feat: implement human/LLM dual-format databank architecture with Joplin integration\n\n- Restructure databank with collab/artifacts/human/llm top-level directories\n- Move CTO and COO directories under pmo/artifacts/ as requested\n- Create dual-format architecture for human-friendly markdown and LLM-optimized structured data\n- Add Joplin integration pipeline in databank/collab/fromjoplin/\n- Create intake system with templates, responses, and workflows\n- Add sample files demonstrating human/LLM format differences\n- Link to TSYSDevStack repository in main README\n- Update PMO structure to reflect CTO/COO under artifacts/\n- Add processing scripts and workflows for automated conversion\n- Maintain clear separation between editable collab/ and readonly databank/\n- Create comprehensive README documentation for new architecture\n- Ensure all changes align with single source of truth principle
Co-authored-by: Qwen-Coder <qwen-coder@alibabacloud.com>
This commit is contained in:
141
databank/collab/intake/workflows/PROCESSING_WORKFLOW.md
Normal file
141
databank/collab/intake/workflows/PROCESSING_WORKFLOW.md
Normal file
@@ -0,0 +1,141 @@
|
||||
# Intake Processing Workflow
|
||||
|
||||
## Overview
|
||||
|
||||
This workflow describes the process for converting intake responses into synchronized human and LLM formats.
|
||||
|
||||
## Workflow Steps
|
||||
|
||||
### 1. Response Collection
|
||||
- Receive completed intake templates
|
||||
- Validate completeness and basic formatting
|
||||
- Store in `responses/` directory with timestamp and identifier
|
||||
- Create processing ticket/task in tracking system
|
||||
|
||||
### 2. Initial Processing
|
||||
- Parse structured response data
|
||||
- Identify sections requiring human review
|
||||
- Flag inconsistencies or unclear responses
|
||||
- Generate initial conversion drafts
|
||||
|
||||
### 3. Human Review and Validation
|
||||
- Review parsed data for accuracy
|
||||
- Validate against existing databank information
|
||||
- Resolve flagged issues and ambiguities
|
||||
- Approve or reject conversion drafts
|
||||
|
||||
### 4. Format Conversion
|
||||
- Convert validated data to human-friendly markdown
|
||||
- Convert validated data to LLM-optimized structured formats
|
||||
- Generate cross-references and links
|
||||
- Apply formatting standards and conventions
|
||||
|
||||
### 5. Synchronization
|
||||
- Update both `../human/` and `../llm/` directories
|
||||
- Maintain version history and change tracking
|
||||
- Update README and index files as needed
|
||||
- Validate synchronization integrity
|
||||
|
||||
### 6. Quality Assurance
|
||||
- Verify formatting consistency
|
||||
- Check cross-reference integrity
|
||||
- Validate change tracking accuracy
|
||||
- Confirm synchronization between formats
|
||||
|
||||
### 7. Documentation and Notification
|
||||
- Update processing logs and metrics
|
||||
- Notify stakeholders of updates
|
||||
- Archive processing artifacts
|
||||
- Close processing tickets/tasks
|
||||
|
||||
## Automation Opportunities
|
||||
|
||||
### Parsing and Validation
|
||||
- Automated YAML/JSON schema validation
|
||||
- Consistency checking against existing data
|
||||
- Completeness verification
|
||||
- Basic formatting normalization
|
||||
|
||||
### Format Conversion
|
||||
- Template-driven markdown generation
|
||||
- Structured data serialization
|
||||
- Cross-reference generation
|
||||
- Index and navigation updating
|
||||
|
||||
### Synchronization
|
||||
- Automated file placement and naming
|
||||
- Version tracking table updates
|
||||
- Conflict detection and resolution
|
||||
- Integrity verification
|
||||
|
||||
## Manual Review Requirements
|
||||
|
||||
### Complex Judgments
|
||||
- Interpretation of ambiguous responses
|
||||
- Resolution of conflicting information
|
||||
- Quality assessment of converted content
|
||||
- Approval of significant changes
|
||||
|
||||
### Creative Tasks
|
||||
- Crafting human-friendly explanations
|
||||
- Optimizing LLM data structures
|
||||
- Designing intuitive navigation
|
||||
- Balancing detail and conciseness
|
||||
|
||||
## Quality Gates
|
||||
|
||||
### Gate 1: Response Acceptance
|
||||
- [ ] Response received and stored
|
||||
- [ ] Basic formatting validated
|
||||
- [ ] Completeness verified
|
||||
- [ ] Processing ticket created
|
||||
|
||||
### Gate 2: Data Validation
|
||||
- [ ] Structured data parsed successfully
|
||||
- [ ] Inconsistencies identified and flagged
|
||||
- [ ] Initial drafts generated
|
||||
- [ ] Review tasks assigned
|
||||
|
||||
### Gate 3: Human Approval
|
||||
- [ ] Manual review completed
|
||||
- [ ] Issues resolved
|
||||
- [ ] Conversion drafts approved
|
||||
- [ ] Quality gate checklist signed off
|
||||
|
||||
### Gate 4: Format Conversion
|
||||
- [ ] Human-friendly markdown generated
|
||||
- [ ] LLM-optimized formats created
|
||||
- [ ] Cross-references established
|
||||
- [ ] Formatting standards applied
|
||||
|
||||
### Gate 5: Synchronization
|
||||
- [ ] Both directories updated
|
||||
- [ ] Version tracking maintained
|
||||
- [ ] Integrity verified
|
||||
- [ ] Change notifications prepared
|
||||
|
||||
### Gate 6: Quality Assurance
|
||||
- [ ] Formatting consistency verified
|
||||
- [ ] Cross-reference integrity confirmed
|
||||
- [ ] Change tracking accuracy validated
|
||||
- [ ] Final approval obtained
|
||||
|
||||
## Metrics and Tracking
|
||||
|
||||
### Processing Efficiency
|
||||
- Time from response receipt to completion
|
||||
- Automation vs. manual effort ratio
|
||||
- Error rate and rework frequency
|
||||
- Stakeholder satisfaction scores
|
||||
|
||||
### Quality Measures
|
||||
- Accuracy of parsed data
|
||||
- Completeness of converted content
|
||||
- Consistency between formats
|
||||
- User feedback and adoption rates
|
||||
|
||||
### Continuous Improvement
|
||||
- Bottleneck identification and resolution
|
||||
- Automation opportunity tracking
|
||||
- Process optimization initiatives
|
||||
- Skill development and training needs
|
||||
36
databank/collab/intake/workflows/intake-workflow.sh
Executable file
36
databank/collab/intake/workflows/intake-workflow.sh
Executable file
@@ -0,0 +1,36 @@
|
||||
# Intake Processing Workflow
|
||||
|
||||
This script processes intake responses and converts them to both human and LLM formats.
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
# intake-workflow.sh
|
||||
|
||||
INTAKE_DIR="../intake/responses"
|
||||
HUMAN_OUTPUT="../../human"
|
||||
LLM_OUTPUT="../../llm"
|
||||
ARTIFACTS_DIR="../../artifacts"
|
||||
|
||||
echo "Starting intake processing workflow..."
|
||||
|
||||
# Process each intake response
|
||||
for response in "$INTAKE_DIR"/*.yaml; do
|
||||
if [[ -f "$response" ]]; then
|
||||
filename=$(basename "$response" .yaml)
|
||||
echo "Processing $filename..."
|
||||
|
||||
# Convert to human-friendly markdown
|
||||
# python3 convert-intake-to-human.py "$response" "$HUMAN_OUTPUT/$filename.md"
|
||||
|
||||
# Convert to LLM-optimized JSON
|
||||
# python3 convert-intake-to-llm.py "$response" "$LLM_OUTPUT/$filename.json"
|
||||
|
||||
# Store canonical version
|
||||
# cp "$response" "$ARTIFACTS_DIR/$filename.yaml"
|
||||
|
||||
echo "Completed processing $filename"
|
||||
fi
|
||||
done
|
||||
|
||||
echo "Intake processing workflow completed."
|
||||
```
|
||||
Reference in New Issue
Block a user