Files
whisper.cpp/bindings/ruby/README.md
KITAITI Makoto fbead67549 ruby : output format (#3237)
* Fix a typo

* Don't allocate output string unless needed

* Add methods to output SRT and WebVTT

* Add tests for output methods

* Make constants for output private

* Add signatures for output methods

* Add document on output methods

* Fix method name: Segment#speaker_next_turn? -> #speacker_turn_next?

* Add Whisper::Segment#descotruct_keys

* Add test for Whisper::Context#descotruct_keys

* Add signature of Whisper::Segment#deconstruct_keys

* Use parentheses to suppress warning

* Update date
2025-06-10 06:10:17 +02:00

350 lines
8.9 KiB
Markdown

whispercpp
==========
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
Ruby bindings for [whisper.cpp][], an interface of automatic speech recognition model.
Installation
------------
Install the gem and add to the application's Gemfile by executing:
$ bundle add whispercpp
If bundler is not being used to manage dependencies, install the gem by executing:
$ gem install whispercpp
You can pass build options for whisper.cpp, for instance:
$ bundle config build.whispercpp --enable-ggml-cuda
or,
$ gem install whispercpp -- --enable-ggml-cuda
See whisper.cpp's [README](https://github.com/ggml-org/whisper.cpp/blob/master/README.md) for available options. You need convert options present the README to Ruby-style options, for example:
Boolean options:
* `-DGGML_BLAS=1` -> `--enable-ggml-blas`
* `-DWHISER_COREML=OFF` -> `--disable-whisper-coreml`
Argument options:
* `-DGGML_CUDA_COMPRESSION_MODE=size` -> `--ggml-cuda-compression-mode=size`
Combination:
* `-DGGML_CUDA=1 -DCMAKE_CUDA_ARCHITECTURES="86"` -> `--enable-ggml-cuda --cmake_cuda-architectures="86"`
For boolean options like `GGML_CUDA`, the README says `-DGGML_CUDA=1`. You need strip `-D`, prepend `--enable-` for `1` or `ON` (`--disable-` for `0` or `OFF`) and make it kebab-case: `--enable-ggml-cuda`.
For options which require arguments like `CMAKE_CUDA_ARCHITECTURES`, the README says `-DCMAKE_CUDA_ARCHITECTURES="86"`. You need strip `-D`, prepend `--`, make it kebab-case, append `=` and append argument: `--cmake-cuda-architectures="86"`.
Usage
-----
```ruby
require "whisper"
whisper = Whisper::Context.new("base")
params = Whisper::Params.new(
language: "en",
offset: 10_000,
duration: 60_000,
max_text_tokens: 300,
translate: true,
print_timestamps: false,
initial_prompt: "Initial prompt here."
)
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
puts whole_text
end
```
### Preparing model ###
Some models are prepared up-front:
You also can use shorthand for pre-converted models:
```ruby
whisper = Whisper::Context.new("base.en")
```
You can see the list of prepared model names by `Whisper::Model.pre_converted_models.keys`:
```ruby
puts Whisper::Model.pre_converted_models.keys
# tiny
# tiny.en
# tiny-q5_1
# tiny.en-q5_1
# tiny-q8_0
# base
# base.en
# base-q5_1
# base.en-q5_1
# base-q8_0
# :
# :
```
You can also retrieve each model:
```ruby
base_en = Whisper::Model.pre_converted_models["base.en"]
whisper = Whisper::Context.new(base_en)
```
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
```ruby
Whisper::Model.pre_converted_models["base"].clear_cache
```
You can also use local model files you prepared:
```ruby
whisper = Whisper::Context.new("path/to/your/model.bin")
```
Or, you can download model files:
```ruby
whisper = Whisper::Context.new("https://example.net/uri/of/your/model.bin")
# Or
whisper = Whisper::Context.new(URI("https://example.net/uri/of/your/model.bin"))
```
See [models][] page for details.
### Preparing audio file ###
Currently, whisper.cpp accepts only 16-bit WAV files.
### Voice Activity Detection (VAD) ###
Support for Voice Activity Detection (VAD) can be enabled by setting `Whisper::Params`'s `vad` argument to `true` and specifying VAD model:
```ruby
Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
# other arguments...
)
```
When you pass the model name (`"silero-v5.1.2"`) or URI (`https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin`), it will be downloaded automatically.
Currently, "silero-v5.1.2" is registered as pre-converted model like ASR models. You also specify file path or URI of model.
If you need configure VAD behavior, pass params for that:
```ruby
Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
vad_params: Whisper::VAD::Params.new(
threshold: 1.0, # defaults to 0.5
min_speech_duration_ms: 500, # defaults to 250
min_silence_duration_ms: 200, # defaults to 100
max_speech_duration_s: 30000, # default is FLT_MAX,
speech_pad_ms: 50, # defaults to 30
samples_overlap: 0.5 # defaults to 0.1
),
# other arguments...
)
```
For details on VAD, see [whisper.cpp's README](https://github.com/ggml-org/whisper.cpp?tab=readme-ov-file#voice-activity-detection-vad).
### Output ###
whispercpp supports SRT and WebVTT output:
```ruby
puts whisper.transcribe("path/to/audio.wav", Whisper::Params.new).to_webvtt
# =>
WEBVTT
1
00:00:00.000 --> 00:00:03.860
My thought I have nobody by a beauty and will as you poured.
2
00:00:03.860 --> 00:00:09.840
Mr. Rochester is sub in that so-don't find simplest, and devoted about, to let might in
3
00:00:09.840 --> 00:00:09.940
a
```
You may call `#to_srt`, too
API
---
### Transcription ###
By default, `Whisper::Context#transcribe` works in a single thread. You can make it work in parallel by passing `n_processors` option:
```ruby
whisper.transcribe("path/to/audio.wav", params, n_processors: Etc.nprocessors)
```
Note that transcription occasionally might be low accuracy when it works in parallel.
### Segments ###
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
```ruby
def format_time(time_ms)
sec, decimal_part = time_ms.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
whisper
.transcribe("path/to/audio.wav", params)
.each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1,
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_turn_next?
puts line
end
```
You can also add hook to params called on new segment:
```ruby
# Add hook before calling #transcribe
params.on_new_segment do |segment|
line = "[%{st} --> %{ed}] %{text}" % {
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_turn_next?
puts line
end
whisper.transcribe("path/to/audio.wav", params)
```
### Models ###
You can see model information:
```ruby
whisper = Whisper::Context.new("base")
model = whisper.model
model.n_vocab # => 51864
model.n_audio_ctx # => 1500
model.n_audio_state # => 512
model.n_audio_head # => 8
model.n_audio_layer # => 6
model.n_text_ctx # => 448
model.n_text_state # => 512
model.n_text_head # => 8
model.n_text_layer # => 6
model.n_mels # => 80
model.ftype # => 1
model.type # => "base"
```
### Logging ###
You can set log callback:
```ruby
prefix = "[MyApp] "
log_callback = ->(level, buffer, user_data) {
case level
when Whisper::LOG_LEVEL_NONE
puts "#{user_data}none: #{buffer}"
when Whisper::LOG_LEVEL_INFO
puts "#{user_data}info: #{buffer}"
when Whisper::LOG_LEVEL_WARN
puts "#{user_data}warn: #{buffer}"
when Whisper::LOG_LEVEL_ERROR
puts "#{user_data}error: #{buffer}"
when Whisper::LOG_LEVEL_DEBUG
puts "#{user_data}debug: #{buffer}"
when Whisper::LOG_LEVEL_CONT
puts "#{user_data}same to previous: #{buffer}"
end
}
Whisper.log_set log_callback, prefix
```
Using this feature, you are also able to suppress log:
```ruby
Whisper.log_set ->(level, buffer, user_data) {
# do nothing
}, nil
Whisper::Context.new("base")
```
### Low-level API to transcribe ###
You can also call `Whisper::Context#full` and `#full_parallel` with a Ruby array as samples. Although `#transcribe` with audio file path is recommended because it extracts PCM samples in C++ and is fast, `#full` and `#full_parallel` give you flexibility.
```ruby
require "whisper"
require "wavefile"
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
whisper = Whisper::Context.new("base")
whisper
.full(Whisper::Params.new, samples)
.each_segment do |segment|
puts segment.text
end
```
The second argument `samples` may be an array, an object with `length` and `each` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
Development
-----------
% git clone https://github.com/ggml-org/whisper.cpp.git
% cd whisper.cpp/bindings/ruby
% rake test
First call of `rake test` builds an extension and downloads a model for testing. After that, you add tests in `tests` directory and modify `ext/ruby_whisper.cpp`.
If something seems wrong on build, running `rake clean` solves some cases.
### Need help ###
* Windows support
* Refinement of C/C++ code, especially memory management
License
-------
The same to [whisper.cpp][].
[whisper.cpp]: https://github.com/ggml-org/whisper.cpp
[models]: https://github.com/ggml-org/whisper.cpp/tree/master/models