Musl libc does not support the non-POSIX "%F" format for strptime() so
replace all occurrences of it with an equivalent "%Y-%m-%d" format.
Fixes: #10419
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
The ZyXEL LTE3301-PLUS is an 4G indoor CPE with 2 external LTE antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7615E
- Switch: 4 LAN ports (Gigabit)
- LTE: Quectel EG506 connected by USB3 to SoC
- SIM: 1 micro-SIM slot
- USB: USB3 port
- Buttons: Reset, WPS
- LEDs: Multicolour power, internet, LTE, signal, Wifi, USB
- Power: 12V, 1.5A
The device is built as an indoor ethernet to LTE bridge or router with
Wifi.
UART Serial:
57600N1
Located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
MAC assignment:
lan: 98:0d:67:ee:85:54 (base, on the device back)
wlan: 98:0d:67:ee:85:55
Installation from web GUI:
- Log in as "admin" on http://192.168.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- format ubi device: ubiformat /dev/mtd6
- attach ubi device: ubiattach -m6
- create rootfs volume: ubimkvol /dev/ubi0 -n0 -N rootfs -s 1MiB
- rootfs_data volume: ubimkvol /dev/ubi0 -n1 -N rootfs_data -s 1MiB
- run sysupgrade with sysupgrade image
For more details about flashing see
commit 2449a632084b ("ramips: mt7621: Add support for ZyXEL NR7101").
Please note that this commit is needed:
firmware-utils: add marcant changes for ZyXEL NBG6716 and LTE3301-PLUS
Signed-off-by: André Valentin <avalentin@marcant.net>
According to MediaTek MT7688 Datasheet v1.4, as well as the MT7628
counterpart, the memory controller reset bit (MC_RST) is 10, not 20.
Reset bit 20 is used for for UART 2 (UART2_RST).
Please note: Due to the lack of hardware, I was not able to test this
change.
Signed-off-by: Reto Schneider <reto.schneider@husqvarnagroup.com>
This patch adds support for Netcore NW5212, provided by some carrier in
China.
Specifications:
--------------
* SoC: Mediatek MT7620A
* RAM: 128MB DDR2
* Flash: 16MB SPI NOR flash (Winbond W25Q128BV)
* WiFi 2.4GHz: builtin
* Ethernet: builtin
* LED: Power, WAN, LAN 1-4, WiFi
* Buttons: Reset (GPIO 13)
* UART: Serial console (57600 8n1)
* USB: 1 x USB2
Installation:
------------
The router comes with OpenWrt 14.07 built with MTK SDK. However, as the
modem is provided by carriers, so the web interface is highly minimized and
only contains a static page with no interaction options.
There are two possible ways to gain the access.
1) Open the shell and use a UART2USB convert to gain TTY access. Please
notice you have to remove resistance R54 at the back of the board
otherwise you won't be able to input anything.
2) Use built-in backdoor. Access http://192.168.1.1/cgi-bin/_/testxst to
start dropbear service at port 9122. Be warned the software is super
old and only diffie-hellman-group1-sha1, diffie-hellman-group14-sha1,
kexguess2@matt.ucc.asn.au is support, you may not be able to connect it
with an up-to-date ssh client.
After you can control the device, flash the firmware as usual. Here are
some hints for that.
Option 1 (via original firmware):
1) Setup HTTP server on your computer, for example:
python3 -m http.server
2) Connect to the route and flash:
cd /tmp
wget http://<your-computer-host>/<your-firmware-name>
mtd -r write <your-firmware-name> firmware
Option 2 (replacing u-boot via breed):
1) Download breed-mt7620-reset13.bin from https://breed.hackpascal.net/
2) Setup HTTP server on your computer, for example:
python3 -m http.server
You can skip this step if your breed is already accessible from HTTP,
since the original wget does not support HTTPS.
3) Connect to the route and flash breed:
cd /tmp
wget http://<your-computer-host>/breed-mt7620-reset13.bin
mtd write breed-mt7620-reset13.bin Bootloader
4) Reboot. Hold reset key or press any key in TTY to enter breed.
5) Access breed web interface (http://192.168.1.1/). Choose the flash
layout to be 0x50000 and flash new firmware.
MAC addresses:
-------------
There are three MACs stored in factory, as in MT7620A reference design:
source address usage
0x4 label WLAN
0x28 label MAC 1
0x2e label + 1 MAC 2
However, the OEM firmware only uses one single MAC (label) for all
interfaces, probably a misconfiguration.
Signed-off-by: David Yang <mmyangfl@gmail.com>
This patch adds support for Netgear PR2000, sold as "Travel Router and
Range Extender".
Specifications:
--------------
* SoC: Mediatek MT7620N
* RAM: 64MB DDR2
* Flash: 16MB SPI NOR flash (Macronix MX25L12805D)
* WiFi 2.4GHz: builtin
* Ethernet: builtin
* LED: Power, Internet, WiFi, USB
* Buttons: Reset (GPIO 1/2)
* UART: Serial console (57600 8n1)
* USB: 1 x USB2
SPECIAL NOTES:
-------------
Problem: WiFi is super weak, but SSID beacons seems to be right.
Solve: Change 36h in factory partition (namely 0xf60036) to be 0x0.
Explain: Clearly Netgear have different ideas on how EEPROM is used. Bit 2
of 36h indicates the presence of External LNA for 11g (2.4 GHz) band,
which seems to be incorrectly set by Netgear (originally 0x04). Lifting it
solves the problem of weak RX signal.
Installation:
------------
There are two possible ways to install the firmware. Flashing via web
interface of original firmware is not tested due to a broken firmware.
1) Open the shell and use a UART2USB convert to gain TTY access (TP7: RXD,
TP9: TXD, TP10: GND). Please notice you have to remove resistance R54
next to TP7 otherwise you won't be able to input anything.
2) Use well-known Netgear debug switch. Access
http://192.168.168.1/setup.cgi?todo=debug to start telnet service
(username: root, password: <none>).
Please back up firmware if you want to go back to the original.
After you can control the device, flash the firmware as usual. Here are
some hints for that.
Option 1 (via nmrpflash):
1) Download nmrpflash from https://github.com/jclehner/nmrpflash
2) Use *-factory.img and flash:
nmrpflash -L
nmrpflash -i net* -f <your-firmware-name>
3) Turn off then turn on the device, wait it finishing flash.
Option 2 (replacing u-boot via breed):
1) Download breed-mt7620-reset1.bin from https://breed.hackpascal.net/
2) Setup HTTP server on your computer, for example:
python3 -m http.server
You can skip this step if your breed is already accessible from HTTP,
since the original wget does not support HTTPS.
3) Connect to the route and flash breed:
cd /tmp
wget http://<your-computer-host>/breed-mt7620-reset1.bin
dd if=breed-mt7620-reset1.bin of=/dev/mtdblock0 bs=64k
4) Reboot. Hold reset key or press any key in TTY to enter breed.
5) Access breed web interface (http://192.168.1.1/). Choose memory layout
to be 0x40000 and flash new firmware.
Remark:
------
As a "Range Extender", it has a switch to switch between Wired mode (GPIO
21 low) and Wireless mode (GPIO 20 low), which is not implemented in this
patch. However, the router will be turned off when it switches to the
middle, which makes this switch much less useful.
MAC addresses:
-------------
The OEM firmware uses one single MAC for all interfaces, located at
0xf700b0.
Signed-off-by: David Yang <mmyangfl@gmail.com>
Specifications:
CPU: MT7621A dual-core 880MHz
RAM: 64MB DDR2
FLASH: 16MB MX25L12805D NOR SPI
WIFI: 2.4GHz 2x2 MT7603 b/g/n PCI
WIFI: 5GHz 2x2 MT7662 a/b/ac PCI
ETH: 1xLAN 1000base-T integrated
SWITCH: MT7530 Port 0: LAN, Port 6: CPU
LED: Power, 2.4GHz WiFi, 5GHz WiFi
BTN: WPS, Reset
UART: Near ETH port, from ETH: 3V3-TxD-GND-RxD 57600 8n1
MISC: Audio support
Installation:
1. Update using recovery mode
- while holdig "reset" button, power on the device
- keep holding "reset" until power led is flashing yellow
- set own IP to 192.168.1.75, subnet mask: 255.255.255.0
- push firmware image (can be factory.bin or sysupgrade.bin)
using tftp client in binary mode to 192.168.1.1
Notes:
This board has only two MAC addresses programmed in the "factory" partition:
- MAC for wlan0 (2.4GHz) at offset 0x0004
- MAC for wlan1 (5GHz) at offset 0x8004
- stock firmware re-uses wlan0 MAC for ethernet
- no valid addresses found in 0x28, 0x2e, 0xe000 and 0xe006
Signed-off-by: Lea Teuberth <lea.teuberth@outlook.com>
H3C TX180x series WiFi6 routers are customized by different carrier.
While these three devices look different, they use the same motherboard
inside. Another minor difference comes from the model name definition
in the u-boot environment variable.
Specifications:
SOC: MT7621 + MT7915
ROM: 128 MiB
RAM: 256 MiB
LED: status *2
Button: reset *1 + wps/mesh *1
Ethernet: lan *3 + wan *1 (10/100/1000Mbps)
TTL Baudrate: 115200
TFTP server IP: 192.168.124.99
MAC Address:
use address(sample 1) address(sample 2) source
label 88:xx:xx:98:xx:12 88:xx:xx:a2:xx:a5 u-boot-env@ethaddr
lan 88:xx:xx:98:xx:13 88:xx:xx:a2:xx:a6 $label +1
wan 88:xx:xx:98:xx:12 88:xx:xx:a2:xx:a5 $label
WiFi4_2G 8a:xx:xx:58:xx:14 8a:xx:xx:52:xx:a7 (Compatibility mode)
WiFi5_5G 8a:xx:xx:b8:xx:14 8a:xx:xx:b2:xx:a7 (Compatibility mode)
WiFi6_2G 8a:xx:xx:18:xx:14 8a:xx:xx:12:xx:a7
WiFi6_5G 8a:xx:xx:78:xx:14 8a:xx:xx:72:xx:a7
Compatibility mode is used to guarantee the connection of old devices
that only support WiFi4 or WiFi5.
TFTP + TTL Installation:
Although a TTL connection is required for installation, we do not need
to tear down it. We can find the TTL port from the cooling hole at the
bottom. It is located below LAN3 and the pins are defined as follows:
|LAN1|LAN2|LAN3|----|WAN|
--------------------
|GND|TX|RX|VCC|
1. Set tftp server IP to 192.168.124.99 and put initramfs firmware in
server's root directory, rename it to a simple name "initramfs.bin".
2. Plug in the power supply and wait for power on, connect the TTL cable
and open a TTL session, enter "reboot", then enter "Y" to confirm.
Finally push "0" to interruput boot while booting.
3. Execute command to install a initramfs system:
# tftp 0x80010000 192.168.124.99:initramfs.bin
# bootm 0x80010000
4. Backup nand flash by OpenWrt LuCI or dd instruction. We need those
partitions if we want to back to stock firmwre due to official
website does not provide download link.
# dd if=/dev/mtd1 of=/tmp/u-boot-env.bin
# dd if=/dev/mtd4 of=/tmp/firmware.bin
5. Edit u-boot env to ensure use default bootargs and first image slot:
# fw_setenv bootargs
# fw_setenv bootflag 0
6. Upgrade sysupgrade firmware.
7. About restore stock firmware: flash the "firmware" and "u-boot-env"
partitions that we backed up in step 4.
# mtd write /tmp/u-boot-env.bin u-boot-env
# mtd write /tmp/firmware.bin firmware
Additional Info:
The H3C stock firmware has a 160-byte firmware header that appears to
use a non-standard CRC32 verification algorithm. For this part of the
data, the u-boot does not check it so we can just directly replace it
with a placeholder.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Hardware
--------
CPU: Mediatek MT7621
RAM: 256M DDR3
FLASH: 128M NAND
ETH: 1x Gigabit Ethernet
WiFi: Mediatek MT7915 (2.4/5GHz 802.11ax 2x2 DBDC)
BTN: 1x Reset (NWA50AX only)
LED: 1x Multi-Color (NWA50AX only)
UART Console
------------
NWA50AX:
Available below the rubber cover next to the ethernet port.
NWA55AXE:
Available on the board when disassembling the device.
Settings: 115200 8N1
Layout:
<12V> <LAN> GND-RX-TX-VCC
Logic-Level is 3V3. Don't connect VCC to your UART adapter!
Installation Web-UI
-------------------
Upload the Factory image using the devices Web-Interface.
As the device uses a dual-image partition layout, OpenWrt can only
installed on Slot A. This requires the current active image prior
flashing the device to be on Slot B.
If the currently installed image is started from Slot A, the device will
flash OpenWrt to Slot B. OpenWrt will panic upon first boot in this case
and the device will return to the ZyXEL firmware upon next boot.
If this happens, first install a ZyXEL firmware upgrade of any version
and install OpenWrt after that.
Installation TFTP
-----------------
This installation routine is especially useful in case
* unknown device password (NWA55AXE lacks reset button)
* bricked device
Attach to the UART console header of the device. Interrupt the boot
procedure by pressing Enter.
The bootloader has a reduced command-set available from CLI, but more
commands can be executed by abusing the atns command.
Boot a OpenWrt initramfs image available on a TFTP server at
192.168.1.66. Rename the image to owrt.bin
$ atnf owrt.bin
$ atna 192.168.1.88
$ atns "192.168.1.66; tftpboot; bootm"
Upon booting, set the booted image to the correct slot:
$ zyxel-bootconfig /dev/mtd10 get-status
$ zyxel-bootconfig /dev/mtd10 set-image-status 0 valid
$ zyxel-bootconfig /dev/mtd10 set-active-image 0
Copy the OpenWrt ramboot-factory image to the device using scp.
Write the factory image to NAND and reboot the device.
$ mtd write ramboot-factory.bin firmware
$ reboot
Signed-off-by: David Bauer <mail@david-bauer.net>
Netgear WAX202 is an 802.11ax (Wi-Fi 6) router.
Specifications:
* SoC: MT7621A
* RAM: 512 MiB NT5CC256M16ER-EK
* Flash: NAND 128 MiB F59L1G81MB-25T
* Wi-Fi:
* MT7915D: 2.4/5 GHz (DBDC)
* Ethernet: 4x 1GbE
* Switch: SoC built-in
* USB: None
* UART: 115200 baud (labeled on board)
Load addresses (same as ipTIME AX2004M):
* stock
* 0x80010000: FIT image
* 0x81001000: kernel image -> entry
* OpenWrt
* 0x80010000: FIT image
* 0x82000000: uncompressed kernel+relocate image
* 0x80001000: relocated kernel image -> entry
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
* Note that the bootloader accepts both encrypted and unencrypted
images, while the stock web interface only accepts encrypted ones.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in WAX202 GPL source:
https://www.downloads.netgear.com/files/GPL/WAX202_V1.0.5.1_Source.rar
* openwrt/target/linux/ramips/dts/mt7621-ax-nand-wax202.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
The international version of Mi Router 4A 100M is physically
identical to the non-international one, but appears to be
using a different partitioning scheme with the "overlay"
partition being 2MiB in size instead of 1MiB. This means
the following "firmware" partition starts at a different
address and the DTS needs to be adjusted for the firmware
to work.
Signed-off-by: Nita Vesa <werecatf@outlook.com>
Specifications:
Chipset:MT7628DA+MT7612E
Antenna : 2.4Ghz:2x5dbi Antenna + 5.8Ghz:2x5dbi Antenna
Wireless Rate:2.4Ghz 300Mbps , 5.8Ghz 867Mbps
Output Power :100mW(20dbm)
Physical port:110/100Mbps RJ45 WAN Port , 310/100Mbps RJ45 LAN Port
Flash: 8Mb
DRam: 64Mb
Flashing: default bootloader attempts to boot from tftp://192.168.1.10/firmware_auto.bin using 192.168.1.1
Known issues:
mac-address-increment for 5GHZ doesnt work, i failed to figure out why. Original firmware using +1 from original value in factory partition.
Signed-off-by: Sergei Iudin <tsipa740@gmail.com>
Beeline SmartBox GIGA is a wireless WiFi 5 router manufactured by
Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Nanya NT5CC128M16JR-EK
Flash: 128 MiB, Macronix MX30LF1G18AC
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7613BE): a/n/ac, 2x2
Ethernet: 3 ports - 2xGbE (WAN, LAN1), 1xFE (LAN2)
USB ports: 1xUSB3.0
Button: 1 button (Reset/WPS)
PCB ID: DBE00B-1.6MM
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Downgrade stock (Beeline) firmware to v.1.0.02;
2. Give factory OpenWrt image a shorter name, e.g. 1001.img;
3. Upload and update the firmware via the original web interface.
Remark: You might need make the 3rd step twice if your running firmware
is booted from the Slot 1 (Sercomm0 bootflag). The stock firmware
reverses the bootflag (Sercomm0 / Sercomm1) on each firmware update.
Revert to stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
overwrite OpenWrt in Slot 0 completely.
MAC Addresses
-------------
+-----+-----------+---------+
| use | address | example |
+-----+-----------+---------+
| LAN | label | *:16 |
| WAN | label + 1 | *:17 |
| 2g | label + 4 | *:1a |
| 5g | label + 5 | *:1b |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000
Notes
-----
1. The following scripts are required for the build:
sercomm-crypto.py - already exists in OpenWrt
sercomm-partition-tag.py - already exists in OpenWrt
sercomm-payload.py - already exists in OpenWrt
sercomm-pid.py - new, the part of this pull request
sercomm-kernel-header.py - new, the part of this pull request
2. This device (same as other Sercomm S2,S3-based devices) requires
special LZMA and LOADADDR settings for successful boot:
LZMA_TEXT_START=0x82800000
KERNEL_LOADADDR=0x81001000
LOADADDR=0x80001000
3. This device (same as several other Sercomm-based devices - Beeline,
Netgear, Etisalat, Rostelecom) has partition map (mtd1) containing
real partition offsets, which may differ from device to device
depending on the number and location of bad blocks on NAND.
"fixed-partitions" is used if the partition map is not found or
corrupted. This behavour (it's the same as on stock firmware) is
provided by MTD_SERCOMM_PARTS module.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
At least two AX820 hardware variants are known to exist, but they cannot
be distinguished (same hardware revision, no specific markings).
They appear to have the same LED hardware, but wired differently:
- One has a red system LED at GPIO 15, a green wlan2g LED at GPIO 14 and
a blue wlan5g LED at GPIO 16;
- The other only offers a green system LED at GPIO 15, with GPIO 14 and
16 being apparently not connected
Finally, a Yuncore datasheet says the canonical wiring should be:
- Blue wlan2g GPIO 14, green system GPIO 15, red wlan5g GPIO 16
All GPIOs are tied to a single RGB LED which is exposed via lightpipe on
the device front casing.
Considering the above, this patch exposes all three LEDs, preserves the
common system LED (GPIO 15) as the openwrt status LED, and removes the
color information from the LEDs names since it is not consistent across
hardware. The LED naming is made consistent with other YunCore devices.
A note is added in DTS to ensure this information is always available
and prevent unwanted changes in the future.
Fixes: #10131 "YunCore AX820: GPIO LED not correct"
Reviewed-by: Sander Vanheule <sander@svanheule.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Since 4e0c54bc5bc8 ("kernel: add support for kernel 5.4"),
the spi-nor limit 4k erasesize to spi-nor chips below a configured size
patch has not functioned as intended.
For uniform erasesize SPI-NOR devices, both
nor->erase_opcode & mtd->erasesize are used in erase operations.
These are set before, and not modified by, this
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS_LIMIT patch.
Thus, an SPI-NOR device with CONFIG_MTD_SPI_NOR_USE_4K_SECTORS will
always use 4k erasesize (where the device supports it).
If this patch was fixed to function as intended, there would be
cases where devices change from a 4K to a 64K erasesize.
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
Asus RP-AC87 ac2600 Repeater
2.4GHz 800Mbps
5GHz 1733Mbps
Hardware specifications:
SoC: MT7621A 2 cores 4 threads @880MHz
WiFi2G: MT7615E 2G 4x4 b/g/n
Wifi5G: MT7615E 5G 4x4 n/ac
DRAM: 128MB DDR3 @1200mhz
Flash: 16MB MX25L12805D SPI-NOR
LAN/WAN: MT7530 1x1000M
MAC addresses as verified by OEM firmware:
use address source
Lan/W5G *:B0 factory 0x8004 (label)
W2G *:B4 factory 0x0
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
set computer to a static ip, 192.168.1.2
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Asus RT-N12+ B1 and Asus RT-N300 B1 are the same device
with a different name.
The OEM firmwares have the same MD5 with Asus RT-N11P B1.
Same instructions for Asus RT-N11P B1 see:
commit c3dc52e39ac8 ("ramips: add support for Asus RT-N10P V3 / RT-N11P B1 / RT-N12 VP B1")
Signed-off-by: Semih Baskan <strstgs@gmail.com>
(Added id from the PR review to commit message)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Specifications:
- Device: ASUS RT-AX53U
- SoC: MT7621AT
- Flash: 128MB
- RAM: 256MB
- Switch: 1 WAN, 3 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- Ports: USB 3.0
- LEDs: 1x POWER (blue, configurable)
3x LAN (blue, configurable)
1x WAN (blue, configurable)
1x USB (blue, not configurable)
1x 2.4G (blue, not configurable)
1x 5G (blue, not configurable)
Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.1.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
Select "2. Upgrade firmware"
Press enter when show "Run firmware after upgrading? (Y/n):"
Select 0 for TFTP method
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.2
Input IP netmask: 255.255.255.0
Input file name: openwrt-ramips-mt7621-asus_rt-ax53u-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"
Signed-off-by: Chuncheng Chen <ccchen1984@gmail.com>
(replaced led label, added key-* prefix to buttons, added note about
BBT)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This is now built-in, enable so it won't propagate on target configs.
Link: https://lkml.org/lkml/2022/1/3/168
Fixes: 79e7a2552e89 ("kernel: bump 5.15 to 5.15.44")
Fixes: 0ca93670693b ("kernel: bump 5.10 to 5.10.119")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(Link to Kernel's commit taht made it built-in,
CRYPTO_LIB_BLAKE2S[_ARM|_X86] as it's selectable, 5.10 backport)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Make sure BootingFlag points to the system partition we install to.
The BootingFlag variable selects which system partition the system
boots from (0 => "Kernel", 1 => "Kernel2"). OpenWrt does not yet have
device specific support for this dual image scheme, and can therefore
only boot from "Kernel".
This has not been an issue until now, since all known OEM firmware
versions have ignored "Kernel2" - leaving the BootingFlag fixed at 0.
But the newest OEM firmware has a new upgrade procedure, installing
to the "inactive" system partition and setting BootingFlag accordingly.
This workaround is needed until the dual image scheme is fully
supported.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
For a TX->TX connected external phy to transmit/receive data, the rgmii2
pin group needs to be claimed with gpio function, at least for EdgeRouter X
SFP. We already claim the pin group under the pinctrl node with gpio
function on the gpio node on mt7621_ubnt_edgerouter-x.dtsi.
However, we should claim a pin group under its consumer node. It's the
ethernet node in this case, which we already claim the rgmii2 pin group
under it on mt7621.dtsi. Therefore, set the function as gpio on the rgmii2
node for EdgeRouter X SFP and get rid of claiming the rgmii2 pin group
under the pinctrl node. With this change, we also get to remove a
definition from mt7621_ubnt_edgerouter-x.dtsi which is specific to
EdgeRouter X SFP.
This change is tested on an EdgeRouter X SFP.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
This fixes a well known "LZMA ERROR 1" error, reported previously on
numerous of other devices from 'ramips' target.
Fixes: #9842Fixes: #8964
Reported-by: Juergen Hench <jurgen.hench@gmail.com>
Tested-by: Juergen Hench <jurgen.hench@gmail.com>
Signed-off-by: Demetris Ierokipides <ierokipides.dem@gmail.com>
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Both buttons on the RT-AC57U are active-low. Fix the GPIO flag for the
WPS cutton to fix button behavior.
Signed-off-by: David Bauer <mail@david-bauer.net>
MTS WG430223 is a wireless AC1300 (WiFi 5) router manufactured by
Arcadyan company. It's very similar to Beeline Smartbox Flash (Arcadyan
WG443223).
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB
Flash: 128 MiB (Winbond W29N01HV)
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: No
Button: 1 (Reset/WPS)
LEDs: 2 (Red, Green)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WG430223
Installation
------------
1. Login to the router web interface (superadmin:serial number)
2. Navigate to Administration -> Miscellaneous -> Access control lists &
enable telnet & enable "Remote control from any IP address"
3. Connect to the router using telnet (default admin:admin)
4. Place *factory.trx on any web server (192.168.1.2 in this example)
5. Connect to the router using telnet shell (no password required)
6. Save MAC adresses to U-Boot environment:
uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
awk '{print $5}')
uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
awk '{print $5}')
uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
awk '{print $5}')
uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
awk '{print $5}')
7. Ensure that MACs were saved correctly:
uboot_env --get --name eth2macaddr
uboot_env --get --name eth3macaddr
uboot_env --get --name ra0macaddr
uboot_env --get --name rax0macaddr
8. Download and write the OpenWrt images:
cd /tmp
wget http://192.168.1.2/factory.trx
mtd_write erase /dev/mtd4
mtd_write write factory.trx /dev/mtd4
9. Set 1st boot partition and reboot:
uboot_env --set --name bootpartition --value 0
Back to Stock
-------------
1. Run in the OpenWrt shell:
fw_setenv bootpartition 1
reboot
2. Optional step. Upgrade the stock firmware with any version to
overwrite the OpenWrt in Slot 1.
MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC | Source |
+-----------+-------------------+----------------+
| label | A4:xx:xx:51:xx:F4 | No MACs was |
| LAN | A4:xx:xx:51:xx:F6 | found on Flash |
| WAN | A4:xx:xx:51:xx:F4 | [1] |
| WLAN_2g | A4:xx:xx:51:xx:F5 | |
| WLAN_5g | A6:xx:xx:21:xx:F5 | |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
with saving of the MACs to u-boot-env during the installation was
applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:A0) was found in
"Factory" 0xfff0. It's the same for all MTS WG430223 devices. OEM
firmware also uses this MAC when initialazes ethernet driver. In
OpenWrt we use it only as internal GMAC (eth0), all other MACs are
unique. Therefore, there is no any barriers to the operation of several
MTS WG430223 devices even within the same broadcast domain.
Stock firmware image format
---------------------------
The same as Beeline Smartbox Flash but with another trx magic
+--------------+---------------+----------------------------------------+
| Offset | | Description |
+==============+===============+========================================+
| 0x0 | 31 52 48 53 | TRX magic "1RHS" |
+--------------+---------------+----------------------------------------+
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit moves common properties for the boards below to a new dtsi:
Beeline Smartbox Flash (Arcadyan WG443223)
MTS WG430223 (Arcadyan WG430223)
The boards are almost the same. Here is the differences:
+------+----------+----------+
| | WG430223 | WG443223 |
+------+----------+----------+
| RAM | 128 | 256 |
+------+----------+----------+
| USB | - | 1x3.0 |
+------+----------+----------+
| LEDS | RG | RGB |
+------+----------+----------+
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit:
1. Renames beeline-trx recipe in mt7621.mk to arcadyan-trx. The recipe
is necessary for:
- MTS WG430223 (Arcadyan WG430223)
- Beeline Smartbox Flash (Arcadyan WG443223)
2. Allows specify custom trx magic which is different for the routers
mentined above.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Some K2P comes with the worse boards with GD25Q128 (may be A2), which
only works with 50MHz frequency and less. Reduce spi frequency so that
these routers can boot.
remove m25p,fast-read because it isn't needed for 50MHz SPI.
Signed-off-by: Aviana Cruz <gwencroft@proton.me>
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Using nvmem-cells to set the MAC address for a DBDC device results in
both PHY devices using the same MAC address. This in turn will result in
multiple BSSes using the same BSSID, which can cause various problems.
Use the hotplug script for the EAP615-Wall instead to avoid this.
Fixes: a1b8a4d7b3ff ("ramips: support TP-Link EAP615-Wall")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Tested-by: Stijn Segers <foss@volatilesystems.org>
Tested-By: Andrew Powers-Holmes <aholmes@omnom.net>
The UniFi 6 Lite as well as the Tenbay T-MB5EU do not have the third
background-radar chain. For the Tenbay, the connector is present,
however no antenna is connected to it.
Signed-off-by: David Bauer <mail@david-bauer.net>
The SERCOMM NA502s is a smart home gateway manufactured by SERCOMM and sold
under different brands (among others, A1 Telekom Austria SmartHome Premium
Gateway). It has multi-protocol radio support in addition to LAN and WiFi.
Note: BLE and audio are currently unsupported.
Specifications
--------------
- MT7621ST 880MHz, Single-Core, Dual-Thread
- MT7603EN 2.4GHz WiFi
- MT7662EN 5GHz WiFi + BLE
- 128MiB NAND
- 256MiB DDR3 RAM
- SD3503 ZWave Controller
- EM357 Zigbee Coordinator
- Telit UMTS module
- Rechargeable battery
- speaker and microphone
MAC address assignment
----------------------
LAN MAC is read from the config partition, WiFi 2.4GHz is LAN+2 and matches
the OEM firmware. WiFi 5GHz with LAN+1 is an educated guess since the
OEM firmware does not enable 5GHz WiFi.
Installation
------------
Attach serial console, then boot the initramfs image via TFTP.
Once inside OpenWrt, run sysupgrade -n with the sysupgrade file.
Attention: The device has a dual-firmware design. We overwrite kernel2,
since kernel1 contains an automatic recovery image.
If you get NAND ECC errors and are stuck with bad eraseblocks, try to
erase the mtd partition first with
mtd unlock ubi
mtd erase ubi
This should only be needed once.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
this adds the mediatek,led_source dts binding for
Asus RT-AC1200 devices' dtsi, for correct switch LED
behavior.
The dts-binding is introduced in commit:
65dc9e0980255b15402c45b840f239b85be59b3d
Without this, we only have constantly very fast
blinking LEDs, which don't react on any traffic or
LAN events at all.
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
This fixes a well known "LZMA ERROR 1" error, reported previously on
numerous of similar devices.
Fixes: #9824
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Specifications:
SoC: MediaTek MT7621
RAM: 256 MB
Flash: 32 MB
WiFi: MediaTek MT7915E
Switch: 1 WAN, 4 LAN (Gigabit)
Ports: 1 USB 3.0
Buttons: Reset, WPS
LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
Power: DC 12V 1A tip positive
Installation:
Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.
Recovery:
Loads only signed manufacture firmware due to bootloader RSA verification
serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
connect to any lan ethernet port
power on the device while holding the reset button
wait at least 8 seconds before releasing reset button for image to
download
Signed-off-by: Alessio Prescenzo <alessioprescenzo@gmail.com>
[ensure unique wireless MAC, fix GPIO pingroup]
Signed-off-by: David Bauer <mail@david-bauer.net>
According wiki https://docs.gl-inet.com/en/2/hardware/mt300n-v2/
GL-MT300N-V2 have I2C interface on GPIO4, GPIO5.
Adding I2C in device tree make possible using I2C on this device.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
this adds the new dts-binding "mediatek,led_source"
currently for MT7628AN and MT7688 built-in switches,
which is documented as a 3-bit field configuring the
switch LEDs for various control schemes from 0 to 3.
Normally this is not needed, but e.g. for Asus RT-AC1200-V2
it is a must to set it to the anyway undocumented value
of 4, to have the switch LEDs react correctly on link/act
events. This is an MT7628DAN device, but I doubt this is
a speciality of this particular SoC.
Also added the RT305X_ESW_LED_OFF value to LED states.
Did also rename the register RT5350_EWS_REG_LED_POLARITY
to RT5350_EWS_REG_LED_CONTROL, which is the correct name.
Also making use of defines for some hardcoded values.
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
The 2.4GHz interface doesn't come up properly with the log showing:
mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)
As seen on other MT7621 boards this is caused by a missing reset GPIO.
The MT7621 dtsi set GPIO 19 as PCIe reset GPIO, which on this board
reset the 5GHz interface on port 0. Add GPIO 8 to the PCIe reset GPIO
list to also reset the 2.4GHz interface on port 1.
Signed-off-by: Alban Bedel <albeu@free.fr>
The Wavlink WL-WN533A8 is an AC3000 router with 5 gigabit ethernet ports
and one USB 3.0 port.
It's also known as Wavlink QUANTUM T8.
Hardware
--------
SoC: Mediatek MT7621A
RAM: 128MB (Nanya NT5CB64M16GP-EK)
FLASH: 16MB NOR (GigaDevice GD25Q127CSIG3)
ETH:
- 5x 10/100/1000 Mbps Ethernet (4x LAN + 1x WAN)
WIFI:
- 1x MT7615DN (2x 2x2:2) 2.4GHz and 5GHz DBDC
- 1x MT7615NE (4x4:4) 5GHz
- 8 external antennas
BTN:
- 1x Reset button
- 1x WPS button
- 1x Turbo button
- 1x Touchlink button
- 1x ON/OFF switch
LEDS:
- 1x Red led (system status)
- 1x Blue led (system status)
- 7x Blue leds (wifi led + 5 ethernet ports + power)
USB:
- 1x USB 3.0 port
UART:
- 57600-8-N-1
J4
Everything works correctly.
Installation
------------
Flash the initramfs image in the OEM firmware interface
(http://192.168.10.1/update.shtml).
When Openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
(Procedure tested on fw M33A8.V5030.190716 and M33A8.V5030.201204)
Restore OEM Firmware
--------------------
Flash the firmware update available online directly from LUCI.
You can download it from:
https://www.wavlink.com/en_us/firmware/details/f2d247ecba.html
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) Router mac addresses:
LAN XX:XX:XX:XX:XX:63 (factory @ 0xe006)
WAN XX:XX:XX:XX:XX:64 (factory @ 0xe000)
WIFI 2G/5G XX:XX:XX:XX:XX:65 (factory @ 0x04)
WIFI 5G XX:XX:XX:XX:XX:66 (factory @ 0x8004)
LABEL XX:XX:XX:XX:XX:65
In OEM firmware the DBDC wifi interfaces have these mac addresses:
2G) 82:XX:XX:XX:XX:65
5G) 80:XX:XX:XX:XX:65
While in OpenWrt the addresses are:
2G) 80:XX:XX:XX:XX:65
5G) 02:XX:XX:XX:XX:65
2) radio0 will show as 2G/5G interface but only 2G is really usable.
3) There is just one wifi led for all wifi interfaces.
It currently shows only the radio0 GHz wifi activity.
4) My unit was shipped with M33A8.V5030.190716 firmware which contains
the http://192.168.10.1/webcmd.shtml page. Entering "telnetd" in
the input box it will start the telnet daemon. Now you can access
the telnet console on port 2323 with these credentials:
username: admin2860
password: admin
5) The M33A8.V5030.201204 firmware version, doesn't contain anymore the
webcmd.shtml page. If your router is shipped with a previous firmware
version and you want to back it up, you can follow the back up
procedure of the WS-WN583A6.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Most of the definitions for WN531A6 will be shared with WN533A8 in a
future commit, so put them in a shared DTSI.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>