2022-07-16 20:07:20 +00:00
|
|
|
#
|
|
|
|
# Copyright (C) 2021 OpenWrt.org
|
|
|
|
#
|
|
|
|
|
|
|
|
[ -e /etc/config/ubootenv ] && exit 0
|
|
|
|
|
|
|
|
touch /etc/config/ubootenv
|
|
|
|
|
|
|
|
. /lib/uboot-envtools.sh
|
|
|
|
. /lib/functions.sh
|
|
|
|
|
|
|
|
board=$(board_name)
|
|
|
|
|
2023-11-27 03:59:32 +00:00
|
|
|
ubootenv_add_mmc_default() {
|
|
|
|
local envdev="$(find_mmc_part "ubootenv" "${1:-mmcblk0}")"
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x40000" "0x40000" "1"
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x40000" "0x40000" "0x40000" "1"
|
|
|
|
}
|
|
|
|
|
|
|
|
ubootenv_add_nor_default() {
|
|
|
|
local envdev="/dev/mtd$(find_mtd_index "u-boot-env")"
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x20000" "0x20000" "1"
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x20000" "0x20000" "0x20000" "1"
|
|
|
|
}
|
|
|
|
|
|
|
|
ubootenv_add_ubi_default() {
|
|
|
|
. /lib/upgrade/nand.sh
|
|
|
|
local envubi=$(nand_find_ubi ubi)
|
|
|
|
local envdev=/dev/$(nand_find_volume $envubi ubootenv)
|
|
|
|
local envdev2=/dev/$(nand_find_volume $envubi ubootenv2)
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x1f000" "0x1f000" "1"
|
|
|
|
ubootenv_add_uci_config "$envdev2" "0x0" "0x1f000" "0x1f000" "1"
|
|
|
|
}
|
|
|
|
|
2022-07-16 20:07:20 +00:00
|
|
|
case "$board" in
|
2023-11-20 07:18:00 +00:00
|
|
|
asus,rt-ax59u)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd0" "0x100000" "0x20000" "0x20000"
|
|
|
|
;;
|
2024-01-18 22:18:14 +00:00
|
|
|
bananapi,bpi-r3|\
|
mediatek: filogic: add BananaPi BPi-R3 mini
Hardware specification
----------------------
SoC: MediaTek MT7986A 4x A53
Flash: 128MB SPI-NAND, 8GB eMMC
RAM: 2GB DDR4
Ethernet: 2x 2.5GbE (Airoha EN8811H)
WiFi: MediaTek MT7976C 2x2 2.4G + 3x3 5G
Interfaces:
* M.2 Key-M: PCIe 2.0 x2 for NVMe SSD
* M.2 Key-B: USB 3.0 with SIM slot
* front USB 2.0 port
LED: Power, Status, WLAN2G, WLAN5G, LTE, SSD
Button: Reset, internal boot switch
Fan: PWM-controlled 5V fan
Power: 12V Type-C PD
Installation instructions for eMMC
----------------------------------
0. Set boot switch to boot from SPI-NAND (assuming stock rom or immortalwrt
running there).
1. Write GPT partition table to eMMC
Move openwrt-mediatek-filogic-bananapi_bpi-r3-mini-emmc-gpt.bin to
the device /tmp using scp and write it to /dev/mmcblk0:
dd if=/tmp/openwrt-*-r3-mini-emmc-gpt.bin of=/dev/mmcblk0
2. Reboot (to reload partition table)
3. Write bootloader and OpenWrt images
Move files to the device /tmp using scp:
- openwrt-*-bananapi_bpi-r3-mini-emmc-preloader.bin
- openwrt-*-bananapi_bpi-r3-mini-emmc-bl31-uboot.fip
- openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
- openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
Write them to the appropriate partitions:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-emmc-preloader.bin of=/dev/mmcblk0boot0
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-emmc-bl31-uboot.fip of=/dev/mmcblk0p3
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb of=/dev/mmcblk0p4
dd if=/tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb of=/dev/mmcblk0p5
sync
4. Remove the device from power, set boot switch to eMMC and boot into
OpenWrt. The device will come up with IP 192.168.1.1 and assume the
Ethernet port closer to the USB-C power connector as LAN port.
5. If you like to have Ethernet support inside U-Boot (eg. to boot via
TFTP) you also need to write the PHY firmware to /dev/mmcblk0boot1:
echo 0 > /sys/block/mmcblk0boot1/force_ro
dd if=/lib/firmware/airoha/EthMD32.dm.bin of=/dev/mmcblk0boot1
dd if=/lib/firmware/airoha/EthMD32.DSP.bin bs=16384 seek=1 of=/dev/mmcblk0boot1
Installation instructions for NAND
----------------------------------
0. Set boot switch to boot from eMMC (assuming OpenWrt is installed there
by instructions above. Using stock rom or immortalwrt does NOT work!)
1. Write things to NAND
Move files to the device /tmp using scp:
- openwrt-*-bananapi_bpi-r3-mini-snand-preloader.bin
- openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip
- openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
- openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
Write them to the appropriate locations:
mtd write /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-preloader.bin /dev/mtd0
ubidetach -m 1
ubiformat /dev/mtd1
ubiattach -m 1
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip)
ubimkvol /dev/ubi0 -N fip -n 0 -s $volsize -t static
ubiupdatevol /dev/ubi0_0 /tmp/openwrt-*-bananapi_bpi-r3-mini-snand-bl31-uboot.fip
cd /lib/firmware/airoha
cat EthMD32.dm.bin EthMD32.DSP.bin > /tmp/en8811h-fw.bin
ubimkvol /dev/ubi0 -N en8811h-firmware -n 1 -s 147456 -t static
ubiupdatevol /dev/ubi0_1 /tmp/en8811h-fw.bin
ubimkvol /dev/ubi0 -n 2 -N ubootenv -s 126976
ubimkvol /dev/ubi0 -n 3 -N ubootenv2 -s 126976
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb)
ubimkvol /dev/ubi0 -n 4 -N recovery -s $volsize
ubiupdatevol /dev/ubi0_4 /tmp/openwrt-*-bananapi_bpi-r3-mini-initramfs-recovery.itb
volsize=$(wc -c < /tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb)
ubimkvol /dev/ubi0 -n 4 -N recovery -s $volsize
ubiupdatevol /dev/ubi0_4 /tmp/openwrt-*-bananapi_bpi-r3-mini-squashfs-sysupgrade.itb
3. Remove the device from power, set boot switch to NAND, power up and
boot into OpenWrt.
Partially based on immortalwrt support for the R3 mini, big thanks for
doing the ground work!
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2024-01-26 17:28:01 +00:00
|
|
|
bananapi,bpi-r3-mini|\
|
2023-11-27 04:01:33 +00:00
|
|
|
bananapi,bpi-r4)
|
2024-02-25 21:08:57 +00:00
|
|
|
. /lib/upgrade/common.sh
|
2023-11-27 04:01:33 +00:00
|
|
|
|
2024-02-25 21:08:57 +00:00
|
|
|
bootdev="$(fitblk_get_bootdev)"
|
2023-11-27 04:01:33 +00:00
|
|
|
case "$bootdev" in
|
|
|
|
ubi*)
|
|
|
|
ubootenv_add_ubi_default
|
|
|
|
;;
|
|
|
|
mmc*)
|
|
|
|
ubootenv_add_mmc_default "${bootdev%%p[0-9]*}"
|
|
|
|
;;
|
2024-01-18 22:18:14 +00:00
|
|
|
mtd*)
|
|
|
|
ubootenv_add_nor_default
|
|
|
|
;;
|
2023-11-27 04:01:33 +00:00
|
|
|
esac
|
|
|
|
;;
|
mediatek: add CMCC RAX3000M support
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 64GB eMMC or 128 MB SPI-NAND
RAM: 512MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
- UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | GND TX VCC RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Enter fakeroot, decompress the configuration:
tar -zxf cfg_export_config_file.conf
3. Edit 'etc/config/dropbear', set 'enable' to '1'.
4. Edit 'etc/shadow', update (remove) root password:
'root::19523:0:99999:7:::'
5. Repack 'etc' directory:
tar -zcf cfg_export_config_file.conf etc/
* If you find an error about 'etc/wireless/mediatek/DBDC_card0.dat',
just ignore it.
6. Upload new configuration via web interface, now you can SSH to RAX3000M.
Check stroage type:
Check the label on the back of the device:
"CH EC CMIIT ID: xxxx" is eMMC version
"CH CMIIT ID: xxxx" is NAND version
eMMC Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'factory' part.
('data' partition can be ignored, it's useless.)
2. Write new GPT table:
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync
NAND Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'Factory' part.
2. Erase and write new BL2:
mtd erase BL2
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-preloader.bin BL2
3. Erase and write new FIP:
mtd erase FIP
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, erase UBI volumes:
ubidetach -p /dev/mtd0
ubiformat -y /dev/mtd0
ubiattach -p /dev/mtd0
8. Create new ubootenv volumes:
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
9. Additionally, if you want to have NAND recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
ubimkvol /dev/ubi0 -n 2 -N recovery -s 20MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb
10. Perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
2023-09-23 07:04:09 +00:00
|
|
|
cmcc,rax3000m)
|
|
|
|
case "$(cmdline_get_var root)" in
|
|
|
|
/dev/mmc*)
|
2023-11-27 03:59:32 +00:00
|
|
|
ubootenv_add_mmc_default
|
mediatek: add CMCC RAX3000M support
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 64GB eMMC or 128 MB SPI-NAND
RAM: 512MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
- UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | GND TX VCC RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Enter fakeroot, decompress the configuration:
tar -zxf cfg_export_config_file.conf
3. Edit 'etc/config/dropbear', set 'enable' to '1'.
4. Edit 'etc/shadow', update (remove) root password:
'root::19523:0:99999:7:::'
5. Repack 'etc' directory:
tar -zcf cfg_export_config_file.conf etc/
* If you find an error about 'etc/wireless/mediatek/DBDC_card0.dat',
just ignore it.
6. Upload new configuration via web interface, now you can SSH to RAX3000M.
Check stroage type:
Check the label on the back of the device:
"CH EC CMIIT ID: xxxx" is eMMC version
"CH CMIIT ID: xxxx" is NAND version
eMMC Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'factory' part.
('data' partition can be ignored, it's useless.)
2. Write new GPT table:
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync
NAND Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'Factory' part.
2. Erase and write new BL2:
mtd erase BL2
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-preloader.bin BL2
3. Erase and write new FIP:
mtd erase FIP
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, erase UBI volumes:
ubidetach -p /dev/mtd0
ubiformat -y /dev/mtd0
ubiattach -p /dev/mtd0
8. Create new ubootenv volumes:
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
9. Additionally, if you want to have NAND recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
ubimkvol /dev/ubi0 -n 2 -N recovery -s 20MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb
10. Perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
2023-09-23 07:04:09 +00:00
|
|
|
;;
|
|
|
|
*)
|
2023-11-27 03:59:32 +00:00
|
|
|
ubootenv_add_ubi_default
|
mediatek: add CMCC RAX3000M support
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 64GB eMMC or 128 MB SPI-NAND
RAM: 512MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
- UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | GND TX VCC RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Enter fakeroot, decompress the configuration:
tar -zxf cfg_export_config_file.conf
3. Edit 'etc/config/dropbear', set 'enable' to '1'.
4. Edit 'etc/shadow', update (remove) root password:
'root::19523:0:99999:7:::'
5. Repack 'etc' directory:
tar -zcf cfg_export_config_file.conf etc/
* If you find an error about 'etc/wireless/mediatek/DBDC_card0.dat',
just ignore it.
6. Upload new configuration via web interface, now you can SSH to RAX3000M.
Check stroage type:
Check the label on the back of the device:
"CH EC CMIIT ID: xxxx" is eMMC version
"CH CMIIT ID: xxxx" is NAND version
eMMC Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'factory' part.
('data' partition can be ignored, it's useless.)
2. Write new GPT table:
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync
NAND Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'Factory' part.
2. Erase and write new BL2:
mtd erase BL2
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-preloader.bin BL2
3. Erase and write new FIP:
mtd erase FIP
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, erase UBI volumes:
ubidetach -p /dev/mtd0
ubiformat -y /dev/mtd0
ubiattach -p /dev/mtd0
8. Create new ubootenv volumes:
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
9. Additionally, if you want to have NAND recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
ubimkvol /dev/ubi0 -n 2 -N recovery -s 20MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb
10. Perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
2023-09-23 07:04:09 +00:00
|
|
|
;;
|
|
|
|
esac
|
|
|
|
;;
|
2023-11-10 18:50:38 +00:00
|
|
|
comfast,cf-e393ax)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x20000" "0x80000"
|
|
|
|
;;
|
2023-08-30 11:50:54 +00:00
|
|
|
cetron,ct3003|\
|
2023-11-20 20:23:42 +00:00
|
|
|
netgear,wax220|\
|
2023-12-09 04:48:35 +00:00
|
|
|
zbtlink,zbt-z8102ax|\
|
|
|
|
zbtlink,zbt-z8103ax)
|
2023-06-30 10:34:38 +00:00
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x20000" "0x20000"
|
2023-09-17 14:59:48 +00:00
|
|
|
;;
|
filogic: Add support for D-Link AQUILA PRO AI M30
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718
- 3 buttons (WPS, reset, LED on/off)
- 1 1Gbit WAN port
- 4 1Gbit LAN ports
Disassembly:
- There are four screws at the bottom: 2 under the rubber feets, 2 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes on the side of the board.
- Pins (from front to rear):
- 3.3V
- RX
- TX
- GND
- Settings: 115200, 8N1
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- The recovery web interface always flashes to the currently active partition.
- If OpenWrt is flahsed to the second partition, it will not boot.
- Ensure that you have an OEM image available (encrypted and decrypted version). Decryption is described in the end.
- Set your IP address to 192.168.200.10, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Download openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-recovery.bin
- The recovery web interface always reports successful flashing, even if it fails
- After flashing, the recovery web interface will try to forward the browser to 192.168.0.1 (can be ignored)
- If OpenWrt was flashed to the first partition, OpenWrt will boot (The status LED will start blinking white and stay white in the end). In this case you're done and can use OpenWrt.
- If OpenWrt was flashed to the second partition, OpenWrt won't boot (The status LED will stay red forever). In this case, the following steps are reuqired:
- Start the web recovery interface again and flash the **decrypted OEM image**. This will be flashed to the second partition as well. The OEM firmware web interface is afterwards accessible via http://192.168.200.1.
- Now flash the **encrypted OEM image** via OEM firmware web interface. In this case, the new firmware is flashed to the first partition. After flashing and the following reboot, the OEM firmware web interface should still be accessible via http://192.168.200.1.
- Start the web recovery interface again and flash the OpenWrt recovery image. Now it will be flashed to the first partition, OpenWrt will boot correctly afterwards and is accessible via 192.168.1.1.
Flashing via U-Boot:
- Open the case, connect to the UART console
- Set your IP address to 192.168.200.2, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-initramfs-kernel.bin.
- Power on the device and select "7. Load image" in the U-Boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Perform a sysupgrade using openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.200.2, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util M30 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware M30A1_FW101B05: ./m32-firmware-util M30 --DecryptFactoryImage M30A1_FW101B05\(0725091522\).bin M30A1_FW101B05\(0725091522\)_decrypted.bin
Flashing via OEM web interface is not possible, as it will change the active partition and OpenWrt is only running on the first UBI partition.
Controlling the LEDs:
- The LEDs are controlled by a chip called "GCA230718" which is connected to the main CPU via I2C (address 0x40)
- I didn't find any documentation or driver for it, so the information below is purely based on my investigations
- If there is already I driver for it, please tell me. Maybe I didn't search enough
- I implemented a kernel module (leds-gca230718) to access the LEDs via DTS
- The LED controller supports PWM for brightness control and ramp control for smooth blinking. This is not implemented in the driver
- The LED controller supports toggling (on -> off -> on -> off) where the brightness of the LEDs can be set individually for each on cycle
- Until now, only simple active/inactive control is implemented (like when the LEDs would have been connected via GPIO)
- Controlling the LEDs requires three sequences sent to the chip. Each sequence consists of
- A reset command (0x81 0xE4) written to register 0x00
- A control command (for example 0x0C 0x02 0x01 0x00 0x00 0x00 0xFF 0x01 0x00 0x00 0x00 0xFF 0x87 written to register 0x03)
- The reset command is always the same
- In the control command
- byte 0 is always the same
- byte 1 (0x02 in the example above) must be changed in every sequence: 0x02 -> 0x01 -> 0x03)
- byte 2 is set to 0x01 which disables toggling. 0x02 would be LED toggling without ramp control, 0x03 would be toggling with ramp control
- byte 3 to 6 define the brightness values for the LEDs (R,G,B,W) for the first on cycle when toggling
- byte 7 defines the toggling frequency (if toggling enabled)
- byte 8 to 11 define the brightness values for the LEDs (R,G,B,W) for the second on cycle when toggling
- byte 12 is constant 0x87
Comparison to M32/R32:
- The algorithms for decrypting the OEM firmware are the same for M30/M32/R32, only the keys differ
- The keys are available in the GPL sources for the M32
- The M32/R32 contained raw data in the firmware images (kernel, rootfs), the R30 uses a sysupgrade tar instead
- Creation of the recovery image is quite similar, only the header start string changes. So mostly takeover from M32/R32 for that.
- Turned out that the bytes at offset 0x0E and 0x0F in the recovery image header are the checksum over the data area
- This checksum was not checked in the recovery web interface of M32/R32 devices, but is now active in R30
- I adapted the recovery image creation to also calculate the checksum over the data area
- The recovery image header for M30 contains addresses which don't match the memory layout in the DTS. The same addresses are also present in the OEM images
- The recovery web interface either calculates the correct addresses from it or has it's own logic to determine where which information must be written
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
2023-12-24 13:42:23 +00:00
|
|
|
dlink,aquila-pro-ai-m30-a1)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x40000" "0x40000"
|
|
|
|
;;
|
2023-05-20 15:03:06 +00:00
|
|
|
h3c,magic-nx30-pro|\
|
2023-06-15 15:21:40 +00:00
|
|
|
jcg,q30-pro|\
|
2023-11-02 15:16:28 +00:00
|
|
|
netcore,n60|\
|
2023-04-28 15:36:17 +00:00
|
|
|
qihoo,360t7|\
|
2022-12-02 04:29:58 +00:00
|
|
|
tplink,tl-xdr4288|\
|
|
|
|
tplink,tl-xdr6086|\
|
|
|
|
tplink,tl-xdr6088|\
|
2023-11-27 09:01:34 +00:00
|
|
|
xiaomi,mi-router-ax3000t-ubootmod|\
|
2023-07-20 17:42:58 +00:00
|
|
|
xiaomi,mi-router-wr30u-ubootmod|\
|
2023-11-27 03:59:32 +00:00
|
|
|
xiaomi,redmi-router-ax6000-ubootmod|\
|
|
|
|
zyxel,ex5601-t0-ubootmod)
|
|
|
|
ubootenv_add_ubi_default
|
uboot-mediatek: add support for Xiaomi Redmi Router AX6000
U-Boot flash instructions:
0. OpenWrt U-Boot does not support stock layout, it comes with recovery
boot support, automatic tftp recovery and never blocks UART.
A new flash layout is introduced, we call it OpenWrt U-Boot layout,
stock flash layout and the old OpenWrt layout are not supported.
During the whole flash procedure, please do not reboot or power off
unless requested explicitly, or you will break your device.
1. Your device should already running OpenWrt.
If not, follow the instructions to flash OpenWrt:
https://github.com/openwrt/openwrt/pull/11115
2. Backup BL2 Nvram Bdata Factory and FIP in case you break something or
in case you want to go back to stock firmware one day.
cat /dev/mtdblock0 > /tmp/BL2.bin
cat /dev/mtdblock1 > /tmp/Nvram.bin
cat /dev/mtdblock2 > /tmp/Bdata.bin
cat /dev/mtdblock3 > /tmp/Factory.bin
cat /dev/mtdblock4 > /tmp/FIP.bin
And save all whose bin files to somewhere safe.
Then backup your configurations, since ubiformat for entire mtd device is
required to create new ubootenv volume for OpenWrt U-Boot.
3. Run the following cmd to boot into an initramfs with the new OpenWrt
U-Boot layout that expand ubi partion to the end of flash:
ubiformat /dev/mtd7 -y -f /tmp/ax6000-ubootmod-initramfs-factory.ubi
4. After boot into initramfs, check mtd partion info.
The ubi partion should be mtd5
root@OpenWrt:~# cat /proc/mtd
dev: size erasesize name
mtd0: 00100000 00020000 BL2
mtd1: 00040000 00020000 Nvram
mtd2: 00040000 00020000 Bdata
mtd3: 00200000 00020000 Factory
mtd4: 00200000 00020000 FIP
mtd5: 07a80000 00020000 ubi
5. Load kmod-mtd-rw to temporarily make the bootloader partions writable.
The kmod-mtd-rw is from the feeds, it is not packed in initramfs-factory
by default.
To install kmod-mtd-rw via opkg:
opkg update && opkg install kmod-mtd-rw
Or, download kmod-mtd-rw.ipk from OpenWrt server and install it manually
e.g:
https://downloads.openwrt.org/snapshots/targets/mediatek/filogic/kmods/
Select your OpenWrt release version and kernel version accordingly.
Load kmod-mtd-rw:
insmod /lib/modules/$(uname -r)/mtd-rw.ko i_want_a_brick=1
6. Run the following cmd to clean all pending crash dumps in pstore,
or OpenWrt U-Boot may boot into NAND recovery or tftp recovery.
rm -f /sys/fs/pstore/*
7. Format ubi and create new ubootenv volume:
ubidetach -p /dev/mtd5; ubiformat /dev/mtd5 -y; ubiattach -p /dev/mtd5
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
8. This is optional. Skip this if you do not want to have NAND recovery
boot feature offered by OpenWrt U-Boot. Don't worry, you always have
automatic tftp recovery feature enabled.
ubimkvol /dev/ubi0 -n 2 -N recovery -s 10MiB
ubiupdatevol /dev/ubi0_2 /tmp/ax6000-ubootmod-initramfs-recovery.itb
9. Now, flash new U-Boot. Bye-bye ugly stock U-Boot.
mtd write /tmp/ax6000-ubootmod-preloader.bin BL2
mtd write /tmp/ax6000-ubootmod-bl31-uboot.fip FIP
10. Flash the squashfs-sysupgrade.bin as usual:
sysupgrade -n /tmp/ax6000-ubootmod-squashfs-sysupgrade.itb
Enjoy!
Signed-off-by: Furong Xu <xfr@outlook.com>
2022-12-22 02:40:50 +00:00
|
|
|
;;
|
2023-12-03 05:49:40 +00:00
|
|
|
glinet,gl-mt2500|\
|
|
|
|
glinet,gl-mt6000)
|
2023-04-20 17:49:55 +00:00
|
|
|
local envdev=$(find_mmc_part "u-boot-env")
|
2023-12-03 05:49:40 +00:00
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x80000"
|
2023-04-20 17:49:55 +00:00
|
|
|
;;
|
2023-11-05 15:02:09 +00:00
|
|
|
glinet,gl-mt3000)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x80000" "0x20000"
|
|
|
|
;;
|
2023-11-01 06:46:15 +00:00
|
|
|
jdcloud,re-cp-03)
|
|
|
|
local envdev=$(find_mmc_part "ubootenv" "mmcblk0")
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x40000" "0x40000" "1"
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x40000" "0x40000" "0x40000" "1"
|
|
|
|
;;
|
2023-12-09 17:17:02 +00:00
|
|
|
mercusys,mr90x-v1|\
|
|
|
|
routerich,ax3000)
|
2023-11-05 15:02:09 +00:00
|
|
|
local envdev=/dev/mtd$(find_mtd_index "u-boot-env")
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x20000" "0x20000" "1"
|
|
|
|
;;
|
2024-03-07 06:19:08 +00:00
|
|
|
openembed,som7981)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x80000" "0x80000"
|
|
|
|
ubootenv_add_uci_sys_config "/dev/mtd3" "0x0" "0x100000" "0x100000"
|
|
|
|
;;
|
2023-11-05 15:02:09 +00:00
|
|
|
ubnt,unifi-6-plus)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x80000" "0x10000"
|
|
|
|
;;
|
2023-11-27 09:01:34 +00:00
|
|
|
xiaomi,mi-router-ax3000t|\
|
2023-11-05 15:02:09 +00:00
|
|
|
xiaomi,mi-router-wr30u-stock|\
|
|
|
|
xiaomi,redmi-router-ax6000-stock)
|
|
|
|
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x10000" "0x20000"
|
|
|
|
ubootenv_add_uci_sys_config "/dev/mtd2" "0x0" "0x10000" "0x20000"
|
|
|
|
;;
|
mediatek: add support for Zyxel EX5601-T0 router
Zyxel EX5601-T0 specifics
--------------
The operator specific firmware running on the Zyxel branded
EX5601-T0 includes U-Boot modifications affecting the OpenWrt
installation.
Partition Table
| dev | size | erasesize | name |
| ---- | -------- | --------- | ------------- |
| mtd0 | 20000000 | 00040000 | "spi0.1" |
| mtd1 | 00100000 | 00040000 | "BL2" |
| mtd2 | 00080000 | 00040000 | "u-boot-env" |
| mtd3 | 00200000 | 00040000 | "Factory" |
| mtd4 | 001c0000 | 00040000 | "FIP" |
| mtd5 | 00040000 | 00040000 | "zloader" |
| mtd6 | 04000000 | 00040000 | "ubi" |
| mtd7 | 04000000 | 00040000 | "ubi2" |
| mtd8 | 15a80000 | 00040000 | "zyubi" |
The router boots BL2 which than loads FIP (u-boot).
U-boot has hardcoded a command to always launch Zloader "mtd read zloader 0x46000000" and than "bootm". Bootargs are deactivated.
Zloader is the zyxel booloader which allow to dual-boot ubi or ubi2, by default access to zloader is blocked.
Too zloader checks that the firmware contains a particolar file called zyfwinfo.
Additional details regarding Zloader can be found here:
https://hack-gpon.github.io/zyxel/
https://forum.openwrt.org/t/adding-openwrt-support-for-zyxel-ex5601-t0/155914
Hardware
--------
SOC: MediaTek MT7986a
CPU: 4 core cortex-a53 (2000MHz)
RAM: 1GB DDR4
FLASH: 512MB SPI-NAND (Micron xxx)
WIFI: Wifi6 Mediatek MT7976 802.11ax 5 GHz 4x4 + 2.4GHZ 4x4
ETH: MediaTek MT7531 Switch + SoC
3 x builtin 1G phy (lan1, lan2, lan3)
1 x MaxLinear GPY211B 2.5 N-Base-T phy5 (lan4)
1 x MaxLinear GPY211B 2.5Gbit xor SFP/N-Base-T phy6 (wan)
USB: 1 x USB 3.2 Enhanced SuperSpeed port
UART: 3V3 115200 8N1 (Pinout: GND KEY RX TX VCC)
VOIP: 2 FXS ports for analog phones
MAC Address Table
-----------------
eth0/lan Factory 0x002a
eth1/wan Factory 0x0024
wifi 2.4Ghz Factory 0x0004
wifi 5Ghz Factory 0x0004 + 1
Serial console (UART)
---------------------
+-------+-------+-------+-------+-------+
| +3.3V | RX | TX | KEY | GND |
+---+---+-------+-------+-------+-------+
|
+--- Don't connect
Installation
------------
Keep in mind that openwrt can only run on the UBI partition, the openwrt firmware is not able to understand the zloader bootargs.
The procedure allows restoring the UBI partition with the Zyxel firmware and retains all the OEM functionalities.
1. Unlock Zloader (this will allow to swap manually between partitions UBI and UBI2):
- Attach a usb-ttl adapter to your computer and boot the router.
- While the router is booting at some point you will read the following: `Please press Enter to activate this console.`
- As soon as you read that press enter, type root and than press enter again (just do it, don't care about the logs scrolling).
- Most likely the router is still printing the boot log, leave it boot until it stops.
- If everything went ok you should have full root access "root@EX5601-T0:/#".
- Type the following command and press enter: "fw_setenv EngDebugFlag 0x1".
- Reboot the router.
- As soon as you read `Hit any key to stop autoboot:` press Enter.
- If everything went ok you should have the following prompt: "ZHAL>".
- You have successfully unlocked zloader access, this procedure must be done only once.
2. Check the current active partition:
- Boot the router and repeat the steps above to gain root access.
- Type the following command to check the current active image: "cat /proc/cmdline".
- If `rootubi=ubi` it means that the active partition is `mtd6`
- If `rootubi=ubi2` it means that the active partition is `mtd7`
- As mentioned earlier we need to flash openwrt into ubi/mtd6 and never overwrite ubi2/mtd7 to be able to fully roll-back.
- To activate and boot from mtd7 (ubi2) enter into ZHAL> command prompt and type the following commands:
atbt 1 # unlock write
atsw # swap boot partition
atsr # reboot the router
- After rebooting check again with "cat /proc/cmdline" that you are correctly booting from mtd7/ubi2
- If yes proceed with the installation guide. If not probably you don't have a firmware into ubi2 or you did something wrong.
3. Flashing:
- Download the sysupgrade file for the router from openwrt, than we need to add the zyfwinfo file into the sysupgrade tar.
Zloader only checks for the magic (which is a fixed value 'EXYZ') and the crc of the file itself (256bytes).
I created a script to create a valid zyfwinfo file but you can use anything that does exactly the same:
https://raw.githubusercontent.com/pameruoso/OpenWRT-Zyxel-EX5601-T0/main/gen_zyfwinfo.sh
- Add the zyfwinfo file into the sysupgrade tar.
- Enter via telnet or ssh into the router with admin credentials
- Enter the following commands to disable the firmware and model checks
"zycli fwidcheck off" and "zycli modelcheck off"
- Open the router web interface and in the update firmware page select the "restore default settings option"
- Select the sysupgrade file and click on upload.
- The router will flash and reboot itself into openwrt from UBI
4. Restoring and going back to Zyxel firmware.
- Use the ZHAL> command line to manually swap the boot parition to UBI2 with the following:
atbt 1 # unlock write
atsw # swap boot partition
atsr # reboot the router
- You will boot again the Zyxel firmware you have into UBI2 and you can flash the zyxel firmware to overwrite the UBI partition and openwrt.
Working features
----------------
3 gbit lan ports
Wifi
Zyxel partitioning for coexistance with Zloader and dual boot.
WAN SFP port (only after exporting pins 57 and 10. gpiobase411)
leds
reset button
serial interface
usb port
lan ethernet 2.5 gbit port (autosense)
wan ethernet 2.5 gbit port (autosense)
Not working
----------------
voip (missing drivers or proper zyxel platform software)
Swapping the wan ethernet/sfp xor port
----------------
The way to swap the wan port between sfp and ethernet is the following:
export the pins 57 and 10.
Pin 57 is used to probe if an sfp is present.
If pin 57 value is 0 it means that an sfp is present into the cage (cat /sys/class/gpio/gpio468/value).
If pin 57 value is 1 it means that no sfp is inserted into the cage.
In conclusion by default both 57 an 10 pins are by default 1, which means that the active port is the ethernet one.
After inserting an SFP pin 57 will become 0 and you have to manually change the value of pin 10 to 0 too.
This is totally scriptable of course.
Leds description
------------
All the leds are working out of the box but the leds managed by the 2 maxlinear phy (phy 5 lan, phy6 wan).
To activate the phy5 led (rj45 ethernet port led on the back of the router) you have to use mdio-tools.
To activate the phy6 led (led on the front of the router for 2.5gbit link) you have to use mdio-tools.
Example:
Set lan5 led to fast blink on 2500/1000, slow blink on 10/100:
mdio mdio-bus mmd 5:30 raw 0x0001 0x33FC
Set wan 2.5gbit led to constant on when wan is 2.5gbit:
mdio mdio-bus mmd 6:30 raw 0x0001 0x0080
Signed-off-by: Pietro Ameruoso <p.ameruoso@live.it>
2023-05-22 07:52:47 +00:00
|
|
|
zyxel,ex5601-t0)
|
|
|
|
local envdev=/dev/mtd$(find_mtd_index "u-boot-env")
|
|
|
|
ubootenv_add_uci_config "$envdev" "0x0" "0x20000" "0x40000" "2"
|
|
|
|
;;
|
filogic: support Telenor branded ZyXEL EX5700
Telenor quirks
--------------
The operator specific firmware running on the Telenor branded
ZyXEL EX5700 includes U-Boot modifications affecting the OpenWrt
installation.
Notable changes to U-Boot include
- environment is stored in RAM and reset to defaults when power
cycled
- dual partition scheme with "nomimal" or "rescue" systems, falling
back to "rescue" unless the OS signals success in 3 attempts
- several runtime additions to the device-tree
Some of these modifications have side effects requiring workarounds
- U-Boot modifies /chosen/bootargs in an unsafe manner, and will crash
unless this node exists
- U-Boot verifies that the selected rootfs UBI volume exists, and
refuses to boot if it doesn't. The chosen "rootfs" volume must contain
a squashfs signature even for tftp or initramfs booting.
- U-Boot parses the "factoryparams" UBI volume, setting the "ethaddr"
variable to the label mac. But "factoryparams" does not always
exist. Instead there is a "RIP" volume containing all the factory
data. Copying the "RIP" volume to "factoryparams" will fix this
Hardware
--------
SOC: MediaTek MT7986
RAM: 1GB DDR4
FLASH: 512MB SPI-NAND (Mikron xxx)
WIFI: Mediatek MT7986 802.11ax 5 GHz
Mediatek MT7916 DBDC 802.11ax 2.4 + 6 GHz
ETH: MediaTek MT7531 Switch + SoC
3 x builtin 1G phy (lan1, lan2, lan3)
2 x MaxLinear GPY211C 2.5 N-Base-T phy (lan4, wan)
USB: 1 x USB 3.2 Enhanced SuperSpeed port
UART: 3V3 115200 8N1 (Pinout: GND KEY RX TX VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
reachable at 192.168.1.2/24. Rename the image to C0A80101.img.
2. Connect the TFTP server to lan1, lan2 or lan3. Connect to the serial
console, Interrupt the autoboot process by pressing ESC when prompted.
3. Download and boot the OpenWrt initramfs image.
$ env set uboot_bootcount 0
$ env set firmware nominal
$ tftpboot
$ bootm
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Missing features
----------------
- The "lan1", "lan2" and "lan3" port LEDs are driven by the switch but
OpenWrt does not correctly configure the output.
- The "lan4" and "wan" port LEDs are driven by the GPH211C phys and
not configured by OpenWrt.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
2023-03-28 13:04:21 +00:00
|
|
|
zyxel,ex5700-telenor)
|
|
|
|
ubootenv_add_uci_config "/dev/ubootenv" "0x0" "0x4000" "0x4000" "1"
|
|
|
|
;;
|
2022-07-16 20:07:20 +00:00
|
|
|
esac
|
|
|
|
|
|
|
|
config_load ubootenv
|
mediatek: add Xiaomi Redmi Router AX6000 support
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128 MB
RAM: K4A4G165WF-BCWE 512 MB
Ethernet: 4x 10/100/1000 Mbps
WiFi1: MT7976GN 2.4GHz ax 4x4
WiFi2: MT7976AN 5GHz ax 4x4
Button: Mesh, Reset
Flash instructions:
1. Gain ssh and serial port access, see the link below:
https://openwrt.org/toh/xiaomi/redmi_ax6000#installation
2. Use ssh or serial port to log in to the router, and
execute the following command:
nvram set boot_wait=on
nvram set flag_boot_rootfs=0
nvram set flag_boot_success=1
nvram set flag_last_success=1
nvram set flag_try_sys1_failed=8
nvram set flag_try_sys2_failed=8
nvram commit
3. Set a static ip on the ethernet interface of your computer
(e.g. default: ip 192.168.31.100, gateway 192.168.31.1)
4. Download the initramfs image, rename it to initramfs.bin,
and host it with the tftp server.
5. Interrupt U-Boot and run these commands:
setenv mtdparts nmbm0:1024k(bl2),256k(Nvram),256k(Bdata),2048k(factory),2048k(fip),256k(crash),256k(crash_log),112640k(ubi)
saveenv
tftpboot initramfs.bin
bootm
6. After openwrt boots up, use scp or luci web
to upload sysupgrade.bin to upgrade.
Revert to stock firmware:
Restore mtdparts back to default, then use the
vendor's recovery tool (Windows only).
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-09-18 15:16:18 +00:00
|
|
|
config_foreach ubootenv_add_app_config
|
2022-07-16 20:07:20 +00:00
|
|
|
|
|
|
|
exit 0
|