.
This commit is contained in:
		
							
								
								
									
										798
									
								
								qwen/nodejs/node_modules/diff-sequences/build/index.js
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										798
									
								
								qwen/nodejs/node_modules/diff-sequences/build/index.js
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,798 @@
 | 
			
		||||
'use strict';
 | 
			
		||||
 | 
			
		||||
Object.defineProperty(exports, '__esModule', {
 | 
			
		||||
  value: true
 | 
			
		||||
});
 | 
			
		||||
exports.default = diffSequence;
 | 
			
		||||
/**
 | 
			
		||||
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 | 
			
		||||
 *
 | 
			
		||||
 * This source code is licensed under the MIT license found in the
 | 
			
		||||
 * LICENSE file in the root directory of this source tree.
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
// This diff-sequences package implements the linear space variation in
 | 
			
		||||
// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
 | 
			
		||||
 | 
			
		||||
// Relationship in notation between Myers paper and this package:
 | 
			
		||||
// A is a
 | 
			
		||||
// N is aLength, aEnd - aStart, and so on
 | 
			
		||||
// x is aIndex, aFirst, aLast, and so on
 | 
			
		||||
// B is b
 | 
			
		||||
// M is bLength, bEnd - bStart, and so on
 | 
			
		||||
// y is bIndex, bFirst, bLast, and so on
 | 
			
		||||
// Δ = N - M is negative of baDeltaLength = bLength - aLength
 | 
			
		||||
// D is d
 | 
			
		||||
// k is kF
 | 
			
		||||
// k + Δ is kF = kR - baDeltaLength
 | 
			
		||||
// V is aIndexesF or aIndexesR (see comment below about Indexes type)
 | 
			
		||||
// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
 | 
			
		||||
// starting point in forward direction (0, 0) is (-1, -1)
 | 
			
		||||
// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
 | 
			
		||||
 | 
			
		||||
// The “edit graph” for sequences a and b corresponds to items:
 | 
			
		||||
// in a on the horizontal axis
 | 
			
		||||
// in b on the vertical axis
 | 
			
		||||
//
 | 
			
		||||
// Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
 | 
			
		||||
//
 | 
			
		||||
// Forward diagonals kF:
 | 
			
		||||
// zero diagonal intersects top left corner
 | 
			
		||||
// positive diagonals intersect top edge
 | 
			
		||||
// negative diagonals insersect left edge
 | 
			
		||||
//
 | 
			
		||||
// Reverse diagonals kR:
 | 
			
		||||
// zero diagonal intersects bottom right corner
 | 
			
		||||
// positive diagonals intersect right edge
 | 
			
		||||
// negative diagonals intersect bottom edge
 | 
			
		||||
 | 
			
		||||
// The graph contains a directed acyclic graph of edges:
 | 
			
		||||
// horizontal: delete an item from a
 | 
			
		||||
// vertical: insert an item from b
 | 
			
		||||
// diagonal: common item in a and b
 | 
			
		||||
//
 | 
			
		||||
// The algorithm solves dual problems in the graph analogy:
 | 
			
		||||
// Find longest common subsequence: path with maximum number of diagonal edges
 | 
			
		||||
// Find shortest edit script: path with minimum number of non-diagonal edges
 | 
			
		||||
 | 
			
		||||
// Input callback function compares items at indexes in the sequences.
 | 
			
		||||
 | 
			
		||||
// Output callback function receives the number of adjacent items
 | 
			
		||||
// and starting indexes of each common subsequence.
 | 
			
		||||
// Either original functions or wrapped to swap indexes if graph is transposed.
 | 
			
		||||
// Indexes in sequence a of last point of forward or reverse paths in graph.
 | 
			
		||||
// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
 | 
			
		||||
// This package indexes by iF and iR which are greater than or equal to zero.
 | 
			
		||||
// and also updates the index arrays in place to cut memory in half.
 | 
			
		||||
// kF = 2 * iF - d
 | 
			
		||||
// kR = d - 2 * iR
 | 
			
		||||
// Division of index intervals in sequences a and b at the middle change.
 | 
			
		||||
// Invariant: intervals do not have common items at the start or end.
 | 
			
		||||
const pkg = 'diff-sequences'; // for error messages
 | 
			
		||||
const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
 | 
			
		||||
 | 
			
		||||
// Return the number of common items that follow in forward direction.
 | 
			
		||||
// The length of what Myers paper calls a “snake” in a forward path.
 | 
			
		||||
const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
 | 
			
		||||
  let nCommon = 0;
 | 
			
		||||
  while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
 | 
			
		||||
    aIndex += 1;
 | 
			
		||||
    bIndex += 1;
 | 
			
		||||
    nCommon += 1;
 | 
			
		||||
  }
 | 
			
		||||
  return nCommon;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Return the number of common items that precede in reverse direction.
 | 
			
		||||
// The length of what Myers paper calls a “snake” in a reverse path.
 | 
			
		||||
const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
 | 
			
		||||
  let nCommon = 0;
 | 
			
		||||
  while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
 | 
			
		||||
    aIndex -= 1;
 | 
			
		||||
    bIndex -= 1;
 | 
			
		||||
    nCommon += 1;
 | 
			
		||||
  }
 | 
			
		||||
  return nCommon;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// A simple function to extend forward paths from (d - 1) to d changes
 | 
			
		||||
// when forward and reverse paths cannot yet overlap.
 | 
			
		||||
const extendPathsF = (
 | 
			
		||||
  d,
 | 
			
		||||
  aEnd,
 | 
			
		||||
  bEnd,
 | 
			
		||||
  bF,
 | 
			
		||||
  isCommon,
 | 
			
		||||
  aIndexesF,
 | 
			
		||||
  iMaxF // return the value because optimization might decrease it
 | 
			
		||||
) => {
 | 
			
		||||
  // Unroll the first iteration.
 | 
			
		||||
  let iF = 0;
 | 
			
		||||
  let kF = -d; // kF = 2 * iF - d
 | 
			
		||||
  let aFirst = aIndexesF[iF]; // in first iteration always insert
 | 
			
		||||
  let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration
 | 
			
		||||
  aIndexesF[iF] += countCommonItemsF(
 | 
			
		||||
    aFirst + 1,
 | 
			
		||||
    aEnd,
 | 
			
		||||
    bF + aFirst - kF + 1,
 | 
			
		||||
    bEnd,
 | 
			
		||||
    isCommon
 | 
			
		||||
  );
 | 
			
		||||
 | 
			
		||||
  // Optimization: skip diagonals in which paths cannot ever overlap.
 | 
			
		||||
  const nF = d < iMaxF ? d : iMaxF;
 | 
			
		||||
 | 
			
		||||
  // The diagonals kF are odd when d is odd and even when d is even.
 | 
			
		||||
  for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
 | 
			
		||||
    // To get first point of path segment, move one change in forward direction
 | 
			
		||||
    // from last point of previous path segment in an adjacent diagonal.
 | 
			
		||||
    // In last possible iteration when iF === d and kF === d always delete.
 | 
			
		||||
    if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
 | 
			
		||||
      aFirst = aIndexesF[iF]; // vertical to insert from b
 | 
			
		||||
    } else {
 | 
			
		||||
      aFirst = aIndexPrev1 + 1; // horizontal to delete from a
 | 
			
		||||
 | 
			
		||||
      if (aEnd <= aFirst) {
 | 
			
		||||
        // Optimization: delete moved past right of graph.
 | 
			
		||||
        return iF - 1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // To get last point of path segment, move along diagonal of common items.
 | 
			
		||||
    aIndexPrev1 = aIndexesF[iF];
 | 
			
		||||
    aIndexesF[iF] =
 | 
			
		||||
      aFirst +
 | 
			
		||||
      countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
 | 
			
		||||
  }
 | 
			
		||||
  return iMaxF;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// A simple function to extend reverse paths from (d - 1) to d changes
 | 
			
		||||
// when reverse and forward paths cannot yet overlap.
 | 
			
		||||
const extendPathsR = (
 | 
			
		||||
  d,
 | 
			
		||||
  aStart,
 | 
			
		||||
  bStart,
 | 
			
		||||
  bR,
 | 
			
		||||
  isCommon,
 | 
			
		||||
  aIndexesR,
 | 
			
		||||
  iMaxR // return the value because optimization might decrease it
 | 
			
		||||
) => {
 | 
			
		||||
  // Unroll the first iteration.
 | 
			
		||||
  let iR = 0;
 | 
			
		||||
  let kR = d; // kR = d - 2 * iR
 | 
			
		||||
  let aFirst = aIndexesR[iR]; // in first iteration always insert
 | 
			
		||||
  let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration
 | 
			
		||||
  aIndexesR[iR] -= countCommonItemsR(
 | 
			
		||||
    aStart,
 | 
			
		||||
    aFirst - 1,
 | 
			
		||||
    bStart,
 | 
			
		||||
    bR + aFirst - kR - 1,
 | 
			
		||||
    isCommon
 | 
			
		||||
  );
 | 
			
		||||
 | 
			
		||||
  // Optimization: skip diagonals in which paths cannot ever overlap.
 | 
			
		||||
  const nR = d < iMaxR ? d : iMaxR;
 | 
			
		||||
 | 
			
		||||
  // The diagonals kR are odd when d is odd and even when d is even.
 | 
			
		||||
  for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
 | 
			
		||||
    // To get first point of path segment, move one change in reverse direction
 | 
			
		||||
    // from last point of previous path segment in an adjacent diagonal.
 | 
			
		||||
    // In last possible iteration when iR === d and kR === -d always delete.
 | 
			
		||||
    if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
 | 
			
		||||
      aFirst = aIndexesR[iR]; // vertical to insert from b
 | 
			
		||||
    } else {
 | 
			
		||||
      aFirst = aIndexPrev1 - 1; // horizontal to delete from a
 | 
			
		||||
 | 
			
		||||
      if (aFirst < aStart) {
 | 
			
		||||
        // Optimization: delete moved past left of graph.
 | 
			
		||||
        return iR - 1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // To get last point of path segment, move along diagonal of common items.
 | 
			
		||||
    aIndexPrev1 = aIndexesR[iR];
 | 
			
		||||
    aIndexesR[iR] =
 | 
			
		||||
      aFirst -
 | 
			
		||||
      countCommonItemsR(
 | 
			
		||||
        aStart,
 | 
			
		||||
        aFirst - 1,
 | 
			
		||||
        bStart,
 | 
			
		||||
        bR + aFirst - kR - 1,
 | 
			
		||||
        isCommon
 | 
			
		||||
      );
 | 
			
		||||
  }
 | 
			
		||||
  return iMaxR;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// A complete function to extend forward paths from (d - 1) to d changes.
 | 
			
		||||
// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.
 | 
			
		||||
const extendOverlappablePathsF = (
 | 
			
		||||
  d,
 | 
			
		||||
  aStart,
 | 
			
		||||
  aEnd,
 | 
			
		||||
  bStart,
 | 
			
		||||
  bEnd,
 | 
			
		||||
  isCommon,
 | 
			
		||||
  aIndexesF,
 | 
			
		||||
  iMaxF,
 | 
			
		||||
  aIndexesR,
 | 
			
		||||
  iMaxR,
 | 
			
		||||
  division // update prop values if return true
 | 
			
		||||
) => {
 | 
			
		||||
  const bF = bStart - aStart; // bIndex = bF + aIndex - kF
 | 
			
		||||
  const aLength = aEnd - aStart;
 | 
			
		||||
  const bLength = bEnd - bStart;
 | 
			
		||||
  const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
 | 
			
		||||
 | 
			
		||||
  // Range of diagonals in which forward and reverse paths might overlap.
 | 
			
		||||
  const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR
 | 
			
		||||
  const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)
 | 
			
		||||
 | 
			
		||||
  let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
 | 
			
		||||
 | 
			
		||||
  // Optimization: skip diagonals in which paths cannot ever overlap.
 | 
			
		||||
  const nF = d < iMaxF ? d : iMaxF;
 | 
			
		||||
 | 
			
		||||
  // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.
 | 
			
		||||
  for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
 | 
			
		||||
    // To get first point of path segment, move one change in forward direction
 | 
			
		||||
    // from last point of previous path segment in an adjacent diagonal.
 | 
			
		||||
    // In first iteration when iF === 0 and kF === -d always insert.
 | 
			
		||||
    // In last possible iteration when iF === d and kF === d always delete.
 | 
			
		||||
    const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
 | 
			
		||||
    const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
 | 
			
		||||
    const aFirst = insert
 | 
			
		||||
      ? aLastPrev // vertical to insert from b
 | 
			
		||||
      : aLastPrev + 1; // horizontal to delete from a
 | 
			
		||||
 | 
			
		||||
    // To get last point of path segment, move along diagonal of common items.
 | 
			
		||||
    const bFirst = bF + aFirst - kF;
 | 
			
		||||
    const nCommonF = countCommonItemsF(
 | 
			
		||||
      aFirst + 1,
 | 
			
		||||
      aEnd,
 | 
			
		||||
      bFirst + 1,
 | 
			
		||||
      bEnd,
 | 
			
		||||
      isCommon
 | 
			
		||||
    );
 | 
			
		||||
    const aLast = aFirst + nCommonF;
 | 
			
		||||
    aIndexPrev1 = aIndexesF[iF];
 | 
			
		||||
    aIndexesF[iF] = aLast;
 | 
			
		||||
    if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
 | 
			
		||||
      // Solve for iR of reverse path with (d - 1) changes in diagonal kF:
 | 
			
		||||
      // kR = kF + baDeltaLength
 | 
			
		||||
      // kR = (d - 1) - 2 * iR
 | 
			
		||||
      const iR = (d - 1 - (kF + baDeltaLength)) / 2;
 | 
			
		||||
 | 
			
		||||
      // If this forward path overlaps the reverse path in this diagonal,
 | 
			
		||||
      // then this is the middle change of the index intervals.
 | 
			
		||||
      if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
 | 
			
		||||
        // Unlike the Myers algorithm which finds only the middle “snake”
 | 
			
		||||
        // this package can find two common subsequences per division.
 | 
			
		||||
        // Last point of previous path segment is on an adjacent diagonal.
 | 
			
		||||
        const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1);
 | 
			
		||||
 | 
			
		||||
        // Because of invariant that intervals preceding the middle change
 | 
			
		||||
        // cannot have common items at the end,
 | 
			
		||||
        // move in reverse direction along a diagonal of common items.
 | 
			
		||||
        const nCommonR = countCommonItemsR(
 | 
			
		||||
          aStart,
 | 
			
		||||
          aLastPrev,
 | 
			
		||||
          bStart,
 | 
			
		||||
          bLastPrev,
 | 
			
		||||
          isCommon
 | 
			
		||||
        );
 | 
			
		||||
        const aIndexPrevFirst = aLastPrev - nCommonR;
 | 
			
		||||
        const bIndexPrevFirst = bLastPrev - nCommonR;
 | 
			
		||||
        const aEndPreceding = aIndexPrevFirst + 1;
 | 
			
		||||
        const bEndPreceding = bIndexPrevFirst + 1;
 | 
			
		||||
        division.nChangePreceding = d - 1;
 | 
			
		||||
        if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
 | 
			
		||||
          // Optimization: number of preceding changes in forward direction
 | 
			
		||||
          // is equal to number of items in preceding interval,
 | 
			
		||||
          // therefore it cannot contain any common items.
 | 
			
		||||
          division.aEndPreceding = aStart;
 | 
			
		||||
          division.bEndPreceding = bStart;
 | 
			
		||||
        } else {
 | 
			
		||||
          division.aEndPreceding = aEndPreceding;
 | 
			
		||||
          division.bEndPreceding = bEndPreceding;
 | 
			
		||||
        }
 | 
			
		||||
        division.nCommonPreceding = nCommonR;
 | 
			
		||||
        if (nCommonR !== 0) {
 | 
			
		||||
          division.aCommonPreceding = aEndPreceding;
 | 
			
		||||
          division.bCommonPreceding = bEndPreceding;
 | 
			
		||||
        }
 | 
			
		||||
        division.nCommonFollowing = nCommonF;
 | 
			
		||||
        if (nCommonF !== 0) {
 | 
			
		||||
          division.aCommonFollowing = aFirst + 1;
 | 
			
		||||
          division.bCommonFollowing = bFirst + 1;
 | 
			
		||||
        }
 | 
			
		||||
        const aStartFollowing = aLast + 1;
 | 
			
		||||
        const bStartFollowing = bFirst + nCommonF + 1;
 | 
			
		||||
        division.nChangeFollowing = d - 1;
 | 
			
		||||
        if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
 | 
			
		||||
          // Optimization: number of changes in reverse direction
 | 
			
		||||
          // is equal to number of items in following interval,
 | 
			
		||||
          // therefore it cannot contain any common items.
 | 
			
		||||
          division.aStartFollowing = aEnd;
 | 
			
		||||
          division.bStartFollowing = bEnd;
 | 
			
		||||
        } else {
 | 
			
		||||
          division.aStartFollowing = aStartFollowing;
 | 
			
		||||
          division.bStartFollowing = bStartFollowing;
 | 
			
		||||
        }
 | 
			
		||||
        return true;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// A complete function to extend reverse paths from (d - 1) to d changes.
 | 
			
		||||
// Return true if a path overlaps forward path of d changes in its diagonal.
 | 
			
		||||
const extendOverlappablePathsR = (
 | 
			
		||||
  d,
 | 
			
		||||
  aStart,
 | 
			
		||||
  aEnd,
 | 
			
		||||
  bStart,
 | 
			
		||||
  bEnd,
 | 
			
		||||
  isCommon,
 | 
			
		||||
  aIndexesF,
 | 
			
		||||
  iMaxF,
 | 
			
		||||
  aIndexesR,
 | 
			
		||||
  iMaxR,
 | 
			
		||||
  division // update prop values if return true
 | 
			
		||||
) => {
 | 
			
		||||
  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
 | 
			
		||||
  const aLength = aEnd - aStart;
 | 
			
		||||
  const bLength = bEnd - bStart;
 | 
			
		||||
  const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
 | 
			
		||||
 | 
			
		||||
  // Range of diagonals in which forward and reverse paths might overlap.
 | 
			
		||||
  const kMinOverlapR = baDeltaLength - d; // -d <= kF
 | 
			
		||||
  const kMaxOverlapR = baDeltaLength + d; // kF <= d
 | 
			
		||||
 | 
			
		||||
  let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
 | 
			
		||||
 | 
			
		||||
  // Optimization: skip diagonals in which paths cannot ever overlap.
 | 
			
		||||
  const nR = d < iMaxR ? d : iMaxR;
 | 
			
		||||
 | 
			
		||||
  // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.
 | 
			
		||||
  for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
 | 
			
		||||
    // To get first point of path segment, move one change in reverse direction
 | 
			
		||||
    // from last point of previous path segment in an adjacent diagonal.
 | 
			
		||||
    // In first iteration when iR === 0 and kR === d always insert.
 | 
			
		||||
    // In last possible iteration when iR === d and kR === -d always delete.
 | 
			
		||||
    const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
 | 
			
		||||
    const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
 | 
			
		||||
    const aFirst = insert
 | 
			
		||||
      ? aLastPrev // vertical to insert from b
 | 
			
		||||
      : aLastPrev - 1; // horizontal to delete from a
 | 
			
		||||
 | 
			
		||||
    // To get last point of path segment, move along diagonal of common items.
 | 
			
		||||
    const bFirst = bR + aFirst - kR;
 | 
			
		||||
    const nCommonR = countCommonItemsR(
 | 
			
		||||
      aStart,
 | 
			
		||||
      aFirst - 1,
 | 
			
		||||
      bStart,
 | 
			
		||||
      bFirst - 1,
 | 
			
		||||
      isCommon
 | 
			
		||||
    );
 | 
			
		||||
    const aLast = aFirst - nCommonR;
 | 
			
		||||
    aIndexPrev1 = aIndexesR[iR];
 | 
			
		||||
    aIndexesR[iR] = aLast;
 | 
			
		||||
    if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
 | 
			
		||||
      // Solve for iF of forward path with d changes in diagonal kR:
 | 
			
		||||
      // kF = kR - baDeltaLength
 | 
			
		||||
      // kF = 2 * iF - d
 | 
			
		||||
      const iF = (d + (kR - baDeltaLength)) / 2;
 | 
			
		||||
 | 
			
		||||
      // If this reverse path overlaps the forward path in this diagonal,
 | 
			
		||||
      // then this is a middle change of the index intervals.
 | 
			
		||||
      if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
 | 
			
		||||
        const bLast = bFirst - nCommonR;
 | 
			
		||||
        division.nChangePreceding = d;
 | 
			
		||||
        if (d === aLast + bLast - aStart - bStart) {
 | 
			
		||||
          // Optimization: number of changes in reverse direction
 | 
			
		||||
          // is equal to number of items in preceding interval,
 | 
			
		||||
          // therefore it cannot contain any common items.
 | 
			
		||||
          division.aEndPreceding = aStart;
 | 
			
		||||
          division.bEndPreceding = bStart;
 | 
			
		||||
        } else {
 | 
			
		||||
          division.aEndPreceding = aLast;
 | 
			
		||||
          division.bEndPreceding = bLast;
 | 
			
		||||
        }
 | 
			
		||||
        division.nCommonPreceding = nCommonR;
 | 
			
		||||
        if (nCommonR !== 0) {
 | 
			
		||||
          // The last point of reverse path segment is start of common subsequence.
 | 
			
		||||
          division.aCommonPreceding = aLast;
 | 
			
		||||
          division.bCommonPreceding = bLast;
 | 
			
		||||
        }
 | 
			
		||||
        division.nChangeFollowing = d - 1;
 | 
			
		||||
        if (d === 1) {
 | 
			
		||||
          // There is no previous path segment.
 | 
			
		||||
          division.nCommonFollowing = 0;
 | 
			
		||||
          division.aStartFollowing = aEnd;
 | 
			
		||||
          division.bStartFollowing = bEnd;
 | 
			
		||||
        } else {
 | 
			
		||||
          // Unlike the Myers algorithm which finds only the middle “snake”
 | 
			
		||||
          // this package can find two common subsequences per division.
 | 
			
		||||
          // Last point of previous path segment is on an adjacent diagonal.
 | 
			
		||||
          const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1);
 | 
			
		||||
 | 
			
		||||
          // Because of invariant that intervals following the middle change
 | 
			
		||||
          // cannot have common items at the start,
 | 
			
		||||
          // move in forward direction along a diagonal of common items.
 | 
			
		||||
          const nCommonF = countCommonItemsF(
 | 
			
		||||
            aLastPrev,
 | 
			
		||||
            aEnd,
 | 
			
		||||
            bLastPrev,
 | 
			
		||||
            bEnd,
 | 
			
		||||
            isCommon
 | 
			
		||||
          );
 | 
			
		||||
          division.nCommonFollowing = nCommonF;
 | 
			
		||||
          if (nCommonF !== 0) {
 | 
			
		||||
            // The last point of reverse path segment is start of common subsequence.
 | 
			
		||||
            division.aCommonFollowing = aLastPrev;
 | 
			
		||||
            division.bCommonFollowing = bLastPrev;
 | 
			
		||||
          }
 | 
			
		||||
          const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev
 | 
			
		||||
          const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev
 | 
			
		||||
 | 
			
		||||
          if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
 | 
			
		||||
            // Optimization: number of changes in forward direction
 | 
			
		||||
            // is equal to number of items in following interval,
 | 
			
		||||
            // therefore it cannot contain any common items.
 | 
			
		||||
            division.aStartFollowing = aEnd;
 | 
			
		||||
            division.bStartFollowing = bEnd;
 | 
			
		||||
          } else {
 | 
			
		||||
            division.aStartFollowing = aStartFollowing;
 | 
			
		||||
            division.bStartFollowing = bStartFollowing;
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        return true;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Given index intervals and input function to compare items at indexes,
 | 
			
		||||
// divide at the middle change.
 | 
			
		||||
//
 | 
			
		||||
// DO NOT CALL if start === end, because interval cannot contain common items
 | 
			
		||||
// and because this function will throw the “no overlap” error.
 | 
			
		||||
const divide = (
 | 
			
		||||
  nChange,
 | 
			
		||||
  aStart,
 | 
			
		||||
  aEnd,
 | 
			
		||||
  bStart,
 | 
			
		||||
  bEnd,
 | 
			
		||||
  isCommon,
 | 
			
		||||
  aIndexesF,
 | 
			
		||||
  aIndexesR,
 | 
			
		||||
  division // output
 | 
			
		||||
) => {
 | 
			
		||||
  const bF = bStart - aStart; // bIndex = bF + aIndex - kF
 | 
			
		||||
  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
 | 
			
		||||
  const aLength = aEnd - aStart;
 | 
			
		||||
  const bLength = bEnd - bStart;
 | 
			
		||||
 | 
			
		||||
  // Because graph has square or portrait orientation,
 | 
			
		||||
  // length difference is minimum number of items to insert from b.
 | 
			
		||||
  // Corresponding forward and reverse diagonals in graph
 | 
			
		||||
  // depend on length difference of the sequences:
 | 
			
		||||
  // kF = kR - baDeltaLength
 | 
			
		||||
  // kR = kF + baDeltaLength
 | 
			
		||||
  const baDeltaLength = bLength - aLength;
 | 
			
		||||
 | 
			
		||||
  // Optimization: max diagonal in graph intersects corner of shorter side.
 | 
			
		||||
  let iMaxF = aLength;
 | 
			
		||||
  let iMaxR = aLength;
 | 
			
		||||
 | 
			
		||||
  // Initialize no changes yet in forward or reverse direction:
 | 
			
		||||
  aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start
 | 
			
		||||
  aIndexesR[0] = aEnd; // at open end of interval
 | 
			
		||||
 | 
			
		||||
  if (baDeltaLength % 2 === 0) {
 | 
			
		||||
    // The number of changes in paths is 2 * d if length difference is even.
 | 
			
		||||
    const dMin = (nChange || baDeltaLength) / 2;
 | 
			
		||||
    const dMax = (aLength + bLength) / 2;
 | 
			
		||||
    for (let d = 1; d <= dMax; d += 1) {
 | 
			
		||||
      iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 | 
			
		||||
      if (d < dMin) {
 | 
			
		||||
        iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
 | 
			
		||||
      } else if (
 | 
			
		||||
        // If a reverse path overlaps a forward path in the same diagonal,
 | 
			
		||||
        // return a division of the index intervals at the middle change.
 | 
			
		||||
        extendOverlappablePathsR(
 | 
			
		||||
          d,
 | 
			
		||||
          aStart,
 | 
			
		||||
          aEnd,
 | 
			
		||||
          bStart,
 | 
			
		||||
          bEnd,
 | 
			
		||||
          isCommon,
 | 
			
		||||
          aIndexesF,
 | 
			
		||||
          iMaxF,
 | 
			
		||||
          aIndexesR,
 | 
			
		||||
          iMaxR,
 | 
			
		||||
          division
 | 
			
		||||
        )
 | 
			
		||||
      ) {
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } else {
 | 
			
		||||
    // The number of changes in paths is 2 * d - 1 if length difference is odd.
 | 
			
		||||
    const dMin = ((nChange || baDeltaLength) + 1) / 2;
 | 
			
		||||
    const dMax = (aLength + bLength + 1) / 2;
 | 
			
		||||
 | 
			
		||||
    // Unroll first half iteration so loop extends the relevant pairs of paths.
 | 
			
		||||
    // Because of invariant that intervals have no common items at start or end,
 | 
			
		||||
    // and limitation not to call divide with empty intervals,
 | 
			
		||||
    // therefore it cannot be called if a forward path with one change
 | 
			
		||||
    // would overlap a reverse path with no changes, even if dMin === 1.
 | 
			
		||||
    let d = 1;
 | 
			
		||||
    iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 | 
			
		||||
    for (d += 1; d <= dMax; d += 1) {
 | 
			
		||||
      iMaxR = extendPathsR(
 | 
			
		||||
        d - 1,
 | 
			
		||||
        aStart,
 | 
			
		||||
        bStart,
 | 
			
		||||
        bR,
 | 
			
		||||
        isCommon,
 | 
			
		||||
        aIndexesR,
 | 
			
		||||
        iMaxR
 | 
			
		||||
      );
 | 
			
		||||
      if (d < dMin) {
 | 
			
		||||
        iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 | 
			
		||||
      } else if (
 | 
			
		||||
        // If a forward path overlaps a reverse path in the same diagonal,
 | 
			
		||||
        // return a division of the index intervals at the middle change.
 | 
			
		||||
        extendOverlappablePathsF(
 | 
			
		||||
          d,
 | 
			
		||||
          aStart,
 | 
			
		||||
          aEnd,
 | 
			
		||||
          bStart,
 | 
			
		||||
          bEnd,
 | 
			
		||||
          isCommon,
 | 
			
		||||
          aIndexesF,
 | 
			
		||||
          iMaxF,
 | 
			
		||||
          aIndexesR,
 | 
			
		||||
          iMaxR,
 | 
			
		||||
          division
 | 
			
		||||
        )
 | 
			
		||||
      ) {
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* istanbul ignore next */
 | 
			
		||||
  throw new Error(
 | 
			
		||||
    `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
 | 
			
		||||
  );
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Given index intervals and input function to compare items at indexes,
 | 
			
		||||
// return by output function the number of adjacent items and starting indexes
 | 
			
		||||
// of each common subsequence. Divide and conquer with only linear space.
 | 
			
		||||
//
 | 
			
		||||
// The index intervals are half open [start, end) like array slice method.
 | 
			
		||||
// DO NOT CALL if start === end, because interval cannot contain common items
 | 
			
		||||
// and because divide function will throw the “no overlap” error.
 | 
			
		||||
const findSubsequences = (
 | 
			
		||||
  nChange,
 | 
			
		||||
  aStart,
 | 
			
		||||
  aEnd,
 | 
			
		||||
  bStart,
 | 
			
		||||
  bEnd,
 | 
			
		||||
  transposed,
 | 
			
		||||
  callbacks,
 | 
			
		||||
  aIndexesF,
 | 
			
		||||
  aIndexesR,
 | 
			
		||||
  division // temporary memory, not input nor output
 | 
			
		||||
) => {
 | 
			
		||||
  if (bEnd - bStart < aEnd - aStart) {
 | 
			
		||||
    // Transpose graph so it has portrait instead of landscape orientation.
 | 
			
		||||
    // Always compare shorter to longer sequence for consistency and optimization.
 | 
			
		||||
    transposed = !transposed;
 | 
			
		||||
    if (transposed && callbacks.length === 1) {
 | 
			
		||||
      // Lazily wrap callback functions to swap args if graph is transposed.
 | 
			
		||||
      const {foundSubsequence, isCommon} = callbacks[0];
 | 
			
		||||
      callbacks[1] = {
 | 
			
		||||
        foundSubsequence: (nCommon, bCommon, aCommon) => {
 | 
			
		||||
          foundSubsequence(nCommon, aCommon, bCommon);
 | 
			
		||||
        },
 | 
			
		||||
        isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)
 | 
			
		||||
      };
 | 
			
		||||
    }
 | 
			
		||||
    const tStart = aStart;
 | 
			
		||||
    const tEnd = aEnd;
 | 
			
		||||
    aStart = bStart;
 | 
			
		||||
    aEnd = bEnd;
 | 
			
		||||
    bStart = tStart;
 | 
			
		||||
    bEnd = tEnd;
 | 
			
		||||
  }
 | 
			
		||||
  const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0];
 | 
			
		||||
 | 
			
		||||
  // Divide the index intervals at the middle change.
 | 
			
		||||
  divide(
 | 
			
		||||
    nChange,
 | 
			
		||||
    aStart,
 | 
			
		||||
    aEnd,
 | 
			
		||||
    bStart,
 | 
			
		||||
    bEnd,
 | 
			
		||||
    isCommon,
 | 
			
		||||
    aIndexesF,
 | 
			
		||||
    aIndexesR,
 | 
			
		||||
    division
 | 
			
		||||
  );
 | 
			
		||||
  const {
 | 
			
		||||
    nChangePreceding,
 | 
			
		||||
    aEndPreceding,
 | 
			
		||||
    bEndPreceding,
 | 
			
		||||
    nCommonPreceding,
 | 
			
		||||
    aCommonPreceding,
 | 
			
		||||
    bCommonPreceding,
 | 
			
		||||
    nCommonFollowing,
 | 
			
		||||
    aCommonFollowing,
 | 
			
		||||
    bCommonFollowing,
 | 
			
		||||
    nChangeFollowing,
 | 
			
		||||
    aStartFollowing,
 | 
			
		||||
    bStartFollowing
 | 
			
		||||
  } = division;
 | 
			
		||||
 | 
			
		||||
  // Unless either index interval is empty, they might contain common items.
 | 
			
		||||
  if (aStart < aEndPreceding && bStart < bEndPreceding) {
 | 
			
		||||
    // Recursely find and return common subsequences preceding the division.
 | 
			
		||||
    findSubsequences(
 | 
			
		||||
      nChangePreceding,
 | 
			
		||||
      aStart,
 | 
			
		||||
      aEndPreceding,
 | 
			
		||||
      bStart,
 | 
			
		||||
      bEndPreceding,
 | 
			
		||||
      transposed,
 | 
			
		||||
      callbacks,
 | 
			
		||||
      aIndexesF,
 | 
			
		||||
      aIndexesR,
 | 
			
		||||
      division
 | 
			
		||||
    );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Return common subsequences that are adjacent to the middle change.
 | 
			
		||||
  if (nCommonPreceding !== 0) {
 | 
			
		||||
    foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
 | 
			
		||||
  }
 | 
			
		||||
  if (nCommonFollowing !== 0) {
 | 
			
		||||
    foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Unless either index interval is empty, they might contain common items.
 | 
			
		||||
  if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
 | 
			
		||||
    // Recursely find and return common subsequences following the division.
 | 
			
		||||
    findSubsequences(
 | 
			
		||||
      nChangeFollowing,
 | 
			
		||||
      aStartFollowing,
 | 
			
		||||
      aEnd,
 | 
			
		||||
      bStartFollowing,
 | 
			
		||||
      bEnd,
 | 
			
		||||
      transposed,
 | 
			
		||||
      callbacks,
 | 
			
		||||
      aIndexesF,
 | 
			
		||||
      aIndexesR,
 | 
			
		||||
      division
 | 
			
		||||
    );
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
const validateLength = (name, arg) => {
 | 
			
		||||
  if (typeof arg !== 'number') {
 | 
			
		||||
    throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`);
 | 
			
		||||
  }
 | 
			
		||||
  if (!Number.isSafeInteger(arg)) {
 | 
			
		||||
    throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
 | 
			
		||||
  }
 | 
			
		||||
  if (arg < 0) {
 | 
			
		||||
    throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
const validateCallback = (name, arg) => {
 | 
			
		||||
  const type = typeof arg;
 | 
			
		||||
  if (type !== 'function') {
 | 
			
		||||
    throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Compare items in two sequences to find a longest common subsequence.
 | 
			
		||||
// Given lengths of sequences and input function to compare items at indexes,
 | 
			
		||||
// return by output function the number of adjacent items and starting indexes
 | 
			
		||||
// of each common subsequence.
 | 
			
		||||
function diffSequence(aLength, bLength, isCommon, foundSubsequence) {
 | 
			
		||||
  validateLength('aLength', aLength);
 | 
			
		||||
  validateLength('bLength', bLength);
 | 
			
		||||
  validateCallback('isCommon', isCommon);
 | 
			
		||||
  validateCallback('foundSubsequence', foundSubsequence);
 | 
			
		||||
 | 
			
		||||
  // Count common items from the start in the forward direction.
 | 
			
		||||
  const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);
 | 
			
		||||
  if (nCommonF !== 0) {
 | 
			
		||||
    foundSubsequence(nCommonF, 0, 0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Unless both sequences consist of common items only,
 | 
			
		||||
  // find common items in the half-trimmed index intervals.
 | 
			
		||||
  if (aLength !== nCommonF || bLength !== nCommonF) {
 | 
			
		||||
    // Invariant: intervals do not have common items at the start.
 | 
			
		||||
    // The start of an index interval is closed like array slice method.
 | 
			
		||||
    const aStart = nCommonF;
 | 
			
		||||
    const bStart = nCommonF;
 | 
			
		||||
 | 
			
		||||
    // Count common items from the end in the reverse direction.
 | 
			
		||||
    const nCommonR = countCommonItemsR(
 | 
			
		||||
      aStart,
 | 
			
		||||
      aLength - 1,
 | 
			
		||||
      bStart,
 | 
			
		||||
      bLength - 1,
 | 
			
		||||
      isCommon
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    // Invariant: intervals do not have common items at the end.
 | 
			
		||||
    // The end of an index interval is open like array slice method.
 | 
			
		||||
    const aEnd = aLength - nCommonR;
 | 
			
		||||
    const bEnd = bLength - nCommonR;
 | 
			
		||||
 | 
			
		||||
    // Unless one sequence consists of common items only,
 | 
			
		||||
    // therefore the other trimmed index interval consists of changes only,
 | 
			
		||||
    // find common items in the trimmed index intervals.
 | 
			
		||||
    const nCommonFR = nCommonF + nCommonR;
 | 
			
		||||
    if (aLength !== nCommonFR && bLength !== nCommonFR) {
 | 
			
		||||
      const nChange = 0; // number of change items is not yet known
 | 
			
		||||
      const transposed = false; // call the original unwrapped functions
 | 
			
		||||
      const callbacks = [
 | 
			
		||||
        {
 | 
			
		||||
          foundSubsequence,
 | 
			
		||||
          isCommon
 | 
			
		||||
        }
 | 
			
		||||
      ];
 | 
			
		||||
 | 
			
		||||
      // Indexes in sequence a of last points in furthest reaching paths
 | 
			
		||||
      // from outside the start at top left in the forward direction:
 | 
			
		||||
      const aIndexesF = [NOT_YET_SET];
 | 
			
		||||
      // from the end at bottom right in the reverse direction:
 | 
			
		||||
      const aIndexesR = [NOT_YET_SET];
 | 
			
		||||
 | 
			
		||||
      // Initialize one object as output of all calls to divide function.
 | 
			
		||||
      const division = {
 | 
			
		||||
        aCommonFollowing: NOT_YET_SET,
 | 
			
		||||
        aCommonPreceding: NOT_YET_SET,
 | 
			
		||||
        aEndPreceding: NOT_YET_SET,
 | 
			
		||||
        aStartFollowing: NOT_YET_SET,
 | 
			
		||||
        bCommonFollowing: NOT_YET_SET,
 | 
			
		||||
        bCommonPreceding: NOT_YET_SET,
 | 
			
		||||
        bEndPreceding: NOT_YET_SET,
 | 
			
		||||
        bStartFollowing: NOT_YET_SET,
 | 
			
		||||
        nChangeFollowing: NOT_YET_SET,
 | 
			
		||||
        nChangePreceding: NOT_YET_SET,
 | 
			
		||||
        nCommonFollowing: NOT_YET_SET,
 | 
			
		||||
        nCommonPreceding: NOT_YET_SET
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // Find and return common subsequences in the trimmed index intervals.
 | 
			
		||||
      findSubsequences(
 | 
			
		||||
        nChange,
 | 
			
		||||
        aStart,
 | 
			
		||||
        aEnd,
 | 
			
		||||
        bStart,
 | 
			
		||||
        bEnd,
 | 
			
		||||
        transposed,
 | 
			
		||||
        callbacks,
 | 
			
		||||
        aIndexesF,
 | 
			
		||||
        aIndexesR,
 | 
			
		||||
        division
 | 
			
		||||
      );
 | 
			
		||||
    }
 | 
			
		||||
    if (nCommonR !== 0) {
 | 
			
		||||
      foundSubsequence(nCommonR, aEnd, bEnd);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user