With the capability-quota mechanism, the terminal-session won't always
be constructed completely on the first try (we may run out of caps in
the middle of the construction). Therefore, all members of the object
must be properly destructable. Furthermore, the patch replaces the
sliced heap by a heap to avoid allocating a new dataspace for each line
of the cell array.
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch mirrors the accounting and trading scheme that Genode employs
for physical memory to the accounting of capability allocations.
Capability quotas must now be explicitly assigned to subsystems by
specifying a 'caps=<amount>' attribute to init's start nodes.
Analogously to RAM quotas, cap quotas can be traded between clients and
servers as part of the session protocol. The capability budget of each
component is maintained by the component's corresponding PD session at
core.
At the current stage, the accounting is applied to RPC capabilities,
signal-context capabilities, and dataspace capabilities. Capabilities
that are dynamically allocated via core's CPU and TRACE service are not
yet covered. Also, the capabilities allocated by resource multiplexers
outside of core (like nitpicker) must be accounted by the respective
servers, which is not covered yet.
If a component runs out of capabilities, core's PD service prints a
warning to the log. To observe the consumption of capabilities per
component in detail, the PD service is equipped with a diagnostic
mode, which can be enabled via the 'diag' attribute in the target
node of init's routing rules. E.g., the following route enables the
diagnostic mode for the PD session of the "timer" component:
<default-route>
<service name="PD" unscoped_label="timer">
<parent diag="yes"/>
</service>
...
</default-route>
For subsystems based on a sub-init instance, init can be configured
to report the capability-quota information of its subsystems by
adding the attribute 'child_caps="yes"' to init's '<report>'
config node. Init's own capability quota can be reported by adding
the attribute 'init_caps="yes"'.
Fixes#2398
This patch reworks the implementation of core's RAM service to make use
of the 'Session_object' and to remove the distinction between the
"metadata" quota and the managed RAM quota. With the new implementation,
the session implicitly allocates its metadata from its own account. So
there is not need to handle 'Out_of_metadata' and 'Quota_exceeded' via
different exceptions. Instead, the new version solely uses the
'Out_of_ram' exception.
Furthermore, the 'Allocator::Out_of_memory' exception has become an alias
for 'Out_of_ram', which simplifies the error handling.
Issue #2398
This patch makes use of the new 'Quota_transfer::Account' by the service
types in base/service.h and uses 'Quota_transfer' objects in
base/child.cc and init/server.cc.
Furthermore, it decouples the notion of an 'Async_service' from
'Child_service'. Init's 'Routed_service' is no longer a 'Child_service'
but is based on the new 'Async_service' instead.
With this patch in place, quota transfers do no longer implicitly use
'Ram_session_client' objects. So transfers can in principle originate
from component-local 'Ram_session_component' objects, e.g., as used by
noux. Therefore, this patch removes a strumbling block for turning noux
into a single threaded component in the future.
Issue #2398
This patch replaces the 'Parent::Quota_exceeded',
'Service::Quota_exceeded', and 'Root::Quota_exceeded' exceptions
by the single 'Insufficient_ram_quota' exception type.
Furthermore, the 'Parent' interface distinguished now between
'Out_of_ram' (the child's RAM is exhausted) from
'Insufficient_ram_quota' (the child's RAM donation does not suffice to
establish the session).
This eliminates ambiguities and removes the need to convert exception
types along the path of the session creation.
Issue #2398
This patch replaces the former use of size_t with the use of the
'Ram_quota' type to improve type safety (in particular to avoid
accidentally mixing up RAM quotas with cap quotas).
Issue #2398
The 'Ram_allocator' interface contains the subset of the RAM session
interface that is needed to satisfy the needs of the 'Heap' and
'Sliced_heap'. Its small size makes it ideal for intercepting memory
allocations as done by the new 'Constrained_ram_allocator' wrapper
class, which is meant to replace the existing 'base/allocator_guard.h'
and 'os/ram_session_guard.h'.
Issue #2398
This commit moves the headers residing in `repos/base/include/spec/*/drivers`
to `repos/base/include/drivers/defs` or repos/base/include/drivers/uart`
respectively. The first one contains definitions about board-specific MMIO
iand RAM addresses, or IRQ lines. While the latter contains device driver
code for UART devices. Those definitions are used by driver implementations
in `repos/base-hw`, `repos/os`, and `repos/dde-linux`, which now need to
include them more explicitely.
This work is a step in the direction of reducing 'SPEC' identifiers overall.
Ref #2403
Since init no longer provides public headers, we have to adjust the
existing users of this headers. The 'init/child_config.h' is used only
by GDB monitor. So the patch moves the header there as an interim fix.
The 'init/child_policy.h' is still used by a few components, so we have
to keep a trimmed-down version of it for now.
This patch enables init to apply changes of any server's <provides>
declarations in a differential way. Servers can in principle be extended
by new services without re-starting them. Of course, changes of the
<provides> declarations may affect clients or would-be clients as this
information is taken into account for the session routing.
The optional 'version' attribute allows for the forced restart of a
child with an otherwise unmodified start node. The specified value is
also reflected in the state report.
This patch covers the resolution of the ROM route for child binaries
via the generic label-rewriting mechanics. Now, the <binary> node has
become merely sytactic sugar for a route like the following:
<start name="test"/>
<route>
<service name="ROM" unscoped_label="test">
<parent label="test-binary-name"/> </service>
...
</route>
...
</start>
A change of the binary name has an effect on the child's ROM route to
the binary and thereby implicitly triggers a child restart due to the
existing re-validation of the routing.
With this check in place, one can safely construct an 'Xml_generator'
even if the report is disabled. This relieves the user of the reporter
from the need to distinguish enabled from disabled reports.
This patch improves the accuracy of init's quota-saturation feature
(handing out all slack quota to a child by specifying an overly high RAM
quota for the child) and makes the RAM preserved by init configurable.
The preservation is specified as follows:
! <config>
! ...
! <resource name="RAM" preserve="1M"/>
! ...
! </config>
If not specified, init has a reasonable default of 160K (on 32 bit) and
320K (on 64 bit).
This patch lets init apply configuration changes to a running scenario
in a differential way. Children are restarted if any of their session
routes change, new children can be added to a running scenario, or
children can deliberately be removed.
Furthermore, the new version of init is able to propagate configuration
changes (modifications of <config> nodes) to its children without
restarting them.
This patch improves the accounting for the backing store of
session-state meta data. Originally, the session state used to be
allocated by a child-local heap partition fed from the child's RAM
session. However, whereas this approach was somehow practical from a
runtime's (parent's) point of view, the child component could not count
on the quota in its own RAM session. I.e., if the Child::heap grew at
the parent side, the child's RAM session would magically diminish. This
caused two problems. First, it violates assumptions of components like
init that carefully manage their RAM resources (and giving most of them
away their children). Second, if a child transfers most of its RAM
session quota to another RAM session (like init does), the child's RAM
session may actually not allow the parent's heap to grow, which is a
very difficult error condition to deal with.
In the new version, there is no Child::heap anymore. Instead, session
states are allocated from the runtime's RAM session. In order to let
children pay for these costs, the parent withdraws the local session
costs from the session quota donated from the child when the child
initiates a new session. Hence, in principle, all components on the
route of the session request take a small bite from the session quota to
pay for their local book keeping
Consequently, the session quota that ends up at the server may become
depleted more or less, depending on the route. In the case where the
remaining quota is insufficient for the server, the server responds with
'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this
patch equips the client-side 'Env::session' implementation with the
ability to re-issue session requests with successively growing quota
donations.
For several of core's services (ROM, IO_MEM, IRQ), the default session
quota has now increased by 2 KiB, which should suffice for session
requests to up to 3 hops as is the common case for most run scripts. For
longer routes, the retry mechanism as described above comes into effect.
For the time being, we give a warning whenever the server-side quota
check triggers the retry mechanism. The warning may eventually be
removed at a later stage.
This patch equips init with the ability to report its internal state in
the form of a "state" report. This feature can be enabled by placing a
'<report>' node in init's configuration.
The report node accepts the following arguments (with their default
values):
'delay_ms="100"': specifies the number of milliseconds to wait before
producing a new report. This way, many consecutive state changes -
like they occur during the startup - do not result in an overly
large number of reports but are merged into one final report.
'buffer="4K"': the maximum size of the report in bytes. The attribute
accepts the use of K/M/G as units.
'init_ram="no"': if enabled, the report will contain a '<ram>' node
with the memory stats of init.
'ids="no"': supplement the children in the report with unique IDs, which
may be used to infer the lifetime of children accross configuration
updates in the future;
'requested="no"': if enabled, the report will contain information about
all session requests initiated by the children.
'provided="no"': if enabled, the report will contain information about
all sessions provided by all servers.
'session_args="no"': level of detail of the session information
generated via 'requested' or 'provided'.
'child_ram="no"': if enabled, the report will contain a '<ram>' node
for each child based on the information obtained from the child's RAM
session.
Issue #2246
This patch enhances init with the support for rewriting session labels
in the target node of a matching session route. For example, a Noux
instance may have the following session route for the "home" file
system:
<route>
<service name="File_system" label="home">
<child name="rump_fs"/>
</service>
...
</route>
At the rump_fs file-system server, the label of the file-system session
will appear as "noux -> home". This information may be evaluated by
rump_fs's server-side policy. However, when renaming the noux instance,
we'd need to update this server-side policy.
With the new mechanism, the client's identity can be hidden from the
server. The label could instead represent the role of the client, or a
name of a physical resource. For example, the Noux route could be
changed to this:
<route>
<service name="File_system" label="home">
<child name="rump_fs" label="primary_user"/>
</service>
...
</route>
When the rump_fs receives the session request, it is presented with the
label "primary_user". The fact that the client is "noux" is not taken
into account for the server-side policy selection.
Issue #2248
This commit includes changes to the Nic::Session_component interface.
We now pass the entire env to the component instead of only ram, rm and
the ep because we need the env to open connections from within the
Session_component implemenation. So far only the cadence_gem driver
needs this, though.
Issue #2280.
This patch enhances init with the ability to route individual
environment sessions. Prior this patch, environment sessions could be
routed only by an all-encompassing '<service>' node that would match
both child-initiated and environment sessions.
In contrast to the existing 'label', 'label_prefix', and 'label_suffix'
attributes of '<service>' nodes, which are always scoped with ther name
of the corresponding child, the 'unscoped_label' allows the definition
of routing rules for all session requests, including init's requests for
the child's environment sessions. For example, to route the ROM session
requests for a child's dynamic linker, the following route would match:
<route>
<service name="ROM" unscoped_label="ld.lib.so"> ... </service>
</route>
Issue #2215
This patch adds the handling of 'CHARACTER' events as emitted by the
input-filter's character generator (<chargen>). To avoid interpreting
press/release events twice (at the input filter and by the terminal's
built-in scancode tracker), the terminal's scancode tracker can be
explicitly disabled via <config> <keyboard layout="none"/> </config>.
In the future, the terminal's built-in scancode tracker will be
removed.
The use of the terminal with the input filter is illustrated by the
'terminal_echo.run' script.
Issue #2264
Character events are created via a dedicated 'Event' constructor that
takes an 'Event:Utf8' object as argument. Internally, the character is
kept in the '_code' member. The 'Utf8' value can by retrieved by the
recipient via the new 'utf8' method.
Issue #2264
The read-ready packet informs the server that the client wants to be
notified if a handle becomes readable. When becoming readable, the
server acknowledges packet and the client may queue a read requests
accordingly.