The classes Genode::Mmio, Genode::Register_set, Genode::Attached_mmio, and
Platform::Device::Mmio now receive a template parameter 'size_t SIZE'. In each
type that derives from one of these classes, it is now statically checked that
the range of each Genode::Register::Register- and
Genode::Register_set::Register_array-deriving sub-type is within [0..SIZE).
That said, SIZE is the minimum size of the memory region provided to the above
mentioned Mmio classes in order to avoid page faults or memory corruption when
accessing the registers and register arrays declared inside.
Note, that the range end of a register array is not the end of the last item
but the end of integer access that is used for accessing the last bit in the
last item.
The constructors of Genode::Mmio, Genode::Attached_mmio, and
Platform::Device::Mmio now receive an argument 'Byte_range_ptr range' that is
expected to be the range of the backing memory region. In each type that derives
from on of these classes, it is now dynamically checked that 'range.num_bytes
>= SIZE', thereby implementing the above mention protection against page faults
and memory corruption.
The rest of the commit adapts the code throughout the Genode Labs repositories
regarding the changes. Note that for that code inside Core, the commits mostly
uses a simplified approach by constructing MMIO objects with range
[base..base+SIZE) and not with a mapping- or specification-related range size.
This should be fixed in the future.
Furthermore, there are types that derive from an MMIO class but don't declare
any registers or register arrays (especially with Platform::Device::Mmio). In
this case SIZE is set to 0. This way, the parameters must be actively corrected
by someone who later wants to add registers or register arrays, plus the places
can be easily found by grep'ing for Mmio<0>.
Fix#4081
Preloading a few cache lines ahead brings a significant speedup in
memcpy throughput. Note, the particular (optimal) value was empirically
determined on a Cortex-A9 (Zynq-7000) SoC @ 666Mhz. It is best combined
with L2 prefetching enabled (including double linefills and prefetch
offset 7). Yet, even without L2 prefetching this seems to be the sweet
spot.
genodelabs/genode#4456
The implementation is not in use any more. Furthermore, on typical ARM
cores such as the Cortex-A9, the cached read appears to be the
bottleneck rather than instruction density. On a Zynq-7000 SoC, the vfp
implementation performed significantly worse than the standard load/store
multiple implementation with preloading.
genodelabs/genode#4456
Fix some trivial cases where the signedness of the constant value does
not match the signedness of type the code expects to see. GCC can be
asked to warn about those by passing Wsign-covnersion flag.
Issue #4354
The old inline assembly provided two output operands that were afterwards
combined for a return value. However, the second output operand isn't
necessary when using the "Acquiring a Lock" example-code of the ARM manual
"Barrier Litmus Tests and Cookbook". This saves two logical operations
per acquisition try. Additionally better documentation is now provided.
Fixes#1292
- support to create multiple vCPUs
- support to implement Vm_session methods client side within base library
- adjust muen specific virtualbox4 version to compile/link
Issue #3111
Since the timer and timeout handling is part of the base library (the
dynamic linker), it belongs to the base repository.
Besides moving the timer and its related infrastructure (alarm, timeout
libs, tests) to the base repository, this patch also moves the timer
from the 'drivers' subdirectory directly to 'src' and disamibuates the
timer's build locations for the various kernels. Otherwise the different
timer implementations could interfere with each other when using one
build directory with multiple kernels.
Note that this patch changes the include paths for the former os/timer,
os/alarm.h, os/duration.h, and os/timed_semaphore.h to base/.
Issue #3101
The patch adjust the code of the base, base-<kernel>, and os repository.
To adapt existing components to fix violations of the best practices
suggested by "Effective C++" as reported by the -Weffc++ compiler
argument. The changes follow the patterns outlined below:
* A class with virtual functions can no longer publicly inherit base
classed without a vtable. The inherited object may either be moved
to a member variable, or inherited privately. The latter would be
used for classes that inherit 'List::Element' or 'Avl_node'. In order
to enable the 'List' and 'Avl_tree' to access the meta data, the
'List' must become a friend.
* Instead of adding a virtual destructor to abstract base classes,
we inherit the new 'Interface' class, which contains a virtual
destructor. This way, single-line abstract base classes can stay
as compact as they are now. The 'Interface' utility resides in
base/include/util/interface.h.
* With the new warnings enabled, all member variables must be explicitly
initialized. Basic types may be initialized with '='. All other types
are initialized with braces '{ ... }' or as class initializers. If
basic types and non-basic types appear in a row, it is nice to only
use the brace syntax (also for basic types) and align the braces.
* If a class contains pointers as members, it must now also provide a
copy constructor and assignment operator. In the most cases, one
would make them private, effectively disallowing the objects to be
copied. Unfortunately, this warning cannot be fixed be inheriting
our existing 'Noncopyable' class (the compiler fails to detect that
the inheriting class cannot be copied and still gives the error).
For now, we have to manually add declarations for both the copy
constructor and assignment operator as private class members. Those
declarations should be prepended with a comment like this:
/*
* Noncopyable
*/
Thread(Thread const &);
Thread &operator = (Thread const &);
In the future, we should revisit these places and try to replace
the pointers with references. In the presence of at least one
reference member, the compiler would no longer implicitly generate
a copy constructor. So we could remove the manual declaration.
Issue #465
* Instead of always re-load page-tables when a thread context is switched
only do this when another user PD's thread is the next target,
core-threads are always executed within the last PD's page-table set
* remove the concept of the mode transition
* instead map the exception vector once in bootstrap code into kernel's
memory segment
* when a new page directory is constructed for a user PD, copy over the
top-level kernel segment entries on RISCV and X86, on ARM we use a designated
page directory register for the kernel segment
* transfer the current CPU id from bootstrap to core/kernel in a register
to ease first stack address calculation
* align cpu context member of threads and vms, because of x86 constraints
regarding the stack-pointer loading
* introduce Align_at template for members with alignment constraints
* let the x86 hardware do part of the context saving in ISS, by passing
the thread context into the TSS before leaving to user-land
* use one exception vector for all ARM platforms including Arm_v6
Fix#2091
* introduce new syscall (core-only) to create privileged threads
* take the privilege level of the thread into account
when doing a context switch
* map kernel segment as accessable for privileged code only
Ref #2091
This commit moves the headers residing in `repos/base/include/spec/*/drivers`
to `repos/base/include/drivers/defs` or repos/base/include/drivers/uart`
respectively. The first one contains definitions about board-specific MMIO
iand RAM addresses, or IRQ lines. While the latter contains device driver
code for UART devices. Those definitions are used by driver implementations
in `repos/base-hw`, `repos/os`, and `repos/dde-linux`, which now need to
include them more explicitely.
This work is a step in the direction of reducing 'SPEC' identifiers overall.
Ref #2403
Previously we had configured the timer for the Panda ES with 700 MHz
CPU clock. But the Panda A6 that we use as reference now runs with
800 MHz.
Fixes#2308
Put the initialization of the cpu cores, setup of page-tables, enabling of
MMU and caches into a separate component that is only used to bootstrap
the kernel resp. core.
Ref #2092
* Adds public timeout syscalls to kernel API
* Kernel::timeout installs a timeout and binds a signal context to it that
shall trigger once the timeout expired
* With Kernel::timeout_max_us, one can get the maximum installable timeout
* Kernel::timeout_age_us returns the time that has passed since the
calling threads last timeout installation
* Removes all device specific back-ends for the base-hw timer driver and
implements a generic back-end taht uses the kernel timeout API
* Adds assertions about the kernel timer frequency that originate from the
requirements of the the kernel timeout API and adjusts all timers
accordingly by using the their internal dividers
* Introduces the Kernel::Clock class. As member of each Kernel::Cpu object
it combines the management of the timer of the CPU with a timeout scheduler.
Not only the timeout API uses the timeout scheduler but also the CPUs job
scheduler for installing scheduling timeouts.
* Introduces the Kernel::time_t type for timer tic values and values inherited
from timer tics (like microseconds).
Fixes#1972
This patch moves details about the stack allocation and organization
the base-internal headers. Thereby, I replaced the notion of "thread
contexts" by "stacks" as this term is much more intuitive. The fact that
we place thread-specific information at the bottom of the stack is not
worth introducing new terminology.
Issue #1832
This patch establishes a common organization of header files
internal to the base framework. The internal headers are located at
'<repository>/src/include/base/internal/'. This structure has been
choosen to make the nature of those headers immediately clear when
included:
#include <base/internal/lock_helper.h>
Issue #1832
This commit enables multi-processing for all Cortex A9 SoCs we currently
support. Moreover, it thereby enables the L2 cache for i.MX6 that was not
enabled until now. However, the QEMU variants hw_pbxa9 and hw_zynq still
only use 1 core, because the busy cpu synchronization used when initializing
multiple Cortex A9 cores leads to horrible boot times on QEMU.
During this work the CPU initialization in general was reworked. From now
on lots of hardware specifics were put into the 'spec' specific files, some
generic hook functions and abstractions thereby were eliminated. This
results to more lean implementations for instance on non-SMP platforms,
or in the x86 case where cache maintainance is a non-issue.
Due to the fact that memory/cache coherency and SMP are closely coupled
on ARM Cortex A9 this commit combines so different aspects.
Fix#1312Fix#1807
Previously we used a pretty slow external clock source for the timer. This
resulted in such a low TICS_PER_MS value that the granularity wasn't
sufficient to find a setup with a precision better than 1 second error per
minute. Now we use the so-called High Frequency Reference Clock as input
with TICS_PER_MS=33333 and the timer precision is significantly < 1 second per
minute.
Fixes#1805