When forwarding is set to 0, frames are typically sent with ttl=1.
Move the ttl decrement check below the check for local receive in order to
fix packet drops.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.
This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.
Currently, only ethernet devices uses the mac address of
"mac-address-ascii" cells, while PCI ath9k devices uses the mac address
within calibration data.
Signed-off-by: Edward Chow <equu@openmail.cc>
(restored switch configuration in 02_network, integrated caldata into
partition)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
this was thoroughly tested (warm and cold boots). on a
real 7360v2. This is because there have been documented
hick-ups with other lantiq devices that need the
owl-loader too.
It's likely that the 7360(sl) could be converted in the
same way as well. However the 7362sl uses a reversed
caldata format, so the "qca,no-eeprom" stays in place.
The patch also moves the urloader nvmem partition
definition into the partition section.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
libdeflate's gzip compressor provides a better
compression ratio and uboot's decompressor has
no problem with the data streams.
Tested on MX60, WNDR4700, WNDAP660
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
It appears that the refactor of the upgrade process for NAND devices
resulted in the nand_do_upgrade_success step not being called for
devices using the linksys.sh script. As a result, configuration
was not preserved over sysupgrade steps.
This was restored for some devices in
commit 84ff6c90dd ("base-files: bring back nand_do_upgrade_success").
This restored preservation of config for ipq40xx devices using the
linksys.sh script. Other devices and targets have not been examined.
Closes: #11677
Fixes: e25e6d8e54 ("base-files: fix and clean up nand sysupgrade code")
Tested-on: EA8300
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
(checkpatch nitpick)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
I found use for this in my scripts; I noticed that it is already
compiled with util-linux - there just isn't package for it -
let's package it then.
Description:
The rev utility copies the specified files to the standard output,
reversing the order of characters in everyline.
Signed-off-by: Oskari Rauta <oskari.rauta@gmail.com>
Sercomm H500-s devices don't need the JFFS2 cleanmarkers as opposed to the
other bmips NAND devices.
Fixes: 6df12200d9 ("bmips: add support for Sercomm H-500s")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Hardware
--------
SOC: MediaTek MT7986
RAM: 512MB DDR3
FLASH: 256MB SPI-NAND (Winbond W25N02KV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
MaxLinear GPY211C 2.5 N-Base-T PHY
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not ocnnect VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
reachable at 192.168.1.66/24. Rename the image to tufax4200.bin.
2. Connect the TFTP server to the AX4200. Conect to the serial console,
interrupt the autoboot process by pressing '4' when prompted.
3. Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.66
$ tftpboot 0x46000000 tufax4200.bin
$ bootm 0x46000000
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Missing features
----------------
- The LAN port LEDs are driven by the switch but OpenWrt does not
correctly configure the output.
Signed-off-by: David Bauer <mail@david-bauer.net>
The ASUS TUF-AX4200 bootloader adds invalid parameters for the rootfs.
Without overwriting the cmdline, the kernel crashes when trying to
attach the rootfs, as OpenWrt uses a different partition than the vendor
OS.
Signed-off-by: David Bauer <mail@david-bauer.net>
Add a patch to allow modification of the PHY LED configuration. This is
required for boards, where the reset configuration of LED functions is
incompatibe with the usage of the device LEDs.
This is the case for the ASUS TUF-AX4200 Wireless router. It requires
modification of the LED configuration because as the WAN LED on the
front of the device is driven by the PHY. Without patching, it would
only illuminate in case the Link speed is 100 Mbit/s.
Signed-off-by: David Bauer <mail@david-bauer.net>
This flash-chip is used on the Asus TUF-AX4200 and TUF-AX6000 routers.
As the filogic target only uses kernel 5.15, skip the 5.10 backport.
Signed-off-by: David Bauer <mail@david-bauer.net>
This can improve load balancing by pushing backlog (and RPS) processing
to separate threads, allowing the scheduler to distribute the load.
It can be enabled with: echo 1 > /proc/sys/net/core/backlog_threaded
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Hardware
========
- SoC: MediaTek MT7621AT (880MHz, Duel-Core)
- RAM: DDR3 128MB
- Flash: Winbond W25Q128JV (SPI-NOR 16MB)
- WiFi: MediaTek MT7915D (2.4GHz, 5GHz, DBDC)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x3, SoC)
- UART: >TX RX GND 3v3 (115200 8N1, J1)
Do not connect 3v3. TX is marked with an arrow.
Installation
============
Flash factory image. This can be done using stock web ui.
Revert to stock firmware
========================
Flash stock firmware via OEM Web UI Recovery mode.
Web UI Recovery method
======================
1. Unplug the router
2. Plug in and hold reset button 5~10 secs
3. Set your computer IP address manually to 192.168.1.x / 255.255.255.0
4. Flash image with web browser to 192.168.1.1
Co-authored-by: Robert Senderek <robert.senderek@10g.pl>
Co-authored-by: Yoonji Park <koreapyj@dcmys.kr>
Signed-off-by: David Bauer <mail@david-bauer.net>
These patches have now received a positive review upstream, so let's add them
to pending patches.
776-net-dsa-b53-mmap-add-phy-ops.patch:
This is mostly bmips/bcm63xx-specific to get external switches working
without hanging the device when accessing certain registers.
777-net-dsa-b53-mdio-add-support-for-BCM53134:
This adds support for BCM53134 switch on DSA B53, so any target using DSA B53
can benefit from it.
Also fix sercomm-h500-s external switch IMP port phy-mode.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Refreshing the patches for fff07085fb moved the b53_adjust_63xx_rgmii() call
from b53_phylink_mac_link_up() to b53_phylink_mac_link_down().
In order to properly configure the RGMII ports we need to restore it to its
correct place.
Fixes: fff07085fb ("kernel: add pending bmips patches")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Ruckus ZoneFlex 7363 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point. ZoneFlex 7343 is the single band variant of 7363
restricted to 2.4GHz, and ZoneFlex 7341 is 7343 minus two Fast Ethernet
ports.
Hardware highligts:
- CPU: Atheros AR7161 SoC at 680 MHz
- RAM: 64MB DDR
- Flash: 16MB SPI-NOR
- Wi-Fi 2.4GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Wi-Fi 5GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Ethernet 1: single Gigabit Ethernet port through Marvell 88E1116R gigabit PHY
- Ethernet 2: two Fast Ethernet ports through Realtek RTL8363S switch,
connected with Fast Ethernet link to CPU.
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the -U variants.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
Installation:
- Using serial console - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single PH1 screw.
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0xbf040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed.
Use the Gigabit interface, Fast Ethernet ports are not supported
under U-boot:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7363-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7363_fw_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7363-squashfs-sysupgrade.bin
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Copy over the backup to /tmp, for example using scp
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Use sysupgrade with force to restore the backup:
sysupgrade -F ruckus_zf7363_backup.bin
4. System will reboot.
Quirks and known issues:
- Fast Ethernet ports on ZF7363 and ZF7343 are supported, but management
features of the RTL8363S switch aren't implemented yet, though the
switch is visible over MDIO0 bus. This is a gigabit-capable switch, so
link establishment with a gigabit link partner may take a longer time
because RTL8363S advertises gigabit, and the port magnetics don't
support it, so a downshift needs to occur. Both ports are accessible
at eth1 interface, which - strangely - runs only at 100Mbps itself.
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- Both radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- There is second method to achieve root shell, using command injection
in the web interface:
1. Login to web administration interface
2. Go to Administration > Diagnostics
3. Enter |telnetd${IFS}-p${IFS}204${IFS}-l${IFS}/bin/sh into "ping"
field
4. Press "Run test"
5. Telnet to the device IP at port 204
6. Busybox shell shall open.
Source: https://github.com/chk-jxcn/ruckusremoteshell
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Ruckus ZoneFlex 7351 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.
Hardware highligts:
- CPU: Atheros AR7161 SoC at 680 MHz
- RAM: 64MB DDR
- Flash: 16MB SPI-NOR
- Wi-Fi 2.4GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Wi-Fi 5GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Ethernet: single Gigabit Ethernet port through Marvell 88E1116R gigabit PHY
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7351-U variant.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
Installation:
- Using serial console - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw.
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0xbf040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7351-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7351_fw_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7351-squashfs-sysupgrade.bin
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Copy over the backup to /tmp, for example using scp
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Use sysupgrade with force to restore the backup:
sysupgrade -F ruckus_zf7351_backup.bin
4. System will reboot.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- Both radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- There is second method to achieve root shell, using command injection
in the web interface:
1. Login to web administration interface
2. Go to Administration > Diagnostics
3. Enter |telnetd${IFS}-p${IFS}204${IFS}-l${IFS}/bin/sh into "ping"
field
4. Press "Run test"
5. Telnet to the device IP at port 204
6. Busybox shell shall open.
Source: https://github.com/chk-jxcn/ruckusremoteshell
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Sercomm H-500s is a BCM63268 with 128M, internal and external (Quantenna) wifi
and external BCM53134S switch.
This device is already supported in bcm63xx target, so more information can be
found in https://openwrt.org/toh/sercomm/h500-s.
It's a perfect example of a device with internal and external switch
coexistance since most devices only have ports on one of the switches but not
both of them.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
bcm63268-timer-clocks have been sent upstream with a positive review, so let's
add them to pending v5.15.
Also add devm_clk_hw_register_gate() patch from v5.17 to backports since it's
needed for upstream bcm63268-timer-clocks patches.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
7c0f603 router: skip RA and wait for LINK-LOCAL to be assigned
ba30afc config: skip interface setup if interface not IFF_RUNNING
06b111e Revert "odhcpd: Reduce error messages"
90d6cc9 odhcpd: Reduce error messages
Also drop AUTORELEASE since it got deprecated.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Our buildbot build a different external toolchain/sdk for each build.
This cause the idea of using the tar hash to cache it broken and wrong.
This makes the github cache bloated and remove space for ccache cache.
Drop cache for external toolchain/sdk as the feature is broken and cause
problems to ccache cache.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Fixes the following warnings for Netgear DGND3700v2 and Comtrend VR-3032u:
[ 1.059540] 7 fixed-partitions partitions found on MTD device brcmnand.0
[ 1.066570] OF: Bad cell count for /ubus/nand@10000200/nandcs@0/partitions
[ 1.073766] OF: Bad cell count for /ubus/nand@10000200/nandcs@0/partitions
[ 1.081927] OF: Bad cell count for /ubus/nand@10000200/nandcs@0/partitions
[ 1.089128] OF: Bad cell count for /ubus/nand@10000200/nandcs@0/partitions
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Huawei HG253s v2 is a BCM6362 with 128M RAM, internal wifi and external
BCM53124S switch.
This device is already supported in bcm63xx target, so more information can be
found in https://openwrt.org/toh/huawei/hg253s_v2.
It's a perfect example of a device with internal and external switch
coexistance since most devices only have ports on one of the switches but not
both of them.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Netgear DGND3700v2 has an external BCM53125 switch which can now be enabled
as a DSA disjoint switch tree setup.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Without this change, internal and external B53 switches couldn't coexist as
reported in https://github.com/openwrt/openwrt/issues/10313.
In order to fix this we need to force the B53 MMAP DSA switch driver to use
bcm6368-mdio-mux for accessing the PHY registers instead of its own phy_read()
and phy_write() functions.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
SSDK is doing everything custom, so trying to use mold and/or LTO
fails, so lets opt-out of using both of them.
Signed-off-by: Robert Marko <robimarko@gmail.com>
[a.heider: split and switch to PKG_BUILD_FLAGS]
Signed-off-by: Andre Heider <a.heider@gmail.com>