mirror of
https://github.com/jhshi/openofdm.git
synced 2025-06-18 07:08:12 +00:00
phase lut
This commit is contained in:
@ -42,34 +42,63 @@ Phase Estimation
|
||||
**Module**:: ``phase.v``
|
||||
|
||||
When correcting the frequency offset, we need to estimate the phase of a complex
|
||||
number, which can be calculated using the :math:`arctan` function.
|
||||
number. The *right* way of doing this is probably using the `CORDIC
|
||||
<https://dspguru.com/dsp/faqs/cordic/>`_ algorithm. In OpenOFDM, we use look up
|
||||
table.
|
||||
|
||||
More specifically, we calculate the phase using the :math:`arctan` function.
|
||||
|
||||
|
||||
.. math::
|
||||
|
||||
\angle(\langle I, Q\rangle) = arctan(\frac{Q}{I})
|
||||
\theta = \angle(\langle I, Q\rangle) = arctan(\frac{Q}{I})
|
||||
|
||||
The overall steps are:
|
||||
|
||||
1. Project the complex number to the :math:`[0, \pi/4]` range.
|
||||
1. Project the complex number to the :math:`[0, \pi/4]` range, so that the
|
||||
:math:`tan(\theta)` range is :math:`[0, 1]`.
|
||||
#. Calculate :math:`arctan` (division required)
|
||||
#. Looking up the quantized :math:`arctan` table
|
||||
#. Project the phase back to the :math:`[-\pi, \pi)` range
|
||||
|
||||
Here we use both quantization and look up table techniques.
|
||||
|
||||
The first step can be achieved by this transformation:
|
||||
Step 1 can be achieved by this transformation:
|
||||
|
||||
.. math::
|
||||
|
||||
\langle I, Q\rangle \rightarrow \langle max(|I|, |Q|), min(|I|, |Q|)\rangle
|
||||
|
||||
|
||||
The *right* way to calculate :math:`arctan` is probably using the `CORDIC
|
||||
<https://dspguru.com/dsp/faqs/cordic/>`_ algorithm. However, this function is
|
||||
implemented using look up tables in OpenOFDM.
|
||||
In the lookup table used in step 3, we use :math:`int(tan(\theta)*256)` as the
|
||||
key, which effectively maps the :math:`[0.0, 1.0]` range of :math:`tan` function
|
||||
to the integer range of :math:`[0, 256]`. In other words, we quantize the
|
||||
:math:`[0, \pi/4]` quadrant into 256 slices.
|
||||
|
||||
In the table, we use :math:`int(tan(\angle)*256)` as the key, which effective
|
||||
map the :math:`[0.0, 1.0]` range of :math:`tan` function to the integer range of
|
||||
:math:`[0, 256]`. In other words, we quantize the :math:`[0, \pi/4]` quadrant
|
||||
into 256 slices.
|
||||
This :math:`arctan` look up table is generated using the
|
||||
``scripts/gen_atan_lut.py`` script. The core logic is as follows:
|
||||
|
||||
.. code-block:: python
|
||||
:linenos:
|
||||
|
||||
SIZE = 2**8
|
||||
SCALE = SIZE*2
|
||||
data = []
|
||||
for i in range(SIZE):
|
||||
key = float(i)/SIZE
|
||||
val = int(round(math.atan(key)*SCALE))
|
||||
data.append(val)
|
||||
|
||||
|
||||
Note that we also scale up the :math:`arctan` values to distinguish adjacent
|
||||
values. This also systematically scale up :math:`\pi` in OpenOFDM. In fact,
|
||||
:math:`\pi` is defined as :math:`1608=int(\pi*512)` in
|
||||
``verilog/common_params.v``.
|
||||
|
||||
The generated lookup table is stored in the ``verilog/atan_lut.coe``
|
||||
file (see `COE File Syntax
|
||||
<https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htm>`_).
|
||||
Refer to `this guide
|
||||
<https://www.xilinx.com/itp/xilinx10/isehelp/cgn_p_memed_single_block.htm>`_ on
|
||||
how to create a look up table in Xilinx ISE. The generated module is stored in
|
||||
``verilog/coregen/atan_lut.v``.
|
||||
|
Reference in New Issue
Block a user