Specifications:
* SoC: Qualcomm Atheros QCA9533 (650MHz)
* RAM: 64MB
* Storage: 8 MB SPI NOR
* Wireless: 2.4GHz N based built into SoC 2x2
* Ethernet: 1x 100/10 Mbps, integrated into SoC, 24V POE IN
Installation:
Flash factory image through stock firmware WEB UI or TFTP
To get to TFTP recovery just hold reset button while powering
on for around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Thanks to robimarko for the work inside the ar71xx tree.
Thanks to adrianschmutzler for deep discussion and fixes.
Signed-off-by: Mario Schroen <m.schroen@web.de>
[Split into DTS/DTSI, read-only config partition in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
[renamed dtsi filename, light subject touches]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
COMFAST CF-E5/E7 is a outdoor 4G LTE AP with PoE support, based on
Qualcomm/Atheros QCA9531.
Short specification:
2x 10/100 Mbps Ethernet, with 24v PoE support
64 MB of RAM (DDR2)
16 MB of FLASH (SPI)
2T2R 2.4 GHz, 802.11b/g/n
built-in 1x 3 dBi antennas
output power (max): 80 mW (19 dBm)
Qucetel EC20 LTE MODULE(1x external detachable antenna)
Flash instruction:
Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
Signed-off-by: Ding Tengfei <dtf@comfast.cn>
[commit subject fix]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware
almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation
AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi
indicators, the fifth LED is used as an ethernet link/activity indicator.
CPU: Atheros AR9342 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
WLAN: QCA988X
Ports: 1x GbE
Flashing procedure is identical to the NanoStation AC loco and can be performed
either via serial or the factory firmware upgrade.
Serial flashing:
1. Connect to serial header on device (8N1 115200)
2. Power on device and enter uboot console
3. Set up tftp server serving an openwrt initramfs build
4. Load initramfs build using the command tftpboot in the uboot cli
5. Boot the loaded image using the command bootm
6. Copy squashfs openwrt sysupgrade build to the booted device
7. Use mtd to write sysupgrade to partition "firmware"
8. Reboot and enjoy
Flashing through factory firmware:
1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version.
2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
Thanks to @cybermaus for testing!
Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com>
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
The port labled as "LAN" is eth1.
That's different from the -lite variant,
where the only existing port eth0 is used as LAN
Signed-off-by: Andreas Ziegler <dev@andreas-ziegler.de>
Support for the Nanostation M (XW) was added in 40530c8eb with board
name "nanostation-m-xw". The current image for the "Nanostation M"
uses "nano-m" as the board name.
This commit renames it to the full product name as it's used by all
other boards. The legacy boardname of the ar71xx target is added
via SUPPORTED_DEVICES to ease switching to ath79 target.
Signed-off-by: Sven Roederer <devel-sven@geroedel.de>
[touch-ups on the commit message, removed subject remains]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
AR300M-Lite is single-Ethernet variant of the AR300M series
Its eth0 would otherwise be assigned to the WAN interface
making it unreachable firstboot or failsafe.
Installation instructions from OEM (OpenWrt variant):
* Install sysupgrade.bin using OEM's "Advanced" GUI (LuCI),
* Do not preserve settings
* Access rebooted device via Ethernet at OpenWrt default address
Add previously missing LED defaults for all three variants;
-nand, -nor, -lite to the definitions in 01_leds
Non-lite variants thanks to Andreas Ziegler
https://patchwork.ozlabs.org/patch/1049396/
Runtime-tested: GL.iNet AR300M-Lite
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
YunCore A770 is a ceiling AC750 AP with 2 Fast Ethernet ports, PoE
(802.3at) support, based on QCA9531 + QCA9887.
Specification:
- 650/597/216 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x 10/100 Mbps Ethernet (PoE 802.3at support in WAN port)
- 2T2R 2.4 GHz (QCA9531), with ext. PA and LNA
- 1T1R 5 GHz (QCA9887), with ext. FEM (SKY85728-11)
- 2x regular LED, 1x RGB LED (all driven by GPIO)
- 1x button (reset)
- DC jack for main power input (12 V)
- UART header on PCB
Flash instruction:
1. First, gain root access to the device, following below steps:
- Login into web gui (default password/IP: admin/192.168.188.253).
- Go to 'Advanced' -> 'Management' -> 'System' and download backup of
configuration (bakfile.bin).
- Open the file as tar.gz archive, edit/update 'shadow' file and change
hash of root password to something known.
- Repack the archive, rename it back to 'bakfile.bin' and use to
restore configuration of the device.
- After that, device will reboot and can be accessed over SSH.
2. Then, install OpenWrt:
- Login over SSH and issue command:
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
- Upload 'sysupgrade' image and install it (only if previous command
succeeded) with command: 'sysupgrade -n -F openwrt-...'.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
CPU: AR9342 SoC
RAM: 64 MB DDR2
Flash: 8 MB NOR SPI
Ports: 2x100 MBit (24V PoE in, 24V PoE out), AR8236 switch
WLAN: 2.4/5 GHz
UART: 1 UART
LEDs: Power, 2x Ethernet, 4x RSSI LEDs (orange, red, 2x green)
Buttons: Reset
Flashing instructions using recovery method over TFTP
1. Unplug the ethernet cable from the router.
2. Using paper clip press and hold the router's reset button. Make sure
you can feel it depressed by the paper clip. Do not release the button
until step 4.
3. While keeping the reset button pressed in, plug the ethernet cable
back into the AP. Keep the reset button depressed until you see the
device's LEDs flashing in upgrade mode (alternating LED1/LED3 and
LED2/LED4), this may take up to 25 seconds.
4. You may release the reset button, now the device should be in TFTP
transfer mode.
5. Set a static IP on your Computer's NIC. A static IP of 192.168.1.25/24
should work.
6. Plug the PoE injector's LAN cable directly to your computer.
7. Start tftp client and issue following commands:
tftp> binary
tftp> connect 192.168.1.20
tftp> put openwrt-ath79-generic-ubnt-nano-m-xw-squashfs-factory.bin
Tested-by: Joe Ayers <ae6xe@arrl.net>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This patch adds support for the COMFAST CF-E120A v3, an outdoor wireless
CPE with two Ethernet ports and a 802.11an radio.
Specifications:
- AR9344 SoC
- 535/400/267 MHz (CPU/DDR/AHB)
- 2x 10/100 Mbps Ethernet, both with PoE-in support
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 5 GHz, up to 25 dBm
- 11 dBi built-in antenna
- POWER/LAN/WAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI. Settings from the original firmware
will be saved and restored on the new one, so a factory reset will be
needed. To do so, once the new firmware is flashed, enter into failsafe
mode by pressing the reset button several times during the boot
process, while while the WAN LED flashes, until it starts flashing
faster. Once in failsafe mode, perform a factory reset as usual.
The U-boot bootloader contains a recovery HTTP server to upload the
firmware. Push the reset button while powering the device on and
keep it pressed for >10 seconds. The recovery page will be at
http://192.168.1.1
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Change the ledtrig for LAN from netdev to switch.
Although eth1 comes out of the device at a single port,
this port is a switch-port and therefore the LED
must be triggered by that.
Signed-off-by: Paul Wassi <p.wassi@gmx.at>
TP-Link Archer C7 v4 is a dual-band AC1750 router, based on the
Qualcomm/Atheros QCA9561 SoC + QCA9880.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 7x LED, 2x button
- UART header on PCB
Flash instruction:
1. Upload openwrt-ath79-generic-tplink_archer-c7-v4-squashfs-factory.bin
via Web interface
Flash instruction using TFTP recovery:
1. Set PC to fixed ip address 192.168.0.66
2. Download openwrt-ath79-generic-tplink_archer-c7-v4-squashfs-factory.bin
and rename it to ArcherC7v4_tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Signed-off-by: Oldřich Jedlička <oldium.pro@gmail.com>
This patch adds support for the COMFAST CF-E110N, an outdoor wireless
CPE with two Ethernet ports and a 802.11bgn radio.
Specifications:
- 650/400/216 MHz (CPU/DDR/AHB)
- 2x 10/100 Mbps Ethernet, both with PoE-in support
- 64 MB of RAM (DDR2)
- 16 MB of FLASH
- 2T2R 2.4 GHz, up to 26 dBm
- 11 dBi built-in antenna
- POWER/LAN/WAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI. Settings from the original firmware
will be saved and restored on the new want, so a factory reset will be
needed: once the new firmware is flashed, perform the factory reset by
pushing the reset button several times during the boot process, while the
WAN LED flashes, until it starts flashing quicker.
The U-boot bootloader contains a recovery HTTP server to upload the
firmware. Push the reset button while powering the device on and keep it
pressed for >10 seconds. The recovery page will be at http://192.168.1.1
Notes:
The device is advertised, sold and labeled as "CF-E110N", but the
bootloader and the stock firmware identify it as "v2".
Acknowledgments:
Petr Štetiar <ynezz@true.cz>
Sebastian Kemper <sebastian_ml@gmx.net>
Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[drop unused labels from devicetree source file]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch adds support for TP-Link Archer C6 v2 (EU)
Hardware specification:
- SOC: Qualcomm QCA9563 @ 775MHz
- Flash: GigaDevice GD25Q64CSIG (8MiB)
- RAM: Zentel A3R1GE40JBF (128 MiB DDR2)
- Ethernet: Qualcomm QCA8337N: 4x 1Gbps LAN + 1x 1Gbps WAN
- Wireless:
- 2.4GHz (bgn) QCA9563 integrated (3x3)
- 5GHz (ac) Qualcomm QCA9886 (2x2)
- Button: 1x power, 1x reset, 1x wps
- LED: 6x LEDs: power, wlan2g, wlan5g, lan, wan, wps
- UART: There's no UART header on the board
Flash instructions:
Upload
openwrt-ath79-generic-tplink_archer-c6-v2-squashfs-factory.bin
via the router Web interface.
Flash instruction using tftp recovery:
1. Connect the computer to one of the LAN ports of the router
2. Set the computer IP to 192.168.0.66
3. Start a tftp server with the OpenWrt factory image in the
tftp root directory renamed to ArcherC6v2_tp_recovery.bin.
4. Connect power cable to router, press and hold the reset
button and turn the router on
5. Keep the reset button pressed until the WPS LED lights up
6. Wait ~150 seconds to complete flashing
According to the GPL source the non-EU variant has different
GPIOs assigned to some of the LEDs and buttons. The flash
layout might be different as well. The wikidevi entry for
Archer A6/C6 assumes they are identical.
Signed-off-by: Georgi Vlaev <georgi.vlaev@gmail.com>
EnGenius EWS511AP is a wireless managed wall AP with PoE support,
based on Qualcomm/Atheros QCA9531(Honeybee) + QCA9887.
Short specification:
- 128MB of RAM
- 16 MB of SPI FLASH
- 2T2R 2.4 GHz (QCA9531), 802.11b/g/n
- 1T1R 5 GHz (QCA9887), 802.11ac/n/a
- 2x 10/100 Mbps Ethernet (one port with PoE support)
- 1x Power LED, 2x LAN LEDs, 1x WLAN 2.4G LED, 1x WLAN 5G LED
- 1x RESET button
- built-in watchdog chipset
Flash instruction:
From EnGenius firmware to OpenWrt firmware:
Original firmware is based on QSDK.
Use sysupgrade firmware directly in vendor GUI.
Reset to factory default is necessary.
From OpenWrt firmware to EnGenius firmware:
1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8
Put the OpenWrt firmware in the root directory on your computer.
2. Power up EWS511AP. Press 4 and then press any key to enter u-boot.
3. Download OpenWrt firmware
(ath)> tftpboot 0x80060000 ${dir}"openwrt-ath79-generic-engenius_ews511ap-squashfs-sysupgrade.bin"
4. Flash the firmware
(ath)> erase 0x9f060000 +f50000
(ath)> cp.b $fileaddr 0x9f060000 $filesize
5. Reboot
(ath)> reset
Signed-off-by: Guan-Hong Lin <GH.Lin@senao.com>
CPU: Atheros AR9341 535MHz
RAM: 32MB
FLASH: 4MiB
PORTS: 4 Port 100/10 Switch, 1 Port 100/10 Wan
WiFi: Atheros AR9341 2x2:2 bgn
LED: Power (static on), LAN (controlled by Switch), WAN, SYS, WiFi, RFKill
BTN: WPS, WiFi, Reset
Installation:
Upload the factory image via the vendor-GUI.
Signed-off-by: Antonio Silverio <menion@gmail.com>
[resolve merge conflicts, squash commits, fix commit title, remove
default default off led properties, mark sysupgrade image compatible
with the ar71xx version of the board, drop blank lines from dts]
Signed-off-by: Mathias Kresin <dev@kresin.me>
Hardware spec of DIR-859 A1:
SoC: QCA9563
DRAM: 64MB DDR2
Flash: 16MB SPI-NOR
Switch: QCA8337N
WiFi 5.8GHz: QCA9880
USB is supported on the PCB but not connected.
Flash instructions:
1. Upgrade the factory.bin through the factory web interface or the u-boot
failsafe interface.
The firmware will boot up correctly for the first time.
Do not power off the device after OpenWrt has booted. Otherwise the u-boot
will enter failsafe mode as the checksum of the firmware has been changed.
2. Upgrade the sysupgrade.bin in OpenWrt.
After upgrading completes the u-boot won't complain about the firmware
checksum and it's OK to use now.
3. If you powered off the device before upgrading the sysupgrade.bin, just
upgrade the factory.bin through the u-boot failsafe interface and then goto
step 2.
Signed-off-by: Weijie Gao <hackpascal@gmail.com>
[squash commits, use common seama recipes, sync factory image recipe
with ramips version]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This commit adds support for TP-Link Archer C7 v5, leveraging most effort
from commit ea9baee and 1e4ee63. Archer C7 v5 is identical to Archer A7 v5
but with a different flash layout.
Specification:
- QCA9563 SoC (750 MHz)
- 128 MiB of RAM (DDR2)
- 16 MiB of flash (SPI)
- 5x 1 Gbps Ethernet (1x WAN + 4x LAN)
- 2.4GHz (bgn) SoC internal + 5GHz (ac) QCA9880
- 10x LED, 2x button
- UART header on PCB
Flash instructions:
1. Upload openwrt-ath79-generic-tplink_archer-c7-v5-squashfs-factory.bin
via web interface.
Flash instructions using TFTP recovery:
1. Plug PC to one of the LAN ports
2. Set PC to fixed IP address 192.168.0.66
3. Rename the factory image to ArcherC7v5_tp_recovery.bin and place it in
TFTP root directory
4. Turn on the router with the reset button pressed for about 15 secs
5. Release the button and wait about 150 secs to complete flashing
Signed-off-by: TOCK Chiu <tock.chiu@gmail.com>
This patch adds support for TP-Link Archer A7
Specification:
- SOC: QCA9563
- Flash: 16 MiB (SPI)
- RAM: 128 MiB (DDR2)
- Ethernet: 4x 1Gbps LAN + 1x 1Gbps WAN
- Wireless:
- 2.4GHz (bgn) SoC internal
- 5GHz (ac) QCA988x
- USB: 1x USB 2.0 port
- Button: 1x power, 1x reset, 1x wps
- LED: 10x LEDs
- UART: holes in PCB
- Vcc, GND, RX, TX from ethernet port side
- 115200n8
Flash instructions:
Upload openwrt-ath79-generic-tplink_archer-a7-v5-squashfs-factory.bin
via the Webinterface.
Flash instruction using tftp recovery:
1. Connect the computer to one of the LAN ports of the Archer A7
2. Set the computer IP to 192.168.0.66
3. Start a tftp server with the OpenWrt factory image in the tftp
root directory renamed to ArcherC7v5_tp_recovery.bin
2. Connect power cable to Archer A7, press and hold the reset button
and turn the router on
3. Keep the reset button pressed for ~5 seconds
4. Wait ~150 seconds to complete flashing
Changes since first revision:
- Flash instructions using stock image webinterface
- Changed "Version 5" in model string to "v5"
- Split DTS file in qca9563_tplink_archer-x7-v5.dtsi
and qca9563_tplink_archer-a7-v5.dts
- Firmware image is now build with dynamic partitioning
- Default to ath10k-ct
Changes since second revision:
- Changed uboot@0 to uboot@20000 in DTS file
- Fixed ordering issue in board led script
- Specify firmware partition format in DTS file
- Rebased Makefile device definition on common
Device/tplink-safeloader-uimage definition
- Merged switch section in network script
(same configuration as tplink,tl-wdr3600
and tplink,tl-wdr4300)
Signed-off-by: Karl-Felix Glatzer <karl.glatzer@gmx.de>
This commit adds support for the Archer C58 v1 and C59 v1, previously
supported in the ar71xx target.
CPU: Qualcomm QCA9561
RAM: 64M (C58) / 128M (C59)
FLASH: 8M (C58) / 16M (C59)
WiFi: QCA9561 bgn 3x3:3
QCA9888 nac 2x2:2
LED: Power, WiFi 2.4, WiFi 5, WAN green, WAN amber, LAN, WPS
Only C59: USB
BTN: WPS, WiFi, Reset
Installation
------------
Via Web-UI:
Update factory image via Web-UI.
Via TFTP:
Rename factory image to "tp_recovery.bin" and place it in the root-dir
of your tftp server. Configure to listen on 192.168.0.66. Power up the
router while holding down the reset-button. The router will flash itself
and reboot.
Note: For TFTP, you might need a switch between router and computer, as
link establishment might take to long.
Signed-off-by: David Bauer <mail@david-bauer.net>
this patch adds supports for GL-X750.
Specification:
- SOC: QCA9531 (650MHz)
- Flash: 16 MiB (W25Q128FVSG)
- RAM: 128 MiB DDR2
- Ethernet: 10/100: 1xLAN + 10/100: 1xWAN
- Wireless: 2.4GHz (bgn) and 5GHz (ac)
- USB: 1x USB 2.0 port
- Button: 1x reset button
- LED: 5x LEDS (green)
Flash instruction:
The original firmware is openwrt, so both LuCI or sysupgrade can be used.
Signed-off-by: Luo chongjun <luochongjun@gl-inet.com>
CPU: AR9342 SoC
RAM: 64 MB DDR2
Flash: 8 MB NOR SPI
Ports: 100 MBit (24V PoE in)
WLAN: 2.4/5 GHz
UART: 1 UART on PCB marked as J1 with 115200 8N1 config
LEDs: Power, Ethernet, 4x RSSI LEDs (orange, red, 2x green)
Buttons: Reset
UART connection details
.---------------------------------.
| |
[ETH] J1 [ANT]
| o VCC o RX o TX o GND |
`---------------------------------'
Flashing instructions
A) Serial console, U-Boot and TFTP
1. Connect to serial header J1 on the PCB
2. Power on device and enter U-Boot console
3. Set up TFTP server serving an OpenWrt initramfs build
4. Load initramfs build using the command tftpboot in the U-Boot cli
5. Boot the loaded image using the command bootm
6. Copy squashfs OpenWrt sysupgrade build to the booted device
7. Use mtd to write sysupgrade to partition "firmware"
8. Reboot and enjoy
B) Experimental factory image flashing over SSH from airOS v6.1.7
1. You need to flash your UBNT M2HP with airOS v6.1.7 firmware
no other airOS version is currently supported
2. git clone https://github.com/true-systems/ubnt-bullet-m2hp-openwrt-flashing
3. cd ubnt-bullet-m2hp-openwrt-flashing
4. make flash-factory FW_OWRT=/path/to/your/openwrt-ath79-generic-ubnt_bullet-m-xw-squashfs-factory.bin
Tested only on Bullet M2HP.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This PR adds support for TP-Link TL-WR842N-v2 router which is supported by ar71xx to ath79.
This is a low cost model with following specs:
CPU: Atheros AR9341 SoC
RAM: 32 MB DDR1
Flash: 8 MB NOR SPI
Switch: Internal AR9341 5 port 10/100 Mbit
Ports: 5x 10/100 Mbit(1x WAN, 4x LAN)
USB: 1x USB2.0
WLAN: 2.4 GHZ AR9341
Installation:
Simply flash the factory image through stock firmware WEB UI.
Signed-off-by: Robert Marko <robimarko@gmail.com>
5 GHz AC wireless outdoor PoE CPE with internal 2.4 GHz management radio
CPU: Atheros AR9342 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
Switch: QCA8334
Ports: 2 GbE ports (1x PoE in, 1x PoE passthrough)
WLAN: 5 GHz QCA899X (PCI) and 2.4 GHZ AR9342
Successor to the old NanoStation M5 with AC wireless.
The integrated QCA899X is a Ubiquiti branded part with modified vendor and
product id (0777:11ac9).
Serial
Serial settings: 115200, 8N1
* = plated through hole
0 = nylon screw
[Top of device]
+--------------------------+
| [label] |
| 0 |
| 0 |
| [ubnt] |
| [logo] 3V3 * |
| TX * |
| RX * |
| GND * |
| |
| * |
| * |
| * |
| * |
| 0 |
| 0 |
| |
| |
Installation
1. Connect to serial header on device
2. Power on device and enter uboot console
3. Set up tftp server serving an openwrt initramfs build
4. Load initramfs build using the command tftpboot in the uboot cli
5. Boot the loaded image using the command bootm
6. Copy squashfs openwrt sysupgrade build to the booted device
7. Use mtd to write sysupgrade to partition "firmware"
8. Reboot and enjoy
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
When mapping for RSSI LEDs was defined for interface wlan0 on
Ubiquiti XM family, the mapping for rssileds monitor was omitted
by mistake. Therefore create the mapping, so RSSI LEDs work without
additional configuration, after starting rssileds service.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
This patch ports over support for the device from ar71xx.
SOC: AR7370 (Wasp - AR9344 rev2 0001974c)
RAM: Winbond W9725G6KB-25 32MiB
FLASH: Winbond 25Q64FVSIG 8MiB
WLAN: AR9380 Dual-Band 802.11abgn 3x3:3
INPUT: WPS, RESET button (hardware on/off toggle button)
LED: Power, LAN, WiFi, 3 RSSI-Leds (low, medium, high)
Serial: Header Next to the winbond flash chip (labeld JP1)
Pinout is GND - NC - RX - TX - 3V3 (JP1)
The Serial setting is 115200-8-N-1.
- Installation via uboot's upgrade command
0. attach serial cable
1. interrupt uboot and enter "upgrade code.bin" into
the u-boot prompt
ar7240> upgrade code.bin
2. rename openwrt...sysupgrade.bin to code.bin on PC
3. run a tftp-client on the PC
(shell)$ tftp 192.168.1.230
binary
put code.bin
4. wait for the device to finish
[...]
Copy buff to Flash from 0x9f040000 length 0x79f000
Copy to Flash... write addr: 9f040000
done
5. enter "go" in the u-boot prompt
ar7240> go
- TFTP ramdisk image boot from the uboot prompt
(tftp server defaults to serverip 192.168.1.254)
=> tftpboot 81000000 initramfs.bin
=> bootm
Tested and working:
- LEDs
- Buttons
- Ethernet
- Wi-Fi
- OpenWRT sysupgrade
For flashing and debricking information see:
<https://openwrt.org/toh/wd/rext>
Users coming from ar71xx can use sysupgrade too. But I highly
advise to no save the old configuration and start from a clean
state.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Ubiquiti XM series boards contain a set of RSSI LEDs. Create an UCI
mapping for them, so visual feedback on RSSI is available, when using
userspace RSSI monitor daemon.
Runtime tested using rssileds.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
This commit adds support for the AVM Fritz!Box 4020 WiFi-router.
SoC: Qualcomm Atheros QCA9561 (Dragonfly) 750MHz
RAM: Winbond W971GG6KB-25
FLASH: Macronix MX25L12835F
WiFi: QCA9561 b/g/n 3x3 450Mbit/s
USB: 1x USB 2.0
IN: WPS button, WiFi button
OUT: Power LED green, Internet LED green, WLAN LED green,
LAN LED green, INFO LED green, INFO LED red
UART: Header Next to Black metal shield
Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet (LAN + WAN)
- WiFi (correct MAC)
- Installation via EVA bootloader
- OpenWRT sysupgrade
- Buttons
- LEDs
The USB port doesn't work. Both Root Hubs are detected as having 0 Ports:
[ 3.670807] kmodloader: loading kernel modules from /etc/modules-boot.d/*
[ 3.723267] usbcore: registered new interface driver usbfs
[ 3.729058] usbcore: registered new interface driver hub
[ 3.734616] usbcore: registered new device driver usb
[ 3.744181] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[ 3.758357] SCSI subsystem initialized
[ 3.766026] ehci-platform: EHCI generic platform driver
[ 3.771548] ehci-platform ehci-platform.0: EHCI Host Controller
[ 3.777708] ehci-platform ehci-platform.0: new USB bus registered, assigned bus number 1
[ 3.788169] ehci-platform ehci-platform.0: irq 48, io mem 0x1b000000
[ 3.816647] ehci-platform ehci-platform.0: USB 2.0 started, EHCI 0.00
[ 3.824001] hub 1-0:1.0: USB hub found
[ 3.828219] hub 1-0:1.0: config failed, hub doesn't have any ports! (err -19)
[ 3.835825] ehci-platform ehci-platform.1: EHCI Host Controller
[ 3.842009] ehci-platform ehci-platform.1: new USB bus registered, assigned bus number 2
[ 3.852481] ehci-platform ehci-platform.1: irq 49, io mem 0x1b400000
[ 3.886631] ehci-platform ehci-platform.1: USB 2.0 started, EHCI 0.00
[ 3.894011] hub 2-0:1.0: USB hub found
[ 3.898190] hub 2-0:1.0: config failed, hub doesn't have any ports! (err -19)
[ 3.908928] usbcore: registered new interface driver usb-storage
[ 3.915634] kmodloader: done loading kernel modules from /etc/modules-boot.d/*
A few words about the shift-register:
AVM used a trick to control the shift-register for the LEDs with only 2
pins, SERCLK and MOSI. Q7S, normally used for daisy-chaining multiple
shift-registers, pulls the latch, moving the shift register-state to
the storage register. It also pulls down MR (normally pulled up) to
clear the storage register, so the latch gets released and will not be
pulled by the remaining bits in the shift-register. Shift register is
all-zero after this.
For that we need to make sure output 7 is set to high on driver probe.
We accomplish this by using gpio-hogging.
Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 169.254.157.1 (Might also be 192.168.178.1).
Firmware can be uploaded like following:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Note that this procedure might take up to two minutes. After transfer is
complete you need to powercycle the device to boot OpenWRT.
Signed-off-by: David Bauer <mail@david-bauer.net>
Adding tl-wr841-v11 and the rename of tl-wr841n-v9 to tl-wr841-v9 in 01_leds
and 02_network script files are missing in commits cc35c91 and 8db6522.
Signed-off-by: Johann Neuhauser <johann@it-neuhauser.de>
[merged with identical case in 02_network]
Signed-off-by: Mathias Kresin <dev@kresin.me>
If it isn't a usb led, it shouldn't be used as one by default. It is up
to the user to add such a (mis)configuration for the board.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Buffalo WHR-G301N is a 2.4 GHz 11n router, based on Atheros AR7240.
Ported from ar71xx target.
Specification:
- Atheros AR7240
- 32 MB of RAM
- 4 MB of Flash
- 2.4 GHz 2T2R wifi
- 5x 10/100 Mbps Ethernet
- 9x LEDs, 4x keys
- LED: 8x gpio-leds, 1x ath9k-leds
- key: 2x buttons, 1x slide switch
- UART header on PCB
- Vcc, GND, TX, RX from LEDs side
- 115200n8
Flash instruction using factory image:
1. Connect the computer to the LAN port of WHR-G301N
2. Connect power cable to WHR-G301N and turn on it
3. Access to "http://192.168.11.1/" and open firmware update page
("ファーム更新")
4. Select the OpenWrt factory image and click execute ("実行") button
5. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[fix the SUPPORTED_DEVICES to be compatible with the ar71xx image]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch did the following things:
1. Separate ath9k-leds out of gpio leds so that all other leds will work
before ath9k loded (e.g. during preinit/init stage).
2. Rename wps led to qss since that's how TP-Link mark it.
3. Rename LED prefix to tp-link because that dts is shared by many devices.
4. Rename to wr740n-v1 because v1 is the first and v2 just use the fw of v1.
(This will require a forced sysupgrade if you comes from
the previous wr740n v2 image.)
5. Remove SUPPORTED_DEVICES.
(tl-wr740n-v2 doesn't exist anywhere so it's useless.)
6. Add all WR741ND v1 clones found in ar71xx.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Change lan and it's LED to eth0
It's broken since c7c807cb8c
where I changed the dts but forgot to change default configurations.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
1. Swap eth0/eth1
Both devices are using AR9331, the builtin switch on AR9331 is
connected to gmac1 and gmac1 is named as eth1 in ath79.
PS: gmac1 is eth0 and gmac0 is eth1 in ar71xx because of the
reversed initialization order.
2. Fix the incorrect compatible string in dts
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The PowerCloud Systems CR3000 was a cloud-managed CPE for a now defunct
NaaS offering. It was previously supported under the ar71xx branch and
this forward ports that support with some notable differences:
1) Since reverting to stock firmware is now irrelevant there is is only
a single openwrt image generated which uses the entire flash rather than
preserving PowerCloud-specific partitions that are unneeded to openwrt--
those partitions will be erased and used by the openwrt image.
2) Rather than use a non-standard probe order for the ethernet devices,
this image uses a set of 'ip link set ethX name ethY' commands very early
in preinit (before the network is used at all), in order to have the the
switch and Wan use the same ethernet names as in previous images.
3) /etc/config/wireless will need to be regenerated as the path to the
wireless device has changed due to differences in ath79 DT for ar93x
compared to ar71xx images.
4) eth0 is wan and eth1 is lan (switch)
Signed-off-by: Daniel F. Dickinson <cshored@thecshore.com>
The CAP324 was an AP for a NaaS offering that is now defunct. While
previously supported in the ar71xx arch, there were some errata (to
be fixed shortly).
Notable differences from ar71xx support:
1) The method of getting the ath9k firmware for the PCIe 2ghz wifi has
changed (due to changes in how the arch handles this), since this device
doesn't use the EEPROM except to get the MAC address of the wifi.
2) /etc/config/wireless will need to be regenerated as the path(s) to
the wireless device(s) have changed.
3) ath79 OpenWrt firmware no longer supports build an image that allows
reverting to stock firmware (as the cloud service no longer exists, the
stock firmware is useless), instead using all of the flash for image and
overlay (less u-boot/env and art).
4) Initial network config treats the ethernet port as a Lan port with
the standard default address (192.168.1.1 unless changed in .config
--e.g. via menuconfig) instead of using DHCP (this was the default for
the stock firmware, however for openwrt use this is rather confusion and
counter-productive as the user has a harder time finding the device on
the network.
Signed-off-by: Daniel F. Dickinson <cshored@thecshore.com>
Add ath79 arch support for PowerCloud Systems CR5000. Previously
supported under ar71xx (however there are some errors in that support;
to be fixed shortly).
Info:
* This board is based on the Atheros DB120 reference design, but doesn't
use the on-board switch. Instead it attachs GMAC0 to an AR8327 switch.
* It only uses GMAC0 and the WAN is simply a VLAN in the stock firmware.
* It has 64MB RAM and 8MB flash.
* In the dts version we get rid of using 'open-drain' for the AR8327
LED controls.
* As with the platform data version we disable JTAG as this conflicts
with one of the pair of GPIO's required for the power/status LED
(GPIO2 and GPIO4 are used for this LED).
* The pcie card wifi has an EEPROM but gets it's MAC address from
the ART partition.
* The SoC wifi (2.4 GHz) is all from the ART.
* The USB is support comes from the SoC.
NB. This is actually an AR9342 rather than AR9344 but we use the 9344
definitions because there are no relevant differences for this board.
NB: Building only images that don't support reverting to the old
cloud-based firmware as the Skydog cloud service for the CR5000 no
longer exists.
Signed-off-by: Daniel F. Dickinson <cshored@thecshore.com>
This patch ports the TP-Link TL-WR741ND v4 and TL-WR740ND v4 to the
ath79 target.
Because the two devices share the same hw layout, this patch adds a common
.dtsi which is included by the two .dts.
Signed-off-by: Rocco Folino <rocco@folino.io>