mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-02-14 22:32:01 +00:00
335 lines
12 KiB
C++
335 lines
12 KiB
C++
#include "llama-adapter.h"
|
|
|
|
#include "llama-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <cassert>
|
|
#include <stdexcept>
|
|
|
|
// vec
|
|
|
|
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
|
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
|
return nullptr;
|
|
}
|
|
|
|
return tensors[il];
|
|
}
|
|
|
|
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
|
ggml_tensor * layer_dir = tensor_for(il);
|
|
if (layer_dir != nullptr) {
|
|
cur = ggml_add(ctx, cur, layer_dir);
|
|
}
|
|
|
|
return cur;
|
|
}
|
|
|
|
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
|
const auto & hparams = model.hparams;
|
|
|
|
GGML_ASSERT(cvec.tensors.empty());
|
|
GGML_ASSERT(cvec.ctxs.empty());
|
|
GGML_ASSERT(cvec.bufs.empty());
|
|
|
|
// create a context for each buffer type
|
|
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
|
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
|
auto it = ctx_map.find(buft);
|
|
if (it == ctx_map.end()) {
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context * ctx = ggml_init(params);
|
|
if (!ctx) {
|
|
return nullptr;
|
|
}
|
|
|
|
ctx_map[buft] = ctx;
|
|
cvec.ctxs.emplace_back(ctx);
|
|
|
|
return ctx;
|
|
}
|
|
|
|
return it->second;
|
|
};
|
|
|
|
// make tensors
|
|
cvec.tensors.reserve(hparams.n_layer);
|
|
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
|
for (size_t il = 1; il < hparams.n_layer; il++) {
|
|
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
|
|
ggml_context * ctx = ctx_for_buft(buft);
|
|
if (!ctx) {
|
|
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
|
return false;
|
|
}
|
|
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
|
|
cvec.tensors.push_back(tensor);
|
|
}
|
|
|
|
// allocate tensors / buffers and zero
|
|
cvec.bufs.reserve(ctx_map.size());
|
|
for (auto it : ctx_map) {
|
|
ggml_backend_buffer_type_t buft = it.first;
|
|
ggml_context * ctx = it.second;
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
|
if (!buf) {
|
|
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
|
|
return false;
|
|
}
|
|
ggml_backend_buffer_clear(buf, 0);
|
|
cvec.bufs.emplace_back(buf);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int32_t llama_control_vector_apply(
|
|
struct llama_control_vector & cvec,
|
|
const llama_model & model,
|
|
const float * data,
|
|
size_t len,
|
|
int32_t n_embd,
|
|
int32_t il_start,
|
|
int32_t il_end) {
|
|
const auto & hparams = model.hparams;
|
|
|
|
if (data == nullptr) {
|
|
// disable the current control vector (but leave allocated for later)
|
|
cvec.layer_start = -1;
|
|
cvec.layer_end = -1;
|
|
return 0;
|
|
}
|
|
|
|
if (n_embd != (int) hparams.n_embd) {
|
|
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
if (cvec.tensors.empty()) {
|
|
if (!llama_control_vector_init(cvec, model)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
cvec.layer_start = il_start;
|
|
cvec.layer_end = il_end;
|
|
|
|
for (size_t il = 1; il < hparams.n_layer; il++) {
|
|
assert(cvec.tensors[il] != nullptr);
|
|
|
|
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
|
if (off + n_embd <= len) {
|
|
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// lora
|
|
|
|
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
|
const std::string name(w->name);
|
|
|
|
const auto pos = ab_map.find(name);
|
|
if (pos != ab_map.end()) {
|
|
return &pos->second;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
|
delete adapter;
|
|
}
|
|
|
|
static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
|
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
|
|
|
ggml_context * ctx_init;
|
|
struct gguf_init_params meta_gguf_params = {
|
|
/* .no_alloc = */ true,
|
|
/* .ctx = */ &ctx_init,
|
|
};
|
|
|
|
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
|
|
if (!ctx_gguf) {
|
|
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
|
|
}
|
|
|
|
ggml_context_ptr ctx { ctx_init };
|
|
|
|
// check metadata
|
|
{
|
|
auto get_kv_str = [&](const std::string & key) -> std::string {
|
|
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
|
|
};
|
|
auto get_kv_f32 = [&](const std::string & key) -> float {
|
|
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
|
|
};
|
|
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
|
|
|
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
|
|
if (general_type != "adapter") {
|
|
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
|
}
|
|
|
|
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
|
auto general_arch = llm_arch_from_string(general_arch_str);
|
|
if (general_arch != model.arch) {
|
|
throw std::runtime_error("model arch and LoRA arch mismatch");
|
|
}
|
|
|
|
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
|
|
if (adapter_type != "lora") {
|
|
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
|
}
|
|
|
|
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
|
|
}
|
|
|
|
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
|
|
|
|
// contexts for each buffer type
|
|
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
|
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
|
auto it = ctx_map.find(buft);
|
|
if (it == ctx_map.end()) {
|
|
// add a new context
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
ggml_context * buft_ctx = ggml_init(params);
|
|
if (!buft_ctx) {
|
|
return nullptr;
|
|
}
|
|
ctx_map[buft] = buft_ctx;
|
|
adapter.ctxs.emplace_back(buft_ctx);
|
|
return buft_ctx;
|
|
};
|
|
return it->second;
|
|
};
|
|
|
|
// bundle lora_a and lora_b into pairs
|
|
std::map<std::string, llama_lora_weight> ab_map;
|
|
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
|
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
|
};
|
|
|
|
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
|
|
std::string name(cur->name);
|
|
if (str_endswith(name, ".lora_a")) {
|
|
replace_all(name, ".lora_a", "");
|
|
if (ab_map.find(name) == ab_map.end()) {
|
|
ab_map[name] = llama_lora_weight(cur, nullptr);
|
|
} else {
|
|
ab_map[name].a = cur;
|
|
}
|
|
} else if (str_endswith(name, ".lora_b")) {
|
|
replace_all(name, ".lora_b", "");
|
|
if (ab_map.find(name) == ab_map.end()) {
|
|
ab_map[name] = llama_lora_weight(nullptr, cur);
|
|
} else {
|
|
ab_map[name].b = cur;
|
|
}
|
|
} else {
|
|
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
|
}
|
|
}
|
|
|
|
// add tensors
|
|
for (auto & it : ab_map) {
|
|
const std::string & name = it.first;
|
|
llama_lora_weight & w = it.second;
|
|
|
|
if (!w.a || !w.b) {
|
|
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
|
}
|
|
|
|
// device buft and device ctx
|
|
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
|
|
if (!model_tensor) {
|
|
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
|
}
|
|
|
|
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
|
// validate tensor shape
|
|
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
|
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
|
}
|
|
if (w.a->ne[1] != w.b->ne[0]) {
|
|
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
|
}
|
|
|
|
// save tensor to adapter
|
|
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
|
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
|
ggml_set_name(tensor_a, w.a->name);
|
|
ggml_set_name(tensor_b, w.b->name);
|
|
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
|
}
|
|
|
|
// allocate tensors / buffers and zero
|
|
{
|
|
adapter.ctxs.reserve(ctx_map.size());
|
|
adapter.bufs.reserve(ctx_map.size());
|
|
for (auto & it : ctx_map) {
|
|
ggml_backend_buffer_type_t buft = it.first;
|
|
ggml_context * ctx_dev = it.second;
|
|
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
|
|
if (!buf) {
|
|
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
|
|
}
|
|
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
|
|
adapter.bufs.emplace_back(std::move(buf));
|
|
}
|
|
}
|
|
|
|
// set tensor data
|
|
{
|
|
llama_file gguf_file(path_lora, "rb");
|
|
std::vector<uint8_t> read_buf;
|
|
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
|
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
|
|
size_t size = ggml_nbytes(orig);
|
|
read_buf.resize(size);
|
|
gguf_file.seek(offs, SEEK_SET);
|
|
gguf_file.read_raw(read_buf.data(), size);
|
|
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
|
|
};
|
|
for (auto & it : adapter.ab_map) {
|
|
auto orig = ab_map[it.first];
|
|
auto dev = it.second;
|
|
set_tensor(orig.a, dev.a);
|
|
set_tensor(orig.b, dev.b);
|
|
}
|
|
}
|
|
|
|
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
|
}
|
|
|
|
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
|
|
struct llama_lora_adapter * adapter = new llama_lora_adapter();
|
|
|
|
try {
|
|
llama_lora_adapter_init_impl(*model, path_lora, *adapter);
|
|
return adapter;
|
|
} catch (const std::exception & err) {
|
|
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
|
|
|
delete adapter;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|