Two regmap dependencies were wrong, this patch fixes them.
This was detected by the build bots.
Fixes: fd5c168701 ("kernel: Build: Split kmod-regmap")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This reduces the needed modifications to the mainline Linux kernel and
also makes the regmap package work with an out of tree kernel which
does not have these modifications.
The regmap-core is only added when it is really build as a module.
The regmap-core is normally bool so it cannot be built as a module in an
unmodified kernel. When it is selected by on other kernel module it will
always be selected as build in and it also does not show up in
$(LINUX_DIR)/modules.builtin as it is not supposed to be a kernel module.
When it is not in $(LINUX_DIR)/modules.builtin the build system expects
it to be built as a .ko file.
Just check if the module is really there and only add it in that case.
This splits the regmap package into multiple packages, one for each bus type.
This way only the bus maps which are really needed have to be added.
This also splits the I2C, SPI and MMIO regmap into separate packages to not
require all these subsystems to build them, on an unmodified upstream kernel
this also causes problems in some situations.
Signed-off-by: Hauke Mehrtens <hauke.mehrtens@intel.com>
It's no longer needed as all mt7621 devices use DT binding (supported by
upstream mtd code) for specifying "firmware" part format explicitly.
Signed-off-by: Mathias Kresin <dev@kresin.me>
It results in calling the right MTD parser directly instead of trying
them one by one.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
[use the lzma splitter for the AR670W]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
Patch picked from commit 82618062cf
This enables 4B opcodes for MX25L25635F, to fix the reboot crash
issue (FS#1120) At least 3 devices are using this flash
- GeHua GHL-R-001
- Youku YK1
- Newifi D1
Now the MX25L25635F can be correctly detected without breaking MX25L25635E
[ 3.034324] spi-mt7621 1e000b00.spi: sys_freq: 220000000
[ 3.045962] m25p80 spi0.0: mx25l25635f (32768 Kbytes)
[ 3.056098] 4 fixed-partitions partitions found on MTD device spi0.0
[ 3.068748] Creating 4 MTD partitions on "spi0.0":
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [added deprecation notice]
Current code directly writes the FOE entry to hash_val+1 position
when hash collision occurs. However, it is found that this behavior
will cause the cache and the hardware FOE table to be inconsistent.
For example, there are three flows, and their hashed values are all
equal to 100. The first flow is written to the position of 100. The
second flow is written to the position of 100+1. Then, the logic of
the current code will also write the third flow to 100+1.
At this time, the cache has flow 1 and 2; and the hardware FOE table
has flow 1 and 3, where these two parts store different contents.
So it is necessary to check whether the hash_val+1 is also occupied
before writing. If hash_val+1 is also occupied, we won’t bind th
third flow to the FOE table.
Addition to that, we also cancel the processing of foe_entry removal
because the hardware has auto age-out ability. The hardware will
periodically iterate through the FOE table to find out the time-out
entry and set it as INVALID.
Signed-off-by: HsiuWen Yen <y.hsiuwen@gmail.com>
Move the zip compression into a build recipe. Pad the image using the
existing build recipes as well to remove duplicate functionality
Change the code to append header and footer in two steps. Allow to use a
fixed filename as the netgear update image does.
Use a fixed timestamp within the zip archive to make the images
reproducible.
Due to the changes we are now compatible to the gnu89 c standard used by
default on the buildbots and we don't need to force a more recent
standard anymore.
Beside all changes, the footer still looks wrong in compare to the
netgear update image.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Sometimes the tuples might be hashed to the same FOE entry.
When this hash collision problem occurs, some of the
connections will not be bound and consequently the CPU
idle rate cannot reach 100%. Therefore, two-way hashing
is adopted to alleviate this problem.
Signed-off-by: HsiuWen Yen <y.hsiuwen@gmail.com>
Always enable the pwr led and use the usr led for boot status indication.
Rename nodes in the dts, to match what is recommend in the devicetree
specification.
Increase the maximum spi frequency to 20MHz and drop the m25p,chunked-io
which isn't required on mt7621.
Use the BTN_0 keycode for the mode button. This board doesn't have any
wireless.
Use a more descriptive label for the reset button and the GPIO enabling
the usb vcc supply.
Use the beeper kernel module for the buzzer.
Fix the pinmux to switch only pins used as GPIOs to the GPIO function.
Add support for the PoE enable GPIO to the userspace. The PoE power
status can be read via GPIO7. Since OpenWrt doesn't have support for
reading inputs from userspace, prepare only the pinmux for the GPIO.
Signed-off-by: Anton Arapov <arapov@gmail.com>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch adds support of MikroTik RouterBOARD 750Gr3, without the need
to reflashing the bootloader.
Installation through RouterBoot follows the usual MikroTik method
https://openwrt.org/toh/mikrotik/common
Since the image isn't compatible with RouterBOARD 750Gr3 installations
which have replaced the bootloader, the former used userspace boardname
is not added to the SUPPORTED_DEVICES, to prevent a brick while trying
to upgrade to the image with native support.
Signed-off-by: Anton Arapov <arapov@gmail.com>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Create a common template which has the required image build code
defined. Add some new variables to pass individual parts to the seama
recipes.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Specs
SoC: MT7621AT
RAM: 512MiB
Flash: 32MiB MX25L25635F SPI NOR
2.4G: MT7603EN
5G: MT7612EN
Ethernet: 4x GE ports (1x WAN, 3x LAN) with link status LEDs
USB 3.0
LEDs: POWER, 5G WIFI, 2.4G WIFI, USB, Internet.
The last two ones are controlled by GPIO
UART: There are 2 UARTs (UARTLITE1/ttyS0 and UARTLITE3/ttyS1) on board.
UARTLITE1 is close to LEDs, and UARTLITE3 is close to flash chip.
The stock u-boot uses UARTLITE1 by default. Baud rate is 57600
Flash instruction
1. telnet 192.168.9.1 2317, username is "root" and password is "admin"
One can alternatively use UART to log in
2. Put OpenWrt firmware in a FAT32 USB drive, and connect it to the router
One can alternatively download the firmware via wget through Internet
3. mtd write /path/to/openwrt.bin firmware
4. reboot
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Very similar to the DWR-921-C1, except has a telephony/RJ11 port (not
sure if supported, I didn't try), wireless router with QMI LTE embedded
modem is based on the MT7620N SoC.
Specification:
* MediaTek MT7620N (580 Mhz)
* 64 MB of RAM
* 16 MB of FLASH
* 802.11bgn radio
* 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
* 2x external, detachable (LTE) antennas
* UART header on PCB (57600 8n1)
* 6x LED (GPIO-controlled)
* 1x bi-color Signal Strength LED (GPIO-controlled)
* 2x button
* JBOOT bootloader
The status led has been assigned to the dwr-922-e2:green:signalstrength
(lte signal strength) led. At the end of the boot it is switched off and
is available for lte operation. Works correctly also during sysupgrade
operation.
Installation:
Apply factory image via d-link http web-gui, or via recovery interface:
How to recover/revert to OEM firmware:
1.) Push and hold the reset button and turn on the power. Wait until all
LEDs start rapidly blinking (~10sec.)
2.) DHCP should give you an IP in the 192.168.123.0/24 subnet, or set
one manually
3.) Upload original factory image via JBOOT http interface at IP
192.168.123.254
4.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.binhttp://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
5.) You can optionally telnet to 192.168.123.254 before or during the
upload and it will report the flashing status, memory address etc.
6.) Once web UI and/or telnet says "Success", power cycle the router, or
type "reboot" into the telnet session.
Signed-off-by: Simon Quigley <squigley@squigley.net>
[squashed commits, word wrap commit message, rename signal strenght led
name to match what is used for the DWR-921-C1 since they share the led
configuration, add label referenced in the aliases node]
Signed-off-by: Mathias Kresin <dev@kresin.me>
>From the Documentation/devicetree/bindings/leds/common.txt:
- default-state : The initial state of the LED. Valid values are "on", "off",
and "keep". If the LED is already on or off and the default-state property is
set the to same value, then no glitch should be produced where the LED
momentarily turns off (or on). The "keep" setting will keep the LED at
whatever its current state is, without producing a glitch. The default is
off if this property is not present.
So setting the default-state of the LEDs to `off` is redundant as `off`
is default LED state anyway. We should remove it as almost every new
PR/patch submission contains this property by default which seems to be
just copy&paste from some DTS file already present in the tree.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Netgear R6350 is a wireless router, aka Netgear AC1750.
Specification:
- SoC: Mediatek MT7621AT (2 CPU cores, 4 threads)
- RAM: 128MiB (Nanya NT5CC64M16GP-DI)
- ROM: 128MiB NAND Flash (Macronix MX30LF1G18AC-TI)
- Wireless:
for 11b/g/n (upto 300Mbps): MT7603
for 11a/ac (upto 1450Mbps) : MT7615, is not avaliable now
- Ethernet LAN speed: up to 1000Mbps
- Ethernet LAN ports: 4
- Ethernet WAN speed: up to 1000Mbps
- Ethernet WAN ports: 1
- USB ports: 1 (USB 2.0)
- LEDs: 4 (all can be controlled by SoC's GPIO)
- buttons: 2
- serial ports: unknown
Installation through telnet:
- Copy kernel.bin and rootfs.bin to a USB flash disk,
plug to usb port on the router.
- Enable telnet with link: http://192.168.1.1/setup.cgi?todo=debug
(login if required, default: admin password)
- You will see "Debug Enabled!"
- Telnet 192.168.1.1 and login with "root"
- ls /mnt/shares/ to find out path of your USB disk.
'myUdisk' for example.
- cd /mnt/shares/myUdisk
- mtd_write write rootfs.bin Rootfs
- mtd_write write kernel.bin Kernel
- reboot
recovery when bricked:
nmrpflash can be used to recover to the netgear firmware
if a broken image was flashed.
The SC_PART_MAP partition suggests that an on flash partition table
exists. After implementing a partition parser/builder for the sercom
partition format, the definitions don't match the flash layout used by
the stock firmware.
It either means the partition format has not yet been completely
understood or it isn't used by the stock firmware. For now, use fixed
partitions instead.
Signed-off-by: NOGUCHI Hiroshi <drvlabo@gmail.com>
[apply latest ramips changes and document the on flash partition map
issues]
Signed-off-by: Mathias Kresin <dev@kresin.me>
- Mark other partitions as read-only for HC5x61
- Only enable USB and PCIe for HC5761/HC5861
HC5661 doesn't have a USB port, and there is nothing attached to its PCIe.
- Fix HC5761 switch ports
HC5761 has only 3 ethernet ports (1x WAN + 2x LAN). Remove unused ports.
- Fix HC5861 5GHz radio
HC5861 has MT7612EN 5GHz WiFi chip, not MT7610EN.
- Fix HC5761/HC5861 WiFi LEDs
After 5GHz is enabled, it becomes wlan0. And 2.4GHz would be wlan1.
- Fix HC5x61 image size
It should be 15872k (0xf80000)
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
It's no longer needed as all mt7621 devices use DT binding (supported by
upstream mtd code) for specifying "firmware" part format explicitly.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Due to the enforced image metadata we ensure that the correct image is
uploaded. Checks based on a magic arn't required any more.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Beside one exception, no one took care of these two remaining boards
still using the legacy image build code during the last two years.
Since OpenWrt 14.07 the ALLNET ALL0239-3G image building is broken.
The Sitecom WL-341 v3 image build code looks pretty hackish and broken.
It's questionable if the legacy image works as all.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Drop the factory images and the firmware tool to create them. They don't
work any more, since the factory image has an uImage header covering the
whole kernel + rootfs. This way the uImage splitter will not be able to
find the rootfs and the kernel will panic later on.
The factory images were most likely added at a time the board had
distinct partitions for kernel and rootfs.
Signed-off-by: Mathias Kresin <dev@kresin.me>
In commit d70ec3008d, a firmware compatible
string of "denx,uimage" was added for the Dlink DIR-860L-B1. Unfortunately,
this was the wrong string. It needs "seama" instead.
Signed-off-by: Russell Senior <russell@personaltelco.net>
The latest dtc compiler considers nodes named i2c or spi as the
respective bus:
/pinctrl/i2c: incorrect #address-cells for I2C bus
/pinctrl/spi: incorrect #address-cells for SPI bus
Rename the node to fix the false positives.
Fix the spi node unit address for the DWR-512-B and UBNT-ER-e50 to get
rid of the following warning:
SPI bus unit address format error, expected "n"
Signed-off-by: Mathias Kresin <dev@kresin.me>
Select the matching mt76 driver for the PCI wireless of the following
devices:
- HiWiFi HC5861B
- Mercury MAC1200R v2.0
- Netgear AC1200 R6120
- Buffalo WCR-1166DS
- ZyXEL Keenetic Extra II
- Wavlink WL-WN575A3
Because every device has selected the corresponding mt76 driver, we can
include kmod-mt7603 instead of the mt76 metapackage, which used for the
wireless of the mt7628 and mt7688 WiSoC.
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
[select kmod-mt7603 as target default package, add wireless driver for
WL-WN575A3]
Signed-off-by: Mathias Kresin <dev@kresin.me>
Currently OpenWrt doesn't support switching MT7628 into AP mode
(which is done by writing some undocumented registers in MTK SDK)
Without doing so, enabling SD breaks 4 FE ports and the SD controller
doesn't work since SD pins aren't configured correctly.
Disable SDHC on HC5661A to recover the 4 FE ports.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
[drop the sdhci node completely]
Signed-off-by: Mathias Kresin <dev@kresin.me>
I wanted to add status LEDs support to my imx6 based board and have found out,
that I could use diag.sh script found in ramips platform, which seems to be
also shared in a few other platforms:
4801276bc2078c5bcf03003c831e3b0a target/linux/ramips/base-files/etc/diag.sh
4801276bc2078c5bcf03003c831e3b0a target/linux/ipq40xx/base-files/etc/diag.sh
4801276bc2078c5bcf03003c831e3b0a target/linux/ath79/base-files/etc/diag.sh
And @chunkeey suggested to me, that I can also add lantiq, ipq806x and
apm821xx to the list of platforms which could share this generic
diag.sh.
I've extended the base diag.sh in a way, that if it detects any of the
DTS LED aliases, then it would use the generic DTS set_led_state code.
The code in platform's diag.sh has moved to base-files package in this
commit:
base-files: diag.sh: Make it more generic towards DTS so it could be reused
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Tested-by: Christian Lamparter <chunkeey@gmail.com> (apm821xx and ipq40xx)
The DWR-118-A1 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 16 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7610EN)
- 3x 10/100 Mbps Ethernet (3 LAN)
- 2x 10/100/1000 Mbps ICPlus IP1001 Ethernet PHY (1 WAN AND 1 LAN)
- 1x internal, non-detachable antenna
- 2x external, non-detachable antennas
- 1x USB 2.0
- UART (J1) header on PCB (57600 8n1)
- 7x LED (5x GPIO-controlled), 2x button
- JBOOT bootloader
Known issues:
- WIFI 5G LED not working
- flash is very slow
The status led has been assigned to the dwr-118-a1:green:internet led.
At the end of the boot it is switched off and is available for other
operation. Work correctly also during sysupgrade operation.
Installation:
Apply factory image via http web-gui or JBOOT recovery page
How to revert to OEM firmware:
- push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
- upload original factory image via JBOOT http (IP: 192.168.123.254)
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Because every device has selected the corresponding mt76 driver, we can
now disable the mt76 metapackage by default to make sure that other
devices (those don't need mt76) avoid selecting unwanted packages.
We can find the hardware specifies and determine the dependencies on
these sites:
https://wikidevi.com/wiki/https://openwrt.org/toh/hwdata/
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
All boards neither expose the PCIe as Mini-PCIe nor have anything
attached to the PCIe Bus. Disable PCIe for those by dropping the node
from the dts files.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Compile the loader if the relocate-kernel image recipe is used and get
rid of the legacy build code to do so.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Specify firmware partition format by compatible string.
List of devices:
-DWR-116-A1
-DWR-118-A2
-DWR-512-B
-DWR-921-C1
-LR-25G001
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
MTC Wireless Router WR1201 is the OEM name of the board. It is also sold
rebranded as STRONG Dual Band Gigabit Router 1200.
Specification:
- SoC: MediaTek MT7621A (880 MHz)
- Flash: 16 MiB
- RAM: 128 MiB
- Wireless: 2.4Ghz(MT7602EN) and 5Ghz (MT7612EN)
- Ethernet speed: 10/100/1000
- Ethernet ports: 4+1
- 1x USB 3.0
- 1x microSD reader
- Serial baud rate of Bootloader and factory firmware: 57600
The OEM webinterface writes only as much bytes as listed in the
uImage header field to the flash. Also, the OEM webinterface
evaluates the name field of uImage header before flashing (the
string "WR1201_8_128")
To flash via webinterface, is mandatory to use first initramfs.bin
and after (from the OpenWrt) the sysupgrade.bin
Some notes:
- Some microSD will not work:
mtk-sd 1e130000.sdhci: no support for card's volts
mmc0: error -22 whilst initialising SDIO card
mtk-sd 1e130000.sdhci: no support for card's volts
mmc0: error -22 whilst initialising MMC card
mtk-sd 1e130000.sdhci: no support for card's volts
mmc0: error -22 whilst initialising SDIO card
mtk-sd 1e130000.sdhci: card claims to support voltages below defined range
mtk-sd 1e130000.sdhci: no support for card's volts
mmc0: error -22 whilst initialising MMC card
mtk-sd 1e130000.sdhci: no support for card's volts
mmc0: error -22 whilst initialising SDIO card
mtk-sd 1e130000.sdhci: no support for card's volts
mmc0: error -22 whilst initialising MMC card
Signed-off-by: Valentín Kivachuk <vk18496@gmail.com>
Specify firmware partition format by compatible string.
formats in ramips:
- denx,uimage
- tplink,firmware
- seama
It's unlikely but the firmware splitting might not work any longer for
the following boards, due to a custom header:
- EX2700: two uImage headers
- BR-6478AC-V2: edimax-header
- 3G-6200N: edimax-header
- 3G-6200NL: edimax-header
- BR-6475ND: edimax-header
- TEW-638APB-V2: umedia-header
- RT-N56U: mkrtn56uimg
But it rather looks like the uImage splitter is fine with the extra
header.
The following dts are not touched, due to lack of a compatible string in
the matching firmware splitter submodule:
- CONFIG_MTD_SPLIT_JIMAGE_FW
DWR-116-A1.dts
DWR-118-A2.dts
DWR-512-B.dts
DWR-921-C1.dts
LR-25G001.dts
- CONFIG_MTD_SPLIT_TRX_FW
WCR-1166DS.dts
WSR-1166.dts
- CONFIG_MTD_SPLIT_MINOR_FW
RBM11G.dts
RBM33G.dts
- CONFIG_MTD_SPLIT_LZMA_FW
AR670W.dts
- CONFIG_MTD_SPLIT_WRGG_FW
DAP-1522-A1.dts
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Use .bin as file extension where possible. The user doesn't need to that
sysupgrade images for NAND boards are tarballs.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Having MIT as alternative is sometimes preferred by upstream maintainers
and allows sharing that simple code with other projects. We don't really
want multiple DTS versions for the same device.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The previous offset was invalid and pointed to the end of the partition,
which was causing issues with mt76
Signed-off-by: Felix Fietkau <nbd@nbd.name>
The 5GHz radio of this device uses an mt7610e PCI-E chip, which has
been recently started to be supported.
mt76x0e 0000:01:00.0: card - bus=0x1, slot = 0x0 irq=4
mt76x0e 0000:01:00.0: ASIC revision: 76100002
mt76x0e 0000:01:00.0: Firmware Version: 0.1.00
mt76x0e 0000:01:00.0: EEPROM ver:01 fae:00
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specify firmware partition format to denx,uimage in compatible DTS property.
2 uimage-fw partitions found on MTD device firmware
Creating 2 MTD partitions on "firmware":
0x000000000000-0x00000017f72b : "kernel"
0x00000017f72b-0x000000f70000 : "rootfs"
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Flash partitions were moved under partition table node, but addition of
compatible property was omitted which lead to following boot failure:
VFS: Cannot open root device "(null)" or unknown-block(0,0): error -6
Please append a correct "root=" boot option; here are the available partitions:
1f00 16384 mtdblock0
(driver?)
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
Fixes: e4d9217f (ramips: improve BDCOM WAP2100-SK support)
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The 5 GHz radio of this device uses an mt7610e pci-e chip, which has
been recently added support.
Tested on the actual device as AP and client, TCP throughput ~90 Mbps
U/D.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Add support for UniElec U7621-06 variant with 512MB RAM and 64MB flash.
Additional specs are below:
CPU: MT7621 (880Mhz)
Bootloader: Ralink U-Boot
Flash: 64MB
- U-Boot identifies as Macronix MX66L51235F
- kernel identifies as MX66L51235l (65536 Kbytes)
RAM: 512MB
Rest of the details as per commit 46ab81e405 ("ramips add support for
UniElec U7621-06")
Signed-off-by: Nishant Sharma <nishant@unmukti.in>
[use generic board detection, add firmware partition compatible, extend
firmware partition to use all of the remaining flash space, add a
maximum image size matching the firmware partition size]
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection for the board instead of the target
specific one. Mark the sysupgrade image compatible with the former used
userspace boardname to allow an upgrade from earlier versions.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The RavPower WD03 is a mt7620n based baord. With the change applied, I2C
should work now with the RavPower WD03.
Signed-off-by: Matthias Badaire <mbadaire@gmail.com>
[reworded commit message]
Signed-off-by: Mathias Kresin <dev@kresin.me>
With ed25e3ac02 ("ramips: fix some clocks in mt7621.dtsi") the
cpuclock node was dropped from the mt7621.dtsi without removing the
references to this node from the GB-PC1/PC2 dts files.
Remove them now, to fix the build error.
Signed-off-by: Mathias Kresin <dev@kresin.me>
It has to be <board>:<colour>:<function> and is expected exactly this
way by the userspace scripts.
While at it, fix some whitespace issues in the dts file and rename the
flash node as required upstream.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection instead of the target specific one as
all recent additions are doing.
Setup the USB led via devicetree (a58535771f) and include the required
driver by default. Merge the led userspace setting with an existing
identical case.
Use the wps led for boot status indication.
Move the partitions into a partition table node (6031ab345d) and drop
needless labels. Drop misplaced cells properties (53624c1702).
Cleanup the pinmux and only switch pins to gpio functions which a
referenced as gpio in the dts.
Match the maximum image size with the size of the firmware partition.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The sd function of the nd_sd group configures two of the groups pins as
gpios. The pins are used as PCIe reset/power.
Due to the driver load order, the pins are configured way to late if
triggered by the sd-card driver.
To not introduce another kind of driver load order dependency and
configure the pins as early as possible, means during pinmux driver
load.
Signed-off-by: Mathias Kresin <dev@kresin.me>
In case the nd_sd group is set to the sd-card function, Pins 45 + 46 are
configured as GPIOs. If they are blocked by the sd function, they can't
be used as GPIOs.
Reported-by: Kristian Evensen <kristian.evensen@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
This reverts commit dcdc6d9dad.
Even if described this way in the datasheet, it causes a bootloop on a
RT-N56U (v1):
of-flash 1c000000.nor-flash: do_map_probe() failed for type cfi_probe
of-flash 1c000000.nor-flash: do_map_probe() failed
VFS: Cannot open root device “(null)” or unknown-block(0,0): error -6
Fixes: FS#1930
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection instead of the target specific one as
all recent additions are doing.
Add the wireless led according the gpio number from the datasheet.
Rename the board part of the leds to match the name used for the
compatible string. Finally, do not hijack the wps led for boot status
indication longer than necessary.
Merge userspace config into existing cases.
Include the manufacture Name in the dts model string.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The Lava LR-25G001 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 16 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7610EN)
- 5x 10/100/1000 Mbps AR8337 Switch (1 WAN AND 4 LAN)
- 2x external, detachable antennas
- 1x USB 2.0
- UART (J3) header on PCB (57600 8n1)
- 8x LED (3x GPIO-controlled), 2x button
- JBOOT bootloader
Known issues:
- Work only three Gigabit ports (3/5, 1 WAN and 2LAN)
Installation:
Apply factory image via http web-gui or JBOOT recovery page
How to revert to OEM firmware:
- push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
- upload original factory image via JBOOT http (IP: 192.168.123.254)
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Some boards have external switches different than mt7530.
This patch allow to use mdio-mode without 0x1f register.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
For a long time the mt7621 uses a fixed cpu clock which causes a problem
if the cpu frequency is not 880MHz.
This patch fixes the cpu clock calculation and adds the cpu/bus clkdev
which will be used in dts.
Signed-off-by: Weijie Gao <hackpascal@gmail.com>
The memc node from mt7621.dtsi has incorrect register resource.
Fix it according to the programming guide.
Signed-off-by: Weijie Gao <hackpascal@gmail.com>
These two patches both modified the mt7621.c, and the patch file
998-mt7621-needs-jiffies.patch adds only one line which is used by the
another patch file. So merge them into one file.
Signed-off-by: Weijie Gao <hackpascal@gmail.com>
Introduce mt76x0e device tree node in RT-AC51U dts.
Define mt76x0e mtd partition and offset
Signed-off-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com>
The gpio-ralink driver has everything it needs to be used as an
interrupt controller except for device tree support. This simple patch
adds that support by configuring the irq domain to use two cells and
adding the appropriate documentation to the devicetree bindings.
Signed-off-by: Daniel Santos <daniel.santos@pobox.com>
On the bottom sticker it's branded as ZTE ZXECS EBG3130 device, but in factory
OpenWrt image it's referenced as BDCOM WAP2100-SK device.
Specifications:
- SoC: MediaTek MT7620A
- RAM: 128 MB
- Flash: 16 MB
- Ethernet: 5 FE ports
- Wireless radio: 2T2R 2.4 GHz and 1T1R 5 GHz (MT7610EN, unsupported)
- UART: 1 x UART on PCB marked as J2 (R=RX, T=TX, G=GND) with 115200 8N1 config
- LEDs: Power, FE ports 1-5, WPS, USB, RF 2.4G, RF 5G
- Other: USB port, SD card slot and 2x external antennas (non-detachable)
Flashing instructions:
A) The U-Boot has HTTP based firmware upgrade
A1) Flashing notes
We've identified so far two different batches of units, unfortunately
each batch has different U-Boot bootloader flashed with different
default environment variables, thus each batch has different IP address
for accessing web based firmware updater.
* First batch has web based bootloader IP address 1.1.1.1
* Second batch has web based bootloader IP address 192.168.1.250
In case you can't connect to either of those IPs, you can try to get
the default IP address via two methods:
A1.1) Serial console, then the IP address is visible during the boot
...
HTTP server is starting at IP: 1.1.1.1
raspi_read: from:40004 len:6
HTTP server is ready!
...
A1.2) Over telnet/SSH using this command:
root@bdcom:/# grep ipaddr= /dev/mtd0
ipaddr=1.1.1.1
A2) Flashing with browser
* Change IP address of PC to 1.1.1.2 with 255.255.255.0 netmask
* Reboot the device and try to reach web based bootloader in the
browser with the following URL http://1.1.1.1
* Quickly select the firmware sysupgrade file and click on the
`Update firmware` button, this all has to be done within 10 seconds,
bootloader doesn't wait any longer
If done correctly, the web page should show UPDATE IN PROGRESS page
with progress indicator. Once the flashing completes (it takes roughly
around 1 minute), the device will reboot to the OpenWrt firmware
A3) Flashing with curl
sudo ip addr add 1.1.1.2/24 dev eth0
curl \
--verbose \
--retry 3 \
--retry-delay 1 \
--retry-max-time 30 \
--connect-timeout 30 \
--form "firmware=@openwrt-ramips-mt7620-BDCOM-WAP2100-SK-squashfs-sysupgrade.bin" \
http://1.1.1.1
Now power on the router.
B) The U-boot is based on Ralink SDK so we can flash the firmware using UART.
1. Configure PC with a static IP address and setup an TFTP server.
2. Put the firmware into the tftp directory.
3. Connect the UART line as described on the PCB (G=GND, R=RX, T=TX)
4. Power up the device and press 2, follow the instruction to set device and
tftp server IP address and input the firmware file name. U-boot will then load
the firmware and write it into the flash.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Belkin F5D8235 v2 has two ethernet switches on board.
One internal rt3052 and rtl8366rb on rgmii interface.
Looks like internal switch settings were lost in
translation to device tree infrastructure.
Signed-off-by: Roman Yeryomin <roman@advem.lv>
Specifically, SKW92A_E16, described here:
http://www.skylabmodule.com/wp-content/uploads/SkyLab_SKW92A_V1.04_datasheet.pdf
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 16 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x u.FL
- Power by micro-USB connector at USB1 on EVB
- UART via micro-USB connector at USB3 on EVB (57600 8n1)
- 5x Ethernet LEDs
- 1x WLAN LEDs
- 1x WPS LED connected by jumper wire from I2S_CK on J20 to WPS_LED pin hole next
to daughter board on EVB
- WPS/Reset button (S2 on EVB)
- RESET button (S1 on EVB) is *not* connected to RST hole next to daughter board
Flash instruction:
>From Skylab firmware:
1. Associate with SKYLAP_AP
2. In a browser, load: http://10.10.10.254/
3. Username/password: admin/admin
4. In web admin interface: Administration / Upload Firmware, browse to
sysupgrade image, apply, flash will fail with a message:
Not a valid firmware. *** Warning: "/var/tmpFW" has corrupted data!
5. Telnet to 10.10.10.254, drops you into a root shell with no credentials
6. # cd /var
7. # mtd_write -r write tmpFW mtd4
Unlocking mtd4 ...
Writing from tmpFW to mtd4 ... [e]
8. When flash has completed, you will have booted into your firmware.
>From U-boot via TFTP and initramfs:
1. Place openwrt-ramips-mt76x8-skw92a-initramfs-kernel.bin on a TFTP server
2. Connect to serial console at USB3 on EVB
3. Connect ethernet between port 1 (not WAN) and your TFTP server (e.g.
192.168.11.20)
4. Start terminal software (e.g. screen /dev/ttyUSB0 57600) on PC
5. Apply power to EVB
6. Interrupt u-boot with keypress of "1"
7. At u-boot prompts:
Input device IP (10.10.10.123) ==:192.168.11.21
Input server IP (10.10.10.3) ==:192.168.11.20
Input Linux Kernel filename (root_uImage) ==:openwrt-ramips-mt76x8-skw92a-initramfs-kernel.bin
8. Move ethernet to port 0 (WAN) on EVB
9. At new OpenWrt console shell, fetch squashfs-sysupgrade image and flash
with sysupgrade.
>From U-boot via TFTP direct flash:
1. Place openwrt-ramips-mt76x8-skw92a-squashfs-sysupgrade.bin on a TFTP server
2. Connect to serial console at USB3 on EVB (57600 8N1)
3. Connect ethernet between port 1 (not WAN) an your TFTP server (e.g.
192.168.11.20)
4. Start terminal software (e.g. screen /dev/ttyUSB0 57600) on PC
5. Apply power to EVB
6. Interrupt u-boot with keypress of "2"
7. At u-boot prompts:
Warning!! Erase Linux in Flash then burn new one. Are you sure?(Y/N) Y
Input device IP (10.10.10.123) ==:192.168.11.21
Input server IP (10.10.10.3) ==:192.168.11.20
Input Linux Kernel filename (root_uImage) ==:openwrt-ramips-mt76x8-skw92a-squashfs-sysupgrade.bin
8. When transfer is complete or as OpenWrt begins booting, move ethernet to
port 0 (WAN).
Signed-off-by: Russell Senior <russell@personaltelco.net>
Both devices come with a MediaTek MT7610E 5GHz 802.11ac 1T1R radio
which wasn't supported at the time the devices were added to OpenWrt.
Now that we got it, include kmod-mt76x0e in images for those devices.
Reported-by: Arian Sanusi <openwrt@semioptimal.net>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
as indicated in commit c5bf408ed6 "(ramips: fix image generation for mt76x8")
more rework was needed to fix the other issues.
Building on another machine, but using the same arch, showed
the application failing again for different reasons.
Fix this by completely rewriting the application, fixing following found issues:
- buffer overflows, resulting in stack corruption
- flaws in memory requirement calculations (too small, too large)
- memory leaks
- missing bounds checking on string handling
- non-reproducable images, by using unitilized memory in checksum calculation
- missing error handling, resulting in succes on specific image errors
- endianness errors when building on BE machines
- various minor build warnings
- documentation did not match the code actions (header item locations)
- allowing input to be decimal, hex or octal now
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>