ZeroTierOne/node/Multicaster.cpp
2019-09-10 16:20:28 -07:00

327 lines
11 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <algorithm>
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Multicaster.hpp"
#include "Network.hpp"
#include "Membership.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
namespace ZeroTier {
Multicaster::Multicaster(const RuntimeEnvironment *renv) :
RR(renv),
_groups(32) {}
Multicaster::~Multicaster() {}
unsigned int Multicaster::send(
void *tPtr,
int64_t now,
const SharedPtr<Network> &network,
const MulticastGroup &mg,
const MAC &src,
unsigned int etherType,
const unsigned int existingBloomMultiplier,
const uint8_t existingBloom[ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS / 8],
const void *const data,
unsigned int len)
{
static const unsigned int PRIMES[16] = { 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59 }; // 2 is skipped as it's even
std::vector< std::pair<int64_t,Address> > recipients;
const NetworkConfig &config = network->config();
if (config.multicastLimit == 0) return; // multicast disabled
Address specialists[ZT_MAX_NETWORK_SPECIALISTS],multicastReplicators[ZT_MAX_NETWORK_SPECIALISTS];
unsigned int specialistCount = 0,multicastReplicatorCount = 0,bridgeCount = 0;
bool amMulticastReplicator = false;
for(unsigned int i=0;i<config.specialistCount;++i) {
if (RR->identity.address() == config.specialists[i]) {
amMulticastReplicator |= ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_MULTICAST_REPLICATOR) != 0);
} else {
specialists[specialistCount++] = config.specialists[i];
if ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0) {
recipients.push_back(std::pair<int64_t,Address>(0,config.specialists[i]));
++bridgeCount;
} if ((config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_MULTICAST_REPLICATOR) != 0) {
multicastReplicators[multicastReplicatorCount++] = config.specialists[i];
}
}
}
std::sort(&(specialists[0]),&(specialists[specialistCount])); // for binary search
int64_t lastGather = 0;
_K groupKey(network->id(),mg);
{
Mutex::Lock l(_groups_l);
const _G *const g = _groups.get(groupKey);
if (g) {
lastGather = g->lastGather;
recipients.reserve(recipients.size() + g->members.size());
Hashtable< Address,int64_t >::Iterator mi(const_cast<_G *>(g)->members);
Address *mik = nullptr;
int64_t *miv = nullptr;
while (mi.next(mik,miv)) {
if (!std::binary_search(&(specialists[0]),&(specialists[specialistCount]),*mik))
recipients.push_back(std::pair<int64_t,Address>(*miv,*mik));
}
}
}
// Sort recipients, maintaining bridges first in list
std::sort(recipients.begin() + bridgeCount,recipients.end(),std::greater< std::pair<int64_t,Address> >());
// Gather new recipients periodically, being more aggressive if we have none.
if ((now - lastGather) > (recipients.empty() ? 5000 : ZT_MULTICAST_GATHER_PERIOD)) {
{
Mutex::Lock l(_groups_l);
_groups[groupKey].lastGather = now;
}
Packet outp(network->controller(),RR->identity.address(),Packet::VERB_MULTICAST_GATHER);
outp.append(network->id());
outp.append((uint8_t)0);
mg.mac().appendTo(outp);
outp.append(mg.adi());
outp.append((uint32_t)0xffffffff);
RR->sw->send(tPtr,outp,true);
for(unsigned int i=0;i<specialistCount;++i) {
outp.newInitializationVector();
outp.setDestination(specialists[i]);
RR->sw->send(tPtr,outp,true);
}
// LEGACY: roots may know about older versions' multicast subscriptions but
// the root's role here is being phased out.
SharedPtr<Peer> root(RR->topology->root(now));
if (root) {
outp.newInitializationVector();
outp.setDestination(root->address());
outp.armor(root->key(),true);
root->sendDirect(tPtr,outp.data(),outp.size(),now,true);
}
}
if (recipients.empty())
return 0;
unsigned int sentCount = 0;
uint64_t bloomFilter[ZT_MULTICAST_BLOOM_FILTER_SIZE_BITS / 64];
unsigned int bloomMultiplier;
if (existingBloom) {
memcpy(bloomFilter,existingBloom,sizeof(bloomFilter));
bloomMultiplier = existingBloomMultiplier;
} else {
memset(bloomFilter,0,sizeof(bloomFilter));
bloomMultiplier = 1;
// Iteratively search for a bloom multiplier that results in no collisions
// among known recipients. Usually the first iteration is good unless
// the recipient set is quite large.
if (recipients.size() > 1) {
unsigned long bestMultColl = 0xffffffff;
for(int k=0;k<16;++k) { // 16 == arbitrary limit on iterations for this search, also must be <= size of PRIMES
const unsigned int mult = PRIMES[k];
unsigned long coll = 0;
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());r!=recipients.end();++r) {
const unsigned int bfi = mult * (unsigned int)r->second.toInt();
const unsigned int byte = (bfi >> 3) % sizeof(bloomFilter);
const uint8_t bit = 1 << (bfi & 7);
coll += ((((uint8_t *)bloomFilter)[byte] & bit) != 0);
((uint8_t *)bloomFilter)[byte] |= bit;
}
memset(bloomFilter,0,sizeof(bloomFilter));
if (coll <= bestMultColl) {
bloomMultiplier = mult;
if (coll == 0) // perfect score, no need to continue searching
break;
bestMultColl = coll;
}
}
}
}
// See if there is a multicast replicator, trying to pick the fastest/best one.
Address bestReplicator;
if (multicastReplicatorCount > 0) {
unsigned int bestReplicatorLatency = 0xffff;
for(unsigned int i=0;i<multicastReplicatorCount;++i) {
const unsigned int bfi = bloomMultiplier * (unsigned int)multicastReplicators[i].toInt();
if ((((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] & (1 << (bfi & 7))) == 0) {
SharedPtr<Peer> peer(RR->topology->get(multicastReplicators[i]));
if (peer) {
const unsigned int lat = peer->latency(now);
if (lat <= bestReplicatorLatency) {
bestReplicator = peer->address();
bestReplicatorLatency = lat;
}
} else if (!bestReplicator) {
bestReplicator = multicastReplicators[i];
}
}
}
}
// If this is a multicast replicator, aggressively replicate. Multicast
// replicators are not subject to send count limits.
if (amMulticastReplicator) {
std::vector< std::pair< int,Address > > byLatency;
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());r!=recipients.end();++r) {
const unsigned int bfi = bloomMultiplier * (unsigned int)r->second.toInt();
if ((((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] & (1 << (bfi & 7))) == 0) {
SharedPtr<Peer> peer(RR->topology->get(r->second));
byLatency.push_back(std::pair< int,Address >((peer) ? (int)peer->latency(now) : 0xffff,r->second));
}
}
std::sort(byLatency.begin(),byLatency.end());
unsigned long cnt = byLatency.size();
if (bestReplicator)
cnt /= 2; // send to only the best half of the latency-sorted population if there are more replicators
for(unsigned long i=0;i<cnt;++i) {
const unsigned int bfi = bloomMultiplier * (unsigned int)byLatency[i].second.toInt();
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
Packet outp(byLatency[i].second,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
outp.append(network->id());
outp.append((uint8_t)0x04);
src.appendTo(outp);
mg.mac().appendTo(outp);
outp.append(mg.adi());
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
RR->sw->send(tPtr,outp,true);
++sentCount;
}
}
// Forward to the next multicast replicator, if any.
if (bestReplicator) {
const unsigned int bfi = bloomMultiplier * (unsigned int)bestReplicator.toInt();
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
Packet outp(bestReplicator,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
outp.append((uint8_t)(0x04 | 0x08));
RR->identity.address().appendTo(outp);
outp.append((uint16_t)bloomMultiplier);
outp.append((uint16_t)sizeof(bloomFilter));
outp.append(((uint8_t *)bloomFilter),sizeof(bloomFilter));
src.appendTo(outp);
mg.mac().appendTo(outp);
outp.append(mg.adi());
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
RR->sw->send(tPtr,outp,true);
++sentCount;
}
// If this is a multicast replicator, we've already replicated.
if (amMulticastReplicator)
return (unsigned int)recipients.size();
// Find the two best next hops (that have never seen this multicast)
// that are newer version nodes.
SharedPtr<Peer> nextHops[2];
unsigned int nextHopsBestLatency[2] = { 0xffff,0xffff };
for(std::vector< std::pair<int64_t,Address> >::iterator r(recipients.begin());r!=recipients.end();++r) {
if (r->first >= 0) {
const unsigned int bfi = bloomMultiplier * (unsigned int)r->second.toInt();
if ((((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] & (1 << (bfi & 7))) == 0) {
const SharedPtr<Peer> peer(RR->topology->get(r->second));
if ((peer)&&(peer->remoteVersionProtocol() >= 11)) {
r->first = -1; // use this field now to flag as non-legacy
const unsigned int lat = peer->latency(now);
for(unsigned int nh=0;nh<2;++nh) {
if (lat <= nextHopsBestLatency[nh]) {
nextHopsBestLatency[nh] = lat;
nextHops[nh] = peer;
break;
}
}
}
}
}
}
// Set bits for next hops in bloom filter
for(unsigned int nh=0;nh<2;++nh) {
if (nextHops[nh]) {
const unsigned int bfi = bloomMultiplier * (unsigned int)nextHops[nh]->address().toInt();
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
++sentCount;
}
}
// Send to legacy peers and flag these in bloom filter
const unsigned int limit = config.multicastLimit + bridgeCount;
for(std::vector< std::pair<int64_t,Address> >::const_iterator r(recipients.begin());(r!=recipients.end())&&(sentCount<limit);++r) {
if (r->first >= 0) {
const unsigned int bfi = bloomMultiplier * (unsigned int)r->second.toInt();
((uint8_t *)bloomFilter)[(bfi >> 3) % sizeof(bloomFilter)] |= 1 << (bfi & 7);
Packet outp(r->second,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
outp.append(network->id());
outp.append((uint8_t)0x04);
src.appendTo(outp);
mg.mac().appendTo(outp);
outp.append(mg.adi());
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
RR->sw->send(tPtr,outp,true);
++sentCount;
}
}
// Send to next hops for P2P propagation
for(unsigned int nh=0;nh<2;++nh) {
if (nextHops[nh]) {
Packet outp(nextHops[nh]->address(),RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
outp.append((uint8_t)(0x04 | 0x08));
RR->identity.address().appendTo(outp);
outp.append((uint16_t)bloomMultiplier);
outp.append((uint16_t)sizeof(bloomFilter));
outp.append(((uint8_t *)bloomFilter),sizeof(bloomFilter));
src.appendTo(outp);
mg.mac().appendTo(outp);
outp.append(mg.adi());
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
RR->sw->send(tPtr,outp,true);
}
}
return (unsigned int)recipients.size();
}
void Multicaster::clean(int64_t now)
{
}
} // namespace ZeroTier