2018-02-21 19:40:50 +00:00
|
|
|
PART_NAME=firmware
|
|
|
|
REQUIRE_IMAGE_METADATA=1
|
|
|
|
|
|
|
|
RAMFS_COPY_BIN='fw_printenv fw_setenv'
|
|
|
|
RAMFS_COPY_DATA='/etc/fw_env.config /var/lock/fw_printenv.lock'
|
|
|
|
|
|
|
|
platform_check_image() {
|
ipq40xx: add support for ASUS RT-AC58U/RT-ACRH13
This patch adds support for ASUS RT-AC58U/RT-ACRH13.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI
NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE)
NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI)
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one Reset and one WPS button
LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each)
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has an unpopulated
1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the
PCB right next to the connector.
U-Boot Note: The ethernet driver isn't always reliable and can sometime
time out... Don't worry, just retry.
Access via the serial console is required. As well as a working
TFTP-server setup and the initramfs image. (If not provided, it
has to be built from the OpenWrt source. Make sure to enable
LZMA as the compression for the INITRAMFS!)
To install the image permanently, you have to do the following
steps in the listed order.
1. Open up the router.
There are four phillips screws hiding behind the four plastic
feets on the underside.
2. Connect the serial cable (See notes above)
3. Connect your router via one of the four LAN-ports (yellow)
to a PC which can set the IP-Address and ssh and scp from.
If possible set your PC's IPv4 Address to 192.168.1.70
(As this is the IP-Address the Router's bootloader expects
for the tftp server)
4. power up the router and enter the u-boot
choose option 1 to upload the initramfs image. And follow
through the ipv4 setup.
Wait for your router's status LED to stop blinking rapidly and
glow just blue. (The LAN LED should also be glowing blue).
3. Connect to the OpenWrt running in RAM
The default IPv4-Address of your router will be 192.168.1.1.
1. Copy over the openwrt-sysupgrade.bin image to your router's
temporary directory
# scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp
2. ssh from your PC into your router as root.
# ssh root@192.168.1.1
The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key.
Once connected...: run the following commands on your temporary installation
3. delete the "jffs2" ubi partition to make room for your new root partition
# ubirmvol /dev/ubi0 --name=jffs2
4. install OpenWrt on the NAND Flash.
# sysupgrade -v /tmp/openwrt-sysupgrade.bin
- This will will automatically reboot the router -
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-03-07 08:13:10 +00:00
|
|
|
case "$(board_name)" in
|
2021-12-30 20:25:03 +00:00
|
|
|
asus,rt-ac42u |\
|
ipq40xx: add support for ASUS RT-AC58U/RT-ACRH13
This patch adds support for ASUS RT-AC58U/RT-ACRH13.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI
NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE)
NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI)
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one Reset and one WPS button
LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each)
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has an unpopulated
1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the
PCB right next to the connector.
U-Boot Note: The ethernet driver isn't always reliable and can sometime
time out... Don't worry, just retry.
Access via the serial console is required. As well as a working
TFTP-server setup and the initramfs image. (If not provided, it
has to be built from the OpenWrt source. Make sure to enable
LZMA as the compression for the INITRAMFS!)
To install the image permanently, you have to do the following
steps in the listed order.
1. Open up the router.
There are four phillips screws hiding behind the four plastic
feets on the underside.
2. Connect the serial cable (See notes above)
3. Connect your router via one of the four LAN-ports (yellow)
to a PC which can set the IP-Address and ssh and scp from.
If possible set your PC's IPv4 Address to 192.168.1.70
(As this is the IP-Address the Router's bootloader expects
for the tftp server)
4. power up the router and enter the u-boot
choose option 1 to upload the initramfs image. And follow
through the ipv4 setup.
Wait for your router's status LED to stop blinking rapidly and
glow just blue. (The LAN LED should also be glowing blue).
3. Connect to the OpenWrt running in RAM
The default IPv4-Address of your router will be 192.168.1.1.
1. Copy over the openwrt-sysupgrade.bin image to your router's
temporary directory
# scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp
2. ssh from your PC into your router as root.
# ssh root@192.168.1.1
The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key.
Once connected...: run the following commands on your temporary installation
3. delete the "jffs2" ubi partition to make room for your new root partition
# ubirmvol /dev/ubi0 --name=jffs2
4. install OpenWrt on the NAND Flash.
# sysupgrade -v /tmp/openwrt-sysupgrade.bin
- This will will automatically reboot the router -
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-03-07 08:13:10 +00:00
|
|
|
asus,rt-ac58u)
|
|
|
|
local ubidev=$(nand_find_ubi $CI_UBIPART)
|
|
|
|
local asus_root=$(nand_find_volume $ubidev jffs2)
|
|
|
|
|
|
|
|
[ -n "$asus_root" ] || return 0
|
|
|
|
|
|
|
|
cat << EOF
|
|
|
|
jffs2 partition is still present.
|
|
|
|
There's probably no space left
|
|
|
|
to install the filesystem.
|
|
|
|
|
|
|
|
You need to delete the jffs2 partition first:
|
|
|
|
# ubirmvol /dev/ubi0 --name=jffs2
|
|
|
|
|
2021-11-23 08:10:14 +00:00
|
|
|
Once this is done. Retry.
|
|
|
|
EOF
|
|
|
|
return 1
|
|
|
|
;;
|
ipq40xx: Add support ZTE MF18A
Light and small router ( In Poland operators sells together with MC7010 outdoor modem to provide WIFI inside home).
Device specification
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz (QCA9982): a/n/ac, 3x3
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Power (blue) , WiFI (blue and red), SMARTHOME (blue and red) and 1 internal (blue) -- NOTE: Power controls all external led (if down ,all others also not lights even signal is up)
Power: 5VDC, 2,1A via USB-C socket
Bootloader: U-Boot
On board ZWave and Zigbee (EFR32 MG1P232GG..) modules ( not supported by orginal software )
Installation
1.Open MF18A case by ungluing rubber pad under the router and unscrew screws, and connect to serial console port,
with the following pinout, starting from pin 1, which is the topmost pin when the board is upright (reset button on the bottom) :
VCC (3.3V). Do not use unless you need to source power for the converer from it.
TX
RX
GND
Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1.
2.Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2
3.Connect TFTP server to RJ-45 port (WAN/LAN1).
4.Power on MF18A , stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftpboot 0x84000000 openwrt-ipq40xx-generic-zte_mf18a-initramfs-fit-zImage.itb
bootm 0x84000000
5.Please make backup of original partitions, if you think about revert to stock, specially mtd8 (Web UI) and mtd9 (rootFS). Use /tmp as temporary storage and do:
WEB PARITION
cat /dev/mtd8 > /tmp/mtd8.bin
scp /tmp/mtd8.bin root@YOURSERVERIP:/
rm /tmp/mtd8.bin
ROOT PARITION
cat /dev/mtd9 > /tmp/mtd9.bin
scp /tmp/mtd9.bin root@YOURSERVERIP:/
rm /tmp/mtd9.bin
If you are sure ,that you want to flash openwrt, from uBoot, before bootm, clean rootfs partition with command:
nand erase 0x1800000 0x1D00000
6.Login via ssh or serial and remove stock partitions (default IP 192.168.1.1):
ubiattach -m 9 # it could return error if ubi was attached before or rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs # it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs_data # some devices doesn't have it
7. Install image via :
sysupgrade -n /tmp/openwrt-ipq40xx-generic-zte_mf18a-squashfs-sysupgrade.bin
previously wgeting bin. Sometimes it could print ubi attach error, but please ignore it if process goes forward.
Back to Stock (!!! need original dump taken from initramfs !!!) -------------
Place mtd8.bin and mtd9.bin initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2
Connect serial console (115200,8n1) to serial console connector .
Connect TFTP server to RJ-45 port (WAN/LAN1).
rename mtd8.bin to web.img and mtd9.bin to root_uImage_s
Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase Web and RootFS:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 root_uImage_s
nand erase 0x1800000 0x1D00000
nand write 0x84000000 0x1800000 0x1D00000
This will restore Web Interface:
tftpboot 0x84000000 web.img
nand erase 0x1000000 0x800000
nand write 0x84000000 0x1000000 0x800000
After first boot on stock firwmare, do a factory reset. Push reset button for 5 seconds so all parameters will be reverted to the one printed on label on bottom of the router
As reference was taken MF289F support by Giammarco Marzano stich86@gmail.com and MF286D by Pawel Dembicki paweldembicki@gmail.com
Signed-off-by: Marcin Gajda <mgajda@o2.pl>
2022-12-28 18:01:40 +00:00
|
|
|
zte,mf18a |\
|
ipq40xx: Add ZTE MF289F
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-09-14 12:20:43 +00:00
|
|
|
zte,mf286d |\
|
2023-09-16 19:55:01 +00:00
|
|
|
zte,mf287|\
|
ipq4019: add support for ZTE MF287+ aka DreiNeo
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
(cherry picked from commit f70ee53b08466f612546f699c556cbdaa39e1466)
2023-06-07 19:24:18 +00:00
|
|
|
zte,mf287plus |\
|
ipq4019: add support for ZTE MF287 Pro aka DreiNeo Pro
The ZTE MF287 Pro is a LTE router used (exclusively?) by the network
operator "3". It is very similar to the MF287+, but the hardware layout
and partition layout have changed quite a bit.
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12
WiFi: 802.11a/b/g/n/ac SoC-integrated
USB: 1x 2.0
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m17
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd17 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock17 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 17
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Other Notes
===========
Contrary to the stock firmware, the USB port on the back can be used.
There is one GPIO Switch "Power button blocker" which, if enabled, does not
trigger a reset of the SoC if the modem reboots. If disabled, the SoC is
rebooted along with the modem. The modem can be rebooted via the exported
GPIO "modem-reset" in /sys/class/gpio.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
(cherry picked from commit edfe91372adfdaf5ee4e294fb0f5860a16adc551)
2023-07-10 09:55:30 +00:00
|
|
|
zte,mf287pro |\
|
ipq40xx: Add ZTE MF289F
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-09-14 12:20:43 +00:00
|
|
|
zte,mf289f)
|
2021-11-23 08:10:14 +00:00
|
|
|
CI_UBIPART="rootfs"
|
|
|
|
local mtdnum="$( find_mtd_index $CI_UBIPART )"
|
|
|
|
[ ! "$mtdnum" ] && return 1
|
|
|
|
ubiattach -m "$mtdnum" || true
|
|
|
|
local ubidev="$( nand_find_ubi $CI_UBIPART )"
|
|
|
|
local ubi_rootfs=$(nand_find_volume $ubidev ubi_rootfs)
|
|
|
|
local ubi_rootfs_data=$(nand_find_volume $ubidev ubi_rootfs_data)
|
|
|
|
|
|
|
|
[ -n "$ubi_rootfs" ] || [ -n "$ubi_rootfs_data" ] || return 0
|
|
|
|
|
|
|
|
cat << EOF
|
|
|
|
ubi_rootfs partition is still present.
|
|
|
|
|
|
|
|
You need to delete the stock partition first:
|
|
|
|
# ubirmvol /dev/ubi0 -N ubi_rootfs
|
|
|
|
Please also delete ubi_rootfs_data, if exist:
|
|
|
|
# ubirmvol /dev/ubi0 -N ubi_rootfs_data
|
|
|
|
|
ipq40xx: add support for ASUS RT-AC58U/RT-ACRH13
This patch adds support for ASUS RT-AC58U/RT-ACRH13.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI
NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE)
NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI)
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one Reset and one WPS button
LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each)
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has an unpopulated
1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the
PCB right next to the connector.
U-Boot Note: The ethernet driver isn't always reliable and can sometime
time out... Don't worry, just retry.
Access via the serial console is required. As well as a working
TFTP-server setup and the initramfs image. (If not provided, it
has to be built from the OpenWrt source. Make sure to enable
LZMA as the compression for the INITRAMFS!)
To install the image permanently, you have to do the following
steps in the listed order.
1. Open up the router.
There are four phillips screws hiding behind the four plastic
feets on the underside.
2. Connect the serial cable (See notes above)
3. Connect your router via one of the four LAN-ports (yellow)
to a PC which can set the IP-Address and ssh and scp from.
If possible set your PC's IPv4 Address to 192.168.1.70
(As this is the IP-Address the Router's bootloader expects
for the tftp server)
4. power up the router and enter the u-boot
choose option 1 to upload the initramfs image. And follow
through the ipv4 setup.
Wait for your router's status LED to stop blinking rapidly and
glow just blue. (The LAN LED should also be glowing blue).
3. Connect to the OpenWrt running in RAM
The default IPv4-Address of your router will be 192.168.1.1.
1. Copy over the openwrt-sysupgrade.bin image to your router's
temporary directory
# scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp
2. ssh from your PC into your router as root.
# ssh root@192.168.1.1
The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key.
Once connected...: run the following commands on your temporary installation
3. delete the "jffs2" ubi partition to make room for your new root partition
# ubirmvol /dev/ubi0 --name=jffs2
4. install OpenWrt on the NAND Flash.
# sysupgrade -v /tmp/openwrt-sysupgrade.bin
- This will will automatically reboot the router -
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-03-07 08:13:10 +00:00
|
|
|
Once this is done. Retry.
|
|
|
|
EOF
|
|
|
|
return 1
|
|
|
|
;;
|
|
|
|
esac
|
2018-02-21 19:40:50 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-03-09 20:16:43 +00:00
|
|
|
askey_do_upgrade() {
|
|
|
|
local tar_file="$1"
|
|
|
|
|
|
|
|
local board_dir=$(tar tf $tar_file | grep -m 1 '^sysupgrade-.*/$')
|
|
|
|
board_dir=${board_dir%/}
|
|
|
|
|
|
|
|
tar Oxf $tar_file ${board_dir}/root | mtd write - rootfs
|
|
|
|
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
}
|
|
|
|
|
ipq40xx: add support for the ZyXEL NBG6617
This patch adds support for ZyXEL NBG6617
Hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR: 32 MiB Macronix MX25L25635F
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS
Serial:
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
pre-soldered. Pinout:
1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX
first install / debricking / restore stock:
0. Have a PC running a tftp-server @ 192.168.1.99/24
1. connect the PC to any LAN-Ports
2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
into the tftp-server root directory and rename it to just "ras.bin".
3. power-cycle the router and hold down the the WPS button (for 30sek)
4. Wait (for a long time - the serial console provides some progress
reports. The u-boot says it best: "Please be patient".
5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
flashes fast at the same time. You have to reboot the device and
it should then come right up.
Installation via Web-UI:
0. Connect a PC to the powered-on router. It will assign your PC a
IP-address via DHCP
1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
2. Go to the "Expert Mode"
3. Under "Maintenance", select "Firmware-Upgrade"
4. Upload the OpenWRT factory image
5. Wait for the Device to finish.
It will reboot into OpenWRT without any additional actions needed.
To open the ZyXEL NBG6617:
0. remove the four rubber feet glued on the backside
1. remove the four philips screws and pry open the top cover
(by applying force between the plastic top housing from the
backside/lan-port side)
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6617> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6617>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6617> ATSE NBG6617
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6617> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6617> ATGU
|NBG6617#
Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-21 12:24:59 +00:00
|
|
|
zyxel_do_upgrade() {
|
|
|
|
local tar_file="$1"
|
|
|
|
|
|
|
|
local board_dir=$(tar tf $tar_file | grep -m 1 '^sysupgrade-.*/$')
|
|
|
|
board_dir=${board_dir%/}
|
|
|
|
|
|
|
|
tar Oxf $tar_file ${board_dir}/kernel | mtd write - kernel
|
|
|
|
|
2019-09-06 05:10:54 +00:00
|
|
|
if [ -n "$UPGRADE_BACKUP" ]; then
|
2019-09-05 21:33:19 +00:00
|
|
|
tar Oxf $tar_file ${board_dir}/root | mtd -j "$UPGRADE_BACKUP" write - rootfs
|
ipq40xx: add support for the ZyXEL NBG6617
This patch adds support for ZyXEL NBG6617
Hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR: 32 MiB Macronix MX25L25635F
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS
Serial:
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
pre-soldered. Pinout:
1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX
first install / debricking / restore stock:
0. Have a PC running a tftp-server @ 192.168.1.99/24
1. connect the PC to any LAN-Ports
2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
into the tftp-server root directory and rename it to just "ras.bin".
3. power-cycle the router and hold down the the WPS button (for 30sek)
4. Wait (for a long time - the serial console provides some progress
reports. The u-boot says it best: "Please be patient".
5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
flashes fast at the same time. You have to reboot the device and
it should then come right up.
Installation via Web-UI:
0. Connect a PC to the powered-on router. It will assign your PC a
IP-address via DHCP
1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
2. Go to the "Expert Mode"
3. Under "Maintenance", select "Firmware-Upgrade"
4. Upload the OpenWRT factory image
5. Wait for the Device to finish.
It will reboot into OpenWRT without any additional actions needed.
To open the ZyXEL NBG6617:
0. remove the four rubber feet glued on the backside
1. remove the four philips screws and pry open the top cover
(by applying force between the plastic top housing from the
backside/lan-port side)
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6617> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6617>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6617> ATSE NBG6617
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6617> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6617> ATGU
|NBG6617#
Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-21 12:24:59 +00:00
|
|
|
else
|
|
|
|
tar Oxf $tar_file ${board_dir}/root | mtd write - rootfs
|
|
|
|
fi
|
|
|
|
}
|
|
|
|
|
ipq40xx: add support for MikroTik hAP ac3
This adds support for the MikroTik RouterBOARD RBD53iG-5HacD2HnD
(hAP ac³), a indoor dual band, dual-radio 802.11ac
wireless AP with external omnidirectional antennae, USB port, five
10/100/1000 Mbps Ethernet ports and PoE passthrough.
See https://mikrotik.com/product/hap_ac3 for more info.
Specifications:
- SoC: Qualcomm Atheros IPQ4019
- RAM: 256 MB
- Storage: 16 MB NOR + 128 MB NAND
- Wireless:
· Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
· Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi antennae
- Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port,
passive PoE in, PoE passtrough on port 5
- 1x USB Type A port
Installation:
1. Boot the initramfs image via TFTP
2. Run "cat /proc/mtd" and look for "ubi" partition mtd device number, ex. "mtd1"
3. Use ubiformat to remove MikroTik specific UBI volumes
* Detach the UBI partition by running: "ubidetach -d 0"
* Format the partition by running: "ubiformat /dev/mtdN -y"
Replace mtdN with the correct mtd index from step 2.
3. Flash the sysupgrade image using "sysupgrade -n"
Signed-off-by: Robert Marko <robimarko@gmail.com>
Tested-by: Mark Birss <markbirss@gmail.com>
Tested-by: Michael Büchler <michael.buechler@posteo.net>
Tested-by: Alex Tomkins <tomkins@darkzone.net>
2021-10-09 18:13:25 +00:00
|
|
|
platform_do_upgrade_mikrotik_nand() {
|
|
|
|
local fw_mtd=$(find_mtd_part kernel)
|
|
|
|
fw_mtd="${fw_mtd/block/}"
|
|
|
|
[ -n "$fw_mtd" ] || return
|
|
|
|
|
|
|
|
local board_dir=$(tar tf "$1" | grep -m 1 '^sysupgrade-.*/$')
|
|
|
|
board_dir=${board_dir%/}
|
|
|
|
[ -n "$board_dir" ] || return
|
|
|
|
|
|
|
|
local kernel_len=$(tar xf "$1" ${board_dir}/kernel -O | wc -c)
|
|
|
|
[ -n "$kernel_len" ] || return
|
|
|
|
|
|
|
|
tar xf "$1" ${board_dir}/kernel -O | ubiformat "$fw_mtd" -y -S $kernel_len -f -
|
|
|
|
|
|
|
|
CI_KERNPART="none"
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
}
|
|
|
|
|
2018-02-21 19:40:50 +00:00
|
|
|
platform_do_upgrade() {
|
|
|
|
case "$(board_name)" in
|
2019-01-29 17:12:51 +00:00
|
|
|
8dev,jalapeno |\
|
2019-10-23 20:25:14 +00:00
|
|
|
aruba,ap-303 |\
|
2020-01-11 23:36:42 +00:00
|
|
|
aruba,ap-303h |\
|
2020-05-07 15:50:57 +00:00
|
|
|
aruba,ap-365 |\
|
2019-02-18 22:58:34 +00:00
|
|
|
avm,fritzbox-7530 |\
|
2019-09-10 19:07:23 +00:00
|
|
|
avm,fritzrepeater-1200 |\
|
ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.
Installation:
"Factory" images may be installed directly through the OEM GUI.
Hardware Highlights:
* IPQ4019 at 717 MHz (4 CPUs)
* 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
* 256 MB RAM
* Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
* 2.4 GHz radio at 30 dBm
* 5 GHz radio on ch. 36-64 at 23 dBm
* 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
#{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
* All two-stream, MCS 0-9
* 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
* USB3, single port on rear with LED
* WPS and reset buttons
* Four status lights on top
* Serial pads internal (unpopulated)
"Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"
Implementation Notes:
The OEM flash layout is preserved at this time with 3 MB kernel and
~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
syscfg (56 MB) partitions are untouched, available as read-only.
Serial Connectivity:
Serial connectivity is *not* required to flash.
Serial may be accessed by opening the device and connecting
a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
including the ability to load images over TFTP and
either run or flash them.
Looking at the top of the board, from the front of the unit,
J3 can be found on the right edge of the board, near the rear
|
J3 |
|-| |
|O| | (3.3V seen, open-circuit)
|O| | TXD
|O| | RXD
|O| |
|O| | GND
|-| |
|
Unimplemented:
* serial1 "ttyQHS0" (serial0 works as console)
* Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)
Other Notes:
https://wikidevi.com/wiki/Linksys_EA8300 states
FCC docs also cover the Linksys EA8250. According to the
RF Test Report BT BR+EDR, "All models are identical except
for the EA8300 supports 256QAM and the EA8250 disable 256QAM."
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-10 15:34:28 +00:00
|
|
|
avm,fritzrepeater-3000 |\
|
ipq40xx: add support for Buffalo WTR-M2133HP
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
2020-01-29 10:27:25 +00:00
|
|
|
buffalo,wtr-m2133hp |\
|
2019-11-25 14:25:00 +00:00
|
|
|
cilab,meshpoint-one |\
|
2020-09-07 10:50:45 +00:00
|
|
|
edgecore,ecw5211 |\
|
2020-09-07 11:08:41 +00:00
|
|
|
edgecore,oap100 |\
|
ipq40xx: add support for EnGenius EAP2200
SOC: IPQ4019 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
FLASH: NOR 4 MiB + NAND 128 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT: WPS Button
LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm
Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-09-02 02:39:45 +00:00
|
|
|
engenius,eap2200 |\
|
2022-09-19 09:47:40 +00:00
|
|
|
glinet,gl-a1300 |\
|
2020-07-22 07:12:17 +00:00
|
|
|
glinet,gl-ap1300 |\
|
ipq40xx: add support for Luma Home WRTQ-329ACN
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root:x:/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-30 11:28:10 +00:00
|
|
|
luma,wrtq-329acn |\
|
ipq40xx: add support for MobiPromo CM520-79F
MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019
Specification:
SoC/Wireless: QCA IPQ4019
RAM: 512MiB
Flash: 128MiB SLC NAND
Ethernet PHY: QCA8075
Ethernet ports: 1x WAN, 2x LAN
LEDs: 7 LEDs
2 (USB, CAN) are GPIO
other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register
Button: Reset
Flash instruction:
Disassemble the router, connect UART pins like this:
GND TX RX
[x x . . x .]
[. . . . . .]
(QCA8075 and IPQ4019 below)
Baud-rate: 115200
Set up TFTP server: IP 192.168.1.188/24
Power on the router and interrupt the booting with UART console
env backup (in case you want to go back to stock and need it there):
printenv
(Copy the output to somewhere save)
Set bootenv:
setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs'
setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1'
setenv cm520_boot 'run set_ubi; run bootkernel'
setenv bootcmd 'run cm520_boot'
setenv bootargs
saveenv
Boot initramfs from TFTP:
tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb
bootm
After initramfs image is booted, backup rootfs partition in case of reverting to stock image
cat /dev/mtd12 > /tmp/mtd12.bin
Then fetch it via SCP
Upload nand-factory.ubi to /tmp via SCP, then run
mtd erase rootfs
mtd write /tmp/*nand-factory.ubi rootfs
reboot
To revert to stock image, restore default bootenv in uboot UART console
setenv bootcmd 'bootipq'
printenv
use the saved dump you did back when you installed OpenWrt to verify that
there are no other differences from back in the day.
saveenv
upload the backed up mtd12.bin and run
tftpboot mtd12.bin
nand erase 0xb80000 0x7480000
nand write 0x84000000 0xb80000 0x7480000
The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead
In case of this, set it back to rootfs:
cd /tmp
cat /dev/mtd7 > mtd7.bin
echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4
for i in 28 48 68 108; do
dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i
done
mtd write mtd7.bin BOOTCONFIG
mtd write mtd7.bin BOOTCONFIG1
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[renamed volume to ubi to support autoboot,
as per David Lam's test in PR#2432]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-14 14:22:59 +00:00
|
|
|
mobipromo,cm520-79f |\
|
ipq40xx: add netgear wac510 support
This adds support for the Netgear WAC510 Insight Managed Smart Cloud
Wireless Access Point, an indoor dual-band, dual-radio 802.11ac
business-class wireless AP with integrated omnidirectional antennae
and two 10/100/1000 Mbps Ethernet ports.
For more information see:
<https://www.netgear.com/business/wifi/access-points/wac510>
Specifications:
SoC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
Flash1: 2 MiB Winbond W25Q16JV SPI-NOR
Flash2: 128 MiB Winbond W25N01GVZEIG SPI-NAND
Ethernet: Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port,
WAN port active IEEE 802.3af/at PoE in
Wireless1: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
Wireless2: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae
Input: (Optional) Barrel 12 V 2.5 A Power, Reset button SW1
LEDs: Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN
Serial: Header J2
1 - 3.3 Volt (Do NOT connect!)
2 - TX
3 - RX
4 - Ground
WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter!
The Serial settings are 115200-8-N-1.
Installation via Stock Web Interface:
BTW: The default factory console/web interface login user/password are
admin/password.
In the web interface navigating to Management - Maintenance - Upgrade -
'Firmware Upgrade' will show you what is currently installed e.g.:
Manage Firmware
Current Firmware Version: V5.0.10.2
Backup Firmware Version: V1.2.5.11
Under 'Upgrade Options' choose Local (alternatively SFTP would be
available) then click/select 'Browse File' on the right side, choose
openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar
and hit the Upgrade button below. After a minute or two your browser
should indicate completion printing 'Firmware update complete.' and
'Rebooting AP...'.
Note that OpenWrt will use the WAN PoE port as actual WAN port
defaulting to DHCP client but NOT allowing LuCI access, use LAN port
defaulting to 192.168.1.1/24 to access LuCI.
Installation via TFTP Requiring Serial U-Boot Access:
Connect to the device's serial port and hit any key to stop autoboot.
Upload and boot the initramfs based OpenWrt image as follows:
(IPQ40xx) # setenv serverip 192.168.1.1
(IPQ40xx) # setenv ipaddr 192.168.1.2
(IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb
(IPQ40xx) # bootm
Note: This only runs OpenWrt from RAM and has not installed anything
to flash as of yet. One may permanently install OpenWrt as follows:
Check the MTD device number of the active partition:
root@OpenWrt:/# dmesg | grep 'set to be root filesystem'
[ 1.010084] mtd: device 9 (rootfs) set to be root filesystem
Upload the factory image ending with .ubi to /tmp (e.g. using scp or
tftp). Then flash the image as follows (substituting the 9 in mtd9
below with whatever number reported above):
root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi
And reboot.
Dual Image Configuration:
The default U-Boot boot command bootipq uses the U-Boot environment
variables primary/secondary to decide which image to boot. E.g.
primary=0, secondary=3800000 uses rootfs while primary=3800000,
secondary=0 uses rootfs_1.
Switching their values changes the active partition. E.g. from within
U-Boot:
(IPQ40xx) # setenv primary 0
(IPQ40xx) # setenv secondary 3800000
(IPQ40xx) # saveenv
Or from a OpenWrt userspace serial/SSH console:
fw_setenv primary 0
fw_setenv secondary 3800000
Note that if you install two copies of OpenWrt then each will have its
independent configuration not like when switching partitions on the
stock firmware.
BTW: The kernel log shows which boot partition is active:
[ 2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB)
vs.
[ 2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB)
Note: After 3 failed boot attempts it automatically switches partition.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com>
[squashed netgear-tar commit into main and rename netgear-tar for
now, until it is made generic.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-11-25 13:23:58 +00:00
|
|
|
netgear,wac510 |\
|
ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)
P&W R619AC is a IPQ4019 Dual-Band AC1200 router.
It is made by P&W (p2w-tech.com) known as P&W R619AC
but marketed and sold more popularly as G-DOCK 2.0.
Specification:
* SOC: Qualcomm Atheros IPQ4019 (717 MHz)
* RAM: 512 MiB
* Flash: 16 MiB (NOR) + 128 MiB (NAND)
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN)
* Wireless:
- 2.4 GHz b/g/n Qualcomm Atheros IPQ4019
- 5 GHz a/n/ac Qualcomm Atheros IPQ4019
* USB: 1 x USB 3.0
* LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED)
* Input: 1 x reset
* 1 x MicroSD card slot
* Serial console: 115200bps, pinheader J2 on PCB
* Power: DC 12V 2A
* 1 x Unpopulated mPCIe Slot (see below how to connect it)
* 1 x Unpopulated Sim Card Slot
Installation:
1. Access to tty console via UART serial
2. Enter failsafe mode and mount rootfs
<https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset>
3. Edit inittab to enable shell on tty console
`sed -i 's/#ttyM/ttyM/' /etc/inittab`
4. Reboot and upload `-nand-factory.bin` to the router (using wget)
5. Use `sysupgrade` command to install
Another installation method is to hijack the upgrade server domain
of stock firmware, because it's using insecure http.
This commit is based on @LGA1150(at GitHub)'s work
<https://github.com/LGA1150/openwrt/commit/a4932c8d5a275d1fb4297bd20ec03f9270a45d1c>
With some changes:
1. Added `qpic_bam` node in dts. I don't know much about this,
but I observed other dtses have this node.
2. Removed `ldo` node under `sd_0_pinmux`, because `ldo` cause SD card not
working. This fix is from
<https://github.com/coolsnowwolf/lede/commit/51143b4c7571f717afe071db60bbb4db1532cbf2>
3. Removed the 32MB NOR variant.
4. Removed `cd-gpios` in `sdhci` node, because it's reported that it makes
wlan2g led light up.
5. Added ethphy led config in dts.
6. Changed nand partition label from `rootfs` to `ubi`.
About the 128MiB variant: The stock bootloader sets size of nand to 64MiB.
But most of this devices have 128MiB nand. If you want to use all 128MiB,
you need to modify the `MIBIB` data of bootloader. More details can be
found on github:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-818770060>
For instructions on how to flash the MIBIB partition from u-boot console:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-819138232>
About the Mini PCIe slot: (from "ygleg")
"The REFCLK signals on the Mini PCIe slot is not connected on
this board out of the box. If you want to use the Mini PCIe slot
on the board, you need to (preferably) solder two 0402 resistors:
R436 (REFCLK+) and R444 (REFCLK-)..."
This and much more information is provoided in the github comment:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-968054670>
Signed-off-by: Richard Yu <yurichard3839@gmail.com>
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
[Added comment about MIBIB+128 MiB variant. Added commit
message section about pcie slot. Renamed gpio-leds' subnodes
and added color, function+enum properties.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-12 03:16:21 +00:00
|
|
|
p2w,r619ac-64m |\
|
|
|
|
p2w,r619ac-128m |\
|
2020-06-30 16:07:50 +00:00
|
|
|
qxwlan,e2600ac-c2 |\
|
|
|
|
wallys,dr40x9)
|
2019-07-14 17:03:19 +00:00
|
|
|
nand_do_upgrade "$1"
|
2018-04-11 09:14:36 +00:00
|
|
|
;;
|
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.
Specifications:
- SOC: Qualcomm IPQ4019 ARM Quad-Core
- RAM: 512 MiB
- Flash: 16 MiB NOR - SPI0
- EMMC: 8GB EMMC
- ETH: Qualcomm QCA8075
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
- WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
- INPUT: Reset, WPS
- LED: Power, Internet
- UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
- UART2: On board with BLE module
- SPI1: On board socket for Zigbee module
Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.
What's working:
- WiFi 2G, 5G
- WPA2/WPA3
Not tested:
- Bluetooth LE/Zigbee
Credits goes to the original authors of this patch.
V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade
Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-01 15:18:17 +00:00
|
|
|
glinet,gl-b2200)
|
|
|
|
CI_KERNPART="0:HLOS"
|
|
|
|
CI_ROOTPART="rootfs"
|
|
|
|
CI_DATAPART="rootfs_data"
|
|
|
|
emmc_do_upgrade "$1"
|
|
|
|
;;
|
2019-07-17 09:32:54 +00:00
|
|
|
alfa-network,ap120c-ac)
|
|
|
|
part="$(awk -F 'ubi.mtd=' '{printf $2}' /proc/cmdline | sed -e 's/ .*$//')"
|
|
|
|
if [ "$part" = "rootfs1" ]; then
|
|
|
|
fw_setenv active 2 || exit 1
|
|
|
|
CI_UBIPART="rootfs2"
|
|
|
|
else
|
|
|
|
fw_setenv active 1 || exit 1
|
|
|
|
CI_UBIPART="rootfs1"
|
|
|
|
fi
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
;;
|
2019-02-12 16:19:51 +00:00
|
|
|
asus,map-ac2200)
|
|
|
|
CI_KERNPART="linux"
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
;;
|
2021-12-30 20:25:03 +00:00
|
|
|
asus,rt-ac42u |\
|
ipq40xx: add support for ASUS RT-AC58U/RT-ACRH13
This patch adds support for ASUS RT-AC58U/RT-ACRH13.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI
NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE)
NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI)
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one Reset and one WPS button
LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each)
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has an unpopulated
1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the
PCB right next to the connector.
U-Boot Note: The ethernet driver isn't always reliable and can sometime
time out... Don't worry, just retry.
Access via the serial console is required. As well as a working
TFTP-server setup and the initramfs image. (If not provided, it
has to be built from the OpenWrt source. Make sure to enable
LZMA as the compression for the INITRAMFS!)
To install the image permanently, you have to do the following
steps in the listed order.
1. Open up the router.
There are four phillips screws hiding behind the four plastic
feets on the underside.
2. Connect the serial cable (See notes above)
3. Connect your router via one of the four LAN-ports (yellow)
to a PC which can set the IP-Address and ssh and scp from.
If possible set your PC's IPv4 Address to 192.168.1.70
(As this is the IP-Address the Router's bootloader expects
for the tftp server)
4. power up the router and enter the u-boot
choose option 1 to upload the initramfs image. And follow
through the ipv4 setup.
Wait for your router's status LED to stop blinking rapidly and
glow just blue. (The LAN LED should also be glowing blue).
3. Connect to the OpenWrt running in RAM
The default IPv4-Address of your router will be 192.168.1.1.
1. Copy over the openwrt-sysupgrade.bin image to your router's
temporary directory
# scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp
2. ssh from your PC into your router as root.
# ssh root@192.168.1.1
The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key.
Once connected...: run the following commands on your temporary installation
3. delete the "jffs2" ubi partition to make room for your new root partition
# ubirmvol /dev/ubi0 --name=jffs2
4. install OpenWrt on the NAND Flash.
# sysupgrade -v /tmp/openwrt-sysupgrade.bin
- This will will automatically reboot the router -
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-03-07 08:13:10 +00:00
|
|
|
asus,rt-ac58u)
|
|
|
|
CI_KERNPART="linux"
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
;;
|
2020-03-09 20:16:43 +00:00
|
|
|
cellc,rtl30vw)
|
|
|
|
CI_UBIPART="ubifs"
|
|
|
|
askey_do_upgrade "$1"
|
|
|
|
;;
|
2019-11-01 11:27:13 +00:00
|
|
|
compex,wpj419)
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
;;
|
ipq40xx: Add subtarget for Google WiFi (Gale)
Google WiFi (codename: Gale) is an IPQ4019-based AP, with 2 Ethernet
ports, 2x2 2.4+5GHz WiFi, 512 MB RAM, 4 GB eMMC, and a USB type C port.
In its stock configuration, it runs a Chromium OS-based system, but you
wouldn't know it, since you can only manage it via a "cloud" +
mobile-app system.
The "v2" label is coded into the bootloader, which prefers the
"google,gale-v2" compatible string. I believe "v1" must have been
pre-release hardware.
Note: this is *not* the Google Nest WiFi, released in 2019.
I include "factory.bin" support, where we generate a GPT-based disk
image with 2 partitions -- a kernel partition (using the custom "Chrome
OS kernel" GUID type) and a root filesystem partition. See below for
flashing instructions.
Sysupgrade is supported via recent emmc_do_upgrade() helper.
This is a subtarget because it enables different features
(FEATURES=boot-part rootfs-part) whose configurations don't make sense
in the "generic" target, and because it builds in a few USB drivers,
which are necessary for installation (installation is performed by
booting from USB storage, and so these drivers cannot be built as
modules, since we need to load modules from USB storage).
Flashing instructions
=====================
Documented here:
https://openwrt.org/inbox/toh/google/google_wifi
Note this requires booting from USB storage.
Features
========
I've tested:
* Ethernet, both WAN and LAN ports
* eMMC
* USB-C (hub, power-delivery, peripherals)
* LED0 (R/G/B)
* WiFi (limited testing)
* SPI flash
* Serial console: once in developer mode, console can be accessed via
the USB-C port with SuzyQable, or other similar "Closed Case
Debugging" tools:
https://chromium.googlesource.com/chromiumos/third_party/hdctools/+/master/docs/ccd.md#suzyq-suzyqable
* Sysupgrade
Not tested:
* TPM
Known not working:
* Reboot: this requires some additional TrustZone / SCM
configuration to disable Qualcomm's SDI. I have a proposal upstream,
and based on IRC chats, this might be acceptable with additional DT
logic:
[RFC PATCH] firmware: qcom_scm: disable SDI at boot
https://lore.kernel.org/linux-arm-msm/20200721080054.2803881-1-computersforpeace@gmail.com/
* SMP: enabling secondary CPUs doesn't currently work using the stock
bootloader, as the qcom_scm driver assumes newer features than this
TrustZone firmware has. I posted notes here:
[RFC] qcom_scm: IPQ4019 firmware does not support atomic API?
https://lore.kernel.org/linux-arm-msm/20200913201608.GA3162100@bDebian/
* There's a single external button, and a few useful internal GPIO
switches. I haven't hooked them up.
The first two are fixed with subsequent commits.
Additional notes
================
Much of the DTS is pulled from the Chrome OS kernel 3.18 branch, which
the manufacturer image uses.
Note: the manufacturer bootloader knows how to patch in calibration data
via the wifi{0,1} aliases in the DTB, so while these properties aren't
present in the DTS, they are available at runtime:
# ls -l
/sys/firmware/devicetree/base/soc/wifi@a*/qcom,ath10k-pre-calibration-data
-r--r--r-- 1 root root 12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a000000/qcom,ath10k-pre-calibration-data
-r--r--r-- 1 root root 12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a800000/qcom,ath10k-pre-calibration-data
Ethernet MAC addresses are similarly patched in via the ethernet{0,1} aliases.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
(updated 901 - x1pro moved in the process)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-05-25 21:50:20 +00:00
|
|
|
google,wifi)
|
|
|
|
export_bootdevice
|
|
|
|
export_partdevice CI_ROOTDEV 0
|
|
|
|
CI_KERNPART="kernel"
|
|
|
|
CI_ROOTPART="rootfs"
|
|
|
|
emmc_do_upgrade "$1"
|
|
|
|
;;
|
ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.
Installation:
"Factory" images may be installed directly through the OEM GUI.
Hardware Highlights:
* IPQ4019 at 717 MHz (4 CPUs)
* 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
* 256 MB RAM
* Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
* 2.4 GHz radio at 30 dBm
* 5 GHz radio on ch. 36-64 at 23 dBm
* 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
#{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
* All two-stream, MCS 0-9
* 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
* USB3, single port on rear with LED
* WPS and reset buttons
* Four status lights on top
* Serial pads internal (unpopulated)
"Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"
Implementation Notes:
The OEM flash layout is preserved at this time with 3 MB kernel and
~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
syscfg (56 MB) partitions are untouched, available as read-only.
Serial Connectivity:
Serial connectivity is *not* required to flash.
Serial may be accessed by opening the device and connecting
a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
including the ability to load images over TFTP and
either run or flash them.
Looking at the top of the board, from the front of the unit,
J3 can be found on the right edge of the board, near the rear
|
J3 |
|-| |
|O| | (3.3V seen, open-circuit)
|O| | TXD
|O| | RXD
|O| |
|O| | GND
|-| |
|
Unimplemented:
* serial1 "ttyQHS0" (serial0 works as console)
* Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)
Other Notes:
https://wikidevi.com/wiki/Linksys_EA8300 states
FCC docs also cover the Linksys EA8250. According to the
RF Test Report BT BR+EDR, "All models are identical except
for the EA8300 supports 256QAM and the EA8250 disable 256QAM."
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-10 15:34:28 +00:00
|
|
|
linksys,ea6350v3 |\
|
2020-09-09 22:45:02 +00:00
|
|
|
linksys,ea8300 |\
|
2021-06-09 20:35:46 +00:00
|
|
|
linksys,mr8300 |\
|
2022-12-23 17:30:36 +00:00
|
|
|
linksys,whw01 |\
|
|
|
|
linksys,whw03v2)
|
2019-07-14 17:03:19 +00:00
|
|
|
platform_do_upgrade_linksys "$1"
|
2019-01-24 03:20:55 +00:00
|
|
|
;;
|
2022-06-14 09:08:22 +00:00
|
|
|
meraki,mr33 |\
|
|
|
|
meraki,mr74)
|
ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.
Installation:
"Factory" images may be installed directly through the OEM GUI.
Hardware Highlights:
* IPQ4019 at 717 MHz (4 CPUs)
* 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
* 256 MB RAM
* Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
* 2.4 GHz radio at 30 dBm
* 5 GHz radio on ch. 36-64 at 23 dBm
* 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
#{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
* All two-stream, MCS 0-9
* 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
* USB3, single port on rear with LED
* WPS and reset buttons
* Four status lights on top
* Serial pads internal (unpopulated)
"Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"
Implementation Notes:
The OEM flash layout is preserved at this time with 3 MB kernel and
~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
syscfg (56 MB) partitions are untouched, available as read-only.
Serial Connectivity:
Serial connectivity is *not* required to flash.
Serial may be accessed by opening the device and connecting
a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
including the ability to load images over TFTP and
either run or flash them.
Looking at the top of the board, from the front of the unit,
J3 can be found on the right edge of the board, near the rear
|
J3 |
|-| |
|O| | (3.3V seen, open-circuit)
|O| | TXD
|O| | RXD
|O| |
|O| | GND
|-| |
|
Unimplemented:
* serial1 "ttyQHS0" (serial0 works as console)
* Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)
Other Notes:
https://wikidevi.com/wiki/Linksys_EA8300 states
FCC docs also cover the Linksys EA8250. According to the
RF Test Report BT BR+EDR, "All models are identical except
for the EA8300 supports 256QAM and the EA8250 disable 256QAM."
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-10 15:34:28 +00:00
|
|
|
CI_KERNPART="part.safe"
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
;;
|
2021-04-06 16:38:31 +00:00
|
|
|
mikrotik,cap-ac|\
|
2020-10-23 14:05:28 +00:00
|
|
|
mikrotik,hap-ac2|\
|
2022-10-03 17:13:22 +00:00
|
|
|
mikrotik,hap-ac3-lte6-kit|\
|
2021-01-04 23:22:00 +00:00
|
|
|
mikrotik,lhgg-60ad|\
|
ipq40xx: add MikroTik wAP ac (RBwAPG-5HacD2HnD) support
The MikroTik wAP ac (RBwAPG-5HacD2HnD) is a dual-band dual-radio
802.11ac wireless access point with integrated antenna and two Ethernet
ports in a weatherproof enclosure. See
https://mikrotik.com/product/wap_ac for more information.
Important: this is the new ipq40xx-based wAP ac, not the older
ath79-based wAP ac (RBwAPG-5HacT2HnD), already supported in OpenWrt.
Specifications:
- SoC: Qualcomm Atheros IPQ4018
- CPU: 4x ARM Cortex A7
- RAM: 128MB
- Storage: 16MB NOR flash
- Wireless
- 2.4GHz: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
- 5GHz: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
- Ethernet: Built-in IPQ4018 (SoC, QCA8075), 2x 1000/100/10Mb/s ports,
one with 802.3af/at PoE in
Installation:
Boot the initramfs image via TFTP, then flash the sysupgrade image using
sysupgrade. Details at https://openwrt.org/toh/mikrotik/common.
Notes:
This preserves the MAC addresses of the physical Ethernet ports:
- eth0 corresponds to the physical port labeled ETH1 and has the base
MAC address. This port can be used to power the device.
- eth1 corresponds to the physical port labeled ETH2 and has a MAC
address one greater than the base.
MAC addresses are set from /lib/preinit/05_set_iface_mac_ipq40xx.sh
rather than /etc/board.d/02_network so that they are in effect for
preinit. This should likely be done for other MikroTik devices and
possibly other non-MikroTik devices as well.
As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.
Signed-off-by: Mark Mentovai <mark@mentovai.com>
2021-10-04 14:48:29 +00:00
|
|
|
mikrotik,sxtsq-5-ac|\
|
2022-11-12 12:13:46 +00:00
|
|
|
mikrotik,wap-ac|\
|
|
|
|
mikrotik,wap-ac-lte|\
|
|
|
|
mikrotik,wap-r-ac)
|
2020-11-12 18:45:22 +00:00
|
|
|
[ "$(rootfs_type)" = "tmpfs" ] && mtd erase firmware
|
|
|
|
default_do_upgrade "$1"
|
|
|
|
;;
|
ipq40xx: add support for MikroTik hAP ac3
This adds support for the MikroTik RouterBOARD RBD53iG-5HacD2HnD
(hAP ac³), a indoor dual band, dual-radio 802.11ac
wireless AP with external omnidirectional antennae, USB port, five
10/100/1000 Mbps Ethernet ports and PoE passthrough.
See https://mikrotik.com/product/hap_ac3 for more info.
Specifications:
- SoC: Qualcomm Atheros IPQ4019
- RAM: 256 MB
- Storage: 16 MB NOR + 128 MB NAND
- Wireless:
· Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
· Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi antennae
- Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port,
passive PoE in, PoE passtrough on port 5
- 1x USB Type A port
Installation:
1. Boot the initramfs image via TFTP
2. Run "cat /proc/mtd" and look for "ubi" partition mtd device number, ex. "mtd1"
3. Use ubiformat to remove MikroTik specific UBI volumes
* Detach the UBI partition by running: "ubidetach -d 0"
* Format the partition by running: "ubiformat /dev/mtdN -y"
Replace mtdN with the correct mtd index from step 2.
3. Flash the sysupgrade image using "sysupgrade -n"
Signed-off-by: Robert Marko <robimarko@gmail.com>
Tested-by: Mark Birss <markbirss@gmail.com>
Tested-by: Michael Büchler <michael.buechler@posteo.net>
Tested-by: Alex Tomkins <tomkins@darkzone.net>
2021-10-09 18:13:25 +00:00
|
|
|
mikrotik,hap-ac3)
|
|
|
|
platform_do_upgrade_mikrotik_nand "$1"
|
|
|
|
;;
|
2020-09-02 00:10:16 +00:00
|
|
|
netgear,rbr50 |\
|
|
|
|
netgear,rbs50 |\
|
|
|
|
netgear,srr60 |\
|
|
|
|
netgear,srs60)
|
|
|
|
platform_do_upgrade_netgear_orbi_upgrade "$1"
|
|
|
|
;;
|
ipq40xx: add support for OpenMesh A62
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (s25fl256s1)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=OM-A62
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=OM-A62
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=OM-A62
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x button (reset; kmod-input-gpio-keys compatible)
* external watchdog
- triggered GPIO
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ 802.3at POE+
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 18-24V passive POE (mode B)
* powered only via POE
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
The initramfs image can be started using
setenv bootargs 'loglevel=8 earlycon=msm_serial_dm,0x78af000 console=ttyMSM0,115200 mtdparts=spi0.0:256k(0:SBL1),128k(0:MIBIB),384k(0:QSEE),64k(0:CDT),64k(0:DDRPARAMS),64k(0:APPSBLENV),512k(0:APPSBL),64k(0:ART),64k(0:custom),64k(0:KEYS),15552k(inactive),15552k(inactive2)'
tftpboot 0x84000000 openwrt-ipq40xx-openmesh_a62-initramfs-fit-uImage.itb
set fdt_high 0x85000000
bootm 0x84000000
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
2017-08-09 11:52:07 +00:00
|
|
|
openmesh,a42 |\
|
ipq40xx: add support for Plasma Cloud PA1200
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2018-11-25 13:46:54 +00:00
|
|
|
openmesh,a62 |\
|
ipq40xx: add support for Plasma Cloud PA2200
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2018-12-14 15:46:53 +00:00
|
|
|
plasmacloud,pa1200 |\
|
|
|
|
plasmacloud,pa2200)
|
2018-02-21 19:40:50 +00:00
|
|
|
PART_NAME="inactive"
|
2020-11-21 21:27:11 +00:00
|
|
|
platform_do_upgrade_dualboot_datachk "$1"
|
2018-02-21 19:40:50 +00:00
|
|
|
;;
|
ipq40xx: add support for Sony NCP-HG100/Cellular
Sony NCP-HG100/Cellular is a IoT Gateway with 2.4/5 GHz band 11ac
(WiFi-5) wireless function, based on IPQ4019.
Specification:
- SoC : Qualcomm IPQ4019
- RAM : DDR3 512 MiB (H5TC4G63EFR)
- Flash : eMMC 4 GiB (THGBMNG5D1LBAIT)
- WLAN : 2.4/5 GHz 2T2R (IPQ4019)
- Ethernet : 10/100/1000 Mbps x2
- Transceiver : Qualcomm QCA8072
- WWAN : Telit LN940A9
- Z-Wave : Silicon Labs ZM5101
- Bluetooth : Qualcomm CSR8811
- Audio DAC : Realtek ALC5629
- Audio Amp. : Realtek ALC1304
- Voice Input Processor : Conexant CX20924
- Micro Controller Unit : Nuvoton MINI54FDE
- RGB LED, Fan, Temp. sensors
- Touch Sensor : Cypress CY8C4014LQI
- RGB LED driver : TI LP55231 (2x)
- LEDs/Keys : 11x, 6x
- UART : through-hole on PCB
- J1: 3.3V, TX, RX, GND from tri-angle marking
- 115200n8
- Power : 12 VDC, 2.5 A
Flash instruction using initramfs image:
1. Prepare TFTP server with the IP address 192.168.132.100 and place the
initramfs image to TFTP directory with the name "C0A88401.img"
2. Boot NCP-HG100/Cellular and interrupt after the message
"Hit any key to stop autoboot: 2"
3. Perform the following commands and set bootcmd to allow booting from
eMMC
setenv bootcmd "mmc read 0x84000000 0x2e22 0x4000 && bootm 0x84000000"
saveenv
4. Perform the following command to load/boot the OpenWrt initramfs image
tftpboot && bootm
5. On the initramfs image, perform sysupgrade with the sysupgrade image
(if needed, backup eMMC partitions by dd command and download to
other place before performing sysupgrade)
6. Wait for ~120 seconds to complete flashing
Known issues:
- There are no drivers for audio-related chips/functions in Linux Kernel
and OpenWrt, they cannot be used.
- There is no driver for MINI54FDE Micro-Controller Unit, customized for
this device by the firmware in the MCU. This chip controls the
following functions, but they cannot be controlled in OpenWrt.
- RGB LED
- Fan
this fan is controlled automatically by MCU by default, without
driver
- Thermal Sensors (2x)
- Currently, there is no driver or tool for CY8C4014LQI and cannot be
controlled. It cannot be exited from "booting mode" and moved to "normal
op mode" after booting. And also, the 4x buttons (mic mute, vol down,
vol up, alexa trigger) connected to the IC cannot be controlled.
- it can be exited from "booting mode" by installing and executing
i2cset command:
opkg update
opkg install i2c-tools
i2cset -y 1 0x14 0xf 1
- There is a connection issue on the control by uqmi for the WWAN module.
But modemmanager can be used without any issues and the use of it is
recommended.
- With the F2FS format, too many errors are reported on erasing eMMC
partition "rootfs_data" while booting:
[ 1.360270] sdhci: Secure Digital Host Controller Interface driver
[ 1.363636] sdhci: Copyright(c) Pierre Ossman
[ 1.369730] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.374729] sdhci_msm 7824900.sdhci: Got CD GPIO
...
[ 1.413552] mmc0: SDHCI controller on 7824900.sdhci [7824900.sdhci] using ADMA 64-bit
[ 1.528325] mmc0: new HS200 MMC card at address 0001
[ 1.530627] mmcblk0: mmc0:0001 004GA0 3.69 GiB
[ 1.533530] mmcblk0boot0: mmc0:0001 004GA0 partition 1 2.00 MiB
[ 1.537831] mmcblk0boot1: mmc0:0001 004GA0 partition 2 2.00 MiB
[ 1.542918] mmcblk0rpmb: mmc0:0001 004GA0 partition 3 512 KiB, chardev (247:0)
[ 1.550323] Alternate GPT is invalid, using primary GPT.
[ 1.561669] mmcblk0: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17
...
[ 8.841400] mount_root: loading kmods from internal overlay
[ 8.860241] kmodloader: loading kernel modules from //etc/modules-boot.d/*
[ 8.863746] kmodloader: done loading kernel modules from //etc/modules-boot.d/*
[ 9.240465] block: attempting to load /etc/config/fstab
[ 9.246722] block: unable to load configuration (fstab: Entry not found)
[ 9.246863] block: no usable configuration
[ 9.254883] mount_root: overlay filesystem in /dev/mmcblk0p17 has not been formatted yet
[ 9.438915] urandom_read: 5 callbacks suppressed
[ 9.438924] random: mkfs.f2fs: uninitialized urandom read (16 bytes read)
[ 12.243332] mmc_erase: erase error -110, status 0x800
[ 12.246638] mmc0: cache flush error -110
[ 15.134585] mmc_erase: erase error -110, status 0x800
[ 15.135891] mmc_erase: group start error -110, status 0x0
[ 15.139850] mmc_erase: group start error -110, status 0x0
...(too many the same errors)...
[ 17.350811] mmc_erase: group start error -110, status 0x0
[ 17.356197] mmc_erase: group start error -110, status 0x0
[ 17.439498] sdhci_msm 7824900.sdhci: Card stuck in wrong state! card_busy_detect status: 0xe00
[ 17.446910] mmc0: tuning execution failed: -5
[ 17.447111] mmc0: cache flush error -110
[ 18.012440] F2FS-fs (mmcblk0p17): Found nat_bits in checkpoint
[ 18.062652] F2FS-fs (mmcblk0p17): Mounted with checkpoint version = 428fa16b
[ 18.198691] block: attempting to load /etc/config/fstab
[ 18.198972] block: unable to load configuration (fstab: Entry not found)
[ 18.203029] block: no usable configuration
[ 18.211371] mount_root: overlay filesystem has not been fully initialized yet
[ 18.214487] mount_root: switching to f2fs overlay
So, this support uses ext4 format instead which has no errors.
Note:
- The primary uart is shared for debug console and Z-Wave chip. The
function is switched by GPIO15 (Linux: 427).
value:
1: debug console
0: Z-Wave
- NCP-HG100/Cellular has 2x os-image pairs in eMMC.
- 0:HLOS, rootfs
- 0:HLOS_1, rootfs_1
In OpenWrt, the first image pair is used.
- "bootipq" command in U-Boot requires authentication with signed-image
by default. To boot unsigned image of OpenWrt, use "mmc read" and
"bootm" command instead.
- This support is for "Cellular" variant of NCP-HG100 and not tested on
"WLAN" (non-cellular) variant.
- The board files of ipq-wifi may also be used in "WLAN" variant of
NCP-HG100, but unconfirmed and add files as for "Cellular" variant.
- "NET" LED is used to indicate WWAN status in stock firmware.
- There is no MAC address information in the label on the case, use the
address included in UUID in the label as "label-MAC" instead.
- The "CLOUD" LEDs are partially used for indication of system status in
stock firmware, use they as status LEDs in OpenWrt instead of RGB LED
connected to the MCU.
MAC addresses:
LAN : 5C:FF:35:**:**:ED (ART, 0x6 (hex))
WAN : 5C:FF:35:**:**:EF (ART, 0x0 (hex))
2.4 GHz: 5C:FF:35:**:**:ED (ART, 0x1006 (hex))
5 GHz : 5C:FF:35:**:**:EE (ART, 0x5006 (hex))
partition layout in eMMC (by fdisk, GPT):
Disk /dev/mmcblk0: 7733248 sectors, 3776M
Logical sector size: 512
Disk identifier (GUID): ****
Partition table holds up to 20 entries
First usable sector is 34, last usable sector is 7634910
Number Start (sector) End (sector) Size Name
1 34 1057 512K 0:SBL1
2 1058 2081 512K 0:BOOTCONFIG
3 2082 3105 512K 0:QSEE
4 3106 4129 512K 0:QSEE_1
5 4130 4641 256K 0:CDT
6 4642 5153 256K 0:CDT_1
7 5154 6177 512K 0:BOOTCONFIG1
8 6178 6689 256K 0:APPSBLENV
9 6690 8737 1024K 0:APPSBL
10 8738 10785 1024K 0:APPSBL_1
11 10786 11297 256K 0:ART
12 11298 11809 256K 0:HSEE
13 11810 28193 8192K 0:HLOS
14 28194 44577 8192K 0:HLOS_1
15 44578 306721 128M rootfs
16 306722 568865 128M rootfs_1
17 568866 3958065 1654M rootfs_data
[initial work]
Signed-off-by: Iwao Yuki <dev.clef@gmail.com>
Co-developed-by: Iwao Yuki <dev.clef@gmail.com>
[adjustments, cleanups, commit message, sending patch]
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
(dropped clk_unused_ignore, dropped 901-* patches, renamed
key nodes, changed LEDs chan/labels to match func-en, made
:net -> (w)wan leds)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-09-04 12:27:11 +00:00
|
|
|
sony,ncp-hg100-cellular)
|
|
|
|
sony_emmc_do_upgrade "$1"
|
|
|
|
;;
|
2021-11-23 08:10:14 +00:00
|
|
|
teltonika,rutx10 |\
|
2023-05-06 14:57:18 +00:00
|
|
|
teltonika,rutx50 |\
|
ipq40xx: Add support ZTE MF18A
Light and small router ( In Poland operators sells together with MC7010 outdoor modem to provide WIFI inside home).
Device specification
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz (QCA9982): a/n/ac, 3x3
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Power (blue) , WiFI (blue and red), SMARTHOME (blue and red) and 1 internal (blue) -- NOTE: Power controls all external led (if down ,all others also not lights even signal is up)
Power: 5VDC, 2,1A via USB-C socket
Bootloader: U-Boot
On board ZWave and Zigbee (EFR32 MG1P232GG..) modules ( not supported by orginal software )
Installation
1.Open MF18A case by ungluing rubber pad under the router and unscrew screws, and connect to serial console port,
with the following pinout, starting from pin 1, which is the topmost pin when the board is upright (reset button on the bottom) :
VCC (3.3V). Do not use unless you need to source power for the converer from it.
TX
RX
GND
Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1.
2.Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2
3.Connect TFTP server to RJ-45 port (WAN/LAN1).
4.Power on MF18A , stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftpboot 0x84000000 openwrt-ipq40xx-generic-zte_mf18a-initramfs-fit-zImage.itb
bootm 0x84000000
5.Please make backup of original partitions, if you think about revert to stock, specially mtd8 (Web UI) and mtd9 (rootFS). Use /tmp as temporary storage and do:
WEB PARITION
cat /dev/mtd8 > /tmp/mtd8.bin
scp /tmp/mtd8.bin root@YOURSERVERIP:/
rm /tmp/mtd8.bin
ROOT PARITION
cat /dev/mtd9 > /tmp/mtd9.bin
scp /tmp/mtd9.bin root@YOURSERVERIP:/
rm /tmp/mtd9.bin
If you are sure ,that you want to flash openwrt, from uBoot, before bootm, clean rootfs partition with command:
nand erase 0x1800000 0x1D00000
6.Login via ssh or serial and remove stock partitions (default IP 192.168.1.1):
ubiattach -m 9 # it could return error if ubi was attached before or rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs # it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs_data # some devices doesn't have it
7. Install image via :
sysupgrade -n /tmp/openwrt-ipq40xx-generic-zte_mf18a-squashfs-sysupgrade.bin
previously wgeting bin. Sometimes it could print ubi attach error, but please ignore it if process goes forward.
Back to Stock (!!! need original dump taken from initramfs !!!) -------------
Place mtd8.bin and mtd9.bin initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2
Connect serial console (115200,8n1) to serial console connector .
Connect TFTP server to RJ-45 port (WAN/LAN1).
rename mtd8.bin to web.img and mtd9.bin to root_uImage_s
Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase Web and RootFS:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 root_uImage_s
nand erase 0x1800000 0x1D00000
nand write 0x84000000 0x1800000 0x1D00000
This will restore Web Interface:
tftpboot 0x84000000 web.img
nand erase 0x1000000 0x800000
nand write 0x84000000 0x1000000 0x800000
After first boot on stock firwmare, do a factory reset. Push reset button for 5 seconds so all parameters will be reverted to the one printed on label on bottom of the router
As reference was taken MF289F support by Giammarco Marzano stich86@gmail.com and MF286D by Pawel Dembicki paweldembicki@gmail.com
Signed-off-by: Marcin Gajda <mgajda@o2.pl>
2022-12-28 18:01:40 +00:00
|
|
|
zte,mf18a |\
|
ipq40xx: Add ZTE MF289F
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-09-14 12:20:43 +00:00
|
|
|
zte,mf286d |\
|
2023-09-25 18:16:22 +00:00
|
|
|
zte,mf287 |\
|
ipq4019: add support for ZTE MF287+ aka DreiNeo
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
(cherry picked from commit f70ee53b08466f612546f699c556cbdaa39e1466)
2023-06-07 19:24:18 +00:00
|
|
|
zte,mf287plus |\
|
ipq4019: add support for ZTE MF287 Pro aka DreiNeo Pro
The ZTE MF287 Pro is a LTE router used (exclusively?) by the network
operator "3". It is very similar to the MF287+, but the hardware layout
and partition layout have changed quite a bit.
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12
WiFi: 802.11a/b/g/n/ac SoC-integrated
USB: 1x 2.0
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m17
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd17 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock17 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 17
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Other Notes
===========
Contrary to the stock firmware, the USB port on the back can be used.
There is one GPIO Switch "Power button blocker" which, if enabled, does not
trigger a reset of the SoC if the modem reboots. If disabled, the SoC is
rebooted along with the modem. The modem can be rebooted via the exported
GPIO "modem-reset" in /sys/class/gpio.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
(cherry picked from commit edfe91372adfdaf5ee4e294fb0f5860a16adc551)
2023-07-10 09:55:30 +00:00
|
|
|
zte,mf287pro |\
|
ipq40xx: Add ZTE MF289F
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-09-14 12:20:43 +00:00
|
|
|
zte,mf289f)
|
2021-07-15 19:48:11 +00:00
|
|
|
CI_UBIPART="rootfs"
|
|
|
|
nand_do_upgrade "$1"
|
|
|
|
;;
|
ipq40xx: add support for the ZyXEL NBG6617
This patch adds support for ZyXEL NBG6617
Hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR: 32 MiB Macronix MX25L25635F
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS
Serial:
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
pre-soldered. Pinout:
1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX
first install / debricking / restore stock:
0. Have a PC running a tftp-server @ 192.168.1.99/24
1. connect the PC to any LAN-Ports
2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
into the tftp-server root directory and rename it to just "ras.bin".
3. power-cycle the router and hold down the the WPS button (for 30sek)
4. Wait (for a long time - the serial console provides some progress
reports. The u-boot says it best: "Please be patient".
5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
flashes fast at the same time. You have to reboot the device and
it should then come right up.
Installation via Web-UI:
0. Connect a PC to the powered-on router. It will assign your PC a
IP-address via DHCP
1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
2. Go to the "Expert Mode"
3. Under "Maintenance", select "Firmware-Upgrade"
4. Upload the OpenWRT factory image
5. Wait for the Device to finish.
It will reboot into OpenWRT without any additional actions needed.
To open the ZyXEL NBG6617:
0. remove the four rubber feet glued on the backside
1. remove the four philips screws and pry open the top cover
(by applying force between the plastic top housing from the
backside/lan-port side)
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6617> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6617>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6617> ATSE NBG6617
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6617> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6617> ATGU
|NBG6617#
Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-21 12:24:59 +00:00
|
|
|
zyxel,nbg6617)
|
|
|
|
zyxel_do_upgrade "$1"
|
|
|
|
;;
|
2018-02-21 19:40:50 +00:00
|
|
|
*)
|
2019-07-14 17:03:19 +00:00
|
|
|
default_do_upgrade "$1"
|
2018-02-21 19:40:50 +00:00
|
|
|
;;
|
|
|
|
esac
|
|
|
|
}
|
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.
Specifications:
- SOC: Qualcomm IPQ4019 ARM Quad-Core
- RAM: 512 MiB
- Flash: 16 MiB NOR - SPI0
- EMMC: 8GB EMMC
- ETH: Qualcomm QCA8075
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
- WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
- INPUT: Reset, WPS
- LED: Power, Internet
- UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
- UART2: On board with BLE module
- SPI1: On board socket for Zigbee module
Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.
What's working:
- WiFi 2G, 5G
- WPA2/WPA3
Not tested:
- Bluetooth LE/Zigbee
Credits goes to the original authors of this patch.
V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade
Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-01 15:18:17 +00:00
|
|
|
|
|
|
|
platform_copy_config() {
|
|
|
|
case "$(board_name)" in
|
ipq40xx: Add subtarget for Google WiFi (Gale)
Google WiFi (codename: Gale) is an IPQ4019-based AP, with 2 Ethernet
ports, 2x2 2.4+5GHz WiFi, 512 MB RAM, 4 GB eMMC, and a USB type C port.
In its stock configuration, it runs a Chromium OS-based system, but you
wouldn't know it, since you can only manage it via a "cloud" +
mobile-app system.
The "v2" label is coded into the bootloader, which prefers the
"google,gale-v2" compatible string. I believe "v1" must have been
pre-release hardware.
Note: this is *not* the Google Nest WiFi, released in 2019.
I include "factory.bin" support, where we generate a GPT-based disk
image with 2 partitions -- a kernel partition (using the custom "Chrome
OS kernel" GUID type) and a root filesystem partition. See below for
flashing instructions.
Sysupgrade is supported via recent emmc_do_upgrade() helper.
This is a subtarget because it enables different features
(FEATURES=boot-part rootfs-part) whose configurations don't make sense
in the "generic" target, and because it builds in a few USB drivers,
which are necessary for installation (installation is performed by
booting from USB storage, and so these drivers cannot be built as
modules, since we need to load modules from USB storage).
Flashing instructions
=====================
Documented here:
https://openwrt.org/inbox/toh/google/google_wifi
Note this requires booting from USB storage.
Features
========
I've tested:
* Ethernet, both WAN and LAN ports
* eMMC
* USB-C (hub, power-delivery, peripherals)
* LED0 (R/G/B)
* WiFi (limited testing)
* SPI flash
* Serial console: once in developer mode, console can be accessed via
the USB-C port with SuzyQable, or other similar "Closed Case
Debugging" tools:
https://chromium.googlesource.com/chromiumos/third_party/hdctools/+/master/docs/ccd.md#suzyq-suzyqable
* Sysupgrade
Not tested:
* TPM
Known not working:
* Reboot: this requires some additional TrustZone / SCM
configuration to disable Qualcomm's SDI. I have a proposal upstream,
and based on IRC chats, this might be acceptable with additional DT
logic:
[RFC PATCH] firmware: qcom_scm: disable SDI at boot
https://lore.kernel.org/linux-arm-msm/20200721080054.2803881-1-computersforpeace@gmail.com/
* SMP: enabling secondary CPUs doesn't currently work using the stock
bootloader, as the qcom_scm driver assumes newer features than this
TrustZone firmware has. I posted notes here:
[RFC] qcom_scm: IPQ4019 firmware does not support atomic API?
https://lore.kernel.org/linux-arm-msm/20200913201608.GA3162100@bDebian/
* There's a single external button, and a few useful internal GPIO
switches. I haven't hooked them up.
The first two are fixed with subsequent commits.
Additional notes
================
Much of the DTS is pulled from the Chrome OS kernel 3.18 branch, which
the manufacturer image uses.
Note: the manufacturer bootloader knows how to patch in calibration data
via the wifi{0,1} aliases in the DTB, so while these properties aren't
present in the DTS, they are available at runtime:
# ls -l
/sys/firmware/devicetree/base/soc/wifi@a*/qcom,ath10k-pre-calibration-data
-r--r--r-- 1 root root 12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a000000/qcom,ath10k-pre-calibration-data
-r--r--r-- 1 root root 12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a800000/qcom,ath10k-pre-calibration-data
Ethernet MAC addresses are similarly patched in via the ethernet{0,1} aliases.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
(updated 901 - x1pro moved in the process)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-05-25 21:50:20 +00:00
|
|
|
glinet,gl-b2200 |\
|
|
|
|
google,wifi)
|
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.
Specifications:
- SOC: Qualcomm IPQ4019 ARM Quad-Core
- RAM: 512 MiB
- Flash: 16 MiB NOR - SPI0
- EMMC: 8GB EMMC
- ETH: Qualcomm QCA8075
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
- WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
- INPUT: Reset, WPS
- LED: Power, Internet
- UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
- UART2: On board with BLE module
- SPI1: On board socket for Zigbee module
Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.
What's working:
- WiFi 2G, 5G
- WPA2/WPA3
Not tested:
- Bluetooth LE/Zigbee
Credits goes to the original authors of this patch.
V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade
Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-01 15:18:17 +00:00
|
|
|
emmc_copy_config
|
|
|
|
;;
|
|
|
|
esac
|
|
|
|
return 0;
|
|
|
|
}
|