Compare commits

..

44 Commits

Author SHA1 Message Date
3ac0558009 ios : update SPM package 2023-09-15 12:13:33 +03:00
a1664574fe bench : variable n_past 2023-09-14 22:41:41 +03:00
bfcb2a2ab9 metal : remove the "concurrent" flag 2023-09-14 18:04:42 +03:00
0d5e4cdc36 whisper : clean-up ggml_mul_mat_pad 2023-09-14 17:28:13 +03:00
2b4160af29 whisper : add description of ggml_mul_mat_pad 2023-09-14 15:37:10 +03:00
f36554382a whisper : add comment for disabling mul-mat padding 2023-09-14 15:25:19 +03:00
c46167f8c5 bench : fix uninitialized vars 2023-09-14 15:19:27 +03:00
af947cb72e whisper : add ggml_mul_mat_pad 2023-09-14 15:16:22 +03:00
e81c67a125 bench : start benching the decoder 2023-09-14 10:06:14 +03:00
f408c64564 bench : fix timings by running a pre-heat 2023-09-13 23:03:25 +03:00
d863f725a1 coreml : add code to toggle Core ML config (CPU, ANE, GPU) 2023-09-13 22:51:10 +03:00
d37f56e7a9 ios : update submodule 2023-09-13 21:31:29 +03:00
23277d21ce readme : add Metal info 2023-09-13 20:54:03 +03:00
ecb23fb1eb metal : sync latest llama.cpp kernels 2023-09-13 20:44:05 +03:00
8e8daa8451 metal : speed-up KQ multiplication 2023-09-13 19:59:16 +03:00
16db4da3f1 swiftui : fix build 2023-09-13 19:49:11 +03:00
257d7942af ios : add Metal support 2023-09-13 19:45:12 +03:00
181bb8cb28 objc : fix build (no Metal yet) 2023-09-13 18:54:41 +03:00
796f84cd95 whisper : add <functional> header 2023-09-13 13:35:42 +03:00
77f4bf49c8 cmake : update to support Metal build 2023-09-13 13:34:51 +03:00
b6f09669a2 whisper : factor out alloc init in a function 2023-09-13 12:51:52 +03:00
254b687239 whisper : add whisper_allocr to wrap ggml_allocr 2023-09-13 11:58:19 +03:00
b19888cfb4 ggml-alloc : try to make CI happy by reducing vram to 128GB 2023-09-13 11:57:46 +03:00
905c944143 ggml : use simpler ggml_bytes() implementation 2023-09-13 11:39:09 +03:00
3074a7ff14 whisper : offload the Encoder to Metal 2023-09-13 00:09:44 +03:00
ec9a7db74c whisper : remove ggml_repeat in the encoder 2023-09-12 20:34:32 +03:00
cd476375b4 metal : run "cross" step on the GPU 2023-09-12 20:11:13 +03:00
9fdd415367 ggml : fix ggml_nbytes (probably temp solution) 2023-09-12 20:10:53 +03:00
79a88057bd metal : add multi-decoder support 2023-09-12 19:33:29 +03:00
fbc9ddc582 metal : decoder works on GPU! 2023-09-12 19:23:30 +03:00
3b9979a373 ci : try to debug vmem issue 2023-09-12 14:08:48 +03:00
de94c783ee Merge branch 'master' into metal-and-alloc 2023-09-12 14:02:43 +03:00
d3b2dd4955 whisper : initial Metal version 2023-09-11 16:23:31 +03:00
4845b9ed09 whisper.android : try to fix build 2023-09-11 15:19:21 +03:00
2770d46ef5 whisper : refactor ggml-alloc init 2023-09-11 15:04:33 +03:00
4d9acc60c3 ci : see if this is causing the crash 2023-09-11 14:42:25 +03:00
06d1d2836b extra : update sync-ggml.sh script to also sync ggml-alloc 2023-09-10 22:45:38 +03:00
9a78b72246 ios : update submodule 2023-09-10 22:36:50 +03:00
794e8fe0ea build : fix ggml-alloc 2023-09-10 22:19:39 +03:00
fa672b46e6 whisper : CoreML support ggml-alloc 2023-09-10 21:57:04 +03:00
af6f67b251 whisper : ggml-alloc is now supported 2023-09-10 20:09:17 +03:00
bed5ad69dd whisper : allocate encoder and decoder using ggml-alloc 2023-09-10 19:50:34 +03:00
949ab6328d whisper : factor out graph builds 2023-09-10 19:23:06 +03:00
fbc3f8033e metal : init 2023-09-10 18:38:34 +03:00
692 changed files with 29842 additions and 200581 deletions

View File

@ -1,28 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git cmake libsdl2-dev
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV GGML_CUDA=1
RUN make
ENTRYPOINT ["/app/main"]

View File

@ -1,40 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.3.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
WORKDIR /app
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV GGML_CUDA=1
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012
ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
COPY .. .
RUN make
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENTRYPOINT [ "bash", "-c" ]

View File

@ -1,19 +0,0 @@
FROM ubuntu:22.04 AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. .
RUN make
FROM ubuntu:22.04 AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg libsdl2-dev \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENTRYPOINT [ "bash", "-c" ]

View File

@ -13,10 +13,10 @@ jobs:
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-go@v5
- uses: actions/setup-go@v3
with:
go-version: '^1.23'
- uses: actions/checkout@v4
go-version: '^1.19'
- uses: actions/checkout@v1
- run: |
cd bindings/go
make test

View File

@ -1,4 +1,3 @@
# TODO: fix this workflow file, disabled for now
name: Bindings Tests (Ruby)
on:
push:

View File

@ -15,17 +15,16 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev
make
@ -36,7 +35,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Dependencies
run: |
@ -53,13 +52,13 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Build
uses: cross-platform-actions/action@v0.24.0
uses: cross-platform-actions/action@v0.15.0
with:
operating_system: freebsd
version: '13.3'
version: '13.2'
run: |
sudo pkg update
sudo pkg install -y gmake sdl2
@ -77,20 +76,19 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
ctest -L gh --output-on-failure'
@ -101,27 +99,23 @@ jobs:
fail-fast: false
matrix:
build: [Debug, Release]
#arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
# TODO: arm/v7 disabled due to clang bug
# https://github.com/ggerganov/whisper.cpp/actions/runs/9657764109/job/26637633042?pr=2256#step:4:1990
arch: [linux/amd64, linux/arm64, linux/ppc64le]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y clang build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
make
ctest -L gh --output-on-failure'
@ -136,181 +130,22 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
make
ctest -L gh --output-on-failure'
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
dwhisper_sycl: [ON]
dcmake_c_compiler: [icx]
dcmake_cxx_compiler: [icpx]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
continue-on-error: true
steps:
- name: Clone
uses: actions/checkout@v4
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
dwhisper_sycl: [ON]
dcmake_c_compiler: [icx]
dcmake_cxx_compiler: [icpx]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
continue-on-error: true
steps:
- name: Clone
uses: actions/checkout@v4
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DGGML_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
windows-msys2:
runs-on: windows-latest
strategy:
fail-fast: false
matrix:
include:
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
- { sys: CLANG64, env: clang-x86_64, build: Release }
steps:
- name: Clone
uses: actions/checkout@v4
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
with:
update: true
msystem: ${{matrix.sys}}
install: >-
base-devel
mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-SDL2
mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make GGML_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
run: |
cmake -B build
cmake --build build --config ${{ matrix.build }} -j $(nproc)
- name: Clean after building using CMake
shell: msys2 {0}
run: |
rm -rf build
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DGGML_OPENBLAS=ON
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows:
runs-on: windows-latest
@ -327,14 +162,14 @@ jobs:
s2arc: x64
jnaPath: win32-x86-64
- sdl2: ON
s2ver: 2.28.5
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v2
uses: microsoft/setup-msbuild@v1
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -347,7 +182,7 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SDL2=${{ matrix.sdl2 }}
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
@ -359,14 +194,14 @@ jobs:
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload dll
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.jnaPath }}_whisper.dll
path: build/bin/${{ matrix.build }}/whisper.dll
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v1
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
@ -382,20 +217,20 @@ jobs:
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x86.zip
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
s2arc: x86
- arch: x64
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x64.zip
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
s2arc: x64
- sdl2: ON
s2ver: 2.28.5
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v2
uses: microsoft/setup-msbuild@v1
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
@ -404,7 +239,7 @@ jobs:
7z x blas.zip -oblas -y
copy blas/include/cblas.h .
copy blas/include/openblas_config.h .
echo "OPENBLAS_PATH=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -417,9 +252,9 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DGGML_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:OPENBLAS_PATH/lib"
-DWHISPER_SDL2=${{ matrix.sdl2 }}
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
@ -428,7 +263,7 @@ jobs:
- name: Copy libopenblas.dll
if: matrix.blas == 'ON'
run: copy "$env:OPENBLAS_PATH/bin/libopenblas.dll" build/bin/${{ matrix.build }}
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
@ -436,13 +271,13 @@ jobs:
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v1
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-2019
runs-on: windows-latest
strategy:
matrix:
@ -450,25 +285,22 @@ jobs:
arch: [x64]
cublas: [ON]
sdl2: [ON]
cuda-toolkit: [12.2.0, 11.8.0]
include:
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.28.5
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v2
uses: microsoft/setup-msbuild@v1
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.15
with:
cuda: '${{ matrix.cuda-toolkit }}'
uses: Jimver/cuda-toolkit@v0.2.10
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -481,20 +313,12 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DGGML_CUDA=${{ matrix.cublas }}
-DWHISPER_SDL2=${{ matrix.sdl2 }}
-DWHISPER_CUBLAS=1
- name: Build ${{ matrix.cuda-toolkit }}
- name: Build
run: |
cd ./build
cmake --build . --config ${{ matrix.build }}
- name: Copy CUDA DLLs
run: >
Copy-Item -PassThru
-Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
-Include cudart64_*,cublas64_*,cublasLt64_*
-Destination build/bin/${{ matrix.build }}
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
@ -502,9 +326,9 @@ jobs:
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v1
with:
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
name: whisper-cublas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
emscripten:
@ -516,10 +340,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Setup emsdk
uses: mymindstorm/setup-emsdk@v14
uses: mymindstorm/setup-emsdk@v12
- name: Verify
run: emcc -v
@ -538,7 +362,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Configure
run: |
@ -556,112 +380,70 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
path: whisper
- name: Clone
uses: actions/checkout@v4
with:
repository: ggerganov/ggml
path: ggml
uses: actions/checkout@v3
- name: Install Java
uses: actions/setup-java@v4
uses: actions/setup-java@v3
with:
distribution: zulu
java-version: 21
java-version: 17
- name: Setup Android SDK
uses: android-actions/setup-android@v3
uses: android-actions/setup-android@v2
- name: Build
run: |
cd whisper/examples/whisper.android
cd examples/whisper.android
./gradlew assembleRelease --no-daemon
- name: Build with external ggml
java:
needs: [ 'windows' ]
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- name: Install Java
uses: actions/setup-java@v1
with:
java-version: 17
- name: Download Windows lib
uses: actions/download-artifact@v3
with:
name: win32-x86-64_whisper.dll
path: bindings/java/build/generated/resources/main/win32-x86-64
- name: Build
run: |
export PATH_TO_GGML=$PWD/ggml
cd whisper/examples/whisper.android
./gradlew assembleRelease --no-daemon -PGGML_HOME=$PATH_TO_GGML
models\download-ggml-model.cmd tiny.en
cd bindings/java
chmod +x ./gradlew
./gradlew build
# TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602
# android_java:
# runs-on: ubuntu-latest
#
# steps:
# - name: Clone
# uses: actions/checkout@v4
#
# - name: set up JDK 11
# uses: actions/setup-java@v4
# with:
# java-version: '11'
# distribution: 'temurin'
# cache: gradle
#
# - name: Setup Android SDK
# uses: android-actions/setup-android@v3
# with:
# cmdline-tools-version: 9.0
#
# - name: Build
# run: |
# cd examples/whisper.android.java
# chmod +x ./gradlew
# ./gradlew assembleRelease
- name: Upload jar
uses: actions/upload-artifact@v3
with:
name: whispercpp.jar
path: bindings/java/build/libs/whispercpp-*.jar
# TODO: disabled because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/9686220096/job/26735899598
# java:
# needs: [ 'windows' ]
# runs-on: windows-latest
# steps:
# - uses: actions/checkout@v4
#
# - name: Install Java
# uses: actions/setup-java@v4
# with:
# distribution: zulu
# java-version: 20
#
# - name: Download Windows lib
# uses: actions/download-artifact@v4
# with:
# name: win32-x86-64_whisper.dll
# path: bindings/java/build/generated/resources/main/win32-x86-64
#
# - name: Build
# run: |
# models\download-ggml-model.cmd tiny.en
# cd bindings/java
# chmod +x ./gradlew
# ./gradlew build
#
# - name: Upload jar
# uses: actions/upload-artifact@v4
# with:
# name: whispercpp.jar
# path: bindings/java/build/libs/whispercpp-*.jar
#
# - name: Publish package
# if: ${{ github.ref == 'refs/heads/master' }}
# uses: gradle/gradle-build-action@v2.4.2
# with:
# arguments: publish
# build-root-directory: bindings/java
# env:
# MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
# MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
# PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
# PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
- name: Publish package
if: ${{ github.ref == 'refs/heads/master' }}
uses: gradle/gradle-build-action@v2.4.2
with:
arguments: publish
build-root-directory: bindings/java
env:
MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
quantize:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Test quantize
run: |

View File

@ -1,59 +0,0 @@
name: Publish Docker image
on:
pull_request:
push:
branches:
- master
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
matrix:
config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" }
#TODO: the cuda image keeps failing - disable for now
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v5
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
uses: docker/build-push-action@v4
with:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}

View File

@ -37,7 +37,7 @@ jobs:
run: npm install
- name: Compile addon.node
run: npx cmake-js compile -T addon.node -B Release
run: npx cmake-js compile -T whisper-addon -B Release
- name: Download test model
run: |

26
.gitignore vendored
View File

@ -3,21 +3,20 @@
.cache/
.coreml/
.test/
.venv/
.vs/
.vscode/
.DS_Store
.vimspector.json
/CMakeSettings.json
/talk-llama.dSYM/
build/
build-*/
# SPM
.build/
.swiftpm
*.metallib
build-em/
build-debug/
build-release/
build-rwdi/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
/main
/stream
@ -26,7 +25,6 @@ build-*/
/talk-llama
/bench
/quantize
/server
/lsp
arm_neon.h
@ -48,9 +46,3 @@ models/*.mlpackage
bindings/java/.gradle/
bindings/java/.idea/
.idea/
benchmark_results.csv
cmake-build-debug/
.cxx/
.gradle/
local.properties

3
.gitmodules vendored
View File

@ -0,0 +1,3 @@
[submodule "bindings/ios"]
path = bindings/ios
url = https://github.com/ggerganov/whisper.spm

301
AUTHORS
View File

@ -1,301 +0,0 @@
# date: Tue Apr 9 20:27:03 EEST 2024
# this file is auto-generated by scripts/gen-authors.sh
0/0 <zero@imaskeleton.me>
0cc4m <picard12@live.de>
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Aaron Taylor <aaron@exphat.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
AfryMask <AfryMask@163.com>
Ahmad Bilal <ahmad.bilal@empglabs.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Akash Mahajan <akash7190@gmail.com>
Akash Mahajan <akashmjn@stanford.edu>
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
Alan <unknown>
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
Alex Azarov <alex@azarov.by>
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
Alex Evgrashin <aevgrashin@yandex.ru>
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
Alexandru Mariuti <alex@mariuti.com>
Alexey Kharlamov <alexey@kharlamov.biz>
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
Ali Alameh <ali.alameh@isae.edu.lb>
Ananta Bastola <anantarajbastola@gmail.com>
Andreu Huguet <andreuhuguet@gmail.com>
Andrew Huynh <a5thuynh@gmail.com>
Andrew S <andrews54757@gmail.com>
Andy Maloney <asmaloney@gmail.com>
Anton Kostin <masguit42@users.noreply.github.com>
Artyom Mezin <psycho.fading@gmail.com>
Asad Memon <asad.lionpk@gmail.com>
Ashraful Islam <ashraful.meche@gmail.com>
AsukaMinato <asukaminato@nyan.eu.org>
AustinMroz <austinmroz@utexas.edu>
Avik Sengupta <avik@sengupta.net>
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
Baffin Lee <baffinlee@gmail.com>
Ben Nortier <bjnortier@gmail.com>
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
Bo-Yi Wu <appleboy.tw@gmail.com>
Boris Bliznioukov <blib@mail.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
Brian Murray <brian@bmurray.ca>
CRD716 <crd716@gmail.com>
Canis Lupus <Canis-UK@users.noreply.github.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
ChangSeok Oh <shivamidow@users.noreply.github.com>
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
Chidi Williams <williamschidi1@gmail.com>
Christian <12550267+iceychris@users.noreply.github.com>
Clifford Heath <clifford.heath@gmail.com>
Colin <github@whoisc.cc>
DGdev91 <DGdev91@users.noreply.github.com>
Damian Czaja <trojan295@protonmail.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
David <dnhkng@gmail.com>
David Thorpe <djt@mutablelogic.com>
Davidson Francis <davidsondfgl@gmail.com>
Dener Stassun <denerstassun@gmail.com>
Didzis Gosko <didzis@users.noreply.github.com>
Digipom <admin@digipom.com>
Dimo <dimo@ieee.org>
Dody Suria Wijaya <dodysw@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Duncan McConnell <ddmcconnell4@gmail.com>
Egor Egorov <me@egorfine.com>
Elkana Bardugo <ttv200@gmail.com>
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Eric Swanson <eswanson@alloscomp.com>
Eric Tendian <erictendian@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Martin <evan.martin@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kuznetsov <evgeny@kuznetsov.md>
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
Fangjun Kuang <csukuangfj@gmail.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
Gang Chen <goncha@gmail.com>
Gavin Cai <gavin1818@hotmail.com>
George Hindle <george@georgehindle.com>
Georgi Gerganov <ggerganov@gmail.com>
GitAritron <103900385+GitAritron@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Gleicon Moraes <gleicon@gmail.com>
Gregor Jasny <gjasny@googlemail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hang <bebound@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hrishikesh Barman <geekodour@users.noreply.github.com>
Ian Bicking <ian@ianbicking.org>
Ian Bull <irbull@eclipsesource.com>
Ikko Ashimine <eltociear@gmail.com>
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
Ivan Gorin <ivangorin21@gmail.com>
JJ <103335846+computerscienceiscool@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JacobLinCool <jacoblincool@gmail.com>
Jakub Ráček <blizzcz@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jay Binks <jaybinks@gmail.com>
Jhen-Jie Hong <developer@jhen.me>
Jhen-Jie Hong <iainst0409@gmail.com>
JidongZhang-THU <1119708529@qq.com>
Jo Liss <joliss42@gmail.com>
Johan <jr.raffin@gmail.com>
Johannes Gäßler <johannesg@5d6.de>
John Balis <phobossystems@gmail.com>
Jonathan Soo <jcsoo@agora.com>
Jonno <1160532+razodactyl@users.noreply.github.com>
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
Jose <34888496+Jerry-Master@users.noreply.github.com>
Josh Bleecher Snyder <josharian@gmail.com>
Judd <foldl@users.noreply.github.com>
Jumper775 <78500318+jumpers775@users.noreply.github.com>
Justine Tunney <jtunney@gmail.com>
KP Kaiser <kirk@zothcorp.com>
Kamilake <exjang0@gmail.com>
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Kevin Brothaler <admin@digipom.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kreijstal <rainb@tfwno.gf>
Kylin <56434533+KyL0N@users.noreply.github.com>
LBlue <153975653+lbluep@users.noreply.github.com>
Larry Battle <larry.battle.tech@gmail.com>
Laytan Laats <laytanlaats@hotmail.com>
Leo Moll <leo.moll@yeasoft.com>
Lexevolution <31176843+Lexevolution@users.noreply.github.com>
LittleLoli <26589867+WhichWho@users.noreply.github.com>
Lucas Zanek <57494138+LucasZNK@users.noreply.github.com>
Luis Herrera <herrera-luis@users.noreply.github.com>
Lukas Rist <glaslos@gmail.com>
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
M. Eren Akbiyik <erenakbiyik@gmail.com>
Maciek <maciek.mab122@gmail.com>
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
Martin Warnaar <martinwarnaar@gmail.com>
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matija Pevec <mightymatth@users.noreply.github.com>
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
Meng, Hengyu <hengyu.meng@intel.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Rienstra <mrienstra@gmail.com>
Mikhail Grigorev <sleuthhound@gmail.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohit Agarwal <mohit@sdf.org>
Murilo Santana <mvrilo@gmail.com>
Neil Chudleigh <nchudleigh@users.noreply.github.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nicholas Albion <nalbion@yahoo.com>
Niels Mayer <Niels.Mayer@gmail.com>
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
Oleg Sidorov <me@whitebox.io>
Oleg Sidorov <oleg@sidorov.nl>
Ondrej Kokes <ondrej.kokes@gmail.com>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Philipp Zabel <philipp.zabel@gmail.com>
Philippe Normand <phil@base-art.net>
Przemysław Pawełczyk <przemoc@gmail.com>
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
Radosław Gryta <radek.gryta@gmail.com>
Reinforce-II <fate@eastal.com>
Reinis Muiznieks <muiznieks.reinis@gmail.com>
RelatedTitle <r3latedtitle@gmail.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Rich Jones <miserlou@gmail.com>
Robin <robin.xw@hotmail.com>
Roddur Dasgupta <roddurd@gmail.com>
Roland Rabien <figbug@gmail.com>
Rotem Dan <rotemdan@gmail.com>
Ryan Hitchman <hitchmanr@gmail.com>
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
RyanChang <ftes90015@gmail.com>
Sam <49637763+Onlyartist9@users.noreply.github.com>
Sam Pullara <spullara@gmail.com>
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Sergio López <slp@sinrega.org>
Siddharth Ramakrishnan <srr2141@columbia.edu>
Simon Moisselin <simon.moisstoll@gmail.com>
Sindre Sorhus <sindresorhus@gmail.com>
Slava Primenko <primenko.s@gmail.com>
Syahmi Azhar <prsyahmi@gmail.com>
Syed Jafri <syedjafri97@gmail.com>
Sơn Phan Trung <phantrungson17@gmail.com>
Taisei Mima <bhbstar.me@gmail.com>
Takeshi Inoue <inoue.takeshi@gmail.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Taras Glek <taras@thegp.com>
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
Thijs Raymakers <thijs@raymakers.nl>
Thomas Fitzsimmons <fitzsim@fitzsim.org>
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
Tienshiao Ma <tienshiao@tienshiao.org>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Tobrun <tobrun.van.nuland@gmail.com>
Todd <taf2@users.noreply.github.com>
Tong Li <31761981+litongjava@users.noreply.github.com>
Topping1 <78745143+Topping1@users.noreply.github.com>
Travis Cline <travis.cline@gmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Vadim Peretokin <vperetokin@hey.com>
Valentin Gosu <1454649+valenting@users.noreply.github.com>
Vulcan <93451215+trholding@users.noreply.github.com>
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Yajing Tang <phillis@google.com>
Yang Shen <aplshenyang@gmail.com>
Yunès <jean.baptiste.yunes@free.fr>
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
Zigfrid Zvezdin <ziggerZZ@gmail.com>
Zollner <24618122+Zolliner@users.noreply.github.com>
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
andypayne <apayne@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
be-next <jerome.ramette@gmail.com>
bert hubert <bert@hubertnet.nl>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bocytko <bocytko+github@gmail.com>
boolemancer <48014766+boolemancer@users.noreply.github.com>
boolemancer <boolemancer@gmail.com>
bradmit <151883577+bradmit@users.noreply.github.com>
brunofaustino <b.fa.amorim@gmail.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cdosoftei <ciprian.dosoftei@gmail.com>
clach04 <Chris.Clark@actian.com>
compilade <113953597+compilade@users.noreply.github.com>
conradg <conradjgodfrey@gmail.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
denersc <denerstassun@gmail.com>
dscripka <dscripka@users.noreply.github.com>
duthils <duthils@duthils.net>
ecneladis <ecneladis@users.noreply.github.com>
faker <nspyia2002@gmail.com>
fitzsim <fitzsim@fitzsim.org>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
genevera (she/her) <genevera@users.noreply.github.com>
geniusnut <geniusnut@gmail.com>
greeshmay <greeshmay@gmail.com>
hydai <z54981220@gmail.com>
iamthad <thadeus.j.fleming@gmail.com>
james wolf <contractorwolf@hotmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
jorismertz <35079666+jorismertz@users.noreply.github.com>
junkfood <69683722+JunkFood02@users.noreply.github.com>
jwijffels <jwijffels@bnosac.be>
kamranjon <kamranjon@gmail.com>
katsu560 <katsu560oo-@docomo.ne.jp>
kennethge <57784063+kenneth-ge@users.noreply.github.com>
keyehzy <msamuel@aluno.puc-rio.br>
leejet <leejet714@gmail.com>
litong <31761981+litongjava@users.noreply.github.com>
lnyan <lkwq007@gmail.com>
m.bell <m.bell@techsmith.com>
mkiol <mkiol@users.noreply.github.com>
novag <7754358+novag@users.noreply.github.com>
pajowu <pajowu@pajowu.de>
polarmoon <90010972+polarmoon@users.noreply.github.com>
rlapray <lapray.romain@gmail.com>
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
semiformal-net <84111142+semiformal-net@users.noreply.github.com>
shibukazu <61775791+shibukazu@users.noreply.github.com>
shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
slaren <slarengh@gmail.com>
slashlib <slashlib@users.noreply.github.com>
snadampal <87143774+snadampal@users.noreply.github.com>
st-gr <38470677+st-gr@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thefinaldegree <thefinaldegree@gmail.com>
trixirt <trix@redhat.com>
ulatekh <ulatekh@yahoo.com>
undef <undefdev@gmail.com>
venkr <venkateshrameshkumar+1@gmail.com>
vicalloy <zbirder@gmail.com>
xdrudis <xavierdrudis@yahoo.es>
zhouwg <6889919+zhouwg@users.noreply.github.com>
布客飞龙 <562826179@qq.com>
Артём Земляк <azemlyak@smart-consulting.ru>

View File

@ -1,31 +1,21 @@
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.0)
include(CheckIncludeFileCXX)
cmake_minimum_required (VERSION 3.5)
set(SOVERSION 1)
#set(CMAKE_WARN_DEPRECATED YES)
set(CMAKE_WARN_UNUSED_CLI YES)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
project(whisper.cpp VERSION 1.4.2)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(WHISPER_STANDALONE ON)
include(git-vars)
include(GitVars)
include(BuildTypes)
# configure project version
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
endif()
configure_file(${CMAKE_SOURCE_DIR}/bindings/javascript/package-tmpl.json ${CMAKE_SOURCE_DIR}/bindings/javascript/package.json @ONLY)
else()
set(WHISPER_STANDALONE OFF)
@ -35,11 +25,6 @@ if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(WHISPER_WASM_SINGLE_FILE "whisper: embed WASM inside the generated whisper.js" ON)
# TODO: without these, we get the following error:
# wasm-ld: error: --shared-memory is disallowed by whisper.cpp.o because it was not compiled with 'atomics' or 'bulk-memory' features.
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@ -48,136 +33,527 @@ else()
endif()
endif()
option(BUILD_SHARED_LIBS "build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
# options
#
# option list
#
if (APPLE)
set(WHISPER_METAL_DEFAULT ON)
else()
set(WHISPER_METAL_DEFAULT OFF)
endif()
# general
option(WHISPER_CCACHE "whisper: use ccache if available" ON)
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
# debug
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
# build
option(WHISPER_FATAL_WARNINGS "whisper: enable -Werror flag" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
else()
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
# sanitizers
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
# extra artifacts
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_SERVER "whisper: build server example" ${WHISPER_STANDALONE})
# 3rd party libs
option(WHISPER_CURL "whisper: use libcurl to download model from an URL" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
endif()
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
# override ggml options
set(GGML_CCACHE ${WHISPER_CCACHE})
set(GGML_SANITIZE_THREAD ${WHISPER_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${WHISPER_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${WHISPER_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${WHISPER_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${WHISPER_FATAL_WARNINGS})
# transition helpers
function (whisper_option_depr TYPE OLD NEW)
if (${OLD})
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON)
if (NOT MSVC)
if (WHISPER_SANITIZE_THREAD)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
endif()
endfunction()
whisper_option_depr(FATAL_ERROR WHISPER_CUBLAS GGML_CUDA)
whisper_option_depr(WARNING WHISPER_CUDA GGML_CUDA)
whisper_option_depr(WARNING WHISPER_KOMPUTE GGML_KOMPUTE)
whisper_option_depr(WARNING WHISPER_METAL GGML_METAL)
whisper_option_depr(WARNING WHISPER_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
whisper_option_depr(WARNING WHISPER_NATIVE GGML_NATIVE)
whisper_option_depr(WARNING WHISPER_OPENMP GGML_OPENMP)
whisper_option_depr(WARNING WHISPER_RPC GGML_RPC)
whisper_option_depr(WARNING WHISPER_SYCL GGML_SYCL)
whisper_option_depr(WARNING WHISPER_SYCL_F16 GGML_SYCL_F16)
if (WHISPER_SANITIZE_ADDRESS)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
endif()
#
# build the library
#
if (NOT TARGET ggml)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
if (WHISPER_SANITIZE_UNDEFINED)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
endif()
endif()
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
# dependencies
find_package(Threads REQUIRED)
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (WHISPER_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
if (METAL_FRAMEWORK)
message(STATUS "Metal framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
if (WHISPER_METAL_NDEBUG)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
endif()
else()
message(WARNING "Metal framework not found")
endif()
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(WARNING "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
endif()
endif()
endif()
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
endif()
if (WHISPER_BLAS)
if (WIN32)
if(DEFINED ENV{OPENBLAS_PATH})
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories($ENV{OPENBLAS_PATH}/include)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else ()
message(WARNING "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
endif ()
else ()
set(BLA_STATIC 1)
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
# set(BLA_PREFER_PKGCONFIG 1)
set(BLA_SIZEOF_INTEGER 8)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else()
message(WARNING "BLAS library was not found")
endif()
endif ()
endif ()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (WHISPER_STATIC)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
else()
message(WARNING "cuBLAS not found")
endif()
endif()
if (WHISPER_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
if (WHISPER_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
else()
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
endif()
endif()
if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo")
endif ()
if (WHISPER_ALL_WARNINGS)
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wshadow \
-Wcast-qual \
-Wstrict-prototypes \
-Wpointer-arith \
-Wno-unused-function \
")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wcast-qual \
")
else()
# todo : msvc
endif()
endif()
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
endif()
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
message(STATUS "ARM detected")
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
message(STATUS "PowerPC detected")
else()
message(STATUS "x86 detected")
if (MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
endif()
if(NOT WHISPER_NO_AVX2)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
endif()
if(NOT WHISPER_NO_FMA)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
endif()
if(NOT WHISPER_NO_F16C)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
endif()
endif()
endif()
endif()
add_subdirectory(src)
#
# install
# POSIX conformance
#
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
endif()
if (WHISPER_OPENVINO)
set(TARGET whisper.openvino)
add_library(${TARGET} OBJECT
openvino/whisper-openvino-encoder.h
openvino/whisper-openvino-encoder.cpp
)
target_include_directories(${TARGET} PUBLIC
.
)
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
endif()
#
# whisper - this is the main library of the project
#
set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
ggml-alloc.h
ggml-alloc.c
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
whisper.h
whisper.cpp
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -D_CRT_SECURE_NO_WARNINGS)
else()
target_link_libraries(${TARGET} PRIVATE m ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
endif()
if (BUILD_SHARED_LIBS)
target_link_libraries(${TARGET} PUBLIC
${CMAKE_DL_LIBS}
)
target_compile_definitions(${TARGET} PUBLIC
WHISPER_SHARED
GGML_SHARED
)
target_compile_definitions(${TARGET} PRIVATE
WHISPER_BUILD
GGML_BUILD
)
if (WHISPER_METAL)
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
# but for some reason it does not work here like it does in llama.cpp
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
endif()
endif()
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
if (EMSCRIPTEN)
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()
target_compile_definitions(${TARGET} PUBLIC
${WHISPER_EXTRA_FLAGS}
)
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(WHISPER_BUILD_NUMBER ${BUILD_NUMBER})
set(WHISPER_BUILD_COMMIT ${BUILD_COMMIT})
set(WHISPER_INSTALL_VERSION ${CMAKE_PROJECT_VERSION})
install(TARGETS ${TARGET}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
RESOURCE DESTINATION bin
PUBLIC_HEADER DESTINATION include
)
set(WHISPER_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(WHISPER_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(WHISPER_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
#
# bindings
#
get_directory_property(WHISPER_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
set_target_properties(whisper PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/whisper.h)
install(TARGETS whisper LIBRARY PUBLIC_HEADER)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/whisper-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper
PATH_VARS
WHISPER_INCLUDE_INSTALL_DIR
WHISPER_LIB_INSTALL_DIR
WHISPER_BIN_INSTALL_DIR )
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
VERSION ${WHISPER_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper)
configure_file(cmake/whisper.pc.in
"${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
@ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
DESTINATION lib/pkgconfig)
add_subdirectory(bindings)
#
# programs, examples and tests
#
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
#include(CTest)
#add_subdirectory(tests)
enable_testing()
add_subdirectory(tests)
endif ()
if (WHISPER_BUILD_EXAMPLES)

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

1211
Makefile

File diff suppressed because it is too large Load Diff

View File

@ -1,60 +0,0 @@
// swift-tools-version:5.5
import PackageDescription
let package = Package(
name: "whisper",
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "whisper", targets: ["whisper"]),
],
targets: [
.target(
name: "whisper",
path: ".",
exclude: [
"bindings",
"cmake",
"coreml",
"examples",
"extra",
"models",
"samples",
"tests",
"CMakeLists.txt",
"Makefile"
],
sources: [
"ggml/src/ggml.c",
"src/whisper.cpp",
"ggml/src/ggml-aarch64.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-metal.m"
],
resources: [.process("ggml-metal.metal")],
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
],
linkerSettings: [
.linkedFramework("Accelerate")
]
)
],
cxxLanguageStandard: .cxx11
)

335
README.md
View File

@ -4,10 +4,9 @@
[![Actions Status](https://github.com/ggerganov/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/whisper.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.7.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -17,12 +16,14 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- Low memory usage (Flash Attention)
- Zero memory allocations at runtime
- Support for CPU-only inference
- [Efficient GPU support for NVIDIA](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
- [Ascend NPU Support](https://github.com/ggerganov/whisper.cpp#ascend-npu-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/include/whisper.h)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
Supported platforms:
@ -34,10 +35,11 @@ Supported platforms:
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
- [x] [Docker](https://github.com/ggerganov/whisper.cpp/pkgs/container/whisper.cpp)
The entire high-level implementation of the model is contained in [whisper.h](include/whisper.h) and [whisper.cpp](src/whisper.cpp).
The rest of the code is part of the [`ggml`](https://github.com/ggerganov/ggml) machine learning library.
The entire implementation of the model is contained in 2 source files:
- Tensor operations: [ggml.h](ggml.h) / [ggml.c](ggml.c)
- Transformer inference: [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device: [whisper.objc](examples/whisper.objc)
@ -48,7 +50,7 @@ You can also easily make your own offline voice assistant application: [command]
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
On Apple Silicon, the inference runs fully on the GPU via Metal:
On Apply Silicon, the inference runs fully on the GPU via Metal:
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
@ -56,27 +58,27 @@ Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
## Implementation details
- The core tensor operations are implemented in C ([ggml.h](ggml/include/ggml.h) / [ggml.c](ggml/src/ggml.c))
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](include/whisper.h) / [whisper.cpp](src/whisper.cpp))
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
- Sample usage is demonstrated in [main.cpp](examples/main)
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
- Various other examples are available in the [examples](examples) folder
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
## Quick start
First clone the repository:
First clone the repository.
Then, download one of the Whisper models converted in [ggml format](models). For example:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
bash ./models/download-ggml-model.sh base.en
```
Then, download one of the Whisper [models](models/README.md) converted in [`ggml` format](#ggml-format). For example:
```bash
sh ./models/download-ggml-model.sh base.en
```
If you wish to convert the Whisper models to ggml format yourself, instructions are in [models/README.md](models/README.md).
Now build the [main](examples/main) example and transcribe an audio file like this:
@ -92,7 +94,7 @@ make
For a quick demo, simply run `make base.en`:
```text
```java
$ make base.en
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
@ -111,42 +113,33 @@ options:
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [5 ] beam size for beam search
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-di, --diarize [false ] stereo audio diarization
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-olrc, --output-lrc [false ] output result in a lrc file
-owts, --output-words [false ] output script for generating karaoke video
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-ojf, --output-json-full [false ] include more information in the JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [false ] do not print timestamps
-nt, --no-timestamps [true ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU
sh ./models/download-ggml-model.sh base.en
bash ./models/download-ggml-model.sh base.en
Downloading ggml model base.en ...
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
@ -208,7 +201,7 @@ For detailed usage instructions, run: `./main -h`
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use `ffmpeg` like this:
```bash
```java
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
```
@ -234,20 +227,18 @@ make small
make medium.en
make medium
make large-v1
make large-v2
make large-v3
make large-v3-turbo
make large
```
## Memory usage
| Model | Disk | Mem |
| ------ | ------- | ------- |
| tiny | 75 MiB | ~273 MB |
| base | 142 MiB | ~388 MB |
| small | 466 MiB | ~852 MB |
| medium | 1.5 GiB | ~2.1 GB |
| large | 2.9 GiB | ~3.9 GB |
| Model | Disk | Mem | SHA |
| --- | --- | --- | --- |
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
## Quantization
@ -280,8 +271,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
- Python 3.10 is recommended.
- MacOS Sonoma (version 14) or newer is recommended, as older versions of MacOS might experience issues with transcription hallucination.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
- To activate the environment, use: `conda activate py310-whisper`
@ -307,8 +297,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- Run the examples as usual. For example:
```text
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
@ -336,23 +326,21 @@ This can result in significant speedup in encoder performance. Here are the inst
- First, setup python virtual env. and install python dependencies. Python 3.10 is recommended.
Windows:
```powershell
```
cd models
python -m venv openvino_conv_env
openvino_conv_env\Scripts\activate
python -m pip install --upgrade pip
pip install -r requirements-openvino.txt
pip install -r openvino-conversion-requirements.txt
```
Linux and macOS:
```bash
```
cd models
python3 -m venv openvino_conv_env
source openvino_conv_env/bin/activate
python -m pip install --upgrade pip
pip install -r requirements-openvino.txt
pip install -r openvino-conversion-requirements.txt
```
- Generate an OpenVINO encoder model. For example, to generate a `base.en` model, use:
@ -361,7 +349,7 @@ This can result in significant speedup in encoder performance. Here are the inst
python convert-whisper-to-openvino.py --model base.en
```
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as `ggml` models, as that
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as ggml models, as that
is the default location that the OpenVINO extension will search at runtime.
- Build `whisper.cpp` with OpenVINO support:
@ -371,28 +359,24 @@ This can result in significant speedup in encoder performance. Here are the inst
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
Linux:
```bash
source /path/to/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64/setupvars.sh
```
Windows (cmd):
```powershell
```
C:\Path\To\w_openvino_toolkit_windows_2023.0.0.10926.b4452d56304_x86_64\setupvars.bat
```
And then build the project using cmake:
```bash
cmake -B build -DWHISPER_OPENVINO=1
cmake --build build -j --config Release
```
- Run the examples as usual. For example:
```text
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
@ -408,21 +392,44 @@ This can result in significant speedup in encoder performance. Here are the inst
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
cached for the next run.
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
## NVIDIA GPU support
## NVIDIA GPU support via cuBLAS
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
With NVIDIA cards the Encoder processing can to a large extent be offloaded to the GPU through cuBLAS.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with CUDA support:
Now build `whisper.cpp` with cuBLAS support:
```
make clean
GGML_CUDA=1 make -j
WHISPER_CUBLAS=1 make -j
```
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
Now build `whisper.cpp` with CLBlast support:
```
Makefile:
cd whisper.cpp
make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp
cmake -B build -DWHISPER_CLBLAST=ON
cmake --build build -j --config Release
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
Encoder processing can be accelerated on the CPU via OpenBLAS.
@ -432,99 +439,9 @@ Now build `whisper.cpp` with OpenBLAS support:
```
make clean
GGML_OPENBLAS=1 make -j
WHISPER_OPENBLAS=1 make -j
```
## BLAS CPU support via Intel MKL
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
Now build `whisper.cpp` with Intel MKL BLAS support:
```
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_MKL=ON ..
WHISPER_MKL=1 make -j
```
## Ascend NPU support
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
First, check if your Ascend NPU device is supported:
**Verified devices**
| Ascend NPU | Status |
|:-----------------------------:|:-------:|
| Atlas 300T A2 | Support |
Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/software/cann/community) . The lasted version of CANN is recommanded.
Now build `whisper.cpp` with CANN support:
```
mkdir build
cd build
cmake .. -D GGML_CANN=on
make -j
```
Run the inference examples as usual, for example:
```
./build/bin/main -f samples/jfk.wav -m models/ggml-base.en.bin -t 8
```
*Notes:*
- If you have trouble with Ascend NPU device, please create a issue with **[CANN]** prefix/tag.
- If you run successfully with your Ascend NPU device, please help update the table `Verified devices`.
## Docker
### Prerequisites
- Docker must be installed and running on your system.
- Create a folder to store big models & intermediate files (ex. /whisper/models)
### Images
We have two Docker images available for this project:
1. `ghcr.io/ggerganov/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
### Usage
```shell
# download model and persist it in a local folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./models/download-ggml-model.sh base /models"
# transcribe an audio file
docker run -it --rm \
-v path/to/models:/models \
-v path/to/audios:/audios \
whisper.cpp:main "./main -m /models/ggml-base.bin -f /audios/jfk.wav"
# transcribe an audio file in samples folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./main -m /models/ggml-base.bin -f ./samples/jfk.wav"
```
## Installing with Conan
You can install pre-built binaries for whisper.cpp or build it from source using [Conan](https://conan.io/). Use the following command:
```
conan install --requires="whisper-cpp/[*]" --build=missing
```
For detailed instructions on how to use Conan, please refer to the [Conan documentation](https://docs.conan.io/2/).
## Limitations
- Inference only
@ -537,7 +454,7 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
<details>
<summary>Expand to see the result</summary>
```text
```java
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
@ -609,7 +526,6 @@ whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
whisper_print_timings: total time = 32733.52 ms
```
</details>
## Real-time audio input example
@ -618,7 +534,7 @@ This is a naive example of performing real-time inference on audio from your mic
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```bash
```java
make stream
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
@ -630,7 +546,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
to highlight words with high or low confidence:
```bash
```java
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
```
@ -640,8 +556,8 @@ to highlight words with high or low confidence:
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
```text
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
@ -664,8 +580,8 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
```text
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
@ -733,9 +649,9 @@ The [main](examples/main) example provides support for output of karaoke-style m
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
This requires to have `ffmpeg` installed.
Here are a few _"typical"_ examples:
Here are a few *"typical"* examples:
```bash
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
source ./samples/jfk.wav.wts
ffplay ./samples/jfk.wav.mp4
@ -745,7 +661,7 @@ https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b
---
```bash
```java
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
source ./samples/mm0.wav.wts
ffplay ./samples/mm0.wav.mp4
@ -755,7 +671,7 @@ https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-9
---
```bash
```java
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
source ./samples/gb0.wav.wts
ffplay ./samples/gb0.wav.mp4
@ -767,10 +683,10 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
## Video comparison of different models
Use the [scripts/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
```bash
./scripts/bench-wts.sh samples/jfk.wav
```java
./extra/bench-wts.sh samples/jfk.wav
ffplay ./samples/jfk.wav.all.mp4
```
@ -786,19 +702,7 @@ took to execute it. The results are summarized in the following Github issue:
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](scripts/bench.py).
You can run it with the following command, by default it will run against any standard model in the models folder.
```bash
python3 scripts/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
```
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
It outputs a csv file with the results of the benchmarking.
## `ggml` format
## ggml format
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
@ -813,52 +717,49 @@ or manually from here:
- https://huggingface.co/ggerganov/whisper.cpp
- https://ggml.ggerganov.com
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or [models/README.md](models/README.md).
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or the README
in [models](models).
## [Bindings](https://github.com/ggerganov/whisper.cpp/discussions/categories/bindings)
- [x] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [x] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
- [x] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [x] Java:
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [X] Java:
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
- [x] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [x] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
- [x] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [x] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [abdeladim-s/pywhispercpp](https://github.com/abdeladim-s/pywhispercpp) (Pybind11)
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [X] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
## Examples
There are various examples of using the library for different projects in the [examples](examples) folder.
Some of the examples are even ported to run in the browser using WebAssembly. Check them out!
| Example | Web | Description |
| --------------------------------------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
| [server](examples/server) | | HTTP transcription server with OAI-like API |
| Example | Web | Description |
| --- | --- | --- |
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)

View File

@ -1,249 +0,0 @@
# whisper.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators<72>such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid re-inventing the wheel, this code refers other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel<EFBFBD> DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The whisper.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use whisper.cpp for X86 (Intel MKL build).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel<65> oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel<65> oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute whisper.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav
```
or run by script:
```
./examples/sycl/run_whisper.sh
```
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|WHISPER_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, WHISPER_SYCL=ON is mandatory.|
|WHISPER_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path.For FP32, do not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.

View File

@ -1,31 +1,9 @@
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif
ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
GGML_METAL_PATH_RESOURCES := $(abspath ../..)
BUILD_DIR := build
MODELS_DIR := models
EXAMPLES_DIR := $(wildcard examples/*)
INCLUDE_PATH := $(abspath ../../include):$(abspath ../../ggml/include)
INCLUDE_PATH := $(abspath ../..)
LIBRARY_PATH := $(abspath ../..)
ifeq ($(GGML_CUDA),1)
LIBRARY_PATH := $(LIBRARY_PATH):$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib/
BUILD_FLAGS := -ldflags "-extldflags '-lcudart -lcuda -lcublas'"
endif
ifeq ($(UNAME_S),Darwin)
EXT_LDFLAGS := -framework Foundation -framework Metal -framework MetalKit
endif
all: clean whisper examples
whisper: mkdir
@ -33,13 +11,8 @@ whisper: mkdir
@${MAKE} -C ../.. libwhisper.a
test: model-small whisper modtidy
ifeq ($(UNAME_S),Darwin)
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} GGML_METAL_PATH_RESOURCES=${GGML_METAL_PATH_RESOURCES} go test -ldflags "-extldflags '$(EXT_LDFLAGS)'" -v .
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} GGML_METAL_PATH_RESOURCES=${GGML_METAL_PATH_RESOURCES} go test -ldflags "-extldflags '$(EXT_LDFLAGS)'" -v ./pkg/whisper/...
else
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v .
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v ./pkg/whisper/...
endif
examples: $(EXAMPLES_DIR)
@ -48,11 +21,7 @@ model-small: mkdir examples/go-model-download
$(EXAMPLES_DIR): mkdir whisper modtidy
@echo Build example $(notdir $@)
ifeq ($(UNAME_S),Darwin)
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} GGML_METAL_PATH_RESOURCES=${GGML_METAL_PATH_RESOURCES} go build ${BUILD_FLAGS} -ldflags "-extldflags '$(EXT_LDFLAGS)'" -o ${BUILD_DIR}/$(notdir $@) ./$@
else
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go build ${BUILD_FLAGS} -o ${BUILD_DIR}/$(notdir $@) ./$@
endif
mkdir:
@echo Mkdir ${BUILD_DIR}

View File

@ -62,12 +62,6 @@ This will compile a static `libwhisper.a` in a `build` folder, download a model
make examples
```
To build using cuda support add `GGML_CUDA=1`:
```bash
GGML_CUDA=1 make examples
```
The examples are placed in the `build` directory. Once built, you can download all the models with the following command:
```bash

View File

@ -24,7 +24,7 @@ const (
var (
// The models which will be downloaded, if no model is specified as an argument
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3", "large-v3-turbo"}
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large"}
)
var (

View File

@ -68,6 +68,10 @@ func (flags *Flags) GetOut() string {
return strings.ToLower(flags.Lookup("out").Value.String())
}
func (flags *Flags) IsSpeedup() bool {
return flags.Lookup("speedup").Value.String() == "true"
}
func (flags *Flags) IsTokens() bool {
return flags.Lookup("tokens").Value.String() == "true"
}
@ -107,6 +111,10 @@ func (flags *Flags) SetParams(context whisper.Context) error {
fmt.Fprintf(flags.Output(), "Setting duration to %v\n", duration)
context.SetDuration(duration)
}
if flags.IsSpeedup() {
fmt.Fprintf(flags.Output(), "Setting speedup to true\n")
context.SetSpeedup(true)
}
if threads := flags.GetThreads(); threads != 0 {
fmt.Fprintf(flags.Output(), "Setting threads to %d\n", threads)
context.SetThreads(threads)
@ -138,6 +146,7 @@ func registerFlags(flag *Flags) {
flag.Duration("offset", 0, "Time offset")
flag.Duration("duration", 0, "Duration of audio to process")
flag.Uint("threads", 0, "Number of threads to use")
flag.Bool("speedup", false, "Enable speedup")
flag.Uint("max-len", 0, "Maximum segment length in characters")
flag.Uint("max-tokens", 0, "Maximum tokens per segment")
flag.Float64("word-thold", 0, "Maximum segment score")

View File

@ -1,10 +1,10 @@
module github.com/ggerganov/whisper.cpp/bindings/go
go 1.23
go 1.19
require (
github.com/go-audio/wav v1.1.0
github.com/stretchr/testify v1.9.0
github.com/stretchr/testify v1.8.1
)
require (

View File

@ -1,3 +1,4 @@
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
@ -8,9 +9,15 @@ github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=

View File

@ -47,6 +47,10 @@ func (p *Params) SetPrintTimestamps(v bool) {
p.print_timestamps = toBool(v)
}
func (p *Params) SetSpeedup(v bool) {
p.speed_up = toBool(v)
}
// Set language id
func (p *Params) SetLanguage(lang int) error {
if lang == -1 {
@ -114,38 +118,6 @@ func (p *Params) SetMaxTokensPerSegment(n int) {
p.max_tokens = C.int(n)
}
// Set audio encoder context
func (p *Params) SetAudioCtx(n int) {
p.audio_ctx = C.int(n)
}
func (p *Params) SetMaxContext(n int) {
p.n_max_text_ctx = C.int(n)
}
func (p *Params) SetBeamSize(n int) {
p.beam_search.beam_size = C.int(n)
}
func (p *Params) SetEntropyThold(t float32) {
p.entropy_thold = C.float(t)
}
func (p *Params) SetTemperature(t float32) {
p.temperature = C.float(t)
}
// Sets the fallback temperature incrementation
// Pass -1.0 to disable this feature
func (p *Params) SetTemperatureFallback(t float32) {
p.temperature_inc = C.float(t)
}
// Set initial prompt
func (p *Params) SetInitialPrompt(prompt string) {
p.initial_prompt = C.CString(prompt)
}
///////////////////////////////////////////////////////////////////////////////
// PRIVATE METHODS
@ -169,12 +141,6 @@ func (p *Params) String() string {
str += fmt.Sprintf(" n_max_text_ctx=%d", p.n_max_text_ctx)
str += fmt.Sprintf(" offset_ms=%d", p.offset_ms)
str += fmt.Sprintf(" duration_ms=%d", p.duration_ms)
str += fmt.Sprintf(" audio_ctx=%d", p.audio_ctx)
str += fmt.Sprintf(" initial_prompt=%s", C.GoString(p.initial_prompt))
str += fmt.Sprintf(" entropy_thold=%f", p.entropy_thold)
str += fmt.Sprintf(" temperature=%f", p.temperature)
str += fmt.Sprintf(" temperature_inc=%f", p.temperature_inc)
str += fmt.Sprintf(" beam_size=%d", p.beam_search.beam_size)
if p.translate {
str += " translate"
}
@ -199,6 +165,9 @@ func (p *Params) String() string {
if p.token_timestamps {
str += " token_timestamps"
}
if p.speed_up {
str += " speed_up"
}
return str + ">"
}

View File

@ -76,8 +76,13 @@ func (context *context) SetTranslate(v bool) {
context.params.SetTranslate(v)
}
// Set speedup flag
func (context *context) SetSpeedup(v bool) {
context.params.SetSpeedup(v)
}
func (context *context) SetSplitOnWord(v bool) {
context.params.SetSplitOnWord(v)
context.params.SetSplitOnWord(v)
}
// Set number of threads to use
@ -120,42 +125,6 @@ func (context *context) SetMaxTokensPerSegment(n uint) {
context.params.SetMaxTokensPerSegment(int(n))
}
// Set audio encoder context
func (context *context) SetAudioCtx(n uint) {
context.params.SetAudioCtx(int(n))
}
// Set maximum number of text context tokens to store
func (context *context) SetMaxContext(n int) {
context.params.SetMaxContext(n)
}
// Set Beam Size
func (context *context) SetBeamSize(n int) {
context.params.SetBeamSize(n)
}
// Set Entropy threshold
func (context *context) SetEntropyThold(t float32) {
context.params.SetEntropyThold(t)
}
// Set Temperature
func (context *context) SetTemperature(t float32) {
context.params.SetTemperature(t)
}
// Set the fallback temperature incrementation
// Pass -1.0 to disable this feature
func (context *context) SetTemperatureFallback(t float32) {
context.params.SetTemperatureFallback(t)
}
// Set initial prompt
func (context *context) SetInitialPrompt(prompt string) {
context.params.SetInitialPrompt(prompt)
}
// ResetTimings resets the mode timings. Should be called before processing
func (context *context) ResetTimings() {
context.model.ctx.Whisper_reset_timings()

View File

@ -4,90 +4,52 @@ import (
"os"
"testing"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
// Packages
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
assert "github.com/stretchr/testify/assert"
)
func TestSetLanguage(t *testing.T) {
assert := assert.New(t)
const (
ModelPath = "../../models/ggml-tiny.bin"
SamplePath = "../../samples/jfk.wav"
)
func Test_Whisper_000(t *testing.T) {
assert := assert.New(t)
if _, err := os.Stat(ModelPath); os.IsNotExist(err) {
t.Skip("Skipping test, model not found:", ModelPath)
}
if _, err := os.Stat(SamplePath); os.IsNotExist(err) {
t.Skip("Skipping test, sample not found:", SamplePath)
}
// Load model
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
assert.NoError(model.Close())
t.Log("languages=", model.Languages())
}
func Test_Whisper_001(t *testing.T) {
assert := assert.New(t)
if _, err := os.Stat(ModelPath); os.IsNotExist(err) {
t.Skip("Skipping test, model not found:", ModelPath)
}
if _, err := os.Stat(SamplePath); os.IsNotExist(err) {
t.Skip("Skipping test, sample not found:", SamplePath)
}
// Load model
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
// Get context for decoding
ctx, err := model.NewContext()
assert.NoError(err)
assert.NotNil(ctx)
// This returns an error since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
err = context.SetLanguage("en")
assert.Error(err)
}
func TestContextModelIsMultilingual(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
isMultilingual := context.IsMultilingual()
// This returns false since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
assert.False(isMultilingual)
}
func TestLanguage(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
// This always returns en since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
expectedLanguage := "en"
actualLanguage := context.Language()
assert.Equal(expectedLanguage, actualLanguage)
}
func TestProcess(t *testing.T) {
assert := assert.New(t)
fh, err := os.Open(SamplePath)
assert.NoError(err)
defer fh.Close()
// Decode the WAV file - load the full buffer
dec := wav.NewDecoder(fh)
buf, err := dec.FullPCMBuffer()
assert.NoError(err)
assert.Equal(uint16(1), dec.NumChans)
data := buf.AsFloat32Buffer().Data
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
err = context.Process(data, nil, nil)
assert.NoError(err)
}

View File

@ -38,22 +38,16 @@ type Context interface {
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetMaxContext(n int) // Set maximum number of text context tokens to store
SetBeamSize(n int) // Set Beam Size
SetEntropyThold(t float32) // Set Entropy threshold
SetInitialPrompt(prompt string) // Set initial prompt
SetTemperature(t float32) // Set temperature
SetTemperatureFallback(t float32) // Set temperature incrementation
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the

View File

@ -1,91 +0,0 @@
package whisper_test
import (
"testing"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
assert "github.com/stretchr/testify/assert"
)
func TestNew(t *testing.T) {
assert := assert.New(t)
t.Run("valid model path", func(t *testing.T) {
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
})
t.Run("invalid model path", func(t *testing.T) {
invalidModelPath := "invalid-model-path.bin"
model, err := whisper.New(invalidModelPath)
assert.Error(err)
assert.Nil(model)
})
}
func TestClose(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
err = model.Close()
assert.NoError(err)
}
func TestNewContext(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
assert.NotNil(context)
}
func TestIsMultilingual(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
isMultilingual := model.IsMultilingual()
// This returns false since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
assert.False(isMultilingual)
}
func TestLanguages(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
expectedLanguages := []string{
"en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl",
"ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk",
"el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr",
"bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn",
"sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne",
"mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn",
"yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi",
"lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my",
"bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su",
}
actualLanguages := model.Languages()
assert.Equal(expectedLanguages, actualLanguages)
}

View File

@ -1,6 +0,0 @@
package whisper_test
const (
ModelPath = "../../models/ggml-small.en.bin"
SamplePath = "../../samples/jfk.wav"
)

View File

@ -9,8 +9,8 @@ import (
// CGO
/*
#cgo LDFLAGS: -lwhisper -lm -lstdc++ -fopenmp
#cgo darwin LDFLAGS: -framework Accelerate -framework Metal -framework Foundation -framework CoreGraphics
#cgo LDFLAGS: -lwhisper -lm -lstdc++
#cgo darwin LDFLAGS: -framework Accelerate
#include <whisper.h>
#include <stdlib.h>
@ -83,6 +83,7 @@ const (
SampleRate = C.WHISPER_SAMPLE_RATE // Expected sample rate, samples per second
SampleBits = uint16(unsafe.Sizeof(C.float(0))) * 8 // Sample size in bits
NumFFT = C.WHISPER_N_FFT
NumMEL = C.WHISPER_N_MEL
HopLength = C.WHISPER_HOP_LENGTH
ChunkSize = C.WHISPER_CHUNK_SIZE
)
@ -102,7 +103,7 @@ var (
func Whisper_init(path string) *Context {
cPath := C.CString(path)
defer C.free(unsafe.Pointer(cPath))
if ctx := C.whisper_init_from_file_with_params(cPath, C.whisper_context_default_params()); ctx != nil {
if ctx := C.whisper_init_from_file(cPath); ctx != nil {
return (*Context)(ctx)
} else {
return nil

1
bindings/ios Submodule

Submodule bindings/ios added at 22a9eef021

View File

@ -9,7 +9,6 @@ archivesBaseName = 'whispercpp'
group = 'io.github.ggerganov'
version = '1.4.0'
sourceCompatibility = 1.8
targetCompatibility = 1.8

View File

@ -4,7 +4,6 @@ import com.sun.jna.Structure;
import com.sun.jna.ptr.PointerByReference;
import io.github.ggerganov.whispercpp.ggml.GgmlType;
import io.github.ggerganov.whispercpp.WhisperModel;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import java.util.List;
@ -24,9 +23,8 @@ public class WhisperContext extends Structure {
public PointerByReference vocab;
public PointerByReference state;
/** populated by whisper_init_from_file_with_params() */
/** populated by whisper_init_from_file() */
String path_model;
WhisperContextParams params;
// public static class ByReference extends WhisperContext implements Structure.ByReference {
// }

View File

@ -2,16 +2,12 @@ package io.github.ggerganov.whispercpp;
import com.sun.jna.Native;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.bean.WhisperSegment;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Before calling most methods, you must call `initContext(modelPath)` to initialise the `ctx` Pointer.
@ -19,9 +15,8 @@ import java.util.List;
public class WhisperCpp implements AutoCloseable {
private WhisperCppJnaLibrary lib = WhisperCppJnaLibrary.instance;
private Pointer ctx = null;
private Pointer paramsPointer = null;
private Pointer greedyParamsPointer = null;
private Pointer beamParamsPointer = null;
private Pointer greedyPointer = null;
private Pointer beamPointer = null;
public File modelDir() {
String modelDirPath = System.getenv("XDG_CACHE_HOME");
@ -36,18 +31,6 @@ public class WhisperCpp implements AutoCloseable {
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
*/
public void initContext(String modelPath) throws FileNotFoundException {
initContextImpl(modelPath, getContextDefaultParams());
}
/**
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
* @param params - params to use when initialising the context
*/
public void initContext(String modelPath, WhisperContextParams params) throws FileNotFoundException {
initContextImpl(modelPath, params);
}
private void initContextImpl(String modelPath, WhisperContextParams params) throws FileNotFoundException {
if (ctx != null) {
lib.whisper_free(ctx);
}
@ -60,26 +43,13 @@ public class WhisperCpp implements AutoCloseable {
modelPath = new File(modelDir(), modelPath).getAbsolutePath();
}
ctx = lib.whisper_init_from_file_with_params(modelPath, params);
ctx = lib.whisper_init_from_file(modelPath);
if (ctx == null) {
throw new FileNotFoundException(modelPath);
}
}
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_context_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*/
public WhisperContextParams getContextDefaultParams() {
paramsPointer = lib.whisper_context_default_params_by_ref();
WhisperContextParams params = new WhisperContextParams(paramsPointer);
params.read();
return params;
}
/**
* Provides default params which can be used with `whisper_full()` etc.
* Because this function allocates memory for the params, the caller must call either:
@ -93,15 +63,15 @@ public class WhisperCpp implements AutoCloseable {
// whisper_full_default_params_by_ref allocates memory which we need to delete, so only create max 1 pointer for each strategy.
if (strategy == WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY) {
if (greedyParamsPointer == null) {
greedyParamsPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
if (greedyPointer == null) {
greedyPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
}
pointer = greedyParamsPointer;
pointer = greedyPointer;
} else {
if (beamParamsPointer == null) {
beamParamsPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
if (beamPointer == null) {
beamPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
}
pointer = beamParamsPointer;
pointer = beamPointer;
}
WhisperFullParams params = new WhisperFullParams(pointer);
@ -123,17 +93,13 @@ public class WhisperCpp implements AutoCloseable {
}
private void freeParams() {
if (paramsPointer != null) {
Native.free(Pointer.nativeValue(paramsPointer));
paramsPointer = null;
if (greedyPointer != null) {
Native.free(Pointer.nativeValue(greedyPointer));
greedyPointer = null;
}
if (greedyParamsPointer != null) {
Native.free(Pointer.nativeValue(greedyParamsPointer));
greedyParamsPointer = null;
}
if (beamParamsPointer != null) {
Native.free(Pointer.nativeValue(beamParamsPointer));
beamParamsPointer = null;
if (beamPointer != null) {
Native.free(Pointer.nativeValue(beamPointer));
beamPointer = null;
}
}
@ -163,28 +129,6 @@ public class WhisperCpp implements AutoCloseable {
return str.toString().trim();
}
public List<WhisperSegment> fullTranscribeWithTime(WhisperFullParams whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
throw new IOException("Failed to process audio");
}
int nSegments = lib.whisper_full_n_segments(ctx);
List<WhisperSegment> segments= new ArrayList<>(nSegments);
for (int i = 0; i < nSegments; i++) {
long t0 = lib.whisper_full_get_segment_t0(ctx, i);
String text = lib.whisper_full_get_segment_text(ctx, i);
long t1 = lib.whisper_full_get_segment_t1(ctx, i);
segments.add(new WhisperSegment(t0,t1,text));
}
return segments;
}
// public int getTextSegmentCount(Pointer ctx) {
// return lib.whisper_full_n_segments(ctx);

View File

@ -5,7 +5,6 @@ import com.sun.jna.Native;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.model.WhisperModelLoader;
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
public interface WhisperCppJnaLibrary extends Library {
@ -14,32 +13,13 @@ public interface WhisperCppJnaLibrary extends Library {
String whisper_print_system_info();
/**
* DEPRECATED. Allocate (almost) all memory needed for the model by loading from a file.
* Allocate (almost) all memory needed for the model by loading from a file.
*
* @param path_model Path to the model file
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file(String path_model);
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_context_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*/
Pointer whisper_context_default_params_by_ref();
void whisper_free_context_params(Pointer params);
/**
* Allocate (almost) all memory needed for the model by loading from a file.
*
* @param path_model Path to the model file
* @param params Pointer to whisper_context_params
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file_with_params(String path_model, WhisperContextParams params);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer.
*
@ -304,6 +284,14 @@ public interface WhisperCppJnaLibrary extends Library {
/** Language id associated with the provided state */
int whisper_full_lang_id_from_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
* @return 0 on success
*/
int whisper_pcm_to_mel_phase_vocoder(Pointer ctx, final float[] samples, int n_samples, int n_threads);
int whisper_pcm_to_mel_phase_vocoder_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/** Get the start time of the specified segment. */
long whisper_full_get_segment_t0(Pointer ctx, int i_segment);

View File

@ -1,47 +0,0 @@
package io.github.ggerganov.whispercpp.bean;
/**
* Created by litonglinux@qq.com on 10/21/2023_7:48 AM
*/
public class WhisperSegment {
private long start, end;
private String sentence;
public WhisperSegment() {
}
public WhisperSegment(long start, long end, String sentence) {
this.start = start;
this.end = end;
this.sentence = sentence;
}
public long getStart() {
return start;
}
public long getEnd() {
return end;
}
public String getSentence() {
return sentence;
}
public void setStart(long start) {
this.start = start;
}
public void setEnd(long end) {
this.end = end;
}
public void setSentence(String sentence) {
this.sentence = sentence;
}
@Override
public String toString() {
return "[" + start + " --> " + end + "]:" + sentence;
}
}

View File

@ -1,31 +0,0 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
/**
* Parameters for the whisper_init_from_file_with_params() function.
* If you change the order or add new parameters, make sure to update the default values in whisper.cpp:
* whisper_context_default_params()
*/
public class WhisperContextParams extends Structure {
public WhisperContextParams(Pointer p) {
super(p);
}
/** Use GPU for inference Number (default = true) */
public CBool use_gpu;
/** Use GPU for inference Number (default = true) */
public void useGpu(boolean enable) {
use_gpu = enable ? CBool.TRUE : CBool.FALSE;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("use_gpu");
}
}

View File

@ -58,9 +58,6 @@ public class WhisperFullParams extends Structure {
no_context = enable ? CBool.FALSE : CBool.TRUE;
}
/** Generate timestamps or not? */
public CBool no_timestamps;
/** Flag to force single segment output (useful for streaming). (default = false) */
public CBool single_segment;
@ -129,6 +126,14 @@ public class WhisperFullParams extends Structure {
/** Maximum tokens per segment (0, default = no limit) */
public int max_tokens;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public CBool speed_up;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public void speedUp(boolean enable) {
speed_up = enable ? CBool.TRUE : CBool.FALSE;
}
/** Overwrite the audio context size (0 = use default). */
public int audio_ctx;
@ -140,9 +145,6 @@ public class WhisperFullParams extends Structure {
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
}
/** Regular expression matching tokens to suppress. */
public String suppress_regex;
/** Tokens to provide to the whisper decoder as an initial prompt.
* These are prepended to any existing text context from a previous call. */
public String initial_prompt;
@ -302,25 +304,18 @@ public class WhisperFullParams extends Structure {
logits_filter_callback = CallbackReference.getFunctionPointer(callback);
}
/** Grammar stuff */
public Pointer grammar_rules;
public long n_grammar_rules;
public long i_start_rule;
public float grammar_penalty;
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
"no_context", "single_segment", "no_timestamps",
"no_context", "single_segment",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "audio_ctx",
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",
"progress_callback", "progress_callback_user_data",
"encoder_begin_callback", "encoder_begin_callback_user_data",
"logits_filter_callback", "logits_filter_callback_user_data",
"grammar_rules", "n_grammar_rules", "i_start_rule", "grammar_penalty");
"logits_filter_callback", "logits_filter_callback_user_data");
}
}

View File

@ -2,7 +2,6 @@ package io.github.ggerganov.whispercpp;
import static org.junit.jupiter.api.Assertions.*;
import io.github.ggerganov.whispercpp.bean.WhisperSegment;
import io.github.ggerganov.whispercpp.params.CBool;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
@ -12,7 +11,6 @@ import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.List;
class WhisperCppTest {
private static WhisperCpp whisper = new WhisperCpp();
@ -22,12 +20,11 @@ class WhisperCppTest {
static void init() throws FileNotFoundException {
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
//String modelName = "../../models/ggml-tiny.bin";
String modelName = "../../models/ggml-tiny.en.bin";
try {
whisper.initContext(modelName);
//whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
//whisper.getJavaDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
// whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// whisper.getJavaDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
modelInitialised = true;
} catch (FileNotFoundException ex) {
System.out.println("Model " + modelName + " not found");
@ -45,7 +42,7 @@ class WhisperCppTest {
assertEquals(16384, params.n_max_text_ctx);
assertFalse(params.translate);
assertEquals(0.01f, params.thold_pt);
assertEquals(5, params.beam_search.beam_size);
assertEquals(2, params.beam_search.beam_size);
assertEquals(-1.0f, params.beam_search.patience);
}
@ -58,7 +55,7 @@ class WhisperCppTest {
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY.ordinal(), params.strategy);
assertNotEquals(0, params.n_threads);
assertEquals(16384, params.n_max_text_ctx);
assertEquals(5, params.greedy.best_of);
assertEquals(2, params.greedy.best_of);
}
@Test
@ -75,11 +72,11 @@ class WhisperCppTest {
byte[] b = new byte[audioInputStream.available()];
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";
// params.initial_prompt = "and so my fellow Americans um, like";
try {
@ -102,43 +99,4 @@ class WhisperCppTest {
audioInputStream.close();
}
}
@Test
void testFullTranscribeWithTime() throws Exception {
if (!modelInitialised) {
System.out.println("Model not initialised, skipping test");
return;
}
// Given
File file = new File(System.getProperty("user.dir"), "../../samples/jfk.wav");
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file);
byte[] b = new byte[audioInputStream.available()];
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";
try {
audioInputStream.read(b);
for (int i = 0, j = 0; i < b.length; i += 2, j++) {
int intSample = (int) (b[i + 1]) << 8 | (int) (b[i]) & 0xFF;
floats[j] = intSample / 32767.0f;
}
List<WhisperSegment> segments = whisper.fullTranscribeWithTime(params, floats);
assertTrue(segments.size() > 0, "The size of segments should be greater than 0");
for (WhisperSegment segment : segments) {
System.out.println(segment);
}
} finally {
audioInputStream.close();
}
}
}

View File

@ -41,7 +41,7 @@ make publish-npm
## Sample run
```text
```java
$ node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
whisper_model_load: loading model from 'whisper.bin'
@ -63,7 +63,7 @@ whisper_model_load: ggml ctx size = 140.60 MB
whisper_model_load: memory size = 22.83 MB
whisper_model_load: model size = 140.54 MB
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 |
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 |
operator(): processing 176000 samples, 11.0 sec, 8 threads, 1 processors, lang = en, task = transcribe ...

View File

@ -20,7 +20,7 @@ struct whisper_context * g_context;
EMSCRIPTEN_BINDINGS(whisper) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
if (g_context == nullptr) {
g_context = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
g_context = whisper_init_from_file(path_model.c_str());
if (g_context != nullptr) {
return true;
} else {

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.7.0",
"version": "1.4.2",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

View File

@ -1,12 +0,0 @@
require 'rake/clean'
require 'rubygems/package'
desc 'Build gem'
task :package do
spec_source = File.read File.join(File.dirname(__FILE__),'whispercpp.gemspec')
spec = nil
# see: http://gist.github.com/16215
Thread.new { spec = eval("#{spec_source}") }.join
spec.validate
Gem::Package.build(spec)
end

View File

@ -1,8 +1,6 @@
Makefile
ggml.c
ggml.h
ggml-alloc.c
ggml-alloc.h
whisper.bundle
whisper.cpp
whisper.h

View File

@ -3,17 +3,6 @@ system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-aarch64.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-aarch64.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-common.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")

View File

@ -1,141 +0,0 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
// buffer type
typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
ggml_backend_buffer_type_context_t context;
};
// buffer
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context;
size_t size;
enum ggml_backend_buffer_usage usage;
};
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
ggml_backend_buffer_type_t buft,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
// buffer that contains a collection of buffers
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
void (*GGML_CALL free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
void (*GGML_CALL synchronize)(ggml_backend_t backend);
// compute graph with a plan (not used currently)
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph with a plan
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan (async)
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);
void (*GGML_CALL event_record) (ggml_backend_event_t event);
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
struct ggml_backend_event {
ggml_backend_t backend;
void * context;
};
//
// Backend registry
//
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,233 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
//
// Backend buffer
//
// buffer type
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
};
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
//
// Backend
//
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
GGML_API void ggml_backend_free(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
// events
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
//
// Backend registry
//
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
GGML_API size_t ggml_backend_reg_get_count(void);
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
GGML_API const char * ggml_backend_reg_get_name(size_t i);
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
// preferrably to run on the same backend as the buffer
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
// initialize buffers from a max size graph (optional)
reserve_graph = build_graph(sched, max_batch_size);
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
ggml_backend_sched_reserve(sched, reserve_graph);
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
// if there are graph inputs:
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, graph);
ggml_backend_tensor_set(input_tensor, ...);
ggml_backend_sched_graph_compute(sched, graph);
}
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// when ask == true, the scheduler wants to know if the user wants to observe this node
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
//
// when ask == false, the scheduler is passing the node tensor to the user for observation
// if the user returns false, the scheduler will cancel the graph compute
//
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
// Reset all assignments and allocators - must be called before changing the node backends
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// Set a callback to be called for each resulting node during graph compute
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
//
// Utils
//
struct ggml_backend_graph_copy {
ggml_backend_buffer_t buffer;
struct ggml_context * ctx_allocated;
struct ggml_context * ctx_unallocated;
struct ggml_cgraph * graph;
};
// Copy a graph to a different backend
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,43 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef GGML_USE_HIPBLAS
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
#else
#define GGML_CUDA_NAME "CUDA"
#define GGML_CUBLAS_NAME "cuBLAS"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_CUDA_MAX_DEVICES 16
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View File

@ -1,272 +0,0 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef __cplusplus
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#endif
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
#ifndef __SSE3__
#define __SSE3__
#endif
#ifndef __SSSE3__
#define __SSSE3__
#endif
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
typedef __fp16 ggml_fp16_internal_t;
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#else
typedef uint16_t ggml_fp16_internal_t;
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif
#if !defined(GGML_FP32_TO_FP16)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}
#endif

View File

@ -1,46 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_vk_device {
int index;
int type; // same as VkPhysicalDeviceType
size_t heapSize;
const char * name;
const char * vendor;
int subgroupSize;
uint64_t bufferAlignment;
uint64_t maxAlloc;
};
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
bool ggml_vk_has_vulkan(void);
bool ggml_vk_has_device(void);
struct ggml_vk_device ggml_vk_current_device(void);
//
// backend API
//
// forward declaration
typedef struct ggml_backend * ggml_backend_t;
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
#ifdef __cplusplus
}
#endif

View File

@ -1,66 +0,0 @@
// An interface allowing to compute ggml_cgraph with Metal
//
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
//
// How it works?
//
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
//
// You only need to make sure that all memory buffers that you used during the graph creation
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
// used during the graph evaluation to determine the arguments of the compute kernels.
//
// Synchronization between device and host memory (for example for input and output tensors)
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
//
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include <stddef.h>
#include <stdbool.h>
// max memory buffers that can be mapped to the device
#define GGML_METAL_MAX_BUFFERS 64
struct ggml_tensor;
struct ggml_cgraph;
#ifdef __cplusplus
extern "C" {
#endif
//
// backend API
// user-code should use only these functions
//
GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
#ifdef __cplusplus
}
#endif

View File

@ -1,36 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_API void ggml_cl_init(void);
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
// GGML_API void * ggml_cl_host_malloc(size_t size);
// GGML_API void ggml_cl_host_free(void * ptr);
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
// backend API
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,133 +0,0 @@
#pragma once
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "ggml.h"
// GGML internal header
#ifdef __cplusplus
extern "C" {
#endif
// Quantization
void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
void iq2xs_init_impl(enum ggml_type type);
void iq2xs_free_impl(enum ggml_type type);
void iq3xs_init_impl(int grid_size);
void iq3xs_free_impl(int grid_size);
#ifdef __cplusplus
}
#endif

View File

@ -1,49 +0,0 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_SYCL_MAX_DEVICES 48
#define GGML_SYCL_NAME "SYCL"
// backend API
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
// devide buffer
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
// TODO: these are temporary
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
// SYCL doesn't support registering host memory, keep here for reference
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View File

@ -1,29 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
#ifdef __cplusplus
}
#endif

View File

@ -87,7 +87,7 @@ static VALUE ruby_whisper_initialize(int argc, VALUE *argv, VALUE self) {
if (!rb_respond_to(whisper_model_file_path, rb_intern("to_s"))) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
rw->context = whisper_init_from_file(StringValueCStr(whisper_model_file_path));
if (rw->context == nullptr) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}
@ -311,6 +311,12 @@ static VALUE ruby_whisper_params_get_split_on_word(VALUE self) {
static VALUE ruby_whisper_params_set_split_on_word(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, split_on_word, value)
}
static VALUE ruby_whisper_params_get_speed_up(VALUE self) {
BOOL_PARAMS_GETTER(self, speed_up)
}
static VALUE ruby_whisper_params_set_speed_up(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, speed_up, value)
}
static VALUE ruby_whisper_params_get_diarize(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
@ -402,6 +408,8 @@ void Init_whisper() {
rb_define_method(cParams, "token_timestamps=", ruby_whisper_params_set_token_timestamps, 1);
rb_define_method(cParams, "split_on_word", ruby_whisper_params_get_split_on_word, 0);
rb_define_method(cParams, "split_on_word=", ruby_whisper_params_set_split_on_word, 1);
rb_define_method(cParams, "speed_up", ruby_whisper_params_get_speed_up, 0);
rb_define_method(cParams, "speed_up=", ruby_whisper_params_set_speed_up, 1);
rb_define_method(cParams, "diarize", ruby_whisper_params_get_diarize, 0);
rb_define_method(cParams, "diarize=", ruby_whisper_params_set_diarize, 1);

View File

@ -117,6 +117,13 @@ class TestWhisper < Test::Unit::TestCase
assert !@params.split_on_word
end
def test_speed_up
@params.speed_up = true
assert @params.speed_up
@params.speed_up = false
assert !@params.speed_up
end
def test_whisper
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new

View File

@ -1,28 +0,0 @@
Gem::Specification.new do |s|
s.name = "whispercpp"
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
s.version = '1.3.0'
s.date = '2024-05-14'
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
s.email = 'todd.fisher@gmail.com'
s.extra_rdoc_files = ['LICENSE', 'README.md']
s.files = ["LICENSE", "README.md", "Rakefile", "ext/extconf.rb", "ext/ggml.c", "ext/ruby_whisper.cpp", "ext/whisper.cpp", "ext/dr_wav.h", "ext/ggml.h", "ext/ruby_whisper.h", "ext/whisper.h"]
#### Load-time details
s.require_paths = ['lib','ext']
s.summary = %q{Ruby whisper.cpp bindings}
s.test_files = ["tests/test_whisper.rb"]
s.extensions << 'ext/extconf.rb'
#### Documentation and testing.
s.homepage = 'https://github.com/ggerganov/whisper.cpp'
s.rdoc_options = ['--main', '../../README.md']
s.platform = Gem::Platform::RUBY
s.licenses = ['MIT']
end

54
cmake/BuildTypes.cmake Normal file
View File

@ -0,0 +1,54 @@
# Add new build types
# ReleaseGG - Release with enabled asserts
SET(CMAKE_CXX_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELEASEGG
CMAKE_C_FLAGS_RELEASEGG
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
CMAKE_C_FLAGS_RELWITHDEBINFOGG
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
endif()

View File

@ -13,5 +13,5 @@ set_target_properties(${TARGET}
PROPERTIES
EXPORT_COMPILE_COMMANDS ON
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
)

View File

@ -1,163 +0,0 @@
# From
# https://github.com/snikulov/cmake-modules/blob/master/FindFFmpeg.cmake
#
# vim: ts=2 sw=2
# - Try to find the required ffmpeg components(default: AVFORMAT, AVUTIL, AVCODEC)
#
# Once done this will define
# FFMPEG_FOUND - System has the all required components.
# FFMPEG_INCLUDE_DIRS - Include directory necessary for using the required components headers.
# FFMPEG_LIBRARIES - Link these to use the required ffmpeg components.
# FFMPEG_DEFINITIONS - Compiler switches required for using the required ffmpeg components.
#
# For each of the components it will additionally set.
# - AVCODEC
# - AVDEVICE
# - AVFORMAT
# - AVFILTER
# - AVUTIL
# - POSTPROC
# - SWSCALE
# the following variables will be defined
# <component>_FOUND - System has <component>
# <component>_INCLUDE_DIRS - Include directory necessary for using the <component> headers
# <component>_LIBRARIES - Link these to use <component>
# <component>_DEFINITIONS - Compiler switches required for using <component>
# <component>_VERSION - The components version
#
# Copyright (c) 2006, Matthias Kretz, <kretz@kde.org>
# Copyright (c) 2008, Alexander Neundorf, <neundorf@kde.org>
# Copyright (c) 2011, Michael Jansen, <kde@michael-jansen.biz>
#
# Redistribution and use is allowed according to the terms of the BSD license.
# For details see the accompanying COPYING-CMAKE-SCRIPTS file.
include(FindPackageHandleStandardArgs)
# The default components were taken from a survey over other FindFFMPEG.cmake files
if (NOT FFmpeg_FIND_COMPONENTS)
set(FFmpeg_FIND_COMPONENTS AVFORMAT AVCODEC AVUTIL SWRESAMPLE)
endif()
#
### Macro: set_component_found
#
# Marks the given component as found if both *_LIBRARIES AND *_INCLUDE_DIRS is present.
#
macro(set_component_found _component )
if (${_component}_LIBRARIES AND ${_component}_INCLUDE_DIRS)
message(DEBUG " - ${_component} found.")
set(${_component}_FOUND TRUE)
else ()
message(DEBUG " - ${_component} not found.")
endif ()
endmacro()
#
### Macro: find_component
#
# Checks for the given component by invoking pkgconfig and then looking up the libraries and
# include directories.
#
macro(find_component _component _pkgconfig _library _header)
if (NOT WIN32)
# use pkg-config to get the directories and then use these values
# in the FIND_PATH() and FIND_LIBRARY() calls
find_package(PkgConfig)
if (PKG_CONFIG_FOUND)
pkg_check_modules(PC_${_component} ${_pkgconfig})
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDEDIR}")
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDE_DIRS}")
message(STATUS "${PC_${_component}_CFLAGS}")
endif ()
endif (NOT WIN32)
find_path(${_component}_INCLUDE_DIRS ${_header}
HINTS
${PC_${_component}_INCLUDEDIR}
${PC_${_component}_INCLUDE_DIRS}
PATH_SUFFIXES
ffmpeg
)
# CMake's default is to search first for shared libraries and then for static libraries.
# Todo later: add option to prefer static libs over dynamic:
find_library(${_component}_LIBRARIES NAMES ${_library} lib${_library}.a
HINTS
${PC_${_component}_LIBDIR}
${PC_${_component}_LIBRARY_DIRS}
)
set(${_component}_DEFINITIONS ${PC_${_component}_CFLAGS_OTHER} CACHE STRING "The ${_component} CFLAGS.")
set(${_component}_VERSION ${PC_${_component}_VERSION} CACHE STRING "The ${_component} version number.")
set_component_found(${_component})
mark_as_advanced(
${_component}_INCLUDE_DIRS
${_component}_LIBRARIES
${_component}_DEFINITIONS
${_component}_VERSION)
endmacro()
# Check for cached results. If there are skip the costly part.
if (NOT FFMPEG_LIBRARIES)
# Check for all possible component.
find_component(AVCODEC libavcodec avcodec libavcodec/avcodec.h)
find_component(AVFORMAT libavformat avformat libavformat/avformat.h)
find_component(AVDEVICE libavdevice avdevice libavdevice/avdevice.h)
#find_component(AVRESAMPLE libavresample avresample libavresample/avresample.h) # old name for swresample
find_component(AVUTIL libavutil avutil libavutil/avutil.h)
find_component(AVFILTER libavfilter avfilter libavfilter/avfilter.h)
find_component(SWSCALE libswscale swscale libswscale/swscale.h)
find_component(POSTPROC libpostproc postproc libpostproc/postprocess.h)
find_component(SWRESAMPLE libswresample swresample libswresample/swresample.h)
# Check if the required components were found and add their stuff to the FFMPEG_* vars.
foreach (_component ${FFmpeg_FIND_COMPONENTS})
if (${_component}_FOUND)
# message(STATUS "Required component ${_component} present.")
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} ${${_component}_LIBRARIES})
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} ${${_component}_DEFINITIONS})
list(APPEND FFMPEG_INCLUDE_DIRS ${${_component}_INCLUDE_DIRS})
else ()
# message(STATUS "Required component ${_component} missing.")
endif ()
endforeach ()
# Build the include path with duplicates removed.
if (FFMPEG_INCLUDE_DIRS)
list(REMOVE_DUPLICATES FFMPEG_INCLUDE_DIRS)
endif ()
# cache the vars.
set(FFMPEG_INCLUDE_DIRS ${FFMPEG_INCLUDE_DIRS} CACHE STRING "The FFmpeg include directories." FORCE)
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} CACHE STRING "The FFmpeg libraries." FORCE)
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} CACHE STRING "The FFmpeg cflags." FORCE)
mark_as_advanced(FFMPEG_INCLUDE_DIRS
FFMPEG_LIBRARIES
FFMPEG_DEFINITIONS)
endif ()
# Now set the noncached _FOUND vars for the components.
# whisper.cpp does not need SWSCALE
foreach (_component AVCODEC AVDEVICE AVFORMAT AVRESAMPLE AVUTIL POSTPROCESS)
set_component_found(${_component})
endforeach ()
# Compile the list of required vars
set(_FFmpeg_REQUIRED_VARS FFMPEG_LIBRARIES FFMPEG_INCLUDE_DIRS)
foreach (_component ${FFmpeg_FIND_COMPONENTS})
list(APPEND _FFmpeg_REQUIRED_VARS ${_component}_LIBRARIES ${_component}_INCLUDE_DIRS)
endforeach ()
# Give a nice error message if some of the required vars are missing.
find_package_handle_standard_args(FFmpeg DEFAULT_MSG ${_FFmpeg_REQUIRED_VARS})

View File

@ -1,58 +0,0 @@
set(BUILD_NUMBER 0)
set(BUILD_COMMIT "unknown")
set(BUILD_COMPILER "unknown")
set(BUILD_TARGET "unknown")
# Look for git
find_package(Git)
if(NOT Git_FOUND)
find_program(GIT_EXECUTABLE NAMES git git.exe)
if(GIT_EXECUTABLE)
set(Git_FOUND TRUE)
message(STATUS "Found Git: ${GIT_EXECUTABLE}")
else()
message(WARNING "Git not found. Build info will not be accurate.")
endif()
endif()
# Get the commit count and hash
if(Git_FOUND)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE HEAD
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
set(BUILD_COMMIT ${HEAD})
endif()
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE COUNT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
set(BUILD_NUMBER ${COUNT})
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_COMPILER ${OUT})
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
endif()

View File

@ -1,65 +0,0 @@
set(WHISPER_VERSION @WHISPER_INSTALL_VERSION@)
set(WHISPER_BUILD_COMMIT @WHISPER_BUILD_COMMIT@)
set(WHISPER_BUILD_NUMBER @WHISPER_BUILD_NUMBER@)
set(WHISPER_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_BLAS @GGML_BLAS@)
set(GGML_CUDA @GGML_CUDA@)
set(GGML_METAL @GGML_METAL@)
set(GGML_HIPBLAS @GGML_HIPBLAS@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
@PACKAGE_INIT@
set_and_check(WHISPER_INCLUDE_DIR "@PACKAGE_WHISPER_INCLUDE_INSTALL_DIR@")
set_and_check(WHISPER_LIB_DIR "@PACKAGE_WHISPER_LIB_INSTALL_DIR@")
set_and_check(WHISPER_BIN_DIR "@PACKAGE_WHISPER_BIN_INSTALL_DIR@")
# Ensure transient dependencies satisfied
find_package(Threads REQUIRED)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
endif()
if (GGML_BLAS)
find_package(BLAS REQUIRED)
endif()
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
if (GGML_HIPBLAS)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
endif()
find_library(whisper_LIBRARY whisper
REQUIRED
HINTS ${WHISPER_LIB_DIR})
set(_whisper_link_deps "Threads::Threads" "@WHISPER_EXTRA_LIBS@")
set(_whisper_transient_defines "@WHISPER_TRANSIENT_DEFINES@")
add_library(whisper UNKNOWN IMPORTED)
set_target_properties(whisper
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${WHISPER_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_whisper_link_deps}"
INTERFACE_COMPILE_DEFINITIONS "${_whisper_transient_defines}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${whisper_LIBRARY}"
INTERFACE_COMPILE_FEATURES cxx_std_11
POSITION_INDEPENDENT_CODE ON )
check_required_components(whisper)

View File

@ -1,10 +0,0 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
includedir=${prefix}/include
Name: whisper
Description: Port of OpenAI's Whisper model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lwhisper
Cflags: -I${includedir}

View File

@ -123,7 +123,7 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
/**
Make a prediction using the convenience interface
@param logmel_data as 1 × n_mel × 3000 3-dimensional array of floats:
@param logmel_data as 1 × 80 × 3000 3-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/

View File

@ -3,8 +3,6 @@
// Code is derived from the work of Github user @wangchou
// ref: https://github.com/wangchou/callCoreMLFromCpp
#include <stdint.h>
#if __cplusplus
extern "C" {
#endif
@ -16,8 +14,6 @@ void whisper_coreml_free(struct whisper_coreml_context * ctx);
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
int64_t n_ctx,
int64_t n_mel,
float * mel,
float * out);

View File

@ -24,9 +24,9 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
// select which device to run the Core ML model on
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
// config.computeUnits = MLComputeUnitsCPUAndGPU;
config.computeUnits = MLComputeUnitsCPUAndGPU;
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
config.computeUnits = MLComputeUnitsAll;
//config.computeUnits = MLComputeUnitsAll;
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);
@ -48,15 +48,13 @@ void whisper_coreml_free(struct whisper_coreml_context * ctx) {
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
int64_t n_ctx,
int64_t n_mel,
float * mel,
float * out) {
MLMultiArray * inMultiArray = [
[MLMultiArray alloc] initWithDataPointer: mel
shape: @[@1, @(n_mel), @(n_ctx)]
shape: @[@1, @80, @3000]
dataType: MLMultiArrayDataTypeFloat32
strides: @[@(n_ctx*n_mel), @(n_ctx), @1]
strides: @[@(240000), @(3000), @1]
deallocator: nil
error: nil
];

View File

@ -11,62 +11,25 @@ if (WHISPER_SDL2)
string(STRIP "${SDL2_LIBRARIES}" SDL2_LIBRARIES)
message(STATUS "SDL2_INCLUDE_DIRS = ${SDL2_INCLUDE_DIRS}")
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast REQUIRED)
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
# common
set(TARGET common)
unset(COMMON_EXTRA_LIBS)
if (WHISPER_FFMPEG)
# As of cmake 3.27, there is no official cmake support for FindFFmpeg.
# Consequnelty we added a FindFFmpeg.cmake script the cmake subfolder:
# whisper.cpp does not need the full ffmpeg libs, just AVFORMAT AVCODEC AVUTIL SWRESAMPLE
# libswresample performs highly optimized audio resampling, rematrixing and sample format conversion operations
# libavcodec provides a generic encoding/decoding framework and contains multiple decoders and encoders for audio, video and subtitle streams, and several bitstream filters.
# libavformat provides a generic framework for multiplexing and demultiplexing (muxing and demuxing) audio, video and subtitle streams.
find_package(FFmpeg REQUIRED)
if (NOT ${FFMPEG_FOUND})
message(FATAL_ERROR "Cannot find ffmpeg libs/headers")
endif()
message(STATUS "Found ffmpeg libs: ${FFMPEG_LIBRARIES}")
message(STATUS "Found ffmpeg headers in: ${FFMPEG_INCLUDE_DIRS}")
message(STATUS "ffmpeg definitions: ${FFMPEG_DEFINITIONS}")
message(STATUS "Found avformat ${AVFORMAT_VERSION}")
include_directories(${FFMPEG_INCLUDE_DIRS})
add_compile_definitions(WHISPER_FFMPEG)
list(APPEND COMMON_EXTRA_LIBS ${FFMPEG_LIBRARIES})
set(COMMON_SOURCES_FFMPEG ffmpeg-transcode.cpp)
endif()
add_library(${TARGET} STATIC
common.h
common.cpp
common-ggml.h
common-ggml.cpp
grammar-parser.h
grammar-parser.cpp
${COMMON_SOURCES_FFMPEG}
)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper ${COMMON_EXTRA_LIBS})
target_link_libraries(${TARGET} PRIVATE whisper)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
if (WHISPER_SDL2)
# common-sdl
@ -80,69 +43,31 @@ if (WHISPER_SDL2)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries (${TARGET} PRIVATE ${SDL2_LIBRARIES})
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
# add json lib
add_library(json_cpp INTERFACE)
target_include_directories(json_cpp INTERFACE ${CMAKE_CURRENT_SOURCE_DIR})
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
add_subdirectory(whisper.wasm)
set_target_properties(libmain PROPERTIES FOLDER "libs")
add_subdirectory(stream.wasm)
set_target_properties(libstream PROPERTIES FOLDER "libs")
add_subdirectory(command.wasm)
set_target_properties(libcommand PROPERTIES FOLDER "libs")
#add_subdirectory(talk.wasm)
#set_target_properties(libtalk PROPERTIES FOLDER "libs")
add_subdirectory(talk.wasm)
add_subdirectory(bench.wasm)
set_target_properties(libbench PROPERTIES FOLDER "libs")
elseif(CMAKE_JS_VERSION)
add_subdirectory(addon.node)
set_target_properties(addon.node PROPERTIES FOLDER "examples")
else()
add_subdirectory(main)
set_target_properties(main PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(stream)
set_target_properties(stream PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(server)
set_target_properties(server PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(command)
set_target_properties(command PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(bench)
set_target_properties(bench PROPERTIES FOLDER "examples")
add_subdirectory(quantize)
set_target_properties(quantize PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
# TODO: disabled until update
# https://github.com/ggerganov/whisper.cpp/issues/1818
#add_subdirectory(talk)
#set_target_properties(talk PROPERTIES FOLDER "examples")
add_subdirectory(talk)
add_subdirectory(talk-llama)
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
add_subdirectory(lsp)
set_target_properties(lsp PROPERTIES FOLDER "examples")
if (GGML_SYCL)
add_subdirectory(sycl)
set_target_properties(sycl PROPERTIES FOLDER "examples")
endif()
endif (WHISPER_SDL2)
endif()
if (WHISPER_SDL2)
add_subdirectory(wchess)
set_target_properties(wchess PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)

View File

@ -1,4 +1,4 @@
set(TARGET addon.node)
set(TARGET whisper-addon)
# Base settings
#==================================================================

View File

@ -14,14 +14,14 @@ npm install
Make sure it is in the project root directory and compiled with make-js.
```shell
npx cmake-js compile -T addon.node -B Release
npx cmake-js compile -T whisper-addon -B Release
```
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
> Such as appointing special cmake path:
> ```shell
> npx cmake-js compile -c 'xxx/cmake' -T addon.node -B Release
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
> ```
## Run

View File

@ -1,7 +1,7 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../../build/Release/addon.node"
"../../../build/Release/whisper-addon"
));
const { promisify } = require("util");
@ -11,13 +11,6 @@ const whisperParamsMock = {
language: "en",
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
use_gpu: true,
flash_attn: false,
no_prints: true,
comma_in_time: false,
translate: true,
no_timestamps: false,
audio_ctx: 0,
};
describe("Run whisper.node", () => {

View File

@ -19,12 +19,12 @@ struct whisper_params {
int32_t max_len = 0;
int32_t best_of = 5;
int32_t beam_size = -1;
int32_t audio_ctx = 0;
float word_thold = 0.01f;
float entropy_thold = 2.4f;
float logprob_thold = -1.0f;
bool speed_up = false;
bool translate = false;
bool diarize = false;
bool output_txt = false;
@ -36,10 +36,6 @@ struct whisper_params {
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool no_prints = false;
bool use_gpu = true;
bool flash_attn = false;
bool comma_in_time = true;
std::string language = "en";
std::string prompt;
@ -47,8 +43,6 @@ struct whisper_params {
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
std::vector<float> pcmf32 = {}; // mono-channel F32 PCM
};
struct whisper_print_user_data {
@ -57,6 +51,27 @@ struct whisper_print_user_data {
const std::vector<std::vector<float>> * pcmf32s;
};
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -88,8 +103,8 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
if (params.diarize && pcmf32s.size() == 2) {
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples, WHISPER_SAMPLE_RATE);
const int64_t is1 = timestamp_to_sample(t1, n_samples, WHISPER_SAMPLE_RATE);
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
@ -125,15 +140,9 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
}
void cb_log_disable(enum ggml_log_level, const char *, void *) {}
int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
if (params.no_prints) {
whisper_log_set(cb_log_disable, NULL);
}
if (params.fname_inp.empty() && params.pcmf32.empty()) {
fprintf(stderr, "error: no input files or audio buffer specified\n");
if (params.fname_inp.empty()) {
fprintf(stderr, "error: no input files specified\n");
return 2;
}
@ -144,24 +153,13 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// if params.pcmf32 is provided, set params.fname_inp to "buffer"
// this is simpler than further modifications in the code
if (!params.pcmf32.empty()) {
fprintf(stderr, "info: using audio buffer as input\n");
params.fname_inp.clear();
params.fname_inp.emplace_back("buffer");
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
@ -169,25 +167,20 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// read the input audio file if params.pcmf32 is not provided
if (params.pcmf32.empty()) {
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
}
} else {
pcmf32 = params.pcmf32;
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
}
// print system information
if (!params.no_prints) {
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
if (!params.no_prints) {
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
@ -196,13 +189,12 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n",
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1,
params.audio_ctx);
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
@ -229,15 +221,14 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.initial_prompt = params.prompt.c_str();
wparams.no_timestamps = params.no_timestamps;
whisper_print_user_data user_data = { &params, &pcmf32s };
// this callback is called on each new segment
@ -273,8 +264,8 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result[i].emplace_back(to_timestamp(t0, params.comma_in_time));
result[i].emplace_back(to_timestamp(t1, params.comma_in_time));
result[i].emplace_back(to_timestamp(t0, true));
result[i].emplace_back(to_timestamp(t1, true));
result[i].emplace_back(text);
}
@ -324,34 +315,10 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
std::string language = whisper_params.Get("language").As<Napi::String>();
std::string model = whisper_params.Get("model").As<Napi::String>();
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
bool use_gpu = whisper_params.Get("use_gpu").As<Napi::Boolean>();
bool flash_attn = whisper_params.Get("flash_attn").As<Napi::Boolean>();
bool no_prints = whisper_params.Get("no_prints").As<Napi::Boolean>();
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
std::vector<float> pcmf32_vec;
if (pcmf32Value.IsTypedArray()) {
Napi::Float32Array pcmf32 = pcmf32Value.As<Napi::Float32Array>();
size_t length = pcmf32.ElementLength();
pcmf32_vec.reserve(length);
for (size_t i = 0; i < length; i++) {
pcmf32_vec.push_back(pcmf32[i]);
}
}
params.language = language;
params.model = model;
params.fname_inp.emplace_back(input);
params.use_gpu = use_gpu;
params.flash_attn = flash_attn;
params.no_prints = no_prints;
params.no_timestamps = no_timestamps;
params.audio_ctx = audio_ctx;
params.pcmf32 = pcmf32_vec;
params.comma_in_time = comma_in_time;
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);

View File

@ -1,7 +1,7 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../build/Release/addon.node"
"../../build/Release/whisper-addon"
));
const { promisify } = require("util");
@ -10,27 +10,14 @@ const whisperAsync = promisify(whisper);
const whisperParams = {
language: "en",
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
fname_inp: path.join(__dirname, "../../samples/jfk.wav"),
use_gpu: true,
flash_attn: false,
no_prints: true,
comma_in_time: false,
translate: true,
no_timestamps: false,
audio_ctx: 0,
fname_inp: "../../samples/jfk.wav",
};
const arguments = process.argv.slice(2);
const params = Object.fromEntries(
arguments.reduce((pre, item) => {
if (item.startsWith("--")) {
const [key, value] = item.slice(2).split("=");
if (key === "audio_ctx") {
whisperParams[key] = parseInt(value);
} else {
whisperParams[key] = value;
}
return pre;
return [...pre, item.slice(2).split("=")];
}
return pre;
}, [])
@ -45,6 +32,5 @@ for (const key in params) {
console.log("whisperParams =", whisperParams);
whisperAsync(whisperParams).then((result) => {
console.log();
console.log(result);
console.log(`Result from whisper: ${result}`);
});

View File

@ -1,5 +1,5 @@
{
"name": "addon.node",
"name": "whisper-addon",
"version": "0.0.0",
"description": "",
"main": "index.js",

View File

@ -23,9 +23,7 @@ void bench_main(size_t index) {
fprintf(stderr, "%s: running benchmark with %d threads - please wait...\n", __func__, n_threads);
const int n_mels = whisper_model_n_mels(ctx);
if (int ret = whisper_set_mel(ctx, nullptr, 0, n_mels)) {
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
fprintf(stderr, "error: failed to set mel: %d\n", ret);
return;
}
@ -59,7 +57,7 @@ EMSCRIPTEN_BINDINGS(bench) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
g_contexts[i] = whisper_init_from_file(path_model.c_str());
if (g_contexts[i] != nullptr) {
if (g_worker.joinable()) {
g_worker.join();

View File

@ -1,24 +1,20 @@
#include "whisper.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t what = 0; // what to benchmark: 0 - whisper encoder, 1 - memcpy, 2 - ggml_mul_mat
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
std::string model = "models/ggml-base.en.bin";
bool use_gpu = true;
bool flash_attn = false;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -26,11 +22,9 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -50,23 +44,16 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " %-7s 0 - whisper\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, "\n");
}
static int whisper_bench_full(const whisper_params & params) {
int whisper_bench_full(const whisper_params & params) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
{
fprintf(stderr, "\n");
@ -78,15 +65,13 @@ static int whisper_bench_full(const whisper_params & params) {
return 2;
}
const int n_mels = whisper_model_n_mels(ctx);
if (int ret = whisper_set_mel(ctx, nullptr, 0, n_mels)) {
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
fprintf(stderr, "error: failed to set mel: %d\n", ret);
return 3;
}
// heat encoder
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode: %d\n", ret);
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
@ -95,13 +80,13 @@ static int whisper_bench_full(const whisper_params & params) {
// prompt heat
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
// text-generation heat
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
@ -109,30 +94,20 @@ static int whisper_bench_full(const whisper_params & params) {
// actual run
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode: %d\n", ret);
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
// text-generation
for (int i = 0; i < 256; i++) {
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
}
// batched decoding
for (int i = 0; i < 64; i++) {
if (int ret = whisper_decode(ctx, tokens, 5, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
}
// prompt processing
for (int i = 0; i < 16; i++) {
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
}
for (int i = 0; i < 256; i++) {
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
}

View File

@ -243,7 +243,7 @@ EMSCRIPTEN_BINDINGS(command) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
g_contexts[i] = whisper_init_from_file(path_model.c_str());
if (g_contexts[i] != nullptr) {
g_running = true;
if (g_worker.joinable()) {

View File

@ -37,13 +37,9 @@ https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9
The `command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2
# On Debian based linux distributions:
# Install SDL2 on Linux
sudo apt-get install libsdl2-dev
# On Fedora Linux:
sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS
brew install sdl2

View File

@ -9,7 +9,6 @@
#include "common-sdl.h"
#include "common.h"
#include "whisper.h"
#include "grammar-parser.h"
#include <sstream>
#include <cassert>
@ -31,35 +30,25 @@ struct whisper_params {
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
float grammar_penalty = 100.0f;
grammar_parser::parse_state grammar_parsed;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
std::string fname_out;
std::string commands;
std::string prompt;
std::string context;
std::string grammar;
// A regular expression that matches tokens to suppress
std::string suppress_regex;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -75,20 +64,15 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; }
else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -113,41 +97,25 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str());
fprintf(stderr, " -p, --prompt [%-7s] the required activation prompt\n", params.prompt.c_str());
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, "\n");
}
static std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
const std::string & grammar_rule,
float & logprob_min,
float & logprob_sum,
int & n_tokens,
int64_t & t_ms) {
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
logprob_min = 0.0f;
logprob_sum = 0.0f;
n_tokens = 0;
prob = 0.0f;
t_ms = 0;
//whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH);
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.print_progress = false;
wparams.print_special = params.print_special;
@ -155,42 +123,19 @@ static std::string transcribe(
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.no_timestamps = params.no_timestamps;
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.temperature = 0.4f;
wparams.temperature_inc = 1.0f;
wparams.greedy.best_of = 5;
wparams.beam_search.beam_size = 5;
wparams.initial_prompt = params.context.data();
wparams.suppress_regex = params.suppress_regex.c_str();
const auto & grammar_parsed = params.grammar_parsed;
auto grammar_rules = grammar_parsed.c_rules();
if (!params.grammar_parsed.rules.empty() && !grammar_rule.empty()) {
if (grammar_parsed.symbol_ids.find(grammar_rule) == grammar_parsed.symbol_ids.end()) {
fprintf(stderr, "%s: warning: grammar rule '%s' not found - skipping grammar sampling\n", __func__, grammar_rule.c_str());
} else {
wparams.grammar_rules = grammar_rules.data();
wparams.n_grammar_rules = grammar_rules.size();
wparams.i_start_rule = grammar_parsed.symbol_ids.at(grammar_rule);
wparams.grammar_penalty = params.grammar_penalty;
}
}
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
int prob_n = 0;
std::string result;
const int n_segments = whisper_full_n_segments(ctx);
@ -199,24 +144,26 @@ static std::string transcribe(
result += text;
const int n = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n; ++j) {
const int n_tokens = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n_tokens; ++j) {
const auto token = whisper_full_get_token_data(ctx, i, j);
if(token.plog > 0.0f) exit(0);
logprob_min = std::min(logprob_min, token.plog);
logprob_sum += token.plog;
++n_tokens;
prob += token.p;
++prob_n;
}
}
if (prob_n > 0) {
prob /= prob_n;
}
const auto t_end = std::chrono::high_resolution_clock::now();
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
return result;
}
static std::vector<std::string> read_allowed_commands(const std::string & fname) {
std::vector<std::string> read_allowed_commands(const std::string & fname) {
std::vector<std::string> allowed_commands;
std::ifstream ifs(fname);
@ -238,7 +185,7 @@ static std::vector<std::string> read_allowed_commands(const std::string & fname)
return allowed_commands;
}
static std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
@ -252,7 +199,7 @@ static std::vector<std::string> get_words(const std::string &txt) {
// command-list mode
// guide the transcription to match the most likely command from a provided list
static int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: guided mode\n", __func__);
@ -300,7 +247,7 @@ static int process_command_list(struct whisper_context * ctx, audio_async &audio
fprintf(stderr, " ]\n");
}
std::string k_prompt = "select one from the available words: ";
std::string k_prompt = "select one from the available words: ";
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
if (i > 0) {
k_prompt += ", ";
@ -367,6 +314,7 @@ static int process_command_list(struct whisper_context * ctx, audio_async &audio
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.prompt_tokens = k_tokens.data();
wparams.prompt_n_tokens = k_tokens.size();
@ -463,13 +411,11 @@ static int process_command_list(struct whisper_context * ctx, audio_async &audio
// always-prompt mode
// transcribe the voice into text after valid prompt
static int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool ask_prompt = true;
float logprob_min = 0.0f;
float logprob_sum = 0.0f;
int n_tokens = 0;
float prob = 0.0f;
std::vector<float> pcmf32_cur;
@ -507,7 +453,7 @@ static int always_prompt_transcription(struct whisper_context * ctx, audio_async
// detect the commands
audio.get(params.command_ms, pcmf32_cur);
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "", logprob_min, logprob_sum, n_tokens, t_ms));
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
const auto words = get_words(txt);
@ -543,27 +489,18 @@ static int always_prompt_transcription(struct whisper_context * ctx, audio_async
// general-purpose mode
// freely transcribe the voice into text
static int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
int process_general_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;
float logprob_min0 = 0.0f;
float logprob_min = 0.0f;
float logprob_sum0 = 0.0f;
float logprob_sum = 0.0f;
int n_tokens0 = 0;
int n_tokens = 0;
float prob0 = 0.0f;
float prob = 0.0f;
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
std::string k_prompt = "Ok Whisper, start listening for commands.";
if (!params.prompt.empty()) {
k_prompt = params.prompt;
}
const std::string k_prompt = "Ok Whisper, start listening for commands.";
fprintf(stderr, "\n");
fprintf(stderr, "%s: general-purpose mode\n", __func__);
@ -596,11 +533,9 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
// wait for activation phrase
audio.get(params.prompt_ms, pcmf32_cur);
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "prompt", logprob_min0, logprob_sum0, n_tokens0, t_ms));
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
const float p = 100.0f * std::exp(logprob_min0);
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms, p = %.2f%%)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms, p);
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
const float sim = similarity(txt, k_prompt);
@ -621,30 +556,19 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
// we have heard the activation phrase, now detect the commands
audio.get(params.command_ms, pcmf32_cur);
//printf("len prompt: %.4f\n", pcmf32_prompt.size() / (float) WHISPER_SAMPLE_RATE);
//printf("len command: %.4f\n", pcmf32_cur.size() / (float) WHISPER_SAMPLE_RATE);
// prepend 3 second of silence
pcmf32_cur.insert(pcmf32_cur.begin(), 3.0f*WHISPER_SAMPLE_RATE, 0.0f);
// prepend the prompt audio
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "root", logprob_min, logprob_sum, n_tokens, t_ms));
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
//const float p = 100.0f * std::exp((logprob - logprob0) / (n_tokens - n_tokens0));
const float p = 100.0f * std::exp(logprob_min);
prob = 100.0f*(prob - prob0);
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
// find the prompt in the text
float best_sim = 0.0f;
size_t best_len = 0;
for (size_t n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
if (n >= txt.size()) {
break;
}
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
const auto prompt = txt.substr(0, n);
const float sim = similarity(prompt, k_prompt);
@ -657,16 +581,9 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
}
}
fprintf(stdout, "%s: DEBUG: txt = '%s', prob = %.2f%%\n", __func__, txt.c_str(), p);
if (best_len == 0) {
fprintf(stdout, "%s: WARNING: command not recognized, try again\n", __func__);
} else {
// cut the prompt from the decoded text
const std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
}
const std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
fprintf(stdout, "\n");
}
@ -693,12 +610,7 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
// print some info about the processing
{
@ -736,36 +648,12 @@ int main(int argc, char ** argv) {
int ret_val = 0;
if (!params.grammar.empty()) {
auto & grammar = params.grammar_parsed;
if (is_file_exist(params.grammar.c_str())) {
// read grammar from file
std::ifstream ifs(params.grammar.c_str());
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
grammar = grammar_parser::parse(txt.c_str());
} else {
// read grammar from string
grammar = grammar_parser::parse(params.grammar.c_str());
}
// will be empty (default) if there are parse errors
if (grammar.rules.empty()) {
ret_val = 1;
} else {
fprintf(stderr, "%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, grammar);
fprintf(stderr, "\n");
}
}
if (ret_val == 0) {
if (!params.commands.empty()) {
ret_val = process_command_list(ctx, audio, params);
} else if (!params.prompt.empty() && params.grammar_parsed.rules.empty()) {
ret_val = always_prompt_transcription(ctx, audio, params);
} else {
ret_val = process_general_transcription(ctx, audio, params);
}
if (!params.commands.empty()) {
ret_val = process_command_list(ctx, audio, params);
} else if (!params.prompt.empty()) {
ret_val = always_prompt_transcription(ctx, audio, params);
} else {
ret_val = process_general_transcription(ctx, audio, params);
}
audio.pause();

View File

@ -9,11 +9,6 @@ static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
{"q2_k", GGML_FTYPE_MOSTLY_Q2_K},
{"q3_k", GGML_FTYPE_MOSTLY_Q3_K},
{"q4_k", GGML_FTYPE_MOSTLY_Q4_K},
{"q5_k", GGML_FTYPE_MOSTLY_Q5_K},
{"q6_k", GGML_FTYPE_MOSTLY_Q6_K},
};
void ggml_print_ftypes(FILE * fp) {
@ -53,28 +48,15 @@ bool ggml_common_quantize_0(
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_MOSTLY_Q2_K: qtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: qtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: qtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: qtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: qtype = GGML_TYPE_Q6_K; break;
case GGML_FTYPE_UNKNOWN:
case GGML_FTYPE_ALL_F32:
case GGML_FTYPE_MOSTLY_F16:
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
case GGML_FTYPE_MOSTLY_IQ2_XXS:
case GGML_FTYPE_MOSTLY_IQ2_XS:
case GGML_FTYPE_MOSTLY_IQ2_S:
case GGML_FTYPE_MOSTLY_IQ3_XXS:
case GGML_FTYPE_MOSTLY_IQ3_S:
case GGML_FTYPE_MOSTLY_IQ1_S:
case GGML_FTYPE_MOSTLY_IQ4_NL:
case GGML_FTYPE_MOSTLY_IQ4_XS:
case GGML_FTYPE_MOSTLY_IQ1_M:
case GGML_FTYPE_MOSTLY_BF16:
case GGML_FTYPE_MOSTLY_Q4_0_4_4:
case GGML_FTYPE_MOSTLY_Q4_0_4_8:
case GGML_FTYPE_MOSTLY_Q4_0_8_8:
case GGML_FTYPE_MOSTLY_Q2_K:
case GGML_FTYPE_MOSTLY_Q3_K:
case GGML_FTYPE_MOSTLY_Q4_K:
case GGML_FTYPE_MOSTLY_Q5_K:
case GGML_FTYPE_MOSTLY_Q6_K:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
@ -95,6 +77,8 @@ bool ggml_common_quantize_0(
std::vector<ggml_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
while (true) {
int32_t n_dims;
int32_t length;
@ -179,44 +163,41 @@ bool ggml_common_quantize_0(
work.resize(nelements); // for quantization
size_t cur_size = 0;
std::vector<int64_t> hist_cur(1 << 4, 0);
switch ((ggml_type) ttype) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
cur_size = ggml_quantize_chunk((ggml_type) ttype, data_f32.data(), work.data(), 0, nelements/ne[0], ne[0], nullptr);
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_0:
{
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_1:
{
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q8_0:
{
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
@ -227,7 +208,15 @@ bool ggml_common_quantize_0(
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB\n", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
for (int i = 0; i < (int) hist_cur.size(); ++i) {
hist_all[i] += hist_cur[i];
}
for (int i = 0; i < (int) hist_cur.size(); ++i) {
printf("%5.3f ", hist_cur[i] / (float)nelements);
}
printf("\n");
} else {
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
@ -240,5 +229,18 @@ bool ggml_common_quantize_0(
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));
{
int64_t sum_all = 0;
for (int i = 0; i < (int) hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (int i = 0; i < (int) hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / (float)sum_all);
}
printf("\n");
}
return true;
}

View File

@ -139,13 +139,10 @@ void audio_async::callback(uint8_t * stream, int len) {
return;
}
size_t n_samples = len / sizeof(float);
const size_t n_samples = len / sizeof(float);
if (n_samples > m_audio.size()) {
n_samples = m_audio.size();
stream += (len - (n_samples * sizeof(float)));
}
m_audio_new.resize(n_samples);
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
@ -156,7 +153,7 @@ void audio_async::callback(uint8_t * stream, int len) {
const size_t n0 = m_audio.size() - m_audio_pos;
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
memcpy(&m_audio[0], stream + n0 * sizeof(float), (n_samples - n0) * sizeof(float));
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = m_audio.size();
@ -219,7 +216,7 @@ bool sdl_poll_events() {
case SDL_QUIT:
{
return false;
}
} break;
default:
break;
}

View File

@ -41,6 +41,7 @@ private:
std::mutex m_mutex;
std::vector<float> m_audio;
std::vector<float> m_audio_new;
size_t m_audio_pos = 0;
size_t m_audio_len = 0;
};

View File

@ -19,18 +19,8 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif
#ifdef WHISPER_FFMPEG
// as implemented in ffmpeg_trancode.cpp only embedded in common lib if whisper built with ffmpeg support
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data);
#endif
// Function to check if the next argument exists
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
return argv[++i];
} else {
@ -48,12 +38,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-np" || arg == "--n_parallel") {
params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_k") {
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_p") {
@ -66,12 +56,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-c" || arg == "--context") {
params.n_ctx= std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "-m" || arg == "--model") {
params.model = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-i" || arg == "--interactive") {
@ -113,6 +97,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
@ -126,9 +111,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore EOS token during generation\n");
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
@ -147,6 +129,7 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
case 7: return "He";
case 8: return "She";
case 9: return "They";
default: return "To";
}
return "The";
@ -345,7 +328,7 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}
static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
@ -357,7 +340,7 @@ static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& in
return output;
}
static std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
if (fpath_test.empty()){
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();
@ -624,31 +607,12 @@ gpt_vocab::id gpt_sample_top_k_top_p_repeat(
}
bool is_wav_buffer(const std::string buf) {
// RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format
// WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
if (buf.size() < 12 || buf.substr(0, 4) != "RIFF" || buf.substr(8, 4) != "WAVE") {
return false;
}
uint32_t chunk_size = *reinterpret_cast<const uint32_t*>(buf.data() + 4);
if (chunk_size + 8 != buf.size()) {
return false;
}
return true;
}
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin or ffmpeg decoding output
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname == "-") {
{
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
#endif
uint8_t buf[1024];
while (true)
{
@ -667,49 +631,28 @@ bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
}
else if (is_wav_buffer(fname)) {
if (drwav_init_memory(&wav, fname.c_str(), fname.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from fname buffer\n");
return false;
}
}
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
#if defined(WHISPER_FFMPEG)
if (ffmpeg_decode_audio(fname, wav_data) != 0) {
fprintf(stderr, "error: failed to ffmpeg decode '%s' \n", fname.c_str());
return false;
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to read wav data as wav \n");
return false;
}
#else
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
return false;
#endif
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (stereo && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
drwav_uninit(&wav);
return false;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
@ -864,48 +807,3 @@ void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*whisper_sample_rate)/100)));
}
bool is_file_exist(const char *fileName)
{
std::ifstream infile(fileName);
return infile.good();
}
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id)
{
std::ofstream speak_file(path.c_str());
if (speak_file.fail()) {
fprintf(stderr, "%s: failed to open speak_file\n", __func__);
return false;
} else {
speak_file.write(text.c_str(), text.size());
speak_file.close();
int ret = system((command + " " + std::to_string(voice_id) + " " + path).c_str());
if (ret != 0) {
fprintf(stderr, "%s: failed to speak\n", __func__);
return false;
}
}
return true;
}

View File

@ -7,9 +7,6 @@
#include <vector>
#include <random>
#include <thread>
#include <ctime>
#include <fstream>
#include <sstream>
#define COMMON_SAMPLE_RATE 16000
@ -18,15 +15,10 @@
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 32; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
bool ignore_eos = false; // ignore EOS token when generating text
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_batch = 8; // batch size for prompt processing
// sampling parameters
int32_t top_k = 40;
@ -41,6 +33,8 @@ struct gpt_params {
bool interactive = false;
int32_t interactive_port = -1;
int32_t n_gpu_layers = 0;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
@ -136,11 +130,7 @@ gpt_vocab::id gpt_sample_top_k_top_p_repeat(
// Audio utils
//
// Check if a buffer is a WAV audio file
bool is_wav_buffer(const std::string buf);
// Read WAV audio file and store the PCM data into pcmf32
// fname can be a buffer of WAV data instead of a filename
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_wav(
@ -149,104 +139,6 @@ bool read_wav(
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// Write PCM data into WAV audio file
class wav_writer {
private:
std::ofstream file;
uint32_t dataSize = 0;
std::string wav_filename;
bool write_header(const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
file.write("RIFF", 4);
file.write("\0\0\0\0", 4); // Placeholder for file size
file.write("WAVE", 4);
file.write("fmt ", 4);
const uint32_t sub_chunk_size = 16;
const uint16_t audio_format = 1; // PCM format
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
const uint16_t block_align = channels * bits_per_sample / 8;
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
file.write(reinterpret_cast<const char *>(&audio_format), 2);
file.write(reinterpret_cast<const char *>(&channels), 2);
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
file.write(reinterpret_cast<const char *>(&block_align), 2);
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
file.write("data", 4);
file.write("\0\0\0\0", 4); // Placeholder for data size
return true;
}
// It is assumed that PCM data is normalized to a range from -1 to 1
bool write_audio(const float * data, size_t length) {
for (size_t i = 0; i < length; ++i) {
const int16_t intSample = int16_t(data[i] * 32767);
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
dataSize += sizeof(int16_t);
}
if (file.is_open()) {
file.seekp(4, std::ios::beg);
uint32_t fileSize = 36 + dataSize;
file.write(reinterpret_cast<char *>(&fileSize), 4);
file.seekp(40, std::ios::beg);
file.write(reinterpret_cast<char *>(&dataSize), 4);
file.seekp(0, std::ios::end);
}
return true;
}
bool open_wav(const std::string & filename) {
if (filename != wav_filename) {
if (file.is_open()) {
file.close();
}
}
if (!file.is_open()) {
file.open(filename, std::ios::binary);
wav_filename = filename;
dataSize = 0;
}
return file.is_open();
}
public:
bool open(const std::string & filename,
const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
if (open_wav(filename)) {
write_header(sample_rate, bits_per_sample, channels);
} else {
return false;
}
return true;
}
bool close() {
file.close();
return true;
}
bool write(const float * data, size_t length) {
return write_audio(data, length);
}
~wav_writer() {
if (file.is_open()) {
file.close();
}
}
};
// Apply a high-pass frequency filter to PCM audio
// Suppresses frequencies below cutoff Hz
void high_pass_filter(
@ -282,62 +174,3 @@ struct sam_params {
bool sam_params_parse(int argc, char ** argv, sam_params & params);
void sam_print_usage(int argc, char ** argv, const sam_params & params);
//
// Terminal utils
//
#define SQR(X) ((X) * (X))
#define UNCUBE(x) x < 48 ? 0 : x < 115 ? 1 : (x - 35) / 40
/**
* Quantizes 24-bit RGB to xterm256 code range [16,256).
*/
static int rgb2xterm256(int r, int g, int b) {
unsigned char cube[] = {0, 0137, 0207, 0257, 0327, 0377};
int av, ir, ig, ib, il, qr, qg, qb, ql;
av = r * .299 + g * .587 + b * .114 + .5;
ql = (il = av > 238 ? 23 : (av - 3) / 10) * 10 + 8;
qr = cube[(ir = UNCUBE(r))];
qg = cube[(ig = UNCUBE(g))];
qb = cube[(ib = UNCUBE(b))];
if (SQR(qr - r) + SQR(qg - g) + SQR(qb - b) <=
SQR(ql - r) + SQR(ql - g) + SQR(ql - b))
return ir * 36 + ig * 6 + ib + 020;
return il + 0350;
}
static std::string set_xterm256_foreground(int r, int g, int b) {
int x = rgb2xterm256(r, g, b);
std::ostringstream oss;
oss << "\033[38;5;" << x << "m";
return oss.str();
}
// Lowest is red, middle is yellow, highest is green. Color scheme from
// Paul Tol; it is colorblind friendly https://personal.sron.nl/~pault/
const std::vector<std::string> k_colors = {
set_xterm256_foreground(220, 5, 12),
set_xterm256_foreground(232, 96, 28),
set_xterm256_foreground(241, 147, 45),
set_xterm256_foreground(246, 193, 65),
set_xterm256_foreground(247, 240, 86),
set_xterm256_foreground(144, 201, 135),
set_xterm256_foreground( 78, 178, 101),
};
//
// Other utils
//
// convert timestamp to string, 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false);
// given a timestamp get the sample
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate);
// check if file exists using ifstream
bool is_file_exist(const char *fileName);
// write text to file, and call system("command voice_id file")
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id);

File diff suppressed because it is too large Load Diff

View File

@ -1,350 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* transcode.c - convert audio file to WAVE
*
* Copyright (C) 2019 Andrew Clayton <andrew@digital-domain.net>
* Copyright (C) 2024 William Tambellini <william.tambellini@gmail.com>
*/
// Just for conveninent C++ API
#include <vector>
#include <string>
// C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
extern "C" {
#include <libavutil/opt.h>
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswresample/swresample.h>
}
typedef uint64_t u64;
typedef int64_t s64;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint8_t u8;
typedef int8_t s8;
#define WAVE_SAMPLE_RATE 16000
#define AVIO_CTX_BUF_SZ 4096
static const char* ffmpegLog = getenv("FFMPEG_LOG");
// Todo: add __FILE__ __LINE__
#define LOG(...) \
do { if (ffmpegLog) fprintf(stderr, __VA_ARGS__); } while(0) // C99
/*
* WAVE file header based on definition from
* https://gist.github.com/Jon-Schneider/8b7c53d27a7a13346a643dac9c19d34f
*
* We must ensure this structure doesn't have any holes or
* padding so we can just map it straight to the WAVE data.
*/
struct wave_hdr {
/* RIFF Header: "RIFF" */
char riff_header[4];
/* size of audio data + sizeof(struct wave_hdr) - 8 */
int wav_size;
/* "WAVE" */
char wav_header[4];
/* Format Header */
/* "fmt " (includes trailing space) */
char fmt_header[4];
/* Should be 16 for PCM */
int fmt_chunk_size;
/* Should be 1 for PCM. 3 for IEEE Float */
s16 audio_format;
s16 num_channels;
int sample_rate;
/*
* Number of bytes per second
* sample_rate * num_channels * bit_depth/8
*/
int byte_rate;
/* num_channels * bytes per sample */
s16 sample_alignment;
/* bits per sample */
s16 bit_depth;
/* Data Header */
/* "data" */
char data_header[4];
/*
* size of audio
* number of samples * num_channels * bit_depth/8
*/
int data_bytes;
} __attribute__((__packed__));
struct audio_buffer {
u8 *ptr;
int size; /* size left in the buffer */
};
static void set_wave_hdr(wave_hdr& wh, size_t size) {
memcpy(&wh.riff_header, "RIFF", 4);
wh.wav_size = size + sizeof(struct wave_hdr) - 8;
memcpy(&wh.wav_header, "WAVE", 4);
memcpy(&wh.fmt_header, "fmt ", 4);
wh.fmt_chunk_size = 16;
wh.audio_format = 1;
wh.num_channels = 1;
wh.sample_rate = WAVE_SAMPLE_RATE;
wh.sample_alignment = 2;
wh.bit_depth = 16;
wh.byte_rate = wh.sample_rate * wh.sample_alignment;
memcpy(&wh.data_header, "data", 4);
wh.data_bytes = size;
}
static void write_wave_hdr(int fd, size_t size) {
struct wave_hdr wh;
set_wave_hdr(wh, size);
write(fd, &wh, sizeof(struct wave_hdr));
}
static int map_file(int fd, u8 **ptr, size_t *size)
{
struct stat sb;
fstat(fd, &sb);
*size = sb.st_size;
*ptr = (u8*)mmap(NULL, *size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
if (*ptr == MAP_FAILED) {
perror("mmap");
return -1;
}
return 0;
}
static int read_packet(void *opaque, u8 *buf, int buf_size)
{
struct audio_buffer *audio_buf = (audio_buffer*)opaque;
buf_size = FFMIN(buf_size, audio_buf->size);
/* copy internal buffer data to buf */
memcpy(buf, audio_buf->ptr, buf_size);
audio_buf->ptr += buf_size;
audio_buf->size -= buf_size;
return buf_size;
}
static void convert_frame(struct SwrContext *swr, AVCodecContext *codec,
AVFrame *frame, s16 **data, int *size, bool flush)
{
int nr_samples;
s64 delay;
u8 *buffer;
delay = swr_get_delay(swr, codec->sample_rate);
nr_samples = av_rescale_rnd(delay + frame->nb_samples,
WAVE_SAMPLE_RATE, codec->sample_rate,
AV_ROUND_UP);
av_samples_alloc(&buffer, NULL, 1, nr_samples, AV_SAMPLE_FMT_S16, 0);
/*
* !flush is used to check if we are flushing any remaining
* conversion buffers...
*/
nr_samples = swr_convert(swr, &buffer, nr_samples,
!flush ? (const u8 **)frame->data : NULL,
!flush ? frame->nb_samples : 0);
*data = (s16*)realloc(*data, (*size + nr_samples) * sizeof(s16));
memcpy(*data + *size, buffer, nr_samples * sizeof(s16));
*size += nr_samples;
av_freep(&buffer);
}
static bool is_audio_stream(const AVStream *stream)
{
if (stream->codecpar->codec_type == AVMEDIA_TYPE_AUDIO)
return true;
return false;
}
// Return non zero on error, 0 on success
// audio_buffer: input memory
// data: decoded output audio data (wav file)
// size: size of output data
static int decode_audio(struct audio_buffer *audio_buf, s16 **data, int *size)
{
LOG("decode_audio: input size: %d\n", audio_buf->size);
AVFormatContext *fmt_ctx;
AVIOContext *avio_ctx;
AVStream *stream;
AVCodecContext *codec;
AVPacket packet;
AVFrame *frame;
struct SwrContext *swr;
u8 *avio_ctx_buffer;
unsigned int i;
int stream_index = -1;
int err;
const size_t errbuffsize = 1024;
char errbuff[errbuffsize];
av_register_all(); // from avformat. Still a must-have call for ffmpeg v3! (can be skipped for later versions)
fmt_ctx = avformat_alloc_context();
avio_ctx_buffer = (u8*)av_malloc(AVIO_CTX_BUF_SZ);
LOG("Creating an avio context: AVIO_CTX_BUF_SZ=%d\n", AVIO_CTX_BUF_SZ);
avio_ctx = avio_alloc_context(avio_ctx_buffer, AVIO_CTX_BUF_SZ, 0, audio_buf, &read_packet, NULL, NULL);
fmt_ctx->pb = avio_ctx;
// open the input stream and read header
err = avformat_open_input(&fmt_ctx, NULL, NULL, NULL);
if (err) {
LOG("Could not read audio buffer: %d: %s\n", err, av_make_error_string(errbuff, errbuffsize, err));
return err;
}
err = avformat_find_stream_info(fmt_ctx, NULL);
if (err < 0) {
LOG("Could not retrieve stream info from audio buffer: %d\n", err);
return err;
}
for (i = 0; i < fmt_ctx->nb_streams; i++) {
if (is_audio_stream(fmt_ctx->streams[i])) {
stream_index = i;
break;
}
}
if (stream_index == -1) {
LOG("Could not retrieve audio stream from buffer\n");
return -1;
}
stream = fmt_ctx->streams[stream_index];
codec = avcodec_alloc_context3(
avcodec_find_decoder(stream->codecpar->codec_id));
avcodec_parameters_to_context(codec, stream->codecpar);
err = avcodec_open2(codec, avcodec_find_decoder(codec->codec_id),
NULL);
if (err) {
LOG("Failed to open decoder for stream #%d in audio buffer\n", stream_index);
return err;
}
/* prepare resampler */
swr = swr_alloc();
av_opt_set_int(swr, "in_channel_count", codec->channels, 0);
av_opt_set_int(swr, "out_channel_count", 1, 0);
av_opt_set_int(swr, "in_channel_layout", codec->channel_layout, 0);
av_opt_set_int(swr, "out_channel_layout", AV_CH_LAYOUT_MONO, 0);
av_opt_set_int(swr, "in_sample_rate", codec->sample_rate, 0);
av_opt_set_int(swr, "out_sample_rate", WAVE_SAMPLE_RATE, 0);
av_opt_set_sample_fmt(swr, "in_sample_fmt", codec->sample_fmt, 0);
av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
swr_init(swr);
if (!swr_is_initialized(swr)) {
LOG("Resampler has not been properly initialized\n");
return -1;
}
av_init_packet(&packet);
frame = av_frame_alloc();
if (!frame) {
LOG("Error allocating the frame\n");
return -1;
}
/* iterate through frames */
*data = NULL;
*size = 0;
while (av_read_frame(fmt_ctx, &packet) >= 0) {
avcodec_send_packet(codec, &packet);
err = avcodec_receive_frame(codec, frame);
if (err == AVERROR(EAGAIN))
continue;
convert_frame(swr, codec, frame, data, size, false);
}
/* Flush any remaining conversion buffers... */
convert_frame(swr, codec, frame, data, size, true);
av_frame_free(&frame);
swr_free(&swr);
//avio_context_free(); // todo?
avcodec_close(codec);
avformat_close_input(&fmt_ctx);
avformat_free_context(fmt_ctx);
if (avio_ctx) {
av_freep(&avio_ctx->buffer);
av_freep(&avio_ctx);
}
return 0;
}
// in mem decoding/conversion/resampling:
// ifname: input file path
// owav_data: in mem wav file. Can be forwarded as it to whisper/drwav
// return 0 on success
int ffmpeg_decode_audio(const std::string &ifname, std::vector<uint8_t>& owav_data) {
LOG("ffmpeg_decode_audio: %s\n", ifname.c_str());
int ifd = open(ifname.c_str(), O_RDONLY);
if (ifd == -1) {
fprintf(stderr, "Couldn't open input file %s\n", ifname.c_str());
return -1;
}
u8 *ibuf = NULL;
size_t ibuf_size;
int err = map_file(ifd, &ibuf, &ibuf_size);
if (err) {
LOG("Couldn't map input file %s\n", ifname.c_str());
return err;
}
LOG("Mapped input file: %s size: %d\n", ibuf, (int) ibuf_size);
struct audio_buffer inaudio_buf;
inaudio_buf.ptr = ibuf;
inaudio_buf.size = ibuf_size;
s16 *odata=NULL;
int osize=0;
err = decode_audio(&inaudio_buf, &odata, &osize);
LOG("decode_audio returned %d \n", err);
if (err != 0) {
LOG("decode_audio failed\n");
return err;
}
LOG("decode_audio output size: %d\n", osize);
wave_hdr wh;
const size_t outdatasize = osize * sizeof(s16);
set_wave_hdr(wh, outdatasize);
owav_data.resize(sizeof(wave_hdr) + outdatasize);
// header:
memcpy(owav_data.data(), &wh, sizeof(wave_hdr));
// the data:
memcpy(owav_data.data() + sizeof(wave_hdr), odata, osize* sizeof(s16));
return 0;
}

View File

@ -1,423 +0,0 @@
#include "grammar-parser.h"
#include <cstdint>
#include <cwchar>
#include <string>
#include <utility>
#include <stdexcept>
#include <exception>
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from whisper.cpp
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = src + len; // may overrun!
const char * pos = src + 1;
for ( ; pos < end && *pos; pos++) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
return std::make_pair(value, pos);
}
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
return result.first->second;
}
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
static void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule) {
if (state.rules.size() <= rule_id) {
state.rules.resize(rule_id + 1);
}
state.rules[rule_id] = rule;
}
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
}
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
for ( ; pos < end && *pos; pos++) {
value <<= 4;
char c = *pos;
if ('a' <= c && c <= 'f') {
value += c - 'a' + 10;
} else if ('A' <= c && c <= 'F') {
value += c - 'A' + 10;
} else if ('0' <= c && c <= '9') {
value += c - '0';
} else {
break;
}
}
if (pos != end) {
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
}
return std::make_pair(value, pos);
}
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
if (*pos == '#') {
while (*pos && *pos != '\r' && *pos != '\n') {
pos++;
}
} else {
pos++;
}
}
return pos;
}
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting name at ") + src);
}
return pos;
}
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
case 'u': return parse_hex(src + 2, 4);
case 'U': return parse_hex(src + 2, 8);
case 't': return std::make_pair('\t', src + 2);
case 'r': return std::make_pair('\r', src + 2);
case 'n': return std::make_pair('\n', src + 2);
case '\\':
case '"':
case '[':
case ']':
return std::make_pair(src[1], src + 2);
default:
throw std::runtime_error(std::string("unknown escape at ") + src);
}
} else if (*src) {
return decode_utf8(src);
}
throw std::runtime_error("unexpected end of input");
}
static const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
static const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
std::vector<whisper_grammar_element> & out_elements,
bool is_nested) {
size_t last_sym_start = out_elements.size();
const char * pos = src;
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = out_elements.size();
while (*pos != '"') {
auto char_pair = parse_char(pos);
pos = char_pair.second;
out_elements.push_back({WHISPER_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum whisper_gretype start_type = WHISPER_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = WHISPER_GRETYPE_CHAR_NOT;
}
last_sym_start = out_elements.size();
while (*pos != ']') {
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum whisper_gretype type = last_sym_start < out_elements.size()
? WHISPER_GRETYPE_CHAR_ALT
: start_type;
out_elements.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
out_elements.push_back({WHISPER_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = out_elements.size();
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
last_sym_start = out_elements.size();
// output reference to synthesized rule
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// rewrite rules:
// S* --> S' ::= S S' |
// S+ --> S' ::= S S' | S
// S? --> S' ::= S |
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
std::vector<whisper_grammar_element> sub_rule;
// add preceding symbol to generated rule
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
if (*pos == '*' || *pos == '+') {
// cause generated rule to recurse
sub_rule.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
}
// mark start of alternate def
sub_rule.push_back({WHISPER_GRETYPE_ALT, 0});
if (*pos == '+') {
// add preceding symbol as alternate only for '+' (otherwise empty)
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
}
sub_rule.push_back({WHISPER_GRETYPE_END, 0});
add_rule(state, sub_rule_id, sub_rule);
// in original rule, replace previous symbol with reference to generated rule
out_elements.resize(last_sym_start);
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
pos = parse_space(pos + 1, is_nested);
} else {
break;
}
}
return pos;
}
static const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested) {
std::vector<whisper_grammar_element> rule;
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
while (*pos == '|') {
rule.push_back({WHISPER_GRETYPE_ALT, 0});
pos = parse_space(pos + 1, true);
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
}
rule.push_back({WHISPER_GRETYPE_END, 0});
add_rule(state, rule_id, rule);
return pos;
}
static const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(state, src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(state, pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
parse_state parse(const char * src) {
try {
parse_state state;
const char * pos = parse_space(src, true);
while (*pos) {
pos = parse_rule(state, pos);
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
return parse_state();
}
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
// cop out of encoding UTF-8
fprintf(file, "<U+%04X>", c);
}
}
static bool is_char_element(whisper_grammar_element elem) {
switch (elem.type) {
case WHISPER_GRETYPE_CHAR: return true;
case WHISPER_GRETYPE_CHAR_NOT: return true;
case WHISPER_GRETYPE_CHAR_ALT: return true;
case WHISPER_GRETYPE_CHAR_RNG_UPPER: return true;
default: return false;
}
}
static void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case WHISPER_GRETYPE_END: fprintf(file, "END"); break;
case WHISPER_GRETYPE_ALT: fprintf(file, "ALT"); break;
case WHISPER_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
case WHISPER_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
case WHISPER_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case WHISPER_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case WHISPER_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
}
switch (elem.type) {
case WHISPER_GRETYPE_END:
case WHISPER_GRETYPE_ALT:
case WHISPER_GRETYPE_RULE_REF:
fprintf(file, "(%u) ", elem.value);
break;
case WHISPER_GRETYPE_CHAR:
case WHISPER_GRETYPE_CHAR_NOT:
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
case WHISPER_GRETYPE_CHAR_ALT:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
}
}
fprintf(file, "\n");
}
static void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule,
const std::map<uint32_t, std::string> & symbol_id_names) {
if (rule.empty() || rule.back().type != WHISPER_GRETYPE_END) {
throw std::runtime_error(
"malformed rule, does not end with WHISPER_GRETYPE_END: " + std::to_string(rule_id));
}
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
whisper_grammar_element elem = rule[i];
switch (elem.type) {
case WHISPER_GRETYPE_END:
throw std::runtime_error(
"unexpected end of rule: " + std::to_string(rule_id) + "," +
std::to_string(i));
case WHISPER_GRETYPE_ALT:
fprintf(file, "| ");
break;
case WHISPER_GRETYPE_RULE_REF:
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
break;
case WHISPER_GRETYPE_CHAR:
fprintf(file, "[");
print_grammar_char(file, elem.value);
break;
case WHISPER_GRETYPE_CHAR_NOT:
fprintf(file, "[^");
print_grammar_char(file, elem.value);
break;
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"WHISPER_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
fprintf(file, "-");
print_grammar_char(file, elem.value);
break;
case WHISPER_GRETYPE_CHAR_ALT:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"WHISPER_GRETYPE_CHAR_ALT without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
print_grammar_char(file, elem.value);
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case WHISPER_GRETYPE_CHAR_ALT:
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
break;
default:
fprintf(file, "] ");
}
}
}
fprintf(file, "\n");
}
void print_grammar(FILE * file, const parse_state & state) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (auto kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
// fprintf(file, "%zu: ", i);
// print_rule_binary(file, state.rules[i]);
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
// fprintf(file, "\n");
}
} catch (const std::exception & err) {
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
}
}
std::vector<const whisper_grammar_element *> parse_state::c_rules() const {
std::vector<const whisper_grammar_element *> ret;
for (const auto & rule : rules) {
ret.push_back(rule.data());
}
return ret;
}
}

View File

@ -1,29 +0,0 @@
// Implements a parser for an extended Backus-Naur form (BNF), producing the
// binary context-free grammar format specified by whisper.h. Supports character
// ranges, grouping, and repetition operators. As an example, a grammar for
// arithmetic might look like:
//
// root ::= expr
// expr ::= term ([-+*/] term)*
// term ::= num | "(" space expr ")" space
// num ::= [0-9]+ space
// space ::= [ \t\n]*
#pragma once
#include "whisper.h"
#include <vector>
#include <map>
#include <cstdint>
#include <string>
namespace grammar_parser {
struct parse_state {
std::map<std::string, uint32_t> symbol_ids;
std::vector<std::vector<whisper_grammar_element>> rules;
std::vector<const whisper_grammar_element *> c_rules() const;
};
parse_state parse(const char * src);
void print_grammar(FILE * file, const parse_state & state);
}

View File

@ -22,7 +22,6 @@ var printTextarea = (function() {
async function clearCache() {
if (confirm('Are you sure you want to clear the cache?\nAll the models will be downloaded again.')) {
indexedDB.deleteDatabase(dbName);
location.reload();
}
}
@ -34,6 +33,9 @@ async function fetchRemote(url, cbProgress, cbPrint) {
url,
{
method: 'GET',
headers: {
'Content-Type': 'application/octet-stream',
},
}
);

View File

@ -48,7 +48,7 @@ if [ -n "$3" ]; then
fi
# Whisper models
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" "large-v3-turbo" )
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
# list available models
function list_models {

View File

@ -5,5 +5,5 @@ if (WHISPER_SDL2)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common json_cpp common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
endif ()

Some files were not shown because too many files have changed in this diff Show More