Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718
- 3 buttons (WPS, reset, LED on/off)
- 1 1Gbit WAN port
- 4 1Gbit LAN ports
Disassembly:
- There are four screws at the bottom: 2 under the rubber feets, 2 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes on the side of the board.
- Pins (from front to rear):
- 3.3V
- RX
- TX
- GND
- Settings: 115200, 8N1
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- The recovery web interface always flashes to the currently active partition.
- If OpenWrt is flahsed to the second partition, it will not boot.
- Ensure that you have an OEM image available (encrypted and decrypted version). Decryption is described in the end.
- Set your IP address to 192.168.200.10, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Download openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-recovery.bin
- The recovery web interface always reports successful flashing, even if it fails
- After flashing, the recovery web interface will try to forward the browser to 192.168.0.1 (can be ignored)
- If OpenWrt was flashed to the first partition, OpenWrt will boot (The status LED will start blinking white and stay white in the end). In this case you're done and can use OpenWrt.
- If OpenWrt was flashed to the second partition, OpenWrt won't boot (The status LED will stay red forever). In this case, the following steps are reuqired:
- Start the web recovery interface again and flash the **decrypted OEM image**. This will be flashed to the second partition as well. The OEM firmware web interface is afterwards accessible via http://192.168.200.1.
- Now flash the **encrypted OEM image** via OEM firmware web interface. In this case, the new firmware is flashed to the first partition. After flashing and the following reboot, the OEM firmware web interface should still be accessible via http://192.168.200.1.
- Start the web recovery interface again and flash the OpenWrt recovery image. Now it will be flashed to the first partition, OpenWrt will boot correctly afterwards and is accessible via 192.168.1.1.
Flashing via U-Boot:
- Open the case, connect to the UART console
- Set your IP address to 192.168.200.2, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-initramfs-kernel.bin.
- Power on the device and select "7. Load image" in the U-Boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Perform a sysupgrade using openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.200.2, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util M30 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware M30A1_FW101B05: ./m32-firmware-util M30 --DecryptFactoryImage M30A1_FW101B05\(0725091522\).bin M30A1_FW101B05\(0725091522\)_decrypted.bin
Flashing via OEM web interface is not possible, as it will change the active partition and OpenWrt is only running on the first UBI partition.
Controlling the LEDs:
- The LEDs are controlled by a chip called "GCA230718" which is connected to the main CPU via I2C (address 0x40)
- I didn't find any documentation or driver for it, so the information below is purely based on my investigations
- If there is already I driver for it, please tell me. Maybe I didn't search enough
- I implemented a kernel module (leds-gca230718) to access the LEDs via DTS
- The LED controller supports PWM for brightness control and ramp control for smooth blinking. This is not implemented in the driver
- The LED controller supports toggling (on -> off -> on -> off) where the brightness of the LEDs can be set individually for each on cycle
- Until now, only simple active/inactive control is implemented (like when the LEDs would have been connected via GPIO)
- Controlling the LEDs requires three sequences sent to the chip. Each sequence consists of
- A reset command (0x81 0xE4) written to register 0x00
- A control command (for example 0x0C 0x02 0x01 0x00 0x00 0x00 0xFF 0x01 0x00 0x00 0x00 0xFF 0x87 written to register 0x03)
- The reset command is always the same
- In the control command
- byte 0 is always the same
- byte 1 (0x02 in the example above) must be changed in every sequence: 0x02 -> 0x01 -> 0x03)
- byte 2 is set to 0x01 which disables toggling. 0x02 would be LED toggling without ramp control, 0x03 would be toggling with ramp control
- byte 3 to 6 define the brightness values for the LEDs (R,G,B,W) for the first on cycle when toggling
- byte 7 defines the toggling frequency (if toggling enabled)
- byte 8 to 11 define the brightness values for the LEDs (R,G,B,W) for the second on cycle when toggling
- byte 12 is constant 0x87
Comparison to M32/R32:
- The algorithms for decrypting the OEM firmware are the same for M30/M32/R32, only the keys differ
- The keys are available in the GPL sources for the M32
- The M32/R32 contained raw data in the firmware images (kernel, rootfs), the R30 uses a sysupgrade tar instead
- Creation of the recovery image is quite similar, only the header start string changes. So mostly takeover from M32/R32 for that.
- Turned out that the bytes at offset 0x0E and 0x0F in the recovery image header are the checksum over the data area
- This checksum was not checked in the recovery web interface of M32/R32 devices, but is now active in R30
- I adapted the recovery image creation to also calculate the checksum over the data area
- The recovery image header for M30 contains addresses which don't match the memory layout in the DTS. The same addresses are also present in the OEM images
- The recovery web interface either calculates the correct addresses from it or has it's own logic to determine where which information must be written
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Huawei AP5030DN is a dual-band, dual-radio 802.11ac Wave 1 3x3 MIMO
enterprise access point with two Gigabit Ethernet ports and PoE
support.
Hardware highlights:
- CPU: QCA9550 SoC at 720MHz
- RAM: 256MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: QCA9550-internal radio
- Wi-Fi 5GHz: QCA9880 PCIe WLAN SoC
- Ethernet 1: 10/100/1000 Mbps Ethernet through Broadcom B50612E PHY
- Ethernet 2: 10/100/1000 Mbps Ethernet through Marvell 88E1510 PHY
- PoE: input through Ethernet 1 port
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: SGM706 (1.6s timeout)
Serial console:
9600n8 (9600 baud, no stop bits, no parity, 8 data bits)
MAC addresses:
Each device has 32 consecutive MAC addresses allocated by
the vendor, which don't overlap between devices.
This was confirmed with multiple devices with consecutive
serial numbers.
The MAC address range starts with the address on the label.
To be able to distinguish between the interfaces,
the following MAC address scheme is used:
- eth0 = label MAC
- eth1 = label MAC + 1
- radio0 (Wi-Fi 5GHz) = label MAC + 2
- radio1 (Wi-Fi 2.4GHz) = label MAC + 3
Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP
1. Power up the AP
2. At prompt "Press f or F to stop Auto-Boot in 3 seconds",
do what they say.
Log in with default admin password "admin@huawei.com".
3. Boot the OpenWrt initramfs from TFTP using the hidden script
"run ramboot". Replace IP address as needed:
> setenv serverip 192.168.1.10
> setenv ipaddr 192.168.1.1
> setenv rambootfile
openwrt-ath79-generic-huawei_ap5030dn-initramfs-kernel.bin
> saveenv
> run ramboot
4. Optional but recommended as the factory firmware cannot
be downloaded publicly:
Back up contents of "firmware" partition using the web interface or ssh:
$ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap5030dn_fw_backup.bin
5. Run sysupgrade using sysupgrade image. OpenWrt
shall boot from flash afterwards.
Return to factory firmware (using firmware upgrade package downloaded from
non-public Huawei website):
1. Start a TFTP server in the directory where
the firmware upgrade package is located
2. Boot to u-boot as described above
3. Install firmware upgrade package and format the config partitions:
> update system FatAP5X30XN_SOMEVERSION.bin
> format_fs
Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
for example using scp
2. Use sysupgrade with force to restore the backup:
sysupgrade -F huawei_ap5030dn_fw_backup.bin
3. Boot AP to U-Boot as described above
Quirks and known issues
-----------------------
- On initial power-up, the Huawei-modified bootloader suspends both
ethernet PHYs (it sets the "Power Down" bit in the MII control
register). Unfortunately, at the time of the initial port, the kernel
driver for the B50612E/BCM54612E PHY behind eth0 doesn't have a resume
callback defined which would clear this bit. This makes the PHY unusable
since it remains suspended forever. This is why the backported kernel
patches in this commit are required which add this callback and for
completeness also a suspend callback.
- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.
- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the CPU_CLK/4 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.
Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
[fixed 6.6 backport patch naming]
Signed-off-by: David Bauer <mail@david-bauer.net>
The uboot-envtools can automatically parse the dts 'u-boot,env'
compatible string. So the env config file is now useless.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Key features:
Allwinner H618 SoC (Quad core Cortex-A53)
1/1.5/2/4 GiB LPDDR4 DRAM
1 USB 2.0 type C port (Power + OTG)
1 USB 2.0 host port
1Gbps Ethernet port
Micro-HDMI port
MicroSD slot
Installation:
Write the image to SD Card with dd.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
This version supports LPDDR4 DRAM of H618 SoC.
Runtime-tested:
Olimex Olinuxino Micro (A20)
Orange Pi Zero 3 (H618)
Pine64 SoPine (A64)
Tested-by: Zoltan HERPAI <wigyori@uid0.hu>
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
With the change in version schema the downloaded files changed, too,
mostly the hash is now prefixed with a tilde `~` instead of a dash `-`.
Since each downloaded archive contains folder with the same name as the
archive, the checksum changed.
Signed-off-by: Paul Spooren <mail@aparcar.org>
Add support for Xiaomi Redmi AX6S to be used as a second-stage
UBI loader.
The defconfig/env is minimal: Boot fit from UBI. If that failed,
load and boot initramfs image from TFTP.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Dual-slot NAS based on Marvell Kirkwood.
Specifications:
- Marvell 88F6281 @1GHz
- 128Mb RAM
- 256Mb NAND
- 1x GbE LAN (Marvell 88E1116)
- 1x USB 2.0
- 2x SATA
- PCF8563 RTC
- LM75 sensor
- TC654 PWM fan controller
- Serial on J2 (115200,8n1)
- Newer bootROM so kwboot-ing via serial is possible
Installation:
1. Serial console
- Connect your levelshifter to the serial console
on J2 (refer to the wiki page for pinout)
2. Update u-boot
- Download the u-boot.kwb image for the device
- Powercycle the NAS
- Run "kwboot -b ./u-boot.kwb /dev/ttyUSB0 -p"
- Connect to the serial console with minicom
- tftp 0x0800000 netgear_stora-u-boot.kwb
- nand erase 0x0 100000
- nand write 0x0800000 0x0 0x100000
- reset
3. Install OpenWrt
- Boot up the initramfs image
- tftpboot 0x800000 openwrt-kirkwood-netgear_stora-initramfs-uImage; bootm 0x800000
- Download the sysupgrade image and perform sysupgrade
The fan is controlled in 3 stages by a script running every minute
from cron, measuring the CPU temperature.
Snippets taken from bodhi <mibodhi@gmail.com>
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Make sure patch sequence number is unique by moving patch
440-add-jdcloud_re-cp-03.patch -> 441-add-jdcloud_re-cp-03.patch
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Contrary to common ipTIME NOR devices, the "Config" partition of T5004
and AX2004M contain normal U-Boot environment variables. Renaming the
partition into "u-boot-env" serves for better description, and it also
conforms to common naming practice in OpenWrt.
This patch might also be extended to A3004T, but its u-boot-env
partition layout has not been confirmed yet.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Probing of the fitblk driver in some situations happens after Linux
attempts to mount rootfs, which then fails.
Always use 'rootwait' kernel parameter when using fitblk for rootfs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Netgear WAX214 is a 802.11 ax dual-band AP
with PoE. (similar to Engenius EWS357APV3)
Specifications:
• CPU: Qualcomm IPQ6010 Quad core Cortex-A53
• RAM: 512MB of DDR3
• Storage: 128MB NAND (Macronix MX30UF1G18AC)
• Ethernet: 1x 1G RJ45 port (QCA8072) PoE
• WIFI:
2.4GHz: Qualcomm QCN5022 2x2 802.11b/g/n/ax 574 Mbps PHY rate
5GHz: Qualcomm QCN5052 2x2 802.11a/b/g/n/ac/ax 1201 PHY rate
• LEDs:
4 x GPIO-controlled LEDs
- 1 Power LED (orange)
- 1 LAN LED (blue)
- 1 WIFI 5g LED (blue)
- 1 WIFI 2g LED (blue)
black_small_square Buttons: 1x soft reset
black_small_square Power: 12V DC jack or PoE (802.3af )
An populated serial header is onboard, format is
1.25mm 4p (DF13A-4P-1.25H)
RX/TX is working, bootwait is active, secure boot is not
enabled.
The root password of the stock firmware is unknown,
but failsafe mode can be entered to reset the password.
Installation Instructions:
- obtain serial access
- stop auto boot (press "4", Entr boot command line
interface)
- setenv active_fw 0 (to boot from the primary rootfs,
or set to 1 to boot from the secondary rootfs
partition)
- saveenv
- tftpboot the initramfs image
- bootm
- copy
openwrt-qualcommax-ipq60xx-netgear_wax214-squashfs-factory.ubi
to the device
- write the image to the NAND:
- cat /proc/mtd and look for rootfs partition (should
be mtd11,
or mtd12 if you choose active_fw 1)
- ubiformat /dev/mtd11 -f -y
openwrt-qualcommax-ipq60xx-netgear_wax214-squashfs-factory.ubi
- reboot
Note: the firmware is senao-based. But I was unable to build
a valid senao-header into the image.
Maybe they changed the header format and senaoFW isn't
working any more.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
hostpkg python from packages feed can be picked when do a incremental
build because hostpkg has higher priority in PATH. It may lead build
faliure as it's heavily trimmed (e.g. lacks necessary modules).
For uboot which uses binman and intree dtc, this is forced as hostpkg
python will never provide those modules by default.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Add u-boot bootloader based on 2023.01 to support D1-based boards, currently:
- Dongshan Nezha STU
- LicheePi RV Dock
- MangoPi MQ-Pro
- Nezha D1
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
U-boot on D1 also uses OpenSBI as its payload. As the current version of
OpenSBI already supports D1 with no further patches required, allow
building it on the upcoming TARGET_d1 too.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
It should be "BananaPi BPi-R3 Mini" instead of just "BananaPi BPi-R3".
Fixes: bc25519f98 ("uboot-mediatek: add builds for BananaPi BPi-R3 mini")
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Use the new fitblk driver on the BananaPi R2 as well as UniElec U7623.
Introduce boot device selection for fitblk's /chosen/rootdisk
handle, similar to how it is already done on MT7622, MT7986 and MT7988.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The default environment for the Linksys E8450 and Belkin RT3200 got
truncated by one line due to a broken patch. While the impact was
luckily only cosmetic, fix it so bootmenu title also shows U-Boot
version again.
Fixes: 6aec3c7b5b ("mediatek: mt7622: modernize Linksys E8450 / Belkin RT3200 UBI build")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
**Netgear LBR20** is a router with two gigabit ethernets , three wifi radios and integrated LTE cat.18 modem.
SoC Type: Qualcomm IPQ4019
RAM: 512 MiB
Flash: 256 MiB , SLC NAND, 2 Gbit (Macronix MX30LF2G18AC)
Bootloader: U-Boot
Modem: LTE CAT.18 Quectel EG-18EA , Max. 1.2Gbps downlink / 150Mbps uplink
WiFi class AC2200:
- radio0 : 5G on QCA9888 , WiFi5- 802.11a/n/ac MU-MIMO 2x2 , 887Mbps , 80MHz - limited for low channels
- radio1: 2,4G on IPQ4019 ,WiFi4- 802.11b/g/n MIMO2x2 300Mbps 40Mhz
- radio2: 5G on IPQ4019 , WiFi5- 802.11a/n/ac MU-MIMO 2x2 , 887Mbps ,80Mhz - limited for high channels (from 100 up to 165) . Becouse of DFS remember to set country before turning on.
Ethernet: 2x1GbE (WAN/LAN1, LAN2)
LEDs: section power : green and red , section on top (orbi) drived by TLC59208F: red, green ,blue and white
USB ports: No
Buttons: 2 Reset and SYNC(WPS)
Power: 12 VDC, 2,5 A
Connector type: Barrel
OpenWRT Installation
1. Simplest way is just do upgrade from webpage with *factory.img
2. You can also do it with standard tool for Netgear's debricking - NMPRFlash
3. Most advanced way is to open device , connect to UART console and :
- Prepare OpenWrt initramfs image in TFTP server root (server IP 192.168.1.10)
- Connect serial console (115200,8n1) to UART connector
- Connect TFTP server to RJ-45 port
- Stop in u-Boot and run u-Boot command:
> setenv serverip 192.168.1.10
> set fdt_high 0x85000000
> tftpboot 0x83000000 openwrt-ipq40xx-generic-netgear_lbr20-initramfs-zImage.itb
> bootm 0x83000000
- Login via ssh
- upload or download *sysupgrade.bin ( like wget ... or scp transfer)
- Install image via "sysupgrade -n" (like “sysupgrade -n /tmp/openwrt-ipq40xx-generic-netgear_lbr20-squashfs-sysupgrade.bin”)
Back to Stock
- Download firmware from official Netgear's webpage , it will be *.img file after decompressing.
- Use NMRPFlash tool ( detailed insructions on project page https://github.com/jclehner/nmrpflash )
Open the case
- Unscrew nuts and remove washers from antenna's conectors.
- There are two Torx T10 screws under the label next to antenna conectors. You have to unglue this label from left and right corner to get it
- Two parts of shell covers will slide out from eachother , you have to unglue two small rubber pads and namplate sticker on bottom to do that.
- PCB is screwed with 4Pcs of Torx T10 screws
- Before lifting up PCB remove pigtiles for LTE antennas and release them from PCB and radiator (black and white wires)
- On other side of PCB ,in left bottom corner there is already soldered with 4 pins UART connector for console. Counting from left it is +3,3V , TX , RX ,GND (reffer to this picture: https://i.ibb.co/Pmrf9KB/20240116-103524.jpg )
BDF's files are in firmware_qca-wireless https://github.com/openwrt/firmware_qca-wireless/ and in parallel sent to ath10k@lists.infradead.org.
Signed-off-by: Marcin Gajda <mgajda@o2.pl>
Currently there are no atf/tpl blobs for rk3566 SoCs
so this commit adds the prebuilt firmware from the vendor.
Signed-off-by: Marius Durbaca <mariusd84@gmail.com>
FriendlyElec renamed the NanoPi R4S board with EEPROM (mac address)
to "enterprise" edition, and it was added as a "new" board in upstream
kernel.
This patch switched to use that upstreamed dts and removed local
EEPROM patch.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Fix NAND flash layout which was out-of-sync with the definition in
ARM TrustedFirmware-A which expects UBI to start at 0x200000.
Fixes: b03d3644cf ("mediatek: filogic: add BananaPi BPi-R3 mini")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification
----------------------
SoC: MediaTek MT7986A 4x A53
Flash: 128MB SPI-NAND, 8GB eMMC
RAM: 2GB DDR4
Ethernet: 2x 2.5GbE (Airoha EN8811H)
WiFi: MediaTek MT7976C 2x2 2.4G + 3x3 5G
Interfaces:
* M.2 Key-M: PCIe 2.0 x2 for NVMe SSD
* M.2 Key-B: USB 3.0 with SIM slot
* front USB 2.0 port
LED: Power, Status, WLAN2G, WLAN5G, LTE, SSD
Button: Reset, internal boot switch
Fan: PWM-controlled 5V fan
Power: 12V Type-C PD
Installation instructions for eMMC
----------------------------------
0. Set boot switch to boot from SPI-NAND (assuming stock rom or immortalwrt
running there).
1. Write GPT partition table to eMMC
Move openwrt-mediatek-filogic-bananapi_bpi-r3-mini-emmc-gpt.bin to
the device /tmp using scp and write it to /dev/mmcblk0:
dd if=/tmp/openwrt-*-r3-mini-emmc-gpt.bin of=/dev/mmcblk0
2. Reboot (to reload partition table)
3. Write bootloader and OpenWrt images
Move files to the device /tmp using scp:
- openwrt-*-bananapi_bpi-r3-mini-emmc-preloader.bin
- openwrt-*-bananapi_bpi-r3-mini-emmc-bl31-uboot.fip
- openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
- openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
Write them to the appropriate partitions:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-emmc-preloader.bin of=/dev/mmcblk0boot0
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-emmc-bl31-uboot.fip of=/dev/mmcblk0p3
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb of=/dev/mmcblk0p4
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb of=/dev/mmcblk0p5
sync
4. Remove the device from power, set boot switch to eMMC and boot into
OpenWrt. The device will come up with IP 192.168.1.1 and assume the
Ethernet port closer to the USB-C power connector as LAN port.
5. If you like to have Ethernet support inside U-Boot (eg. to boot via
TFTP) you also need to write the PHY firmware to /dev/mmcblk0boot1:
echo 0 > /sys/block/mmcblk0boot1/force_ro
dd if=/lib/firmware/airoha/EthMD32.dm.bin of=/dev/mmcblk0boot1
dd if=/lib/firmware/airoha/EthMD32.DSP.bin bs=16384 seek=1 of=/dev/mmcblk0boot1
Installation instructions for NAND
----------------------------------
0. Set boot switch to boot from eMMC (assuming OpenWrt is installed there
by instructions above. Using stock rom or immortalwrt does NOT work!)
1. Write things to NAND
Move files to the device /tmp using scp:
- openwrt-*-bananapi_bpi-r3-mini-snand-preloader.bin
- openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip
- openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
- openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
Write them to the appropriate locations:
mtd write /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-preloader.bin /dev/mtd0
ubidetach -m 1
ubiformat /dev/mtd1
ubiattach -m 1
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip)
ubimkvol /dev/ubi0 -N fip -n 0 -s $volsize -t static
ubiupdatevol /dev/ubi0_0 /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip
cd /lib/firmware/airoha
cat EthMD32.dm.bin EthMD32.DSP.bin > /tmp/en8811h-fw.bin
ubimkvol /dev/ubi0 -N en8811h-firmware -n 1 -s 147456 -t static
ubiupdatevol /dev/ubi0_1 /tmp/en8811h-fw.bin
ubimkvol /dev/ubi0 -n 2 -N ubootenv -s 126976
ubimkvol /dev/ubi0 -n 3 -N ubootenv2 -s 126976
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb)
ubimkvol /dev/ubi0 -n 4 -N recovery -s $volsize
ubiupdatevol /dev/ubi0_4 /tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb)
ubimkvol /dev/ubi0 -n 4 -N recovery -s $volsize
ubiupdatevol /dev/ubi0_4 /tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
3. Remove the device from power, set boot switch to NAND, power up and
boot into OpenWrt.
Partially based on immortalwrt support for the R3 mini, big thanks for
doing the ground work!
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The R3 mini comes with two Airoha EN8811H PHYs for 2.5G Ethernet.
The driver added to U-Boot expects the firmware for the PHY to be
stored inside UBI volume en8811h-fw or MMC boot1 hardware partition.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Move fip and factory into UBI static volumes.
Use fitblk instead of partition parser.
!! RUN INSTALLER FIRST !!
Existing users of previous OpenWrt releases or snapshot builds will
have to **re-run the updated installer** before upgrading to firmware
after this commit.
DO NOT flash or run even just the initramfs image unless you have
run the updated installer which moves the content of the 'factory'
partition into a UBI volume.
tl;dr: DON'T USE YET!
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Modernize bootloader and flash memory layout of the BPi-R64 similar to
how it has also been done for the BPi-R3.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use custom UBI start address 0x80000 on MT7622 which is more than
enough for a single bl2 (MT7622 BootROM doesn't support redundant bl2).
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Modernize U-Boot to provide a better reference:
* store fip image in UBI now that TF-A supports that
* switch from uImage.FIT partition parser to new fitblk
virtual firmware block driver (root=/dev/fit0)
* automatically set root device according to boot_mode register
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add environment settings for the BananaPi BPI-R4 router board which
can boot from (and store its bootloader environment on) micro SD card,
SPI-NAND and eMMC.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use function instead of duplicating the env settings on UBI for
OpenWrt-built U-Boot over and over.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Rebase local patches on top of quarterly timed release, allowing to
drop numerous patches which have been accepted upstream since the
release of U-Boot 2023.07.02.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>