boots, flash the -sysupgrade using either the commandline or LuCI.
Install via serial console/tftp:
--------------------------------
The u-boot firmware will not stop the boot, regardless of which key is
pressed. To access the u-boot console, ground out the CLK (pin 16) of
the ROM (U22) when u-boot is reading the linux image. If timed
correctly, the image CRC will fail, and u-boot will drop to a shell:
> rtk network on
> setenv ipaddr <address of tftp server>
> tftp $(freemem) <name-of-initramfs-image.bin>
> bootm
Then flash the -sysupgrade using either the commandline or luci.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
[gpio-led node names, OpenWrt and LuCI capitalization in commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Asus RT-N12+ B1 and Asus RT-N300 B1 are the same device
with a different name.
The OEM firmwares have the same MD5 with Asus RT-N11P B1.
Same instructions for Asus RT-N11P B1 see:
commit c3dc52e39a ("ramips: add support for Asus RT-N10P V3 / RT-N11P B1 / RT-N12 VP B1")
Signed-off-by: Semih Baskan <strstgs@gmail.com>
(Added id from the PR review to commit message)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Specifications:
- Device: ASUS RT-AX53U
- SoC: MT7621AT
- Flash: 128MB
- RAM: 256MB
- Switch: 1 WAN, 3 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- Ports: USB 3.0
- LEDs: 1x POWER (blue, configurable)
3x LAN (blue, configurable)
1x WAN (blue, configurable)
1x USB (blue, not configurable)
1x 2.4G (blue, not configurable)
1x 5G (blue, not configurable)
Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.1.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
Select "2. Upgrade firmware"
Press enter when show "Run firmware after upgrading? (Y/n):"
Select 0 for TFTP method
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.2
Input IP netmask: 255.255.255.0
Input file name: openwrt-ramips-mt7621-asus_rt-ax53u-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"
Signed-off-by: Chuncheng Chen <ccchen1984@gmail.com>
(replaced led label, added key-* prefix to buttons, added note about
BBT)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Tim Small reported:
| Viewing the 'Network' -> 'Switch' config page in LuCI:
|
| The LuCI LAN 1 port corresponds to the port physically
| labelled 2 at the rear of the device.
| [...]
|
| When a patch cord is attached to the port labelled 1 [...],
| the LED labelled 2 illuminates. [...]
=> Ports, LuCI and LEDs are reversed/don't match.
Reported-by: Tim Small
Fixes: #10111
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Restore CONFIG_I8K + CONFIG_INTEL_INT0002_VGPIO that got
removed when I refreshed the config. Each x86 target gets
its own CONFIG_CRYPTO_BLAKE2S + LIB settings as only the
x86_64 can use the accelerated x86 version.
Also remove two extra spaces that sneaked into geode's config.
Fixes: 539e60539a ("generic: enable CRYPTO_LIB_BLAKE2S[_X86|_ARM]")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Ubiquiti UniFi Security Gateway (USG) is largely identical to
the EdgeRouter Lite (ERLite-3) apart from a different board ID
and two dome leds.
Device data (from WikiDev):
CPU: Cavium Octeon Plus CN5020 @500MHz 2-cores
Ethernet: 3x Atheros AR8035-A GbE PHY's
Flash: On-board 4MB Flash
Storage: Internal 3.8GB USB Flash (Kingston ID) drive
w/ 1.5GB free for use occupies single internal USB port.
Serial: 1x RJ45 port on front panel. 115200, 8N1
Buttons: 1x Reset
Flash instructions are identical to EdgeRouter Lite.
Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
It was observed that `rootfs_data` was sometimes not correctly erased
after performing sysupgrade, resulting in previous settings to prevail.
Add call to `wrgg-pad-rootfs` in sysupgrade image recipe to ensure any
previous jffs2 will be wiped, consistent with DAP-2610 from the ipq40xx
target, which introduced the double-flashing procedure for these devices.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
This is now built-in, enable so it won't propagate on target configs.
Link: https://lkml.org/lkml/2022/1/3/168
Fixes: 79e7a2552e ("kernel: bump 5.15 to 5.15.44")
Fixes: 0ca9367069 ("kernel: bump 5.10 to 5.10.119")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(Link to Kernel's commit taht made it built-in,
CRYPTO_LIB_BLAKE2S[_ARM|_X86] as it's selectable, 5.10 backport)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The redboot-fis parser has option to specify the location of FIS
directory, use that, instead of patching the parser to scan for it, and
specifying location in kernel config.
Tested-by: Brian Gonyer <bgonyer@gmail.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
This image is supposed to be written with help of bootloader to the
flash, but as it stands, it's not aligned to block size and RedBoot will
happily create non-aligned partition size in FIS directory. This could
lead to kernel to mark the partition as read-only, therefore pad the
image to block erase size boundary.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
The bootloader on this board hid the partition containig MAC addresses
and prevented adding this space to FIS directory, therefore those had to
be stored in RedBoot configuration as aliases to be able to assigne them
to proper interfaces. Now that fixed partition size are used instead of
redboot-fis parser, the partition containig MAC addresses could be
specified, and with marking it as nvmem cell, we can assign them without
userspace involvement.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Don't comence the switch to RAMFS when the image format is wrong. This
led to rebooting the device, which could lead to false impression that
upgrade succeded.
Being here, factor out the code responsible for upgrading RedBoot
devices to separate file.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
After the kernel has switched version to 5.10, JA76PF2 and
RouterStations lost the capability to sysupgrade the OpenWrt version.
The cause is the lack of porting the patches responsible for partial
flash erase block writing and these boards FIS directory and RedBoot
config partitions share the same erase block. Because of that the FIS
directory can't be updated to accommodate kernel/rootfs partition size
changes. This could be remedied by bootloader update, but it is very
intrusive and could potentially lead to non-trivial recovery procedure,
if something went wrong. The less difficult option is to use OpenWrt
kernel loader, which will let us use static partition sizes and employ
mtd splitter to dynamically adjust kernel and rootfs partition sizes.
On sysupgrade from ath79 19.07 or 21.02 image, which still let to modify
FIS directory, the loader will be written to kernel partition, while the
kernel+rootfs to rootfs partition.
The caveats are:
* image format changes, no possible upgrade from ar71xx target images
* downgrade to any older OpenWrt version will require TFTP recovery or
usage of bootloader command line interface
To downgrade to 19.07 or 21.02, or to upgrade if one is already on
OpenWrt with kernel 5.10, for RouterStations use TFTP recovery
procedure. For JA76PF2 use instructions from this commit message:
commit 0cc87b3bac ("ath79: image: disable sysupgrade images for routerstations and ja76pf2"),
replacing kernel image with loader (loader.bin suffix) and rootfs
image with firmware (firmware.bin suffix).
Fixes: b10d604459 ("kernel: add linux 5.10 support")
Fixes: 15aa53d7ee ("ath79: switch to Kernel 5.10")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(mkubntimage was moved to generic-ubnt.mk)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This SBC has Microchip TCN75 sensor, wich measures ambient temperature.
Specify it in dts to allow readout by applications using kernel hwmon
API.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Add support for LEDs of the CZ.NIC Turris Omnia using the upstream
driver.
There is no generic way to control the LEDs in UCI manner, however
the kernel module is the first step to actually use the RGB LEDs in
custom logic.
Signed-off-by: Stefan Kalscheuer <stefan@stklcode.de>
(removed DMARC notice, added driver to Turris Omnia, moved module
recipe to target/linux/mvebu/modules.mk)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Make sure BootingFlag points to the system partition we install to.
The BootingFlag variable selects which system partition the system
boots from (0 => "Kernel", 1 => "Kernel2"). OpenWrt does not yet have
device specific support for this dual image scheme, and can therefore
only boot from "Kernel".
This has not been an issue until now, since all known OEM firmware
versions have ignored "Kernel2" - leaving the BootingFlag fixed at 0.
But the newest OEM firmware has a new upgrade procedure, installing
to the "inactive" system partition and setting BootingFlag accordingly.
This workaround is needed until the dual image scheme is fully
supported.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
For a TX->TX connected external phy to transmit/receive data, the rgmii2
pin group needs to be claimed with gpio function, at least for EdgeRouter X
SFP. We already claim the pin group under the pinctrl node with gpio
function on the gpio node on mt7621_ubnt_edgerouter-x.dtsi.
However, we should claim a pin group under its consumer node. It's the
ethernet node in this case, which we already claim the rgmii2 pin group
under it on mt7621.dtsi. Therefore, set the function as gpio on the rgmii2
node for EdgeRouter X SFP and get rid of claiming the rgmii2 pin group
under the pinctrl node. With this change, we also get to remove a
definition from mt7621_ubnt_edgerouter-x.dtsi which is specific to
EdgeRouter X SFP.
This change is tested on an EdgeRouter X SFP.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
This improves NAT masquarade network performance.
An alternative to kernel change would be runtime setup but that requires
ethtool and identifying relevant network interface and all related
switch ports interfaces.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
The Netgear GS3xx devices do not properly initialise the port LEDs during
startup unless the boot command in U-Boot is changed. Making the U-Boot
env partition writable allows this modification to be done from within
OpenWrt by calling "fw_setenv bootcmd rtk network on\; boota".
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Make the u-boot environment partition for the NETGEAR
GS108T v3 and GS110TPP writable (they share a DTS), so
the values can be manipulated from userspace.
See https://forum.openwrt.org/t/57875/1567 for a real
world example.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
This model is almost identical to the EAP225-Outdoor v1.
Major difference is the RTL8211FS PHY Chipset.
Device specifications:
* SoC: QCA9563 @ 775MHz
* Memory: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n 2x2
* Wireless 5GHz (QCA9886): a/n/ac 2x2 MU-MIMO
* Ethernet (RTL8211FS): 1× 1GbE, PoE
Flashing instructions:
* ssh into target device with recent (>= v1.6.0) firmware
* run `cliclientd stopcs` on target device
* upload factory image via web interface
Debricking:
To recover the device, you need access to the serial port. This requires
fine soldering to test points, or the use of probe pins.
* Open the case and solder wires to the test points: RXD, TXD and TPGND4
* Use a 3.3V UART, 115200 baud, 8n1
* Interrupt bootloader by holding ctrl+B during boot
* upload initramfs via built-in tftp client and perform sysupgrade
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From stock ifconfig:
ath0 Link encap:Ethernet HWaddr D8:...:2E
ath10 Link encap:Ethernet HWaddr D8:...:2F
br0 Link encap:Ethernet HWaddr D8:...:2E
eth0 Link encap:Ethernet HWaddr D8:...:2E
Signed-off-by: Paul Maruhn <paulmaruhn@posteo.de>
Co-developed-by: Philipp Rothmann <philipprothmann@posteo.de>
Signed-off-by: Philipp Rothmann <philipprothmann@posteo.de>
[Add pre-calibraton nvme-cells]
Tested-by: Tido Klaassen <tido_ff@4gh.eu>
Signed-off-by: Nick Hainke <vincent@systemli.org>
CFE on these devices expects to find the kernel compressed with LZMA but
with no dictionnary and no loader, adjust the image generation
accordingly.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Update the device databases to contain an entry for the Netgear WNR3500L
v2 router, the same buttons and LEDs mapping as v1 is used.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Back port the patches being submitted upstream in order to make the NAND
controller work on BCM47187/5358. This is a prerequisite for supporting
devices like the Netgear WNR3500L V2.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
1. KCFLAGS should be used for custom flags
2. Optimization flags are arch / SoC specific
3. -fno-reorder-blocks may *worsen* network performace on some SoCs
4. Usage of flags was *reversed* since 5.4 and noone reported that
If we really need custom flags then CONFIG_KERNEL_CFLAGS should get
default value adjusted properly (per target).
Ref: 4e0c54bc5b ("kernel: add support for kernel 5.4")
Link: http://lists.openwrt.org/pipermail/openwrt-devel/2022-June/038853.html
Link: https://patchwork.ozlabs.org/project/openwrt/patch/20190409093046.13401-1-zajec5@gmail.com/
Cc: Felix Fietkau <nbd@nbd.name>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Rui Salvaterra <rsalvaterra@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
ar9.dtsi and danube.dtsi only have one reset controller and they are
naming it "reset". This is equivalent to "reset0" in vr9.dtsi. Fix the
references to the reset controller in the recently added PCI controller
reset line.
Fixes: 087f2cba26 ("lantiq: dts: Add the reset line for the PCI controller")
Reported-by: Christian Lamparter <chunkeey@gmail.com>
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
This fixes a well known "LZMA ERROR 1" error, reported previously on
numerous of other devices from 'ramips' target.
Fixes: #9842Fixes: #8964
Reported-by: Juergen Hench <jurgen.hench@gmail.com>
Tested-by: Juergen Hench <jurgen.hench@gmail.com>
Signed-off-by: Demetris Ierokipides <ierokipides.dem@gmail.com>
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This uses kernel's generic variable and doesn't require patching it with
a custom Makefile change. It's expected *not* to change any behaviour.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
ClearFog GT 8K is device sold by SolidRun. It is marketed as a
development board, not a consumer product. The device tree file for this board
is upstream in kernel.org.
Signed-off-by: Logan Blyth <mrbojangles3@gmail.com>
As per the series:
<https://www.spinics.net/lists/devicetree/msg508906.html>
"Enforce specific naming pattern for children (keys) to narrow the
pattern thus do not match other properties. This will require all
children to be properly prefixed or suffixed (button, event, switch
or key)."
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The PCI controller has it's reset line wired up to bit 13 of RCU.
Describe this in our .dtsi files.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
This adds support for the Netgear PGZNG1, also known as the ADT Pulse
Gateway.
Hardware:
CPU: Atheros AR9344
Memory: 256MB
Storage: 256MB NAND Hynix H27U2G8F2CTR-BC
USB: 1x USB 2.0
Ethernet: 2x 100Mb/s
WiFi: Atheros AR9340 2.4GHz 2T2R
Leds: 8 LEDs
Button: 1x Reset Button
UART:
Header marked JPE1. Pinout is VCC, TX, RX, GND. The marked pin, closest
to the JPE1 marking, is VCC. Note VCC isn't required to be connected
for UART to work.
Enable Stock Firmware Shell Access:
1. Interrupt u-boot and run the following commands
setenv console_mode 1
saveenv
reset
This will enable a UART shell in the firmware. You can then login using
the root password of `icontrol`. If that doesn't work, the device is
running a firmware based on OpenWRT where you can drop into failsafe to
mount the FS and then modify /etc/passwd.
Installation Instructions:
1. Interupt u-boot and run the following commands
setenv active_image 0
setenv stock_bootcmd nboot 0x81000000 0 \${kernel_offset}
setenv openwrt_bootcmd nboot 0x82000000 0 \${kernel_offset}
setenv bootcmd run openwrt_bootcmd
saveenv
2. boot initramfs image via TFTP u-boot
tftpboot 0x82000000 openwrt-ath79-nand-netgear_pgzng1-initramfs-kernel.bin; bootm 0x82000000
3. Once booted, use LuCI sysupgrade to
flash openwrt-ath79-nand-netgear_pgzng1-squashfs-sysupgrade.bin
MAC Table:
WAN (eth0): xx:xa - caldata 0x0
LAN (eth1): xx:xb - caldata 0x6
WLAN (phy0): xx:xc - burned into ath9k caldata
Not Working:
Z-Wave
RS422
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
(added more hw-info, fixed file permissions)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
These patches are to support the pca955x led with OpenWRT correctly via
device tree on linux 5.10. Without these, the new LED function/color/reg
features can not be used.
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
If the RTC module is compiled as a module, the hctosys fails to
initialize because ds1307 is loaded later.
Fixes:
[ 2.004145] hctosys: unable to open rtc device (rtc0)
[ 11.957997] rtc-ds1307 0-006f: registered as rtc0
This is similar to commit 5481ce9a11,
which was done for imx6 target.
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
The Meraki MR74 is part of the "Insect" series. This device is
essentially an outdoor variant of the MR33 with identical hardware, but
requiring a config@3 DTS option to be set to allow booting with the
stock u-boot.
The install procedure is replicated from the MR33, with the exception
being that the MR74 sysupgrade image must be used.
Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
The MBL has a 512KiB Microchip SST39VF040 chip for uboot and
not much else.
Thanks to Ewald who figured out that the "jedec-probe" vs.
"jedec-flash" was the wrong binding. With this information
and the jedec-probe support enabled => the chip works.
| physmap-flash 4fff80000.nor_flash: physmap platform flash device: [mem 0x4fff80000-0x4ffffffff]
| Found: SST 39LF040
| 4fff80000.nor_flash: Found 1 x8 devices at 0x0 in 8-bit bank
Suggested-by: Ewald Comhaire <e.comhaire@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
In subtarget p2020, there wasn't enabled nand support, and because of
that there weren't available tools from mtd-utils package, which has
utilities for NAND flash memory even though reference board, which
is the only currently supported device in p2020 subtarget has NAND [1].
All subtargets in mpc85xx has already enabled nand support, let's do it
globally.
[1] https://www.nxp.com/design/qoriq-developer-resources/p2020-reference-design-board:P2020RDB
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Keeping the pvid at 0 when VLAN-unaware makes it possible to drop the
hack introduced in commit 920eaab1d8 ("kernel: DSA roaming fix for
Marvell mv88e6xxx"). Dropping the hack makes it possible to use VLAN
interfaces with VID 1 on DSA ports without problems with FDB.
Signed-off-by: Marek Behún <kabel@kernel.org>
(cherry picked from commit 9caa6f0aa7)
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
[drop kernel patch hack from Linux version 5.15, drop paragraph about
backport patch, which is not necessary as it is included in kernel 5.15]
with the switch to DSA setup, the switch gets correctly
programmed via the device-tree now. This hack is no
longer necessary.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Linux' upstream MTD-Maintainer Miquèl Raynal noted:
|Reverting seems the safest option here, not knowing how many devices
|have these damaged/counterfeit chips. If it is just a couple and only on
|Fritzboxes, as suggested in the Github issue this patch could be
|carried through OpenWrt and that would seem more future proof IMHO.
This patch follows up with the first patch. It actually
moves the patches out of target/linux/generic/pending into
the ipq40xx's patch heap and adds a little note what happend.
For more information, discussions or reports about bad TC58NVG0S3Hs,
please visit the OpenWrt's Github Issue #9962:
<https://github.com/openwrt/openwrt/issues/9962>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The Netgear GS108Tv3 is already supported by OpenWrt, but is missing LED
support. After OpenWrt installation, all LEDs are off which makes the
installation quite confusing.
This enables support for the green/amber power LED to give feedback
about the current status.
This is basically just a verbatim copy of commit c4927747d2 ("realtek:
add support for power LED on Netgear GS308Tv1").
Please note that both LEDs are wired up in an anti-parallel fashion,
which means that only one of both LEDs/colors can be switched on at the
same time. If both LEDs/colors are switched on simultanously, the LED
goes dark.
Tested-by: Pascal Ernster <git@hardfalcon.net>
Signed-off-by: Pascal Ernster <git@hardfalcon.net>
[add title to commit reference]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Hardware specification
----------------------
* RTL8382M SoC, 1 MIPS 4KEc core @ 500MHz
* 128MB DRAM
* 32MB NOR Flash
* 16 x 10/100/1000BASE-T ports
- Internal PHY with 8 ports (RTL8218B)
- External PHY with 8 ports (RTL8218B)
* 4 x Gigabit RJ45/SFP Combo ports
- External PHY with 4 SFP ports (RTL8214FC)
* Power LED
* Reset button on front panel
* UART (115200 8N1) via unpopulated standard 0.1" pin header marked J6
UART pinout
-----------
[o]ooo|J6
| ||`------ GND
| |`------- RX
| `-------- TX
`---------- Vcc (3V3)
Boot initramfs image from U-Boot
--------------------------------
1. Press Escape key during `Hit Esc key to stop autoboot` prompt
2. Press CTRL+C keys to get into real U-Boot prompt
3. Init network with `rtk network on` command
4. Load image with `tftpboot 0x8f000000 openwrt-realtek-rtl838x-d-link_dgs-1210-20-initramfs-kernel.bin` command
5. Boot the image with `bootm` command
To install, upload the sysupgrade image to the OEM webpage or sysupgrade
from the system running from initramfs image.
It has been developed and tested on device with F1 revision.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
[correct initramfs image name]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Both buttons on the RT-AC57U are active-low. Fix the GPIO flag for the
WPS cutton to fix button behavior.
Signed-off-by: David Bauer <mail@david-bauer.net>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration". Rename the nvmem
cell node and label to match the updated cell name.
Fixes: eca0d73011 ("ath79: TP-Link EAP225 v3: convert ath10k to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration". Rename the nvmem
cell node and label to match the updated cell name.
Fixes: 48625a0445 ("ath79: TP-Link EAP225-Wall v1: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Fixes errors in the form of:
ath10k_pci 0000:00:00.0: failed to fetch board data for bus=pci,
vendor=168c,device=0056,subsystem-vendor=0000,subsystem-device
=0000 from ath10k/QCA9888/hw2.0/board-2.bin
ath10k_pci 0000:00:00.0: failed to fetch board-2.bin or board.bin
from ath10k/QCA9888/hw2.0
ath10k_pci 0000:00:00.0: failed to fetch board file: -12
ath10k_pci 0000:00:00.0: could not probe fw (-12)
As described already in 2d3321619b ("ath79: TP-Link EAP245 v3: use
pre-calibration nvmem-cell"):
Ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration".
Further rename the nvmem cell node and label to match the updated cell name.
Fixes: 23b9040745 ("ath79: TP-Link EAP225-Outdoor v1: convert ath10k to nvmem-cells")
Suggested-by: Sander Vanheule <sander@svanheule.net>
Signed-off-by: Nick Hainke <vincent@systemli.org>
There is not RTC battery connected to the SoC of the UniFi 6 LR board.
Disable the RTC to prevent the system coming up with time set to
2000-01-01 00:00:00 after each reboot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.
Since the 'art' label is no longer used, it can be dropped.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can reference the same file.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the pre-calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can refer to the same file.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration".
Update the nvmem-cell name to make the 5GHz radio work again.
Fixes: d4b3b23942 ("ath79: TP-Link EAP245 v3: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The Netgear GS308Tv1 is already supported by OpenWrt, but is missing LED
support. After OpenWrt installation, all LEDs are off which makes the
installation quite confusing.
This enables support for the green/amber power LED to give feedback
about the current status.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Move the ethernet phy definition from the eap2x5-1port include to the
device-specific DTS files. This is to prepare for new devices that have
a different ethernet phy, at another MDIO address.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference to the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference from the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using an nvmem-cell.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle with an nvmem-cell reference for the
2.4GHz ath9k radio. This affects the following devices:
- TP-Link EAP225 v1
- TP-Link EAP225 v3
- TP-Link EAP225-Outdoor v1
- TP-Link EAP245 v1
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The phy-mask property is read by the ag71xx-mdio driver to set the
mii_bus's phy_mask field. On OF platforms, the devicetree is expected to
provide all present ethernet phy-s however, so the phy_mask field is
later set to all-ones. Having a devicetree override is of no use then,
so let's drop it.
Cc: David Bauer <mail@david-bauer.net>
Cc: John Crispin <john@phrozen.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Acked-by: David Bauer <mail@david-bauer.net>
Bumping max frame size has significantly affected network performance.
It was done by upstream commit that first appeared in the 5.7 release.
This change bumps NAT masquarade speed from 196 Mb/s to 383 Mb/s for the
BCM4708 SoC.
Ref: f55f1dbaad ("bcm53xx: switch to the kernel 5.10")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
This requires U-Boot environment changes:
setenv OpenWrt_kernel watchguard_firebox-m300-fit-uImage.itb
setenv loadaddr 0x20000000
setenv wgBootSysA 'setenv bootargs root=/dev/mmcblk0p2 rw rootdelay=2 console=$consoledev,$baudrate fsl_dpaa_fman.fsl_fm_max_frm=1530; mmc dev 0; ext2load mmc 0:1 $loadaddr $OpenWrt_kernel; bootm $loadaddr'
Trying to sysupgrade an image containing this change on an M300 already
running OpenWrt will fail with the following error:
Tue Jun 14 12:06:21 EEST 2022 upgrade: The device is supported, but the config is incompatible to the new image (1.0->1.1). Please upgrade without keeping config (sysupgrade -n).
Tue Jun 14 12:06:21 EEST 2022 upgrade: Kernel switched to FIT uImage. Update U-Boot environment.
Tue Jun 14 12:06:21 EEST 2022 upgrade: Reading partition table from bootdisk...
Tue Jun 14 12:06:21 EEST 2022 upgrade: Extract boot sector from the image
Tue Jun 14 12:06:21 EEST 2022 upgrade: Reading partition table from image...
Image check failed.
This is to prevent rendering your device unbootable. Make the U-Boot
environment changes as instruced above, and then flash the image using
sysupgrade -F. The config can be kept, there is no need to use -n.
After the new image booted successfully, you can increase the compat_version:
uci set system.@system[0].compat_version='1.1'
uci commit
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Use the KERNEL_SUFFIX variable in Build/sdcard-img, rather than
using hardcoded "-kernel.bin", to allow overriding KERNEL_SUFFIX for a
device.
Fixes: 080a769b4d ("qoriq: new target")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
MTS WG430223 is a wireless AC1300 (WiFi 5) router manufactured by
Arcadyan company. It's very similar to Beeline Smartbox Flash (Arcadyan
WG443223).
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB
Flash: 128 MiB (Winbond W29N01HV)
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: No
Button: 1 (Reset/WPS)
LEDs: 2 (Red, Green)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WG430223
Installation
------------
1. Login to the router web interface (superadmin:serial number)
2. Navigate to Administration -> Miscellaneous -> Access control lists &
enable telnet & enable "Remote control from any IP address"
3. Connect to the router using telnet (default admin:admin)
4. Place *factory.trx on any web server (192.168.1.2 in this example)
5. Connect to the router using telnet shell (no password required)
6. Save MAC adresses to U-Boot environment:
uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
awk '{print $5}')
uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
awk '{print $5}')
uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
awk '{print $5}')
uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
awk '{print $5}')
7. Ensure that MACs were saved correctly:
uboot_env --get --name eth2macaddr
uboot_env --get --name eth3macaddr
uboot_env --get --name ra0macaddr
uboot_env --get --name rax0macaddr
8. Download and write the OpenWrt images:
cd /tmp
wget http://192.168.1.2/factory.trx
mtd_write erase /dev/mtd4
mtd_write write factory.trx /dev/mtd4
9. Set 1st boot partition and reboot:
uboot_env --set --name bootpartition --value 0
Back to Stock
-------------
1. Run in the OpenWrt shell:
fw_setenv bootpartition 1
reboot
2. Optional step. Upgrade the stock firmware with any version to
overwrite the OpenWrt in Slot 1.
MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC | Source |
+-----------+-------------------+----------------+
| label | A4:xx:xx:51:xx:F4 | No MACs was |
| LAN | A4:xx:xx:51:xx:F6 | found on Flash |
| WAN | A4:xx:xx:51:xx:F4 | [1] |
| WLAN_2g | A4:xx:xx:51:xx:F5 | |
| WLAN_5g | A6:xx:xx:21:xx:F5 | |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
with saving of the MACs to u-boot-env during the installation was
applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:A0) was found in
"Factory" 0xfff0. It's the same for all MTS WG430223 devices. OEM
firmware also uses this MAC when initialazes ethernet driver. In
OpenWrt we use it only as internal GMAC (eth0), all other MACs are
unique. Therefore, there is no any barriers to the operation of several
MTS WG430223 devices even within the same broadcast domain.
Stock firmware image format
---------------------------
The same as Beeline Smartbox Flash but with another trx magic
+--------------+---------------+----------------------------------------+
| Offset | | Description |
+==============+===============+========================================+
| 0x0 | 31 52 48 53 | TRX magic "1RHS" |
+--------------+---------------+----------------------------------------+
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit moves common properties for the boards below to a new dtsi:
Beeline Smartbox Flash (Arcadyan WG443223)
MTS WG430223 (Arcadyan WG430223)
The boards are almost the same. Here is the differences:
+------+----------+----------+
| | WG430223 | WG443223 |
+------+----------+----------+
| RAM | 128 | 256 |
+------+----------+----------+
| USB | - | 1x3.0 |
+------+----------+----------+
| LEDS | RG | RGB |
+------+----------+----------+
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit:
1. Renames beeline-trx recipe in mt7621.mk to arcadyan-trx. The recipe
is necessary for:
- MTS WG430223 (Arcadyan WG430223)
- Beeline Smartbox Flash (Arcadyan WG443223)
2. Allows specify custom trx magic which is different for the routers
mentined above.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Some K2P comes with the worse boards with GD25Q128 (may be A2), which
only works with 50MHz frequency and less. Reduce spi frequency so that
these routers can boot.
remove m25p,fast-read because it isn't needed for 50MHz SPI.
Signed-off-by: Aviana Cruz <gwencroft@proton.me>
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
ath79 has was bumped to 5.10. With this, as with every kernel change,
the kernel has become larger. However, although the kernel gets bigger,
there are still enough flash resources. But the RAM reaches its capacity
limits. The tiny image comes with fewer kernel flags enabled and
fewer daemons.
Improves: 15aa53d7ee ("ath79: switch to Kernel 5.10")
Tested-by: Robert Foss <me@robertfoss.se>
Signed-off-by: Nick Hainke <vincent@systemli.org>
Add targets:
* Ubiquiti UniFi 6 LR v2
* Ubiquiti UniFi 6 LR v2 (U-Boot mod)
This target does not have a RGB led bar like v1 did
Used target/linux/ramips/dts/mt7621_ubnt_unifi.dtsi as inspiration
The white dome LED is default-on, blue will turn on when the system is
in running state
Signed-off-by: Henrik Riomar <henrik.riomar@gmail.com>
based on current ubnt_unifi-6-lr-ubootmod
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[added SUPPORTED_DEVICES for compatibility with existing setups]
Signed-off-by: Henrik Riomar <henrik.riomar@gmail.com>
Based on current mt7622-ubnt-unifi-6-lr, this is a preparation for
adding a v2 version of this target
* v1 - with led-bar
* v2 - two simple GPIO connected LEDs (in later commits)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[added SUPPORTED_DEVICES for compatibility with existing setups]
Signed-off-by: Henrik Riomar <henrik.riomar@gmail.com>
Using the BOARD_NAME variable results for both er and erlite devices to
identify themselfs as `er` and `erlite` (via `ubus call system board`).
This is problematic when devices search for firmware upgrades since the
OpenWrt profile is actually called `ubnt_edgerouter` and
`ubnt_edgerouter-lite`.
By adding the `SUPPORTED_DEVICE` a mapping is created to point devices
called `er` or `erlite` to the corresponding profile.
FIXES: https://github.com/openwrt/asu/issues/348
Signed-off-by: Paul Spooren <mail@aparcar.org>
A GPIO assert is required to reset the system. Otherwise, the system
will hang on reboot.
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested in a DGS-1210-28 F3, both triggering failsafe and reboot.
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
The image builds and works fine on Asus RT-AC88U. Therefore, remove the
BROKEN flag from the makefile.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Delete the crypto-lib-blake2s kmod package, as BLAKE2s is now built-in.
Patches automatically rebased.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Delete the crypto-lib-blake2s kmod package, as BLAKE2s is now built-in.
Patches automatically rebased.
Build system: x86_64
Build-tested: ipq806x/R7800, x86/64
Signed-off-by: John Audia <therealgraysky@proton.me>
The ZyXEL GS1900-24E is a 24 port gigabit switch similar to other GS1900
switches.
Specifications
--------------
* Device: ZyXEL GS1900-24E
* SoC: Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash: 16 MiB Macronix MX25L12835F
* RAM: 128 MiB DDR2 SDRAM Nanya NT5TU128M8GE
* Ethernet: 24x 10/100/1000 Mbps
* LEDs: 1 PWR LED (green, not configurable)
1 SYS LED (green, configurable)
24 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons: 1 "RESET" button on front panel
* Switch: 1 Power switch on rear of device
* Power 120-240V AC C13
* UART: 1 serial header (JP2) with populated standard pin connector on
the left side of the PCB.
Pinout (front to back):
+ Pin 1 - VCC marked with white dot
+ Pin 2 - RX
+ Pin 3 - TX
+ PIn 4 - GND
Serial connection parameters: 115200 8N1.
Installation
------------
OEM upgrade method:
* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
file and select open so File Path is updated with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade -n /tmp/realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
it may be necessary to restart the network (/etc/init.d/network restart) on
the running initramfs image.
U-Boot TFTP method:
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
* Since the GS1900-24E is a dual-partition device, you want to keep the OEM
firmware on the backup partition for the time being. OpenWrt can only boot
from the first partition anyway (hardcoded in the DTS). To make sure we are
manipulating the first partition, issue the following commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade -n /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
it may be necessary to restart the network (/etc/init.d/network restart) on
the running initramfs image.
Signed-off-by: Raylynn Knight <rayknight@me.com>
Small update to my previous path 'fix I2C on GL-AR300M devices'.
This update allow using GPIO17 as regular GPIO in case it not used
as I2C SDA line.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
With the pinctrl configuration set properly by the previous commit, the
LED stays lit regardless of status of 2.4GHz radio, even if 5GHz radio
is disabled. Map GPIO19 as LED for ath9k, this way the LED will show
activity for both bands, as it is bound by logical AND with output of
ath10k-phy0 LED. This works well because during management traffic,
phy*tpt triggers typically cause LEDs to blink in unison.
Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The default configuration of pinctrl for GPIO19 set by U-boot was not a
GPIO, but an alternate function, which prevented the GPIO hog from
working. Set GPIO19 into GPIO mode to allow the hog to work, then the
ath10k LED output can control the state of actual LED properly.
Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
This patch adds support for Linksys WHW01 v1 ("Velop") [FCC ID Q87-03331].
Specification
-------------
SOC: Qualcomm IPQ4018
WiFi 1: Qualcomm QCA4019 IEEE 802.11b/g/n
WiFi 2: Qualcomm QCA4019 IEEE 802.11a/n/ac
Bluetooth: Qualcomm CSR8811 (A12U)
Ethernet: Qualcomm QCA8072 (2-port)
SPI Flash 1: Mactronix MX25L1605D (2MB)
SPI Flash 2: Winbond W25M02GV (256MB)
DRAM: Nanya NT5CC128M16IP-DI (256MB)
LED Controller: NXP PCA963x (I2C)
Buttons: Single reset button (GPIO).
Notes
-----
There does not appear to be a way to trigger TFTP recovery without entering
U-Boot. The device must be opened to access the serial console in order to
first flash OpenWrt onto a device from factory.
The device has automatic recovery backed by a second set of partitions on
the larger of the two SPI flash ICs. Both the primary and secondary must
be flashed to prevent accidental rollback to "factory" after 3 failed boot
attempts.
Serial console
--------------
A serial console is available on the following pins of the populated J2
connector on the device mainboard (115200 8n1).
(<-- Top of PCB / Device)
J2
[o o o o o o]
| | |
| | `-- GND
| `---- TX
`--------- RX
Installation instructions
-------------------------
1. Setup TFTP server with server IP set to 192.168.1.236.
2. Copy compiled `...squashfs-factory.bin` to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.
Revert to "factory"
-------------------
1. Download latest firmware update from vendor support site.
2. Copy extracted `.img` file to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.
Link: https://github.com/openwrt/openwrt/pull/3682
Signed-off-by: Peter Adkins <peter@sunkenlab.com>
(calibration from nvmem, updated to 5.10+5.15)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hannu Nyman wrote in openwrt's github issue #9962:
|Based on forum discussion, the commit 0bc794a
|"kernel: add support for Toshiba TC58NVG0S3HTA00 NAND flash"
|causes flash memory chip misdetection for some other
|Fritzbox devices, as the commit only defines a 4-byte flash
|memory chip ID that matches several chips used in the devices.
|
|See discussion from this onward
|<https://forum.openwrt.org/t/openwrt-22-03-0-rc1-first-release-candidate/126045/182>
|
|OpenWrt 22.03.0-rc2 and rc3 are causing on a Fritzbox 7412
|bootloops due to a misdetected flash chip.
|
|Yup, that patch is missing the 5th ID byte entirely - both chips
|share the same first 4;
|
| TC58NVG0S3HTA00 = 0x98 0xf1 0x80 0x15 0x72 (digikey datasheet, page 35)
| TC58BVG0S3HTA00 = 0x98 0xf1 0x80 0x15 0xf2 (digikey datasheet, page 28)
|
|The commit has also been backported to openwrt-22.03 after rc1,
|so both rc2 and rc3 suffer from this bug."
Andreas' TC58NVG0S3H seems not to follow Toshibas/Kioxa's own datasheet.
It only reports the first four bytes: "98 f1 80 15 00 00 00 00".
This patch changes the id_len in the entry to 8. This makes it so that
Andreas' NAND is still detected. At the same time, this prevents other
Toshiba NAND flash chips - that share the same four bytes - from being
misdetected.
The issue has been reported upstream, since they also accepted the initial
patch... so if not addressed, 5.19/5.20 will also break those affected
devices again.
Reported-by: Peter-vdL
Fixes: 0bc794a668 ("kernel: add support for Toshiba TC58NVG0S3HTA00 NAND flash")
Link: <https://github.com/openwrt/openwrt/issues/9962>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Make ar8216/8327 swconfig driver modularizable and add
entry to the netdevices.mk kernel modules file.
Signed-off-by: Christian 'Ansuel' Marangi <ansuelsmth@gmail.com>
In the rebase process of 5.15 hack patch the ETHERNET_PACKET_MANGLE got
wrongly swapped from AR8216_PHY to PSB6970_PHY.
Restore the ETHERNET_PACKET_MANGLE select to the right place.
Fixes: 1f302afd73 ("generic: 5.15: rework hack patch")
Signed-off-by: Christian 'Ansuel' Marangi <ansuelsmth@gmail.com>
This enables armv8 crypto extensions version of AES, GHASH, SHA1, and
CRC T10 algorithms in the kernel.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This is result of a make kernel_oldconfig CONFIG_TARGET=subtarget.
One new option popped up:
Support for the Allwinner H616 CCU (SUN50I_H616_CCU) [Y/n/?] (NEW) n
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This enables armv8 crypto extensions version of AES, GHASH, and CRC T10
algorithms in the kernel.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
Adds the crypto extensions version of the CRC T10 algorithm that is
already built into the kernel.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This enables armv8 crypto extensions version of AES, GHASH, SHA1,
SHA256, and SHA512 algorithms in the kernel.
The choice of algorithms match the 32-bit versions that are enabled in
the target config-5.10 file, but were only used by the cortexa9
subtarget.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This enables armv8 crypto extensions version of AES, GHASH, SHA1,
SHA256, and SHA512 algorithms in the kernel.
The choice of algorithms match the 32-bit versions that are enabled in
the target config-5.10 file, but were only used by the cortexa9
subtarget.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This enables armv8 crypto extensions version of AES, GHASH, SHA256 and
CRC T10 algorithms in the kernel.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This enables arm64/neon version of AES, SHA256 and SHA512 algorithms in
the kernel. bcm2711 does not support armv8 crypto extensions, so they
are not included.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This enables arm64/neon version of AES, SHA256 and SHA512 algorithms in
the kernel. bcm2710 does not support armv8 crypto extensions, so they
are not included.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
Using nvmem-cells to set the MAC address for a DBDC device results in
both PHY devices using the same MAC address. This in turn will result in
multiple BSSes using the same BSSID, which can cause various problems.
Use the hotplug script for the EAP615-Wall instead to avoid this.
Fixes: a1b8a4d7b3 ("ramips: support TP-Link EAP615-Wall")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Tested-by: Stijn Segers <foss@volatilesystems.org>
Tested-By: Andrew Powers-Holmes <aholmes@omnom.net>
Aruba deploys a BDF in the root filesystem, however this matches the one
used for the DK04 reference board.
The board-specific BDFs are built into the kernel. The AP-365 shows
sinificant degraded performance with increased range when used with the
reference BDF.
Replace the BDF with the one extracted from Arubas kernel.
Signed-off-by: David Bauer <mail@david-bauer.net>
The current reworked version cause kernel panic when the value is changes and
an interface is up. Following the tcp_be_liberal impelementation,
reimplement this to permit a safe change of this value without any
panic.
This has been tested with a QSDK package where tcp_no_window_check is used.
Fixes: 92fb51bc98 ("generic: 5.15: standardize tcp_no_window_check pending patch")
Signed-off-by: Christian 'Ansuel' Marangi <ansuelsmth@gmail.com>
On uniprocessor builds, for_each_cpu(cpu, mask) will assume 'mask'
always contains exactly one CPU, and ignore the actual mask contents.
This causes the loop to run, even when it shouldn't on an empty mask,
and tries to access an uninitialised pointer.
Fix this by wrapping the loop in a cpumask_empty() check, to ensure it
will not run on uniprocessor builds if the CPU mask is empty.
Fixes: af6cd37f42 ("realtek: replace RTL93xx GPIO patches")
Reported-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reported-by: Robert Marko <robimarko@gmail.com>
Tested-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The label MAC address for DIR-825 Rev. B1 is the WAN address located
at 0xffb4 in `caldata`, which equals LAN MAC at 0xffa0 incremented by 1.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The UniFi 6 Lite as well as the Tenbay T-MB5EU do not have the third
background-radar chain. For the Tenbay, the connector is present,
however no antenna is connected to it.
Signed-off-by: David Bauer <mail@david-bauer.net>
Currently malta configures the first Ethernet device as WAN interface.
If it finds a second one it will configure it as LAN.
This commit reverses it to match armvirt and x86. If there is only one
network device it will be configured as LAN device now. If we find two
network devices the 2. one will be WAN.
If no board.d network configuration is given it will be configured in
package/base-files/files/etc/board.d/99-default_network
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
[minor typos]
Signed-off-by: Paul Spooren <mail@aparcar.org>
Some dst in IPv6 flow offload table become invalid after the table is created.
So check_dst is needed in packet path.
Signed-off-by: Ritaro Takenaka <ritarot634@gmail.com>
[Add patch for kernel 5.15 too and rename file]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Avoid shipping ath10k board file in Mikrotik initram images
Most will only ever need to use these initram images once—to initially
load OpenWrt, but fix these images for more consistent Wi-Fi performance
between the initram and installed squashfs images.
OpenWrt BUILDBOT config ignores -cut packages in the initram images build.
This results in BUILDBOT initram images including the linux-firmware
qca4019 board-2.bin, and (initram image booted) Mikrotik devices loading
a generic BDF, rather than the intended BDF data loaded
from NOR as an api 1 board_file.
buildbot snapshot booted as initram image:
cat /etc/openwrt_version
r19679-810eac8c7f
dmesg | grep ath10k | grep -E board\|BDF
[ 9.794556] ath10k_ahb a000000.wifi: Loading BDF type 0
[ 9.807192] ath10k_ahb a000000.wifi: board_file api 2 bmi_id 0:16
crc32 11892f9b
[ 12.457105] ath10k_ahb a800000.wifi: Loading BDF type 0
[ 12.464945] ath10k_ahb a800000.wifi: board_file api 2 bmi_id 0:17
crc32 11892f9b
CC: Robert Marko <robimarko@gmail.com>
Fixes: 5eee67a72f ("ipq40xx: mikrotik: dont include ath10k-board-qca4019 by default")
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
Reviewed-by: Robert Marko <robimarko@gmail.com>
ucidef_set_bridge_device is needed for DGND3700v2 network config since VLAN 1
must be used for the switch to be correctly configured.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Patches to support the SoC's GPIO controller for RTL930x and RTL931x
devices have been accepted upstream. Replace the current preliminary
patch with the upstream ones, excluding devictree binding changes.
The updated patches add GPIO IRQ balancing support on RTL930x, but this
cannot be used until these devices also support SMP.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Update the name of for the Ubiquiti NanoBeam M5 to match the
auto-generated one at runtime. Otherwise sysupgrade complains about
mismatching device names.
This also required renaming the DTS.
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Ubiquiti NanoBeam M5 devices are CPE equipment for customer locations
with one Ethernet port and a 5 GHz 300Mbps wireless interface.
Specificatons:
- Atheros AR9342
- 535 MHz CPU
- 64 MB RAM
- 8 MB Flash
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
- 6 LEDs of which four are rssi
- 1 reset button
- UART (4-pin) header on PCB
Notes:
The device was supported by OpenWrt in ar71xx.
Flash instructions (web/ssh/tftp):
Loading the image via ssh vias a stock firmware prior "AirOS 5.6".
Downgrading stock is possible.
* Flashing is possible via AirOS software update page:
The "factory" ROM image is recognized as non-native and then installed correctly.
AirOS warns to better be familiar with the recovery procedure.
* Flashing can be done via ssh, which is becoming difficult due to legacy
keyexchange methods.
This is an exempary ssh-config:
KexAlgorithms +diffie-hellman-group1-sha1
HostKeyAlgorithms ssh-rsa
PubkeyAcceptedKeyTypes ssh-rsa
User ubnt
The password is ubnt.
Connecting via IPv6 link local worked best for me.
1. scp the factory image to /tmp
2. fwupdate.real -m /tmp/firmware_image_file.bin -d
* Alternatively tftp is possible:
1. Configure PC with static IP 192.168.1.2/24.
2. Enter the rescue mode. Power off the device, push the reset button on
the device (or the PoE) and keep it pressed.
Power on the device, while still pushing the reset button.
3. When all the leds blink at the same time, release the reset button.
4. Upload the firmware image file via TFTP:
tftp 192.168.1.20
tftp> bin
tftp> trace
Packet tracing on.
tftp> put firmware_image.bin
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
The MikroTik hAP (product code RB951Ui-2nD) is
an indoor 2.4Ghz AP with a 2 dBi integrated antenna built around the
Atheros QCA9531 SoC.
Specifications:
- SoC: Atheros QCA9531
- RAM: 64 MB
- Storage: 16 MB NOR - Winbond 25Q128FVSG
- Wireless: Atheros QCA9530 (SoC) 802.11b/g/n 2x2
- Ethernet: Atheros AR934X switch, 5x 10/100 ports,
10-28 V passive PoE in port 1, 500 mA PoE out on port 5
- 8 user-controllable LEDs:
· 1x power (green)
· 1x user (green)
· 4x LAN status (green)
· 1x WAN status (green)
· 1x PoE power status (red)
See https://mikrotik.com/product/RB951Ui-2nD for more details.
Notes:
The device was already supported in the ar71xx target.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Maciej Krüger <mkg20001@gmail.com>
The MikroTik RB952Ui-5ac2nD (sold as hAP ac lite) is an indoor 2.4Ghz
and 5GHz AP/router with a 2 dBi integrated antenna.
See https://mikrotik.com/product/RB952Ui-5ac2nD for more details.
Specifications:
- SoC: QCA9533
- RAM: 64MB
- Storage: 16MB NOR
- Wireless: QCA9533 802.11b/g/n 2x2 / QCA9887 802.11a/n/ac 2x2
- Ethernet: AR934X switch, 5x 10/100 ports,
10-28 V passive PoE in port 1, 500 mA PoE out on port 5
- 6 user-controllable LEDs:
- 1x user (green)
- 5x port status (green)
Flashing:
TFTP boot initramfs image and then perform sysupgrade. The "Internet"
port (port number 1) must be used to upload the TFTP image, then
connect to any other port to access the OpenWRT system.
Follow common MikroTik procedure as in
https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>