phase lut

This commit is contained in:
Jinghao Shi 2017-04-07 11:37:11 -04:00
parent 779b3651a4
commit df46bc5309
2 changed files with 47 additions and 13 deletions

View File

@ -42,34 +42,63 @@ Phase Estimation
**Module**:: ``phase.v``
When correcting the frequency offset, we need to estimate the phase of a complex
number, which can be calculated using the :math:`arctan` function.
number. The *right* way of doing this is probably using the `CORDIC
<https://dspguru.com/dsp/faqs/cordic/>`_ algorithm. In OpenOFDM, we use look up
table.
More specifically, we calculate the phase using the :math:`arctan` function.
.. math::
\angle(\langle I, Q\rangle) = arctan(\frac{Q}{I})
\theta = \angle(\langle I, Q\rangle) = arctan(\frac{Q}{I})
The overall steps are:
1. Project the complex number to the :math:`[0, \pi/4]` range.
1. Project the complex number to the :math:`[0, \pi/4]` range, so that the
:math:`tan(\theta)` range is :math:`[0, 1]`.
#. Calculate :math:`arctan` (division required)
#. Looking up the quantized :math:`arctan` table
#. Project the phase back to the :math:`[-\pi, \pi)` range
Here we use both quantization and look up table techniques.
The first step can be achieved by this transformation:
Step 1 can be achieved by this transformation:
.. math::
\langle I, Q\rangle \rightarrow \langle max(|I|, |Q|), min(|I|, |Q|)\rangle
The *right* way to calculate :math:`arctan` is probably using the `CORDIC
<https://dspguru.com/dsp/faqs/cordic/>`_ algorithm. However, this function is
implemented using look up tables in OpenOFDM.
In the lookup table used in step 3, we use :math:`int(tan(\theta)*256)` as the
key, which effectively maps the :math:`[0.0, 1.0]` range of :math:`tan` function
to the integer range of :math:`[0, 256]`. In other words, we quantize the
:math:`[0, \pi/4]` quadrant into 256 slices.
In the table, we use :math:`int(tan(\angle)*256)` as the key, which effective
map the :math:`[0.0, 1.0]` range of :math:`tan` function to the integer range of
:math:`[0, 256]`. In other words, we quantize the :math:`[0, \pi/4]` quadrant
into 256 slices.
This :math:`arctan` look up table is generated using the
``scripts/gen_atan_lut.py`` script. The core logic is as follows:
.. code-block:: python
:linenos:
SIZE = 2**8
SCALE = SIZE*2
data = []
for i in range(SIZE):
key = float(i)/SIZE
val = int(round(math.atan(key)*SCALE))
data.append(val)
Note that we also scale up the :math:`arctan` values to distinguish adjacent
values. This also systematically scale up :math:`\pi` in OpenOFDM. In fact,
:math:`\pi` is defined as :math:`1608=int(\pi*512)` in
``verilog/common_params.v``.
The generated lookup table is stored in the ``verilog/atan_lut.coe``
file (see `COE File Syntax
<https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htm>`_).
Refer to `this guide
<https://www.xilinx.com/itp/xilinx10/isehelp/cgn_p_memed_single_block.htm>`_ on
how to create a look up table in Xilinx ISE. The generated module is stored in
``verilog/coregen/atan_lut.v``.

View File

@ -225,6 +225,7 @@ class ChannelEstimator(object):
prod_sum += prod
beta = cmath.phase(prod_sum)
print "[PILOT OFFSET] %f (%d)" % (beta, int(beta*PHASE_SCALE))
# beta = 0
carriers = []
for c in self.subcarriers:
if c in PILOT_SUBCARRIES:
@ -269,8 +270,8 @@ class ChannelEstimator(object):
coarse_offset = cmath.phase(sum([sts[i]*sts[i+16].conjugate()
for i in range(len(sts)-16)]))/16
coarse_offset = int(coarse_offset*256)/256.0
print '[COARSE OFFSET] %f (%d)' % (coarse_offset, int(coarse_offset*PHASE_SCALE))
# coarse_offset = 0
# coarse correction
lts = [c*cmath.exp(complex(0, n*coarse_offset))
@ -279,7 +280,7 @@ class ChannelEstimator(object):
fine_offset = cmath.phase(sum([lts[i]*lts[i+64].conjugate()
for i in range(len(lts)-64)]))/64
print '[FINE OFFSET] %f (%d)' % (fine_offset, int(fine_offset*PHASE_SCALE))
fine_offset = 0
# fine_offset = 0
self.lts_samples = [c*cmath.exp(complex(0, n*fine_offset))
for n, c in enumerate(lts)]
@ -430,6 +431,7 @@ class Decoder(object):
def decode_next(self, *args, **kwargs):
trigger = False
samples = []
glbl_index = 0
while True:
chunk = array.array('h', self.fh.read(self.window))
chunk = [complex(i, q) for i, q in zip(chunk[::2], chunk[1::2])]
@ -437,6 +439,7 @@ class Decoder(object):
trigger = True
samples = []
print "Power trigger at %d" % (self.count)
glbl_index = self.count
self.count += self.window
@ -448,6 +451,8 @@ class Decoder(object):
if start is None:
trigger = False
else:
print "Decoding packet starting from sample %d" %\
(glbl_index + start)
return self.decode(samples[start:], *args, **kwargs)
def find_pkt(self, samples):