This commit is contained in:
Jinghao Shi 2017-04-21 13:42:20 -04:00
parent 079744bec1
commit 39b6115360
6 changed files with 168 additions and 29 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@ -3,14 +3,21 @@
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
|project|: Verilog Implementation of 802.11 OFDM Decoder
========================================================
|project|: Synthesizable, Modular Verilog Implementation of 802.11 OFDM Decoder
===============================================================================
|project| is a open source Verilog implementation of 802.11 OFDM decoder.
Highlights are:
- Supports 802.11a/g (all bit rates) and 802.11n (20MHz BW, MCS 0 - 7)
- Modular design, easy to extend
- Fully synthesizable, tested on USRP N210
.. toctree::
:maxdepth: 2
:caption: Contents:
sample
overview
detection
freq_offset
sync_long
@ -20,11 +27,3 @@
setting
verilog
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

129
docs/source/overview.rst Normal file
View File

@ -0,0 +1,129 @@
Overview
========
Once the RF signals are captured and down-converted to baseband, the decoding
pipeline starts, including:
1. Packet detection
#. Center frequency offset correction
#. FFT
#. Channel gain estimation
#. Demodulation
#. Deinterleaving
#. Convolutional decoding
#. Descrambling
This documentation walks through the decoding pipeline and explains how each
step is implemented in |project|.
Top Level Module
----------------
.. _fig_dot11:
.. figure:: /images/dot11.png
:align: center
:scale: 50%
Dot11 Core Schematic Symbol
The top level module of |project| is :file:`dot11.v`. :numref:`fig_dot11` shows
its input/output pins. It takes I/Q samples as input, and output 802.11 packet
data bytes and various PHY properties.
.. table:: Dot11 Module Pinout
:align: center
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| Port Name | Port Width | Direction | Description |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| clock | 1 | Input | Rising edge clock |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| enable | 1 | Input | Module enable (active high) |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| reset | 1 | Input | Module reset (active high) |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| set_stb | 1 | Input | Setting register strobe |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| set_addr | 8 | Input | Setting register address |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| set_data | 32 | Input | Setting register value |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| sample_in | 32 | Input | High 16 bit I, low 16 bit Q |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| sample_in_stb | 1 | Input | Sample input strobe |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| pkt_begin | 1 | Output | Signal begin of a packet |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| pkt_ht | 1 | Output | HT (802.11n) or legacy (802.11a/g) packet |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| pkt_rate | 8 | Output | For HT, the lower 7 bits is MCS. For legacy, the lower 4 bits is the rate bits in SIGNAL |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| pkt_len | 16 | Output | Packet length in bytes |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| byte_out_stb | 1 | Output | Byte out strobe |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| byte_out | 8 | Output | Byte value |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| fcs_out_stb | 1 | Output | FCS output strobe |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
| fcs_ok | 1 | Output | FCS correct (high) or wrong (low) |
+---------------+------------+-----------+-------------------------------------------------------------------------------------------+
Project Structure
-----------------
In the :file:`verilog` sub-directory, you will find the Verilog implementations
of various modules. The implementations were originally targeted for the Xilinx
Spartan 3A-DSP 3400 FPGA inside the USRP N210 device, thus there are various
dependences to Xilinx libraries and USRP code base. In particular:
- :file:`verilog/Xilinx` contains the Xilinx specific libraries
- :file:`verilog/coregen` contains generated IP cores from Xilinx ISE
- :file:`verilog/usrp2` contains USRP specific modules
However, the project is self-contained and is ready for simulation using `Icarus
Verilog <http://iverilog.icarus.com/>`_ tool chain, including ``iverilog`` and
``vvp``.
The :file:`scripts` directory contains various Python scripts that:
- Generate look up tables (:file:`gen_atan_lut.py`, :file:`gen_rot_lut.py`,
:file:`gen_deinter_lut.py`)
- Convert binary I/Q file into text format so it can be read in Verilog using
``readmemh``.
- Consolidate sample files by removing *silent* signals (:file:`condense.py`).
- Test each step of decoding process (:file:`test.py`)
- 802.11 decoder in Python for cross validation (:file:`decode.py`)
It also contains a modified copy of the `CommPy <https://github.com/veeresht/CommPy>`_ library.
The :file:`test.py` script is for cross validation between the Python decoder
and |project| decoder. It first uses the :file:`decode.py` script to decode the
sample file and stores the expected output of each step. It then performs
Verilog simulation using ``vvp`` and compare the Verilog output against the
expected output step by step.
The :file:`testing_inputs` directory contains various sample files collected in
a conducted or over the air setup. These files covers all the bit rates (legacy
and HT) supported in |project|.
.. _sec_sample:
Sample File
-----------
Throughout this documentation we will be using a sample file that contains the
I/Q samples of a 802.11a packet at 24 Mbps (16-QAM). It'll be helpful to use a
interactive iPython session and exercise various steps discussed in the
document.
Download the sample file from :download:`here </files/samples.dat>`, the data
can be loaded as follows:
.. code-block:: python
import scipy
wave = scipy.fromfile('samples.dat', dtype=scipy.int16)
samples = [complex(i, q) for i, q in zip(wave[::2], wave[1::2])]

View File

@ -1,19 +1 @@
.. _sec_sample:
Sample File
===========
Throughout this documentation we will be using a sample file that contains the
I/Q samples of a 802.11a packet at 24 Mbps (16-QAM). It'll be helpful to use a
interactive iPython session and exercise various steps discussed in the
document.
Download the sample file from :download:`here </files/samples.dat>`, the data
can be loaded as follows:
.. code-block:: python
import scipy
wave = scipy.fromfile('samples.dat', dtype=scipy.int16)
samples = [complex(i, q) for i, q in zip(wave[::2], wave[1::2])]

View File

@ -102,4 +102,33 @@ in |project|:
- Tail bits: must all be 0.
.. _fig_ht_sig_crc:
.. figure:: /images/ht_sig_crc.png
:align: center
:scale: 80%
CRC Calculation of HT-SIG
:numref:`fig_ht_sig_crc` shows the logic to calculate the CRC in HT-SIG. The
shift registers :math:`C_0,\ldots,C_7` are initialized with all ones. For each
data bit :math:`m_0,\ldots,m_{33}`, the shift register is updated as:
.. math::
C^{i+1}_7 &= C^{i}_6\\
C^{i+1}_6 &= C^{i}_5\\
C^{i+1}_5 &= C^{i}_4\\
C^{i+1}_4 &= C^{i}_3\\
C^{i+1}_3 &= C^{i}_2\\
C^{i+1}_2 &= C^{i}_1 \oplus C^{i}_7 \oplus m_i\\
C^{i+1}_1 &= C^{i}_0 \oplus C^{i}_7 \oplus m_i\\
C^{i+1}_0 &= C^{i}_7 \oplus m_i\\
The CRC is then :math:`\overline{C^{34}_7},\ldots,\overline{C^{34}_0}`. Note the
bits are inverted.
The next OFDM symbol after HT-SIG is HT short preamble, which is skipped in
|project|. The following OFDM symbol contains HT long training sequence, which
replaces the legacy channel gain inside :file:`equalizer.v` module. The rest
decoding logic is similar to 802.11a/g, except the number of data sub-carriers
is adjusted from 48 to 52.