#include "llama-adapter.h" #include "llama-model.h" #include #include #include #include // vec struct ggml_tensor * llama_control_vector::tensor_for(int il) const { if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { return nullptr; } return tensors[il]; } struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const { ggml_tensor * layer_dir = tensor_for(il); if (layer_dir != nullptr) { cur = ggml_add(ctx, cur, layer_dir); } return cur; } static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) { const auto & hparams = model.hparams; GGML_ASSERT(cvec.tensors.empty()); GGML_ASSERT(cvec.ctxs.empty()); GGML_ASSERT(cvec.bufs.empty()); // create a context for each buffer type std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { struct ggml_init_params params = { /*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { return nullptr; } ctx_map[buft] = ctx; cvec.ctxs.emplace_back(ctx); return ctx; } return it->second; }; // make tensors cvec.tensors.reserve(hparams.n_layer); cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0 for (size_t il = 1; il < hparams.n_layer; il++) { ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il); ggml_context * ctx = ctx_for_buft(buft); if (!ctx) { LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); return false; } ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); cvec.tensors.push_back(tensor); } // allocate tensors / buffers and zero cvec.bufs.reserve(ctx_map.size()); for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__); return false; } ggml_backend_buffer_clear(buf, 0); cvec.bufs.emplace_back(buf); } return true; } int32_t llama_control_vector_apply( struct llama_control_vector & cvec, const llama_model & model, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { const auto & hparams = model.hparams; if (data == nullptr) { // disable the current control vector (but leave allocated for later) cvec.layer_start = -1; cvec.layer_end = -1; return 0; } if (n_embd != (int) hparams.n_embd) { LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__); return 1; } if (cvec.tensors.empty()) { if (!llama_control_vector_init(cvec, model)) { return 1; } } cvec.layer_start = il_start; cvec.layer_end = il_end; for (size_t il = 1; il < hparams.n_layer; il++) { assert(cvec.tensors[il] != nullptr); const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present if (off + n_embd <= len) { ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il])); } } return 0; } // lora llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) { const std::string name(w->name); const auto pos = ab_map.find(name); if (pos != ab_map.end()) { return &pos->second; } return nullptr; } void llama_lora_adapter_free(struct llama_lora_adapter * adapter) { delete adapter; } static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) { LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora); ggml_context * ctx_init; struct gguf_init_params meta_gguf_params = { /* .no_alloc = */ true, /* .ctx = */ &ctx_init, }; gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) }; if (!ctx_gguf) { throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora)); } ggml_context_ptr ctx { ctx_init }; // check metadata { auto get_kv_str = [&](const std::string & key) -> std::string { int id = gguf_find_key(ctx_gguf.get(), key.c_str()); return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id)); }; auto get_kv_f32 = [&](const std::string & key) -> float { int id = gguf_find_key(ctx_gguf.get(), key.c_str()); return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id); }; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE)); if (general_type != "adapter") { throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); } auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE)); auto general_arch = llm_arch_from_string(general_arch_str); if (general_arch != model.arch) { throw std::runtime_error("model arch and LoRA arch mismatch"); } auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE)); if (adapter_type != "lora") { throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); } adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA)); } int n_tensors = gguf_get_n_tensors(ctx_gguf.get()); // contexts for each buffer type std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { // add a new context struct ggml_init_params params = { /*.mem_size =*/ n_tensors*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * buft_ctx = ggml_init(params); if (!buft_ctx) { return nullptr; } ctx_map[buft] = buft_ctx; adapter.ctxs.emplace_back(buft_ctx); return buft_ctx; }; return it->second; }; // bundle lora_a and lora_b into pairs std::map ab_map; auto str_endswith = [](const std::string & str, const std::string & suffix) { return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0; }; for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) { std::string name(cur->name); if (str_endswith(name, ".lora_a")) { replace_all(name, ".lora_a", ""); if (ab_map.find(name) == ab_map.end()) { ab_map[name] = llama_lora_weight(cur, nullptr); } else { ab_map[name].a = cur; } } else if (str_endswith(name, ".lora_b")) { replace_all(name, ".lora_b", ""); if (ab_map.find(name) == ab_map.end()) { ab_map[name] = llama_lora_weight(nullptr, cur); } else { ab_map[name].b = cur; } } else { throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix"); } } // add tensors for (auto & it : ab_map) { const std::string & name = it.first; llama_lora_weight & w = it.second; if (!w.a || !w.b) { throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component"); } // device buft and device ctx auto * model_tensor = llama_model_get_tensor(model, name.c_str()); if (!model_tensor) { throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model"); } struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer)); // validate tensor shape if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) { throw std::runtime_error("tensor '" + name + "' has incorrect shape"); } if (w.a->ne[1] != w.b->ne[0]) { throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)"); } // save tensor to adapter struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a); struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b); ggml_set_name(tensor_a, w.a->name); ggml_set_name(tensor_b, w.b->name); adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b); } // allocate tensors / buffers and zero { adapter.ctxs.reserve(ctx_map.size()); adapter.bufs.reserve(ctx_map.size()); for (auto & it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx_dev = it.second; ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) }; if (!buf) { throw std::runtime_error("failed to allocate buffer for lora adapter\n"); } LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0); adapter.bufs.emplace_back(std::move(buf)); } } // set tensor data { llama_file gguf_file(path_lora, "rb"); std::vector read_buf; auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) { size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name)); size_t size = ggml_nbytes(orig); read_buf.resize(size); gguf_file.seek(offs, SEEK_SET); gguf_file.read_raw(read_buf.data(), size); ggml_backend_tensor_set(dev, read_buf.data(), 0, size); }; for (auto & it : adapter.ab_map) { auto orig = ab_map[it.first]; auto dev = it.second; set_tensor(orig.a, dev.a); set_tensor(orig.b, dev.b); } } LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2); } struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) { struct llama_lora_adapter * adapter = new llama_lora_adapter(); try { llama_lora_adapter_init_impl(*model, path_lora, *adapter); return adapter; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); delete adapter; } return nullptr; }