* Implements platform driver for Arndale providing Regulator for CPU clock
* Implements a cpu frequency scaling test using the affinity test
* Fixes#770
In fact, the sizes were the same the whole time, but by using
the same enum in both cases to instantiate the Packet_stream_tx
and Packet_stream_rx members of the e.g. RPC object, it allows
for more flexible generalization between e.g. source or, sink
objects, when programming event-driven, and implementing generic
handlers for their signals.
Changes GPIO session interface to a one-GPIO-pin-per-session style. Moreover,
this commit introduces a generic driver interface for GPIO drivers. Thereby
generalizes root- and session component for GPIO.
* Simplify IPU register definitions using templates
* Distinguish between i.MX53 QSB and SMD board in driver
* Support IPU specific overlay mechanism by framebuffer session extension
Instead of trying all PCI devices by a specific PCI driver, now the device or
the device class can be limited to the one actually supported by the specific
driver.
Without the patch the signal cap was ever transferred to the timer session
when a usleep/msleep was called, even when unneeded. On base-nova this
causes the allocation of new capability indexes which are not freed up.
So the timer service run quickly out of indexes and get out of order...
Related to issue #1
The 'Timer::Session::msleep' function is one of the last occurrences of
long-blocking RPC calls. Synchronous blocking RPC interfaces turned out
to be constant source of trouble and code complexity. I.e., a timer
client that also wants to respond to non-timer events was forced to be a
multi-threaded process. This patch replaces the blocking 'msleep' call
by a mechanism for programming timeouts and receiving wakeup signals in
an asynchronous fashion. Thereby signals originating from the timer can
be handled along with signals from other signal sources by a single
thread.
The changed interface has been tested on Linux, L4/Fiasco, OKL4, NOVA,
L4ka::Pistachio, Codezero, Fiasco.OC, and hw_pbxa9. Furthermore, this
patch adds the timer test to autopilot.
Fixes#1
With this change, init becomes able to respond to config changes by
restarting the scenario with the new config. To make this feature useful
in practice, init must not fail under any circumstances. Even on
conditions that were considered as fatal previously and led to the abort
of init (such as ambiguous names of the children or misconfiguration in
general), init must stay alive and responsive to config changes.
This patch improves the config handling by falling back to a static
string (empty "<config />") if no valid config ROM module could be
found. This can happen initially, but also at runtime when the ROM
module dissapears, e.g., a ROM module accessed via fs_rom where the
corresponding file gets unlinked.
This patch introduces keyboard-focus events to the 'Input::Event' class
and changes the name 'Input::Event::keycode' to 'code'. The 'code'
represents the key code for PRESS/RELEASE events, and the focus state
for FOCUS events (0 - unfocused, 1 - focused).
Furthermore, nitpicker has been adapted to deliver FOCUS events to its
clients.
Fixes#609
This patch extends the file-system interface with the ability to monitor
changes of files or directories. The new 'File_system::sigh' function
can be used to install a signal handler for an open node.
The 'ram_fs' server has been enhanced to support the new interface. So
any file or directory changes can now be observed by 'ram_fs' clients.
Fixes#607
When matching the 'label' session argument using '<if-args>' in a
routing table, we can omit the child name prefix because it is always
the same for all sessions originating from the child anyway. Therefore,
this patch adds a special case for matching session labels. It makes the
expression of label-specific routing more intuitive.
With this patch, the loader installs an optional client-provided fault
handler as default CPU exception handler and RM fault handler for all
CPU and RM sessions of the loaded subsystem. This way, loader clients
become able to respond to failures occuring within the subsystem.
The new feature is provided via the added 'Loader::fault_handler' RPC
function.
The 'run/failsafe' test covers two cases related to the loader, which
are faults produced by the immediate child of the loader and faults
produced by indirect children.