mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-18 10:46:33 +00:00
More multicast work...
This commit is contained in:
parent
592e743349
commit
bccb86a401
@ -258,12 +258,12 @@
|
||||
/**
|
||||
* Period for multicast LIKE re-announcements to connected nodes
|
||||
*/
|
||||
#define ZT_MULTICAST_ANNOUNCE_PERIOD 120000
|
||||
#define ZT_MULTICAST_ANNOUNCE_PERIOD 60000
|
||||
|
||||
/**
|
||||
* Delay between explicit MULTICAST_GATHER requests for a given multicast channel
|
||||
* Period for multicast GATHER on multicast groups
|
||||
*/
|
||||
#define ZT_MULTICAST_EXPLICIT_GATHER_DELAY (ZT_MULTICAST_LIKE_EXPIRE / 10)
|
||||
#define ZT_MULTICAST_GATHER_PERIOD ZT_MULTICAST_ANNOUNCE_PERIOD
|
||||
|
||||
/**
|
||||
* Timeout for outgoing multicasts
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include "RuntimeEnvironment.hpp"
|
||||
#include "Multicaster.hpp"
|
||||
#include "Network.hpp"
|
||||
#include "Membership.hpp"
|
||||
#include "Topology.hpp"
|
||||
#include "Switch.hpp"
|
||||
|
||||
@ -28,7 +29,7 @@ Multicaster::Multicaster(const RuntimeEnvironment *renv) :
|
||||
|
||||
Multicaster::~Multicaster() {}
|
||||
|
||||
void Multicaster::send(
|
||||
unsigned int Multicaster::send(
|
||||
void *tPtr,
|
||||
int64_t now,
|
||||
const SharedPtr<Network> &network,
|
||||
@ -40,104 +41,218 @@ void Multicaster::send(
|
||||
const void *const data,
|
||||
unsigned int len)
|
||||
{
|
||||
static const unsigned int PRIMES[16] = { 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53 };
|
||||
static const unsigned int PRIMES[16] = { 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59 }; // 2 is skipped as it's even
|
||||
|
||||
if (unlikely(len > ZT_MAX_MTU)) return; // sanity check
|
||||
std::vector< std::pair<int64_t,Address> > recipients;
|
||||
|
||||
const NetworkConfig &config = network->config();
|
||||
if (config.multicastLimit == 0) return; // multicast disabled
|
||||
Address bridges[ZT_MAX_NETWORK_SPECIALISTS],multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS];
|
||||
unsigned int bridgeCount = 0,multicastReplicatorCount = 0;
|
||||
|
||||
Address specialists[ZT_MAX_NETWORK_SPECIALISTS],multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS];
|
||||
unsigned int specialistCount = 0,multicastReplicatorCount = 0,bridgeCount = 0;
|
||||
bool amMulticastReplicator = false;
|
||||
for(unsigned int i=0;i<config.specialistCount;++i) {
|
||||
if ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
|
||||
bridges[bridgeCount++] = config.specialists[i];
|
||||
if ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_MULTICAST_REPLICATOR) != 0)
|
||||
multicastReplicators[multicastReplicatorCount++] = config.specialists[i];
|
||||
if (RR->identity.address() == config.specialists[i]) {
|
||||
amMulticastReplicator |= ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_MULTICAST_REPLICATOR) != 0);
|
||||
} else {
|
||||
specialists[specialistCount++] = config.specialists[i];
|
||||
if ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0) {
|
||||
recipients.push_back(std::pair<int64_t,Address>(0,config.specialists[i]));
|
||||
++bridgeCount;
|
||||
} if ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_MULTICAST_REPLICATOR) != 0) {
|
||||
multicastReplicators[multicastReplicatorCount++] = config.specialists[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
std::sort(&(specialists[0]),&(specialists[specialistCount])); // for binary search
|
||||
|
||||
std::vector< std::pair<int64_t,Address> > recipients;
|
||||
bool needMoar = false;
|
||||
for(unsigned int i=0;i<bridgeCount;++i)
|
||||
recipients.push_back(std::pair<int64_t,Address>(9223372036854775807LL,bridges[i]));
|
||||
int64_t lastGather = 0;
|
||||
_K groupKey(network->id(),mg);
|
||||
{
|
||||
Mutex::Lock l2(_groups_l);
|
||||
_getMembersByTime(network->id(),mg,recipients);
|
||||
}
|
||||
std::sort(recipients.begin() + bridgeCount,recipients.end(),std::greater< std::pair<int64_t,Address> >());
|
||||
recipients.erase(std::unique(recipients.begin(),recipients.end()),recipients.end());
|
||||
if (recipients.size() > config.multicastLimit) {
|
||||
recipients.resize(config.multicastLimit);
|
||||
} else if (recipients.size() < config.multicastLimit) {
|
||||
needMoar = true;
|
||||
}
|
||||
|
||||
_txQueue_l.lock();
|
||||
_OM *om = &(_txQueue[_txQueuePtr++ % ZT_TX_QUEUE_SIZE]);
|
||||
Mutex::Lock ql(om->lock);
|
||||
_txQueue_l.unlock();
|
||||
|
||||
om->nwid = network->id();
|
||||
om->src = src;
|
||||
om->mg = mg;
|
||||
om->etherType = etherType;
|
||||
om->dataSize = len;
|
||||
memcpy(om->data,data,len);
|
||||
|
||||
if (existingBloom) {
|
||||
om->bloomFilterMultiplier = existingBloomMultiplier;
|
||||
memcpy(om->bloomFilter,existingBloom,sizeof(om->bloomFilter));
|
||||
} else {
|
||||
om->bloomFilterMultiplier = 1;
|
||||
memset(om->bloomFilter,0,sizeof(om->bloomFilter));
|
||||
|
||||
if (recipients.size() > 1) {
|
||||
unsigned int mult = 1;
|
||||
unsigned int bestMultColl = 0xffffffff;
|
||||
for(int k=0;k<16;++k) { // 16 == arbitrary limit on iterations for this search, also must be <= size of PRIMES
|
||||
unsigned int coll = 0;
|
||||
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());r!=recipients.end();++r) {
|
||||
const unsigned int bfi = mult * (unsigned int)r->second.toInt();
|
||||
const unsigned int byte = (bfi >> 3) % sizeof(om->bloomFilter);
|
||||
const uint8_t bit = 1 << (bfi & 7);
|
||||
coll += ((om->bloomFilter[byte] & bit) != 0);
|
||||
om->bloomFilter[byte] |= bit;
|
||||
}
|
||||
memset(om->bloomFilter,0,sizeof(om->bloomFilter));
|
||||
|
||||
if (coll <= bestMultColl) {
|
||||
om->bloomFilterMultiplier = mult;
|
||||
if (coll == 0) // perfect score, no need to continue searching
|
||||
break;
|
||||
bestMultColl = coll;
|
||||
}
|
||||
|
||||
mult = PRIMES[k];
|
||||
Mutex::Lock l(_groups_l);
|
||||
const _G *const g = _groups.get(groupKey);
|
||||
if (g) {
|
||||
lastGather = g->lastGather;
|
||||
recipients.reserve(recipients.size() + g->members.size());
|
||||
Hashtable< Address,int64_t >::Iterator mi(const_cast<_G *>(g)->members);
|
||||
Address *mik = nullptr;
|
||||
int64_t *miv = nullptr;
|
||||
while (mi.next(mik,miv)) {
|
||||
if (!std::binary_search(&(specialists[0]),&(specialists[specialistCount]),*mik))
|
||||
recipients.push_back(std::pair<int64_t,Address>(*miv,*mik));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (multicastReplicatorCount > 0) {
|
||||
// SEND
|
||||
return;
|
||||
// Sort recipients, maintaining bridges first in list
|
||||
std::sort(recipients.begin() + bridgeCount,recipients.end(),std::greater< std::pair<int64_t,Address> >());
|
||||
|
||||
// Gather new recipients periodically, being more aggressive if we have none.
|
||||
if ((now - lastGather) > (recipients.empty() ? 5000 : ZT_MULTICAST_GATHER_PERIOD)) {
|
||||
{
|
||||
Mutex::Lock l(_groups_l);
|
||||
_groups[groupKey].lastGather = now;
|
||||
}
|
||||
|
||||
Packet outp(network->controller(),RR->identity.address(),Packet::VERB_MULTICAST_GATHER);
|
||||
outp.append(network->id());
|
||||
outp.append((uint8_t)0);
|
||||
mg.mac().appendTo(outp);
|
||||
outp.append(mg.adi());
|
||||
outp.append((uint32_t)0xffffffff);
|
||||
RR->sw->send(tPtr,outp,true);
|
||||
|
||||
for(unsigned int i=0;i<specialistCount;++i) {
|
||||
outp.newInitializationVector();
|
||||
outp.setDestination(specialists[i]);
|
||||
RR->sw->send(tPtr,outp,true);
|
||||
}
|
||||
|
||||
// LEGACY: roots may know about older versions' multicast subscriptions but
|
||||
// the root's role here is being phased out.
|
||||
SharedPtr<Peer> root(RR->topology->root(now));
|
||||
if (root) {
|
||||
outp.newInitializationVector();
|
||||
outp.setDestination(root->address());
|
||||
outp.armor(root->key(),true);
|
||||
root->sendDirect(tPtr,outp.data(),outp.size(),now,true);
|
||||
}
|
||||
}
|
||||
|
||||
SharedPtr<Peer> nextHops[2]; // these by definition are protocol version >= 11
|
||||
unsigned int nextHopsBestLatency[2] = { 0xffff,0xffff };
|
||||
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());r!=recipients.end();++r) {
|
||||
const unsigned int bfi = om->bloomFilterMultiplier * (unsigned int)r->second.toInt();
|
||||
const unsigned int bfbyte = (bfi >> 3) % sizeof(om->bloomFilter);
|
||||
const uint8_t bfbit = 1 << (bfi & 7);
|
||||
if ((om->bloomFilter[bfbyte] & bfbit) != 0) {
|
||||
continue;
|
||||
} else {
|
||||
SharedPtr<Peer> peer(RR->topology->get(r->second));
|
||||
if (peer) {
|
||||
if (peer->remoteVersionProtocol() < 11) {
|
||||
// SEND
|
||||
if (recipients.empty())
|
||||
return 0;
|
||||
|
||||
om->bloomFilter[bfbyte] |= bfbit;
|
||||
continue;
|
||||
} else {
|
||||
unsigned int sentCount = 0;
|
||||
|
||||
uint64_t bloomFilter[ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS / 64];
|
||||
unsigned int bloomMultiplier;
|
||||
if (existingBloom) {
|
||||
memcpy(bloomFilter,existingBloom,sizeof(bloomFilter));
|
||||
bloomMultiplier = existingBloomMultiplier;
|
||||
} else {
|
||||
memset(bloomFilter,0,sizeof(bloomFilter));
|
||||
bloomMultiplier = 1;
|
||||
|
||||
// Iteratively search for a bloom multiplier that results in no collisions
|
||||
// among known recipients. Usually the first iteration is good unless
|
||||
// the recipient set is quite large.
|
||||
if (recipients.size() > 1) {
|
||||
unsigned long bestMultColl = 0xffffffff;
|
||||
for(int k=0;k<16;++k) { // 16 == arbitrary limit on iterations for this search, also must be <= size of PRIMES
|
||||
const unsigned int mult = PRIMES[k];
|
||||
unsigned long coll = 0;
|
||||
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());r!=recipients.end();++r) {
|
||||
const unsigned int bfi = mult * (unsigned int)r->second.toInt();
|
||||
const unsigned int byte = (bfi >> 3) % sizeof(bloomFilter);
|
||||
const uint8_t bit = 1 << (bfi & 7);
|
||||
coll += ((((uint8_t *)bloomFilter)[byte] & bit) != 0);
|
||||
((uint8_t *)bloomFilter)[byte] |= bit;
|
||||
}
|
||||
memset(bloomFilter,0,sizeof(bloomFilter));
|
||||
|
||||
if (coll <= bestMultColl) {
|
||||
bloomMultiplier = mult;
|
||||
if (coll == 0) // perfect score, no need to continue searching
|
||||
break;
|
||||
bestMultColl = coll;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See if there is a multicast replicator, trying to pick the fastest/best one.
|
||||
Address bestReplicator;
|
||||
if (multicastReplicatorCount > 0) {
|
||||
unsigned int bestReplicatorLatency = 0xffff;
|
||||
for(unsigned int i=0;i<multicastReplicatorCount;++i) {
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)multicastReplicators[i].toInt();
|
||||
if ((((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] & (1 << (bfi & 7))) == 0) {
|
||||
SharedPtr<Peer> peer(RR->topology->get(multicastReplicators[i]));
|
||||
if (peer) {
|
||||
const unsigned int lat = peer->latency(now);
|
||||
if (lat <= bestReplicatorLatency) {
|
||||
bestReplicator = peer->address();
|
||||
bestReplicatorLatency = lat;
|
||||
}
|
||||
} else if (!bestReplicator) {
|
||||
bestReplicator = multicastReplicators[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If this is a multicast replicator, aggressively replicate. Multicast
|
||||
// replicators are not subject to send count limits.
|
||||
if (amMulticastReplicator) {
|
||||
std::vector< std::pair< int,Address > > byLatency;
|
||||
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());r!=recipients.end();++r) {
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)r->second.toInt();
|
||||
if ((((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] & (1 << (bfi & 7))) == 0) {
|
||||
SharedPtr<Peer> peer(RR->topology->get(r->second));
|
||||
byLatency.push_back(std::pair< int,Address >((peer) ? (int)peer->latency(now) : 0xffff,r->second));
|
||||
}
|
||||
}
|
||||
std::sort(byLatency.begin(),byLatency.end());
|
||||
|
||||
unsigned long cnt = byLatency.size();
|
||||
if (bestReplicator)
|
||||
cnt /= 2; // send to only the best half of the latency-sorted population if there are more replicators
|
||||
for(unsigned long i=0;i<cnt;++i) {
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)byLatency[i].second.toInt();
|
||||
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
|
||||
|
||||
Packet outp(byLatency[i].second,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
|
||||
outp.append(network->id());
|
||||
outp.append((uint8_t)0x04);
|
||||
src.appendTo(outp);
|
||||
mg.mac().appendTo(outp);
|
||||
outp.append(mg.adi());
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
outp.compress();
|
||||
RR->sw->send(tPtr,outp,true);
|
||||
|
||||
++sentCount;
|
||||
}
|
||||
}
|
||||
|
||||
// Forward to the next multicast replicator, if any.
|
||||
if (bestReplicator) {
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)bestReplicator.toInt();
|
||||
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
|
||||
|
||||
Packet outp(bestReplicator,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
|
||||
outp.append((uint8_t)(0x04 | 0x08));
|
||||
RR->identity.address().appendTo(outp);
|
||||
outp.append((uint16_t)bloomMultiplier);
|
||||
outp.append((uint16_t)sizeof(bloomFilter));
|
||||
outp.append(((uint8_t *)bloomFilter),sizeof(bloomFilter));
|
||||
src.appendTo(outp);
|
||||
mg.mac().appendTo(outp);
|
||||
outp.append(mg.adi());
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
outp.compress();
|
||||
RR->sw->send(tPtr,outp,true);
|
||||
|
||||
++sentCount;
|
||||
}
|
||||
|
||||
// If this is a multicast replicator, we've already replicated.
|
||||
if (amMulticastReplicator)
|
||||
return (unsigned int)recipients.size();
|
||||
|
||||
// Find the two best next hops (that have never seen this multicast)
|
||||
// that are newer version nodes.
|
||||
SharedPtr<Peer> nextHops[2];
|
||||
unsigned int nextHopsBestLatency[2] = { 0xffff,0xffff };
|
||||
for(std::vector< std::pair<int64_t,Address> >::iterator r(recipients.begin());r!=recipients.end();++r) {
|
||||
if (r->first >= 0) {
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)r->second.toInt();
|
||||
if ((((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] & (1 << (bfi & 7))) == 0) {
|
||||
const SharedPtr<Peer> peer(RR->topology->get(r->second));
|
||||
if ((peer)&&(peer->remoteVersionProtocol() >= 11)) {
|
||||
r->first = -1; // use this field now to flag as non-legacy
|
||||
const unsigned int lat = peer->latency(now);
|
||||
for(unsigned int nh=0;nh<2;++nh) {
|
||||
if (lat <= nextHopsBestLatency[nh]) {
|
||||
@ -151,17 +266,57 @@ void Multicaster::send(
|
||||
}
|
||||
}
|
||||
|
||||
// Set bits for next hops in bloom filter
|
||||
for(unsigned int nh=0;nh<2;++nh) {
|
||||
if (nextHops[nh]) {
|
||||
const unsigned int bfi = om->bloomFilterMultiplier * (unsigned int)nextHops[nh]->address().toInt();
|
||||
om->bloomFilter[(bfi >> 3) % sizeof(om->bloomFilter)] |= 1 << (bfi & 7);
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)nextHops[nh]->address().toInt();
|
||||
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
|
||||
++sentCount;
|
||||
}
|
||||
}
|
||||
|
||||
for(unsigned int nh=0;nh<2;++nh) {
|
||||
if (nextHops[nh]) {
|
||||
// Send to legacy peers and flag these in bloom filter
|
||||
const unsigned int limit = config.multicastLimit + bridgeCount;
|
||||
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());(r!=recipients.end())&&(sentCount<limit);++r) {
|
||||
if (r->first >= 0) {
|
||||
const unsigned int bfi = bloomMultiplier * (unsigned int)r->second.toInt();
|
||||
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
|
||||
|
||||
Packet outp(r->second,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
|
||||
outp.append(network->id());
|
||||
outp.append((uint8_t)0x04);
|
||||
src.appendTo(outp);
|
||||
mg.mac().appendTo(outp);
|
||||
outp.append(mg.adi());
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
outp.compress();
|
||||
RR->sw->send(tPtr,outp,true);
|
||||
|
||||
++sentCount;
|
||||
}
|
||||
}
|
||||
|
||||
// Send to next hops for P2P propagation
|
||||
for(unsigned int nh=0;nh<2;++nh) {
|
||||
if (nextHops[nh]) {
|
||||
Packet outp(nextHops[nh]->address(),RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
|
||||
outp.append((uint8_t)(0x04 | 0x08));
|
||||
RR->identity.address().appendTo(outp);
|
||||
outp.append((uint16_t)bloomMultiplier);
|
||||
outp.append((uint16_t)sizeof(bloomFilter));
|
||||
outp.append(((uint8_t *)bloomFilter),sizeof(bloomFilter));
|
||||
src.appendTo(outp);
|
||||
mg.mac().appendTo(outp);
|
||||
outp.append(mg.adi());
|
||||
outp.append((uint16_t)etherType);
|
||||
outp.append(data,len);
|
||||
outp.compress();
|
||||
RR->sw->send(tPtr,outp,true);
|
||||
}
|
||||
}
|
||||
|
||||
return (unsigned int)recipients.size();
|
||||
}
|
||||
|
||||
void Multicaster::clean(int64_t now)
|
||||
|
@ -30,8 +30,11 @@
|
||||
#include "SharedPtr.hpp"
|
||||
#include "Packet.hpp"
|
||||
|
||||
// Size in bits -- this is pretty close to the maximum allowed by the protocol
|
||||
#define ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS 16384
|
||||
// Size in bits -- do not change as this is about as large as we can support
|
||||
// This leaves room for up to 10000 MTU data (max supported MTU) and header
|
||||
// information in a maximum supported size packet. Note that data compression
|
||||
// will practically reduce this size in transit for sparse or saturated fields.
|
||||
#define ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS 50048
|
||||
|
||||
namespace ZeroTier {
|
||||
|
||||
@ -45,6 +48,44 @@ class Network;
|
||||
*/
|
||||
class Multicaster
|
||||
{
|
||||
private:
|
||||
// Composite key of network ID and multicast group
|
||||
struct _K
|
||||
{
|
||||
uint64_t nwid;
|
||||
MulticastGroup mg;
|
||||
|
||||
ZT_ALWAYS_INLINE _K() : nwid(0),mg() {}
|
||||
ZT_ALWAYS_INLINE _K(const uint64_t n,const MulticastGroup &g) : nwid(n),mg(g) {}
|
||||
ZT_ALWAYS_INLINE bool operator==(const _K &k) const { return ((nwid == k.nwid)&&(mg == k.mg)); }
|
||||
ZT_ALWAYS_INLINE bool operator!=(const _K &k) const { return ((nwid != k.nwid)||(mg != k.mg)); }
|
||||
ZT_ALWAYS_INLINE unsigned long hashCode() const { return (mg.hashCode() ^ (unsigned long)(nwid ^ (nwid >> 32))); }
|
||||
};
|
||||
|
||||
// Multicast group info
|
||||
struct _G
|
||||
{
|
||||
ZT_ALWAYS_INLINE _G() : lastGather(0),members(16) {}
|
||||
int64_t lastGather;
|
||||
Hashtable< Address,int64_t > members;
|
||||
};
|
||||
|
||||
// Outbound multicast
|
||||
struct _OM
|
||||
{
|
||||
uint64_t nwid;
|
||||
MAC src;
|
||||
MulticastGroup mg;
|
||||
unsigned int etherType;
|
||||
unsigned int dataSize;
|
||||
unsigned int count;
|
||||
unsigned int limit;
|
||||
unsigned int bloomFilterMultiplier;
|
||||
uint64_t bloomFilter[ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS / 64];
|
||||
uint8_t data[ZT_MAX_MTU];
|
||||
Mutex lock;
|
||||
};
|
||||
|
||||
public:
|
||||
Multicaster(const RuntimeEnvironment *renv);
|
||||
~Multicaster();
|
||||
@ -60,7 +101,7 @@ public:
|
||||
ZT_ALWAYS_INLINE void add(const int64_t now,const uint64_t nwid,const MulticastGroup &mg,const Address &member)
|
||||
{
|
||||
Mutex::Lock l(_groups_l);
|
||||
_groups[_K(nwid,mg)].set(member,now);
|
||||
_groups[_K(nwid,mg)].members.set(member,now);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -80,9 +121,9 @@ public:
|
||||
{
|
||||
Mutex::Lock l(_groups_l);
|
||||
const uint8_t *a = (const uint8_t *)addresses;
|
||||
Hashtable< Address,int64_t > &members = _groups[_K(nwid,mg)];
|
||||
_G &g = _groups[_K(nwid,mg)];
|
||||
while (count--) {
|
||||
members.set(Address(a,ZT_ADDRESS_LENGTH),now);
|
||||
g.members.set(Address(a,ZT_ADDRESS_LENGTH),now);
|
||||
a += ZT_ADDRESS_LENGTH;
|
||||
}
|
||||
}
|
||||
@ -98,10 +139,10 @@ public:
|
||||
{
|
||||
Mutex::Lock l(_groups_l);
|
||||
const _K gk(nwid,mg);
|
||||
Hashtable< Address,int64_t > *const members = _groups.get(gk);
|
||||
if (members) {
|
||||
members->erase(member);
|
||||
if (members->empty())
|
||||
_G *const g = _groups.get(gk);
|
||||
if (g) {
|
||||
g->members.erase(member);
|
||||
if (g->members.empty())
|
||||
_groups.erase(gk);
|
||||
}
|
||||
}
|
||||
@ -121,8 +162,21 @@ public:
|
||||
ZT_ALWAYS_INLINE unsigned long eachMember(const uint64_t nwid,const MulticastGroup &mg,F func) const
|
||||
{
|
||||
std::vector< std::pair<int64_t,Address> > sortedByTime;
|
||||
Mutex::Lock l(_groups_l);
|
||||
_getMembersByTime(nwid,mg,sortedByTime);
|
||||
{
|
||||
Mutex::Lock l(_groups_l);
|
||||
const _K gk(nwid,mg);
|
||||
const _G *const g = _groups.get(gk);
|
||||
if (g) {
|
||||
sortedByTime.reserve(g->members.size());
|
||||
{
|
||||
Hashtable< Address,int64_t >::Iterator mi(const_cast<_G *>(g)->members);
|
||||
Address *mik = nullptr;
|
||||
int64_t *miv = nullptr;
|
||||
while (mi.next(mik,miv))
|
||||
sortedByTime.push_back(std::pair<int64_t,Address>(*miv,*mik));
|
||||
}
|
||||
}
|
||||
}
|
||||
std::sort(sortedByTime.begin(),sortedByTime.end());
|
||||
for(std::vector< std::pair<int64_t,Address> >::const_reverse_iterator i(sortedByTime.begin());i!=sortedByTime.end();++i) {
|
||||
if (!func(i->second))
|
||||
@ -144,8 +198,9 @@ public:
|
||||
* @param existingBloom Existing bloom filter or NULL if none
|
||||
* @param data Packet data
|
||||
* @param len Length of packet data
|
||||
* @return Number of known recipients for multicast (including bridges and replicators)
|
||||
*/
|
||||
void send(
|
||||
unsigned int send(
|
||||
void *tPtr,
|
||||
int64_t now,
|
||||
const SharedPtr<Network> &network,
|
||||
@ -166,74 +221,13 @@ public:
|
||||
void clean(int64_t now);
|
||||
|
||||
private:
|
||||
ZT_ALWAYS_INLINE void _getMembersByTime(const uint64_t nwid,const MulticastGroup &mg,std::vector< std::pair<int64_t,Address> > &byTime)
|
||||
{
|
||||
// assumes _groups_l is locked
|
||||
const _K gk(nwid,mg);
|
||||
const Hashtable< Address,int64_t > *const members = _groups.get(gk);
|
||||
if (members) {
|
||||
byTime.reserve(members->size());
|
||||
{
|
||||
Hashtable< Address,int64_t >::Iterator mi(*const_cast<Hashtable< Address,int64_t > *>(members));
|
||||
Address *mik = nullptr;
|
||||
int64_t *miv = nullptr;
|
||||
while (mi.next(mik,miv))
|
||||
byTime.push_back(std::pair<int64_t,Address>(*miv,*mik));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct _K
|
||||
{
|
||||
uint64_t nwid;
|
||||
MulticastGroup mg;
|
||||
|
||||
ZT_ALWAYS_INLINE _K() : nwid(0),mg() {}
|
||||
ZT_ALWAYS_INLINE _K(const uint64_t n,const MulticastGroup &g) : nwid(n),mg(g) {}
|
||||
ZT_ALWAYS_INLINE bool operator==(const _K &k) const { return ((nwid == k.nwid)&&(mg == k.mg)); }
|
||||
ZT_ALWAYS_INLINE bool operator!=(const _K &k) const { return ((nwid != k.nwid)||(mg != k.mg)); }
|
||||
ZT_ALWAYS_INLINE unsigned long hashCode() const { return (mg.hashCode() ^ (unsigned long)(nwid ^ (nwid >> 32))); }
|
||||
};
|
||||
|
||||
/*
|
||||
* Multicast frame:
|
||||
* <[8] 64-bit network ID>
|
||||
* <[1] flags>
|
||||
* [<[...] network certificate of membership (DEPRECATED)>]
|
||||
* [<[4] 32-bit implicit gather limit (DEPRECATED)>]
|
||||
* [<[5] ZeroTier address of originating sender (including w/0x08)>]
|
||||
* [<[2] 16-bit bloom filter multiplier>]
|
||||
* [<[2] 16-bit length of propagation bloom filter in bytes]
|
||||
* [<[...] propagation bloom filter>]
|
||||
* [<[6] source MAC>]
|
||||
* <[6] destination MAC (multicast address)>
|
||||
* <[4] 32-bit multicast ADI (multicast address extension)>
|
||||
* <[2] 16-bit ethertype>
|
||||
* <[...] ethernet payload>
|
||||
* [<[2] 16-bit length of signature>]
|
||||
* [<[...] signature (algorithm depends on sender identity)>]
|
||||
*/
|
||||
|
||||
struct _OM
|
||||
{
|
||||
uint64_t nwid;
|
||||
MAC src;
|
||||
MulticastGroup mg;
|
||||
unsigned int etherType;
|
||||
unsigned int dataSize;
|
||||
unsigned int bloomFilterMultiplier;
|
||||
uint8_t bloomFilter[ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS / 8];
|
||||
uint8_t data[ZT_MAX_MTU];
|
||||
Mutex lock;
|
||||
};
|
||||
|
||||
const RuntimeEnvironment *const RR;
|
||||
|
||||
_OM _txQueue[ZT_TX_QUEUE_SIZE];
|
||||
unsigned int _txQueuePtr;
|
||||
Mutex _txQueue_l;
|
||||
|
||||
Hashtable< _K,Hashtable< Address,int64_t > > _groups;
|
||||
Hashtable< _K,_G > _groups;
|
||||
Mutex _groups_l;
|
||||
};
|
||||
|
||||
|
@ -1065,6 +1065,43 @@ void Network::doPeriodicTasks(void *tPtr,const int64_t now)
|
||||
}
|
||||
}
|
||||
|
||||
void Network::learnBridgeRoute(const MAC &mac,const Address &addr)
|
||||
{
|
||||
Mutex::Lock _l(_remoteBridgeRoutes_l);
|
||||
_remoteBridgeRoutes[mac] = addr;
|
||||
|
||||
// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
|
||||
while (_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
|
||||
Hashtable< Address,unsigned long > counts;
|
||||
Address maxAddr;
|
||||
unsigned long maxCount = 0;
|
||||
|
||||
MAC *m = (MAC *)0;
|
||||
Address *a = (Address *)0;
|
||||
|
||||
// Find the address responsible for the most entries
|
||||
{
|
||||
Hashtable<MAC,Address>::Iterator i(_remoteBridgeRoutes);
|
||||
while (i.next(m,a)) {
|
||||
const unsigned long c = ++counts[*a];
|
||||
if (c > maxCount) {
|
||||
maxCount = c;
|
||||
maxAddr = *a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Kill this address from our table, since it's most likely spamming us
|
||||
{
|
||||
Hashtable<MAC,Address>::Iterator i(_remoteBridgeRoutes);
|
||||
while (i.next(m,a)) {
|
||||
if (*a == maxAddr)
|
||||
_remoteBridgeRoutes.erase(*m);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Membership::AddCredentialResult Network::addCredential(void *tPtr,const Address &sentFrom,const Revocation &rev)
|
||||
{
|
||||
if (rev.networkId() != _id)
|
||||
@ -1300,7 +1337,11 @@ void Network::_externalConfig(ZT_VirtualNetworkConfig *ec) const
|
||||
ec->type = (_config) ? (_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
|
||||
ec->mtu = (_config) ? _config.mtu : ZT_DEFAULT_MTU;
|
||||
ec->dhcp = 0;
|
||||
std::vector<Address> ab(_config.activeBridges());
|
||||
std::vector<Address> ab;
|
||||
for(unsigned int i=0;i<_config.specialistCount;++i) {
|
||||
if ((_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
|
||||
ab.push_back(Address(_config.specialists[i]));
|
||||
}
|
||||
ec->bridge = (std::find(ab.begin(),ab.end(),RR->identity.address()) != ab.end()) ? 1 : 0;
|
||||
ec->broadcastEnabled = (_config) ? (_config.enableBroadcast() ? 1 : 0) : 0;
|
||||
ec->portError = _portError;
|
||||
|
103
node/Network.hpp
103
node/Network.hpp
@ -80,14 +80,14 @@ public:
|
||||
|
||||
~Network();
|
||||
|
||||
inline uint64_t id() const { return _id; }
|
||||
inline Address controller() const { return Address(_id >> 24); }
|
||||
inline bool multicastEnabled() const { return (_config.multicastLimit > 0); }
|
||||
inline bool hasConfig() const { return (_config); }
|
||||
inline uint64_t lastConfigUpdate() const { return _lastConfigUpdate; }
|
||||
inline ZT_VirtualNetworkStatus status() const { return _status(); }
|
||||
inline const NetworkConfig &config() const { return _config; }
|
||||
inline const MAC &mac() const { return _mac; }
|
||||
ZT_ALWAYS_INLINE uint64_t id() const { return _id; }
|
||||
ZT_ALWAYS_INLINE Address controller() const { return Address(_id >> 24); }
|
||||
ZT_ALWAYS_INLINE bool multicastEnabled() const { return (_config.multicastLimit > 0); }
|
||||
ZT_ALWAYS_INLINE bool hasConfig() const { return (_config); }
|
||||
ZT_ALWAYS_INLINE uint64_t lastConfigUpdate() const { return _lastConfigUpdate; }
|
||||
ZT_ALWAYS_INLINE ZT_VirtualNetworkStatus status() const { return _status(); }
|
||||
ZT_ALWAYS_INLINE const NetworkConfig &config() const { return _config; }
|
||||
ZT_ALWAYS_INLINE const MAC &mac() const { return _mac; }
|
||||
|
||||
/**
|
||||
* Apply filters to an outgoing packet
|
||||
@ -159,7 +159,7 @@ public:
|
||||
* @param includeBridgedGroups If true, also check groups we've learned via bridging
|
||||
* @return True if this network endpoint / peer is a member
|
||||
*/
|
||||
inline bool subscribedToMulticastGroup(const MulticastGroup &mg,const bool includeBridgedGroups) const
|
||||
ZT_ALWAYS_INLINE bool subscribedToMulticastGroup(const MulticastGroup &mg,const bool includeBridgedGroups) const
|
||||
{
|
||||
Mutex::Lock l(_myMulticastGroups_l);
|
||||
if (std::binary_search(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg))
|
||||
@ -175,7 +175,7 @@ public:
|
||||
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
||||
* @param mg New multicast group
|
||||
*/
|
||||
inline void multicastSubscribe(void *tPtr,const MulticastGroup &mg)
|
||||
ZT_ALWAYS_INLINE void multicastSubscribe(void *tPtr,const MulticastGroup &mg)
|
||||
{
|
||||
Mutex::Lock l(_myMulticastGroups_l);
|
||||
if (!std::binary_search(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg)) {
|
||||
@ -190,7 +190,7 @@ public:
|
||||
*
|
||||
* @param mg Multicast group
|
||||
*/
|
||||
inline void multicastUnsubscribe(const MulticastGroup &mg)
|
||||
ZT_ALWAYS_INLINE void multicastUnsubscribe(const MulticastGroup &mg)
|
||||
{
|
||||
Mutex::Lock l(_myMulticastGroups_l);
|
||||
std::vector<MulticastGroup>::iterator i(std::lower_bound(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg));
|
||||
@ -231,12 +231,12 @@ public:
|
||||
/**
|
||||
* Set netconf failure to 'access denied' -- called in IncomingPacket when controller reports this
|
||||
*/
|
||||
inline void setAccessDenied() { _netconfFailure = NETCONF_FAILURE_ACCESS_DENIED; }
|
||||
ZT_ALWAYS_INLINE void setAccessDenied() { _netconfFailure = NETCONF_FAILURE_ACCESS_DENIED; }
|
||||
|
||||
/**
|
||||
* Set netconf failure to 'not found' -- called by IncomingPacket when controller reports this
|
||||
*/
|
||||
inline void setNotFound() { _netconfFailure = NETCONF_FAILURE_NOT_FOUND; }
|
||||
ZT_ALWAYS_INLINE void setNotFound() { _netconfFailure = NETCONF_FAILURE_NOT_FOUND; }
|
||||
|
||||
/**
|
||||
* Determine whether this peer is permitted to communicate on this network
|
||||
@ -257,7 +257,7 @@ public:
|
||||
* @param mac MAC address
|
||||
* @return ZeroTier address of bridge to this MAC
|
||||
*/
|
||||
inline Address findBridgeTo(const MAC &mac) const
|
||||
ZT_ALWAYS_INLINE Address findBridgeTo(const MAC &mac) const
|
||||
{
|
||||
Mutex::Lock _l(_remoteBridgeRoutes_l);
|
||||
const Address *const br = _remoteBridgeRoutes.get(mac);
|
||||
@ -275,42 +275,7 @@ public:
|
||||
* @param mac MAC address of destination
|
||||
* @param addr Bridge this MAC is reachable behind
|
||||
*/
|
||||
inline void learnBridgeRoute(const MAC &mac,const Address &addr)
|
||||
{
|
||||
Mutex::Lock _l(_remoteBridgeRoutes_l);
|
||||
_remoteBridgeRoutes[mac] = addr;
|
||||
|
||||
// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
|
||||
while (_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
|
||||
Hashtable< Address,unsigned long > counts;
|
||||
Address maxAddr;
|
||||
unsigned long maxCount = 0;
|
||||
|
||||
MAC *m = (MAC *)0;
|
||||
Address *a = (Address *)0;
|
||||
|
||||
// Find the address responsible for the most entries
|
||||
{
|
||||
Hashtable<MAC,Address>::Iterator i(_remoteBridgeRoutes);
|
||||
while (i.next(m,a)) {
|
||||
const unsigned long c = ++counts[*a];
|
||||
if (c > maxCount) {
|
||||
maxCount = c;
|
||||
maxAddr = *a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Kill this address from our table, since it's most likely spamming us
|
||||
{
|
||||
Hashtable<MAC,Address>::Iterator i(_remoteBridgeRoutes);
|
||||
while (i.next(m,a)) {
|
||||
if (*a == maxAddr)
|
||||
_remoteBridgeRoutes.erase(*m);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void learnBridgeRoute(const MAC &mac,const Address &addr);
|
||||
|
||||
/**
|
||||
* Learn a multicast group that is bridged to our tap device
|
||||
@ -319,7 +284,7 @@ public:
|
||||
* @param mg Multicast group
|
||||
* @param now Current time
|
||||
*/
|
||||
inline void learnBridgedMulticastGroup(void *tPtr,const MulticastGroup &mg,int64_t now)
|
||||
ZT_ALWAYS_INLINE void learnBridgedMulticastGroup(void *tPtr,const MulticastGroup &mg,int64_t now)
|
||||
{
|
||||
Mutex::Lock l(_myMulticastGroups_l);
|
||||
_multicastGroupsBehindMe.set(mg,now);
|
||||
@ -328,7 +293,7 @@ public:
|
||||
/**
|
||||
* Validate a credential and learn it if it passes certificate and other checks
|
||||
*/
|
||||
Membership::AddCredentialResult addCredential(void *tPtr,const CertificateOfMembership &com)
|
||||
ZT_ALWAYS_INLINE Membership::AddCredentialResult addCredential(void *tPtr,const CertificateOfMembership &com)
|
||||
{
|
||||
if (com.networkId() != _id)
|
||||
return Membership::ADD_REJECTED;
|
||||
@ -339,7 +304,7 @@ public:
|
||||
/**
|
||||
* Validate a credential and learn it if it passes certificate and other checks
|
||||
*/
|
||||
inline Membership::AddCredentialResult addCredential(void *tPtr,const Capability &cap)
|
||||
ZT_ALWAYS_INLINE Membership::AddCredentialResult addCredential(void *tPtr,const Capability &cap)
|
||||
{
|
||||
if (cap.networkId() != _id)
|
||||
return Membership::ADD_REJECTED;
|
||||
@ -350,7 +315,7 @@ public:
|
||||
/**
|
||||
* Validate a credential and learn it if it passes certificate and other checks
|
||||
*/
|
||||
inline Membership::AddCredentialResult addCredential(void *tPtr,const Tag &tag)
|
||||
ZT_ALWAYS_INLINE Membership::AddCredentialResult addCredential(void *tPtr,const Tag &tag)
|
||||
{
|
||||
if (tag.networkId() != _id)
|
||||
return Membership::ADD_REJECTED;
|
||||
@ -366,7 +331,7 @@ public:
|
||||
/**
|
||||
* Validate a credential and learn it if it passes certificate and other checks
|
||||
*/
|
||||
inline Membership::AddCredentialResult addCredential(void *tPtr,const CertificateOfOwnership &coo)
|
||||
ZT_ALWAYS_INLINE Membership::AddCredentialResult addCredential(void *tPtr,const CertificateOfOwnership &coo)
|
||||
{
|
||||
if (coo.networkId() != _id)
|
||||
return Membership::ADD_REJECTED;
|
||||
@ -381,7 +346,7 @@ public:
|
||||
* @param to Destination peer address
|
||||
* @param now Current time
|
||||
*/
|
||||
inline void pushCredentialsNow(void *tPtr,const Address &to,const int64_t now)
|
||||
ZT_ALWAYS_INLINE void pushCredentialsNow(void *tPtr,const Address &to,const int64_t now)
|
||||
{
|
||||
Mutex::Lock _l(_memberships_l);
|
||||
_memberships[to].pushCredentials(RR,tPtr,now,to,_config);
|
||||
@ -394,7 +359,7 @@ public:
|
||||
* @param to Destination peer address
|
||||
* @param now Current time
|
||||
*/
|
||||
inline void pushCredentialsIfNeeded(void *tPtr,const Address &to,const int64_t now)
|
||||
ZT_ALWAYS_INLINE void pushCredentialsIfNeeded(void *tPtr,const Address &to,const int64_t now)
|
||||
{
|
||||
const int64_t tout = std::min(_config.credentialTimeMaxDelta,(int64_t)ZT_PEER_ACTIVITY_TIMEOUT);
|
||||
Mutex::Lock _l(_memberships_l);
|
||||
@ -409,7 +374,7 @@ public:
|
||||
* This sets the network to completely remove itself on delete. This also prevents the
|
||||
* call of the normal port shutdown event on delete.
|
||||
*/
|
||||
inline void destroy()
|
||||
ZT_ALWAYS_INLINE void destroy()
|
||||
{
|
||||
_memberships_l.lock();
|
||||
_config_l.lock();
|
||||
@ -423,16 +388,34 @@ public:
|
||||
*
|
||||
* @param ec Buffer to fill with externally-visible network configuration
|
||||
*/
|
||||
inline void externalConfig(ZT_VirtualNetworkConfig *ec) const
|
||||
ZT_ALWAYS_INLINE void externalConfig(ZT_VirtualNetworkConfig *ec) const
|
||||
{
|
||||
Mutex::Lock _l(_config_l);
|
||||
_externalConfig(ec);
|
||||
}
|
||||
|
||||
/**
|
||||
* Iterate through memberships
|
||||
*
|
||||
* @param f Function of (const Address,const Membership)
|
||||
*/
|
||||
template<typename F>
|
||||
ZT_ALWAYS_INLINE void eachMember(F f)
|
||||
{
|
||||
Mutex::Lock ml(_memberships_l);
|
||||
Hashtable<Address,Membership>::Iterator i(_memberships);
|
||||
const Address *a = nullptr;
|
||||
const Membership *m = nullptr;
|
||||
while (i.next(a,m)) {
|
||||
if (!f(*a,*m))
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Externally usable pointer-to-pointer exported via the core API
|
||||
*/
|
||||
inline void **userPtr() { return &_uPtr; }
|
||||
ZT_ALWAYS_INLINE void **userPtr() { return &_uPtr; }
|
||||
|
||||
private:
|
||||
void _requestConfiguration(void *tPtr);
|
||||
|
@ -683,7 +683,7 @@ public:
|
||||
/**
|
||||
* Request endpoints for multicast distribution:
|
||||
* <[8] 64-bit network ID>
|
||||
* <[1] flags>
|
||||
* <[1] flags (unused, must be 0)>
|
||||
* <[6] MAC address of multicast group being queried>
|
||||
* <[4] 32-bit ADI for multicast group being queried>
|
||||
* <[4] 32-bit requested max number of multicast peers>
|
||||
|
@ -280,6 +280,12 @@ public:
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
static ZT_ALWAYS_INLINE unsigned int countBits(const uint8_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
|
||||
static ZT_ALWAYS_INLINE unsigned int countBits(const uint16_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
|
||||
static ZT_ALWAYS_INLINE unsigned int countBits(const uint32_t v) { return (unsigned int)__builtin_popcountl((unsigned long)v); }
|
||||
static ZT_ALWAYS_INLINE unsigned int countBits(const uint64_t v) { return (unsigned int)__builtin_popcountll((unsigned long long)v); }
|
||||
#else
|
||||
/**
|
||||
* Count the number of bits set in an integer
|
||||
*
|
||||
@ -287,15 +293,16 @@ public:
|
||||
* @return Number of bits set in this integer (0-bits in integer)
|
||||
*/
|
||||
template<typename T>
|
||||
static ZT_ALWAYS_INLINE uint64_t countBits(T v)
|
||||
static ZT_ALWAYS_INLINE unsigned int countBits(T v)
|
||||
{
|
||||
v = v - ((v >> 1) & (T)~(T)0/3);
|
||||
v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3);
|
||||
v = (v + (v >> 4)) & (T)~(T)0/255*15;
|
||||
return (T)(v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8);
|
||||
return (unsigned int)((v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8));
|
||||
}
|
||||
#endif
|
||||
|
||||
// Byte swappers for big/little endian conversion
|
||||
// Byte swappers for big/little endian conversion
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
static ZT_ALWAYS_INLINE uint8_t hton(uint8_t n) { return n; }
|
||||
static ZT_ALWAYS_INLINE int8_t hton(int8_t n) { return n; }
|
||||
|
Loading…
Reference in New Issue
Block a user