mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-25 17:40:04 +00:00
Compare commits
101 Commits
Author | SHA1 | Date | |
---|---|---|---|
59c997ca2d | |||
459753342d | |||
9764782bd9 | |||
3b010f9bed | |||
113fcec513 | |||
cfc06bf8df | |||
2bfe0ebc0f | |||
4dd7119deb | |||
ab1916fc59 | |||
a1c1583cc7 | |||
d012b5c7e4 | |||
b2083c5d02 | |||
f3ee4a9673 | |||
c306a7fd89 | |||
b2fc4c7010 | |||
291980369c | |||
86ef64a855 | |||
3b1960520a | |||
2bee2650c6 | |||
beb9512be3 | |||
47737b2e82 | |||
b992f3709e | |||
60337f5306 | |||
02c7516c57 | |||
411ea9b833 | |||
11f61cecd6 | |||
b5ddb16ec7 | |||
ae16c21e9c | |||
2c3f50a021 | |||
9a65269a20 | |||
78f166174f | |||
21c569ba4a | |||
1a91c19af9 | |||
f583e2d2f5 | |||
206fc93396 | |||
a6cf6f4c4a | |||
472a473fd1 | |||
9ba66c2fad | |||
1ccb8a46a5 | |||
1290fc6457 | |||
49b529ba74 | |||
8088a977af | |||
c9aeb33676 | |||
4a3f0d3fe9 | |||
874bde887e | |||
8738427dd6 | |||
c3991bbb24 | |||
00ea21668b | |||
0b85e8c401 | |||
fafd78945d | |||
8de452c18b | |||
a6dbd9188b | |||
4ef3398e8f | |||
5e9f33596f | |||
8d7b29cedd | |||
08dc705a69 | |||
1512545149 | |||
52a3e0c92a | |||
d1ea1220ff | |||
9c4a1522f6 | |||
f078a6f20e | |||
f30b5d322c | |||
44efbf7ff1 | |||
d347a59a5f | |||
6394c906af | |||
74ffa14e1d | |||
65fdcbbbbb | |||
d61d55cd4b | |||
d51fc3ee0a | |||
f82a7dd019 | |||
87dd4a3081 | |||
41e05c6b1b | |||
fa379cb22a | |||
322f4e6c4e | |||
1652965529 | |||
6042c7a3be | |||
6b351bb669 | |||
a62170c656 | |||
1944e7c33e | |||
49a8dd6732 | |||
8c7f642286 | |||
ad2a4ffa03 | |||
b3c865083e | |||
a0d4f8e65c | |||
4a214d2f07 | |||
0a0cfa7985 | |||
196d738974 | |||
84c6b42e65 | |||
dd6d582977 | |||
d51c5eb906 | |||
0be6a1afd9 | |||
a466c3404d | |||
d629c034a4 | |||
f00509d57c | |||
424c410c42 | |||
d97e6005e9 | |||
3467230a77 | |||
a091581eb3 | |||
68daf6e487 | |||
a593b932e4 | |||
9a8ad3db69 |
22
.github/workflows/bindings.yml
vendored
Normal file
22
.github/workflows/bindings.yml
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
name: Bindings Tests
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- bindings/go/**
|
||||
- whisper.h
|
||||
pull_request:
|
||||
paths:
|
||||
- bindings/go/**
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/setup-go@v3
|
||||
with:
|
||||
go-version: '^1.19'
|
||||
- uses: actions/checkout@v1
|
||||
- run: |
|
||||
cd bindings/go
|
||||
make test
|
408
.github/workflows/build.yml
vendored
408
.github/workflows/build.yml
vendored
@ -1,237 +1,267 @@
|
||||
name: CI
|
||||
on: [push]
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install libsdl2-dev
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew update
|
||||
brew install sdl2
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew update
|
||||
brew install sdl2
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
ubuntu-latest-clang:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest-clang:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
- name: Configure
|
||||
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
ubuntu-latest-gcc-sanitized:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-latest-gcc-sanitized:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
|
||||
- name: Configure
|
||||
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
- name: Configure
|
||||
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
ctest -L gh --output-on-failure
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
||||
windows-blas:
|
||||
runs-on: windows-latest
|
||||
windows-blas:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
blas: [ON]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [Win32, x64]
|
||||
blas: [ON]
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.26.0
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
7z x blas.zip -oblas -y
|
||||
copy blas/include/cblas.h .
|
||||
copy blas/include/openblas_config.h .
|
||||
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
7z x blas.zip -oblas -y
|
||||
copy blas/include/cblas.h .
|
||||
copy blas/include/openblas_config.h .
|
||||
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
|
||||
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
|
||||
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
|
||||
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
- name: Build
|
||||
run: |
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
|
||||
- name: Copy libopenblas.dll
|
||||
if: matrix.blas == 'ON'
|
||||
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
- name: Copy libopenblas.dll
|
||||
if: matrix.blas == 'ON'
|
||||
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-blas-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
- name: Upload binaries
|
||||
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
with:
|
||||
name: whisper-blas-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
||||
emscripten:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
|
||||
tar -xvf master.tar.gz
|
||||
emsdk-master/emsdk update
|
||||
emsdk-master/emsdk install latest
|
||||
emsdk-master/emsdk activate latest
|
||||
|
||||
- name: Configure
|
||||
run: echo "tmp"
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
pushd emsdk-master
|
||||
source ./emsdk_env.sh
|
||||
popd
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
|
48
.github/workflows/examples.yml
vendored
Normal file
48
.github/workflows/examples.yml
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
name: Examples Tests
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- examples/addon.node/**
|
||||
- whisper.h
|
||||
pull_request:
|
||||
paths:
|
||||
- examples/addon.node/**
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
addon_node-ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ 16.x, 18.x ]
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
- name: Use Node.js ${{ matrix.node-version }}
|
||||
uses: actions/setup-node@v1
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
cache: 'npm'
|
||||
|
||||
- name: Install package.json dependencies
|
||||
working-directory: ./examples/addon.node
|
||||
run: npm install
|
||||
|
||||
- name: Compile addon.node
|
||||
run: npx cmake-js compile -T whisper-addon -B Release
|
||||
|
||||
- name: Download test model
|
||||
run: |
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
- name: Test
|
||||
run: |
|
||||
cd examples/addon.node
|
||||
npm run test
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
*.o
|
||||
*.a
|
||||
.cache/
|
||||
.vs/
|
||||
.vscode/
|
||||
@ -8,6 +9,7 @@ build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-static/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
|
||||
@ -17,7 +19,9 @@ build-sanitize-thread/
|
||||
/talk
|
||||
/bench
|
||||
|
||||
arm_neon.h
|
||||
sync.sh
|
||||
libwhisper.a
|
||||
libwhisper.so
|
||||
compile_commands.json
|
||||
|
||||
|
@ -1,15 +1,16 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
|
||||
project(whisper.cpp VERSION 1.0.4)
|
||||
project(whisper.cpp VERSION 1.2.0)
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS "on")
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
|
||||
|
||||
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(WHISPER_STANDALONE ON)
|
||||
include(cmake/GitVars.cmake)
|
||||
include(cmake/BuildTypes.cmake)
|
||||
include(GitVars)
|
||||
include(BuildTypes)
|
||||
|
||||
# configure project version
|
||||
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
|
||||
@ -52,6 +53,7 @@ if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
@ -82,9 +84,6 @@ endif()
|
||||
|
||||
# dependencies
|
||||
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# on APPLE - include Accelerate framework
|
||||
@ -131,6 +130,7 @@ if (WHISPER_ALL_WARNINGS)
|
||||
-Wcast-qual \
|
||||
-Wstrict-prototypes \
|
||||
-Wpointer-arith \
|
||||
-Wno-unused-function \
|
||||
")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
|
||||
-Wall \
|
||||
@ -157,6 +157,7 @@ else()
|
||||
if (MSVC)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
|
||||
else()
|
||||
if (EMSCRIPTEN)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
|
||||
@ -168,7 +169,10 @@ else()
|
||||
if(NOT WHISPER_NO_AVX2)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma -mf16c")
|
||||
if(NOT WHISPER_NO_FMA)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
@ -190,6 +194,8 @@ add_library(${TARGET}
|
||||
whisper.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
@ -220,9 +226,13 @@ target_compile_definitions(${TARGET} PUBLIC
|
||||
${WHISPER_EXTRA_FLAGS}
|
||||
)
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
|
||||
|
||||
install(TARGETS ${TARGET}
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
RUNTIME DESTINATION bin
|
||||
PUBLIC_HEADER DESTINATION include
|
||||
)
|
||||
|
||||
#
|
||||
@ -235,7 +245,7 @@ add_subdirectory(bindings)
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
||||
if (WHISPER_BUILD_TESTS)
|
||||
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
endif ()
|
||||
|
39
Makefile
39
Makefile
@ -10,6 +10,9 @@ ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
@ -53,10 +56,13 @@ endif
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),x86_64)
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -mfma -mf16c
|
||||
CFLAGS += -mf16c
|
||||
AVX1_M := $(shell sysctl machdep.cpu.features)
|
||||
ifneq (,$(findstring FMA,$(AVX1_M)))
|
||||
CFLAGS += -mfma
|
||||
endif
|
||||
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
@ -81,6 +87,10 @@ ifeq ($(UNAME_M),x86_64)
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
endif
|
||||
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
|
||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||
CFLAGS += -msse3
|
||||
endif
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
@ -105,11 +115,15 @@ endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
ifeq ($(UNAME_M),ppc64le)
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mpower9-vector
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
endif
|
||||
endif
|
||||
ifndef WHISPER_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework
|
||||
@ -123,8 +137,8 @@ ifdef WHISPER_OPENBLAS
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
ifdef WHISPER_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
endif
|
||||
@ -141,6 +155,21 @@ ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
#
|
||||
# Print build information
|
||||
#
|
||||
|
||||
$(info I whisper.cpp build info: )
|
||||
$(info I UNAME_S: $(UNAME_S))
|
||||
$(info I UNAME_P: $(UNAME_P))
|
||||
$(info I UNAME_M: $(UNAME_M))
|
||||
$(info I CFLAGS: $(CFLAGS))
|
||||
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||
$(info I LDFLAGS: $(LDFLAGS))
|
||||
$(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
default: main
|
||||
|
||||
#
|
||||
|
213
README.md
213
README.md
@ -4,15 +4,16 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
[Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Stable: [v1.2.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- Low memory usage (Flash Attention + Flash Forward)
|
||||
- Low memory usage (Flash Attention)
|
||||
- Zero memory allocations at runtime
|
||||
- Runs on the CPU
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
@ -70,7 +71,7 @@ Now build the [main](examples/main) example and transcribe an audio file like th
|
||||
make
|
||||
|
||||
# transcribe an audio file
|
||||
./main -f input.wav
|
||||
./main -f samples/jfk.wav
|
||||
```
|
||||
|
||||
---
|
||||
@ -88,27 +89,38 @@ c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o gg
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [-1 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
|
||||
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
@ -127,7 +139,8 @@ Running base.en on all samples in ./samples ...
|
||||
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
|
||||
----------------------------------------------
|
||||
|
||||
whisper_model_load: loading model from 'models/ggml-base.en.bin'
|
||||
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
|
||||
whisper_model_load: loading model
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 512
|
||||
@ -140,13 +153,14 @@ whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
|
||||
whisper_model_load: kv self size = 5.25 MB
|
||||
whisper_model_load: kv cross size = 17.58 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: mem_required = 506.00 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model ctx = 140.60 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
@ -154,12 +168,13 @@ main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 proc
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
whisper_print_timings: load time = 105.91 ms
|
||||
whisper_print_timings: mel time = 24.62 ms
|
||||
whisper_print_timings: sample time = 3.63 ms
|
||||
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
|
||||
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
|
||||
whisper_print_timings: total time = 542.81 ms
|
||||
whisper_print_timings: fallbacks = 0 p / 0 h
|
||||
whisper_print_timings: load time = 113.81 ms
|
||||
whisper_print_timings: mel time = 15.40 ms
|
||||
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
|
||||
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
|
||||
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
|
||||
whisper_print_timings: total time = 476.31 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
@ -202,26 +217,16 @@ make large
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
- No GPU support
|
||||
- Very basic greedy sampling scheme - always pick up the token with highest probability.
|
||||
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
|
||||
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
|
||||
to run the python code with the following parameters:
|
||||
|
||||
```
|
||||
whisper --best_of None --beam_size None ...
|
||||
```
|
||||
|
||||
In the future, `whisper.cpp` will support more sampling strategies.
|
||||
- No GPU support (yet)
|
||||
|
||||
## Another example
|
||||
|
||||
@ -234,7 +239,8 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
```java
|
||||
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
||||
|
||||
whisper_model_load: loading model from 'models/ggml-medium.en.bin'
|
||||
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
|
||||
whisper_model_load: loading model
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 1024
|
||||
@ -247,55 +253,60 @@ whisper_model_load: n_text_layer = 24
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 4
|
||||
whisper_model_load: mem_required = 2610.00 MB
|
||||
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
|
||||
whisper_model_load: kv self size = 42.00 MB
|
||||
whisper_model_load: kv cross size = 140.62 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 1644.97 MB
|
||||
whisper_model_load: memory size = 182.62 MB
|
||||
whisper_model_load: model size = 1462.12 MB
|
||||
whisper_model_load: model ctx = 1462.35 MB
|
||||
whisper_model_load: model size = 1462.12 MB
|
||||
|
||||
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, lang = en, task = transcribe, timestamps = 1 ...
|
||||
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
|
||||
[00:00.000 --> 00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
||||
[00:08.000 --> 00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:17.000 --> 00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:23.000 --> 00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:29.000 --> 00:32.000] On board was a crew of seven.
|
||||
[00:32.000 --> 00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
||||
[00:39.000 --> 00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
||||
[00:48.000 --> 00:52.000] a colonel in the Israeli Air Force.
|
||||
[00:52.000 --> 00:58.000] These men and women assumed great risk in the service to all humanity.
|
||||
[00:58.000 --> 01:03.000] In an age when space flight has come to seem almost routine,
|
||||
[01:03.000 --> 01:07.000] it is easy to overlook the dangers of travel by rocket
|
||||
[01:07.000 --> 01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[01:12.000 --> 01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
||||
[01:18.000 --> 01:23.000] knowing they had a high and noble purpose in life.
|
||||
[01:23.000 --> 01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
||||
[01:31.000 --> 01:36.000] All Americans today are thinking as well of the families of these men and women
|
||||
[01:36.000 --> 01:40.000] who have been given this sudden shock and grief.
|
||||
[01:40.000 --> 01:45.000] You're not alone. Our entire nation grieves with you,
|
||||
[01:45.000 --> 01:52.000] and those you love will always have the respect and gratitude of this country.
|
||||
[01:52.000 --> 01:56.000] The cause in which they died will continue.
|
||||
[01:56.000 --> 02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
||||
[02:04.000 --> 02:11.000] and the longing to understand. Our journey into space will go on.
|
||||
[02:11.000 --> 02:16.000] In the skies today, we saw destruction and tragedy.
|
||||
[02:16.000 --> 02:22.000] Yet farther than we can see, there is comfort and hope.
|
||||
[02:22.000 --> 02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
||||
[02:29.000 --> 02:35.000] who created all these. He who brings out the starry hosts one by one
|
||||
[02:35.000 --> 02:39.000] and calls them each by name."
|
||||
[02:39.000 --> 02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
||||
[02:46.000 --> 02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[02:55.000 --> 03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
||||
[03:01.000 --> 03:05.000] yet we can pray that all are safely home.
|
||||
[03:05.000 --> 03:13.000] May God bless the grieving families, and may God continue to bless America.
|
||||
[03:13.000 --> 03:41.000] Audio
|
||||
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
|
||||
whisper_print_timings: load time = 575.92 ms
|
||||
whisper_print_timings: mel time = 230.60 ms
|
||||
whisper_print_timings: sample time = 73.19 ms
|
||||
whisper_print_timings: encode time = 19552.61 ms / 814.69 ms per layer
|
||||
whisper_print_timings: decode time = 13249.96 ms / 552.08 ms per layer
|
||||
whisper_print_timings: total time = 33686.27 ms
|
||||
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
||||
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
|
||||
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
||||
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
||||
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
|
||||
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
|
||||
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
|
||||
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
|
||||
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
||||
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
|
||||
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
||||
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
|
||||
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
|
||||
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
|
||||
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
|
||||
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
|
||||
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
||||
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
|
||||
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
|
||||
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
|
||||
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
||||
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
|
||||
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
|
||||
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
||||
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
||||
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
|
||||
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
|
||||
[00:03:13.000 --> 00:03:19.000] [Silence]
|
||||
|
||||
|
||||
whisper_print_timings: fallbacks = 1 p / 0 h
|
||||
whisper_print_timings: load time = 569.03 ms
|
||||
whisper_print_timings: mel time = 146.85 ms
|
||||
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
|
||||
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
|
||||
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
|
||||
whisper_print_timings: total time = 32733.52 ms
|
||||
```
|
||||
</details>
|
||||
|
||||
@ -306,6 +317,7 @@ The [stream](examples/stream) tool samples the audio every half a second and run
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```java
|
||||
make stream
|
||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
```
|
||||
|
||||
@ -320,14 +332,14 @@ to highlight words with high or low confidence:
|
||||
|
||||
## Controlling the length of the generated text segments (experimental)
|
||||
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
@ -351,7 +363,7 @@ The `--max-len` argument can be used to obtain word-level timestamps. Simply use
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
@ -453,6 +465,9 @@ in [models](models).
|
||||
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
|
||||
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
|
||||
- [X] .NET:
|
||||
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
|
||||
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
|
||||
- [ ] Python: soon | [WIP](https://github.com/ggerganov/whisper.cpp/issues/9)
|
||||
|
||||
## Examples
|
||||
|
1
bindings/go/.gitignore
vendored
1
bindings/go/.gitignore
vendored
@ -1,3 +1,2 @@
|
||||
build
|
||||
models
|
||||
go.sum
|
||||
|
@ -1,28 +1,27 @@
|
||||
CMAKE := $(shell which cmake)
|
||||
BUILD_DIR := "build"
|
||||
MODELS_DIR := "models"
|
||||
BUILD_DIR := build
|
||||
MODELS_DIR := models
|
||||
EXAMPLES_DIR := $(wildcard examples/*)
|
||||
C_INCLUDE_PATH := "../.."
|
||||
INCLUDE_PATH := $(abspath ../..)
|
||||
LIBRARY_PATH := $(abspath ../..)
|
||||
|
||||
all: clean whisper examples
|
||||
|
||||
whisper: mkdir
|
||||
@echo Build whisper
|
||||
@${CMAKE} -S ../.. -B ${BUILD_DIR} -D BUILD_SHARED_LIBS=off -D WHISPER_NO_AVX2=on
|
||||
@${CMAKE} --build ${BUILD_DIR} --target whisper
|
||||
@${MAKE} -C ../.. libwhisper.a
|
||||
|
||||
test: model-small whisper modtidy
|
||||
@go test -v .
|
||||
@go test -v ./pkg/whisper/...
|
||||
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v .
|
||||
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v ./pkg/whisper/...
|
||||
|
||||
examples: $(EXAMPLES_DIR)
|
||||
|
||||
model-small: mkdir examples/go-model-download
|
||||
@${BUILD_DIR}/go-model-download -out models small.en
|
||||
@${BUILD_DIR}/go-model-download -out models ggml-small.en.bin
|
||||
|
||||
$(EXAMPLES_DIR): mkdir whisper modtidy
|
||||
@echo Build example $(notdir $@)
|
||||
@go build ${BUILD_FLAGS} -o ${BUILD_DIR}/$(notdir $@) ./$@
|
||||
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go build ${BUILD_FLAGS} -o ${BUILD_DIR}/$(notdir $@) ./$@
|
||||
|
||||
mkdir:
|
||||
@echo Mkdir ${BUILD_DIR}
|
||||
|
@ -74,4 +74,27 @@ And you can then test a model against samples with the following command:
|
||||
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
|
||||
```
|
||||
|
||||
## Using the bindings
|
||||
|
||||
To use the bindings in your own software,
|
||||
|
||||
1. Import `github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper` (or `github.com/ggerganov/whisper.cpp/bindings/go` into your package;
|
||||
2. Compile `libwhisper.a` (you can use `make whisper` in the `bindings/go` directory);
|
||||
3. Link your go binary against whisper by setting the environment variables `C_INCLUDE_PATH` and `LIBRARY_PATH`
|
||||
to point to the `whisper.h` file directory and `libwhisper.a` file directory respectively.
|
||||
|
||||
Look at the `Makefile` in the `bindings/go` directory for an example.
|
||||
|
||||
The API Documentation:
|
||||
|
||||
* https://pkg.go.dev/github.com/ggerganov/whisper.cpp/bindings/go
|
||||
* https://pkg.go.dev/github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper
|
||||
|
||||
Getting help:
|
||||
|
||||
* Follow the discussion for the go bindings [here](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
||||
|
||||
## License
|
||||
|
||||
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.
|
||||
|
||||
|
@ -17,15 +17,14 @@ import (
|
||||
// CONSTANTS
|
||||
|
||||
const (
|
||||
srcUrl = "https://huggingface.co/" // The location of the models
|
||||
srcPathPrefix = "/datasets/ggerganov/whisper.cpp/resolve/main/ggml" // Filename prefix
|
||||
srcExt = ".bin" // Filename extension
|
||||
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
|
||||
srcUrl = "https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main" // The location of the models
|
||||
srcExt = ".bin" // Filename extension
|
||||
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
|
||||
)
|
||||
|
||||
var (
|
||||
// The models which will be downloaded, if no model is specified as an argument
|
||||
modelNames = []string{"tiny.en", "tiny", "base.en", "base", "small.en", "small", "medium.en", "medium", "large-v1", "large"}
|
||||
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large"}
|
||||
)
|
||||
|
||||
var (
|
||||
@ -123,11 +122,14 @@ func GetModels() []string {
|
||||
|
||||
// URLForModel returns the URL for the given model on huggingface.co
|
||||
func URLForModel(model string) (string, error) {
|
||||
if filepath.Ext(model) != srcExt {
|
||||
model += srcExt
|
||||
}
|
||||
url, err := url.Parse(srcUrl)
|
||||
if err != nil {
|
||||
return "", err
|
||||
} else {
|
||||
url.Path = srcPathPrefix + "-" + model + srcExt
|
||||
url.Path = filepath.Join(url.Path, model)
|
||||
}
|
||||
return url.String(), nil
|
||||
}
|
||||
|
22
bindings/go/examples/go-whisper/color.go
Normal file
22
bindings/go/examples/go-whisper/color.go
Normal file
@ -0,0 +1,22 @@
|
||||
package main
|
||||
|
||||
import "fmt"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// CONSTANTS
|
||||
|
||||
const (
|
||||
Reset = "\033[0m"
|
||||
RGBPrefix = "\033[38;5;" // followed by RGB values in decimal format separated by colons
|
||||
RGBSuffix = "m"
|
||||
)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// PUBLIC METHODS
|
||||
|
||||
// Colorize text with RGB values, from 0 to 23
|
||||
func Colorize(text string, v int) string {
|
||||
// https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
|
||||
// Grayscale colors are in the range 232-255
|
||||
return RGBPrefix + fmt.Sprint(v%24+232) + RGBSuffix + text + Reset
|
||||
}
|
@ -2,6 +2,12 @@ package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
"fmt"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
// Packages
|
||||
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
|
||||
)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@ -42,6 +48,26 @@ func (flags *Flags) GetLanguage() string {
|
||||
return flags.Lookup("language").Value.String()
|
||||
}
|
||||
|
||||
func (flags *Flags) IsTranslate() bool {
|
||||
return flags.Lookup("translate").Value.(flag.Getter).Get().(bool)
|
||||
}
|
||||
|
||||
func (flags *Flags) GetOffset() time.Duration {
|
||||
return flags.Lookup("offset").Value.(flag.Getter).Get().(time.Duration)
|
||||
}
|
||||
|
||||
func (flags *Flags) GetDuration() time.Duration {
|
||||
return flags.Lookup("duration").Value.(flag.Getter).Get().(time.Duration)
|
||||
}
|
||||
|
||||
func (flags *Flags) GetThreads() uint {
|
||||
return flags.Lookup("threads").Value.(flag.Getter).Get().(uint)
|
||||
}
|
||||
|
||||
func (flags *Flags) GetOut() string {
|
||||
return strings.ToLower(flags.Lookup("out").Value.String())
|
||||
}
|
||||
|
||||
func (flags *Flags) IsSpeedup() bool {
|
||||
return flags.Lookup("speedup").Value.String() == "true"
|
||||
}
|
||||
@ -50,12 +76,81 @@ func (flags *Flags) IsTokens() bool {
|
||||
return flags.Lookup("tokens").Value.String() == "true"
|
||||
}
|
||||
|
||||
func (flags *Flags) IsColorize() bool {
|
||||
return flags.Lookup("colorize").Value.String() == "true"
|
||||
}
|
||||
|
||||
func (flags *Flags) GetMaxLen() uint {
|
||||
return flags.Lookup("max-len").Value.(flag.Getter).Get().(uint)
|
||||
}
|
||||
|
||||
func (flags *Flags) GetMaxTokens() uint {
|
||||
return flags.Lookup("max-tokens").Value.(flag.Getter).Get().(uint)
|
||||
}
|
||||
|
||||
func (flags *Flags) GetWordThreshold() float32 {
|
||||
return float32(flags.Lookup("word-thold").Value.(flag.Getter).Get().(float64))
|
||||
}
|
||||
|
||||
func (flags *Flags) SetParams(context whisper.Context) error {
|
||||
if lang := flags.GetLanguage(); lang != "" && lang != "auto" {
|
||||
fmt.Fprintf(flags.Output(), "Setting language to %q\n", lang)
|
||||
if err := context.SetLanguage(lang); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
if flags.IsTranslate() && context.IsMultilingual() {
|
||||
fmt.Fprintf(flags.Output(), "Setting translate to true\n")
|
||||
context.SetTranslate(true)
|
||||
}
|
||||
if offset := flags.GetOffset(); offset != 0 {
|
||||
fmt.Fprintf(flags.Output(), "Setting offset to %v\n", offset)
|
||||
context.SetOffset(offset)
|
||||
}
|
||||
if duration := flags.GetDuration(); duration != 0 {
|
||||
fmt.Fprintf(flags.Output(), "Setting duration to %v\n", duration)
|
||||
context.SetDuration(duration)
|
||||
}
|
||||
if flags.IsSpeedup() {
|
||||
fmt.Fprintf(flags.Output(), "Setting speedup to true\n")
|
||||
context.SetSpeedup(true)
|
||||
}
|
||||
if threads := flags.GetThreads(); threads != 0 {
|
||||
fmt.Fprintf(flags.Output(), "Setting threads to %d\n", threads)
|
||||
context.SetThreads(threads)
|
||||
}
|
||||
if max_len := flags.GetMaxLen(); max_len != 0 {
|
||||
fmt.Fprintf(flags.Output(), "Setting max_segment_length to %d\n", max_len)
|
||||
context.SetMaxSegmentLength(max_len)
|
||||
}
|
||||
if max_tokens := flags.GetMaxTokens(); max_tokens != 0 {
|
||||
fmt.Fprintf(flags.Output(), "Setting max_tokens to %d\n", max_tokens)
|
||||
context.SetMaxTokensPerSegment(max_tokens)
|
||||
}
|
||||
if word_threshold := flags.GetWordThreshold(); word_threshold != 0 {
|
||||
fmt.Fprintf(flags.Output(), "Setting word_threshold to %f\n", word_threshold)
|
||||
context.SetTokenThreshold(word_threshold)
|
||||
}
|
||||
|
||||
// Return success
|
||||
return nil
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// PRIVATE METHODS
|
||||
|
||||
func registerFlags(flag *Flags) {
|
||||
flag.String("model", "", "Path to the model file")
|
||||
flag.String("language", "", "Language")
|
||||
flag.String("language", "", "Spoken language")
|
||||
flag.Bool("translate", false, "Translate from source language to english")
|
||||
flag.Duration("offset", 0, "Time offset")
|
||||
flag.Duration("duration", 0, "Duration of audio to process")
|
||||
flag.Uint("threads", 0, "Number of threads to use")
|
||||
flag.Bool("speedup", false, "Enable speedup")
|
||||
flag.Uint("max-len", 0, "Maximum segment length in characters")
|
||||
flag.Uint("max-tokens", 0, "Maximum tokens per segment")
|
||||
flag.Float64("word-thold", 0, "Maximum segment score")
|
||||
flag.Bool("tokens", false, "Display tokens")
|
||||
flag.Bool("colorize", false, "Colorize tokens")
|
||||
flag.String("out", "", "Output format (srt, none or leave as empty string)")
|
||||
}
|
||||
|
@ -35,8 +35,7 @@ func main() {
|
||||
|
||||
// Process files
|
||||
for _, filename := range flags.Args() {
|
||||
fmt.Println("Processing", filename)
|
||||
if err := Process(model, filename, flags.GetLanguage(), flags.IsSpeedup(), flags.IsTokens()); err != nil {
|
||||
if err := Process(model, filename, flags); err != nil {
|
||||
fmt.Fprintln(os.Stderr, err)
|
||||
continue
|
||||
}
|
||||
|
@ -11,7 +11,7 @@ import (
|
||||
wav "github.com/go-audio/wav"
|
||||
)
|
||||
|
||||
func Process(model whisper.Model, path string, lang string, speedup, tokens bool) error {
|
||||
func Process(model whisper.Model, path string, flags *Flags) error {
|
||||
var data []float32
|
||||
|
||||
// Create processing context
|
||||
@ -20,14 +20,22 @@ func Process(model whisper.Model, path string, lang string, speedup, tokens bool
|
||||
return err
|
||||
}
|
||||
|
||||
// Set the parameters
|
||||
if err := flags.SetParams(context); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fmt.Printf("\n%s\n", context.SystemInfo())
|
||||
|
||||
// Open the file
|
||||
fmt.Fprintf(flags.Output(), "Loading %q\n", path)
|
||||
fh, err := os.Open(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer fh.Close()
|
||||
|
||||
// Decode the WAV file
|
||||
// Decode the WAV file - load the full buffer
|
||||
dec := wav.NewDecoder(fh)
|
||||
if buf, err := dec.FullPCMBuffer(); err != nil {
|
||||
return err
|
||||
@ -39,42 +47,86 @@ func Process(model whisper.Model, path string, lang string, speedup, tokens bool
|
||||
data = buf.AsFloat32Buffer().Data
|
||||
}
|
||||
|
||||
// Set the parameters
|
||||
// Segment callback when -tokens is specified
|
||||
var cb whisper.SegmentCallback
|
||||
if lang != "" {
|
||||
if err := context.SetLanguage(lang); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
if speedup {
|
||||
context.SetSpeedup(true)
|
||||
}
|
||||
if tokens {
|
||||
if flags.IsTokens() {
|
||||
cb = func(segment whisper.Segment) {
|
||||
fmt.Printf("%02d [%6s->%6s] ", segment.Num, segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond))
|
||||
fmt.Fprintf(flags.Output(), "%02d [%6s->%6s] ", segment.Num, segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond))
|
||||
for _, token := range segment.Tokens {
|
||||
fmt.Printf("%q ", token.Text)
|
||||
if flags.IsColorize() && context.IsText(token) {
|
||||
fmt.Fprint(flags.Output(), Colorize(token.Text, int(token.P*24.0)), " ")
|
||||
} else {
|
||||
fmt.Fprint(flags.Output(), token.Text, " ")
|
||||
}
|
||||
}
|
||||
fmt.Println("")
|
||||
fmt.Fprintln(flags.Output(), "")
|
||||
fmt.Fprintln(flags.Output(), "")
|
||||
}
|
||||
}
|
||||
|
||||
// Process the data
|
||||
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
|
||||
context.ResetTimings()
|
||||
if err := context.Process(data, cb); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
context.PrintTimings()
|
||||
|
||||
// Print out the results
|
||||
switch {
|
||||
case flags.GetOut() == "srt":
|
||||
return OutputSRT(os.Stdout, context)
|
||||
case flags.GetOut() == "none":
|
||||
return nil
|
||||
default:
|
||||
return Output(os.Stdout, context, flags.IsColorize())
|
||||
}
|
||||
}
|
||||
|
||||
// Output text as SRT file
|
||||
func OutputSRT(w io.Writer, context whisper.Context) error {
|
||||
n := 1
|
||||
for {
|
||||
segment, err := context.NextSegment()
|
||||
if err == io.EOF {
|
||||
break
|
||||
return nil
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Printf("[%6s->%6s] %s\n", segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond), segment.Text)
|
||||
fmt.Fprintln(w, n)
|
||||
fmt.Fprintln(w, srtTimestamp(segment.Start), " --> ", srtTimestamp(segment.End))
|
||||
fmt.Fprintln(w, segment.Text)
|
||||
fmt.Fprintln(w, "")
|
||||
n++
|
||||
}
|
||||
|
||||
// Return success
|
||||
return nil
|
||||
}
|
||||
|
||||
// Output text to terminal
|
||||
func Output(w io.Writer, context whisper.Context, colorize bool) error {
|
||||
for {
|
||||
segment, err := context.NextSegment()
|
||||
if err == io.EOF {
|
||||
return nil
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Fprintf(w, "[%6s->%6s]", segment.Start.Truncate(time.Millisecond), segment.End.Truncate(time.Millisecond))
|
||||
if colorize {
|
||||
for _, token := range segment.Tokens {
|
||||
if !context.IsText(token) {
|
||||
continue
|
||||
}
|
||||
fmt.Fprint(w, " ", Colorize(token.Text, int(token.P*24.0)))
|
||||
}
|
||||
fmt.Fprint(w, "\n")
|
||||
} else {
|
||||
fmt.Fprintln(w, " ", segment.Text)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return srtTimestamp
|
||||
func srtTimestamp(t time.Duration) string {
|
||||
return fmt.Sprintf("%02d:%02d:%02d,%03d", t/time.Hour, (t%time.Hour)/time.Minute, (t%time.Minute)/time.Second, (t%time.Second)/time.Millisecond)
|
||||
}
|
||||
|
23
bindings/go/go.sum
Normal file
23
bindings/go/go.sum
Normal file
@ -0,0 +1,23 @@
|
||||
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
||||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
|
||||
github.com/go-audio/audio v1.0.0/go.mod h1:6uAu0+H2lHkwdGsAY+j2wHPNPpPoeg5AaEFh9FlA+Zs=
|
||||
github.com/go-audio/riff v1.0.0 h1:d8iCGbDvox9BfLagY94fBynxSPHO80LmZCaOsmKxokA=
|
||||
github.com/go-audio/riff v1.0.0/go.mod h1:l3cQwc85y79NQFCRB7TiPoNiaijp6q8Z0Uv38rVG498=
|
||||
github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
|
||||
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
|
||||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
|
||||
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
||||
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
|
||||
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
|
||||
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
|
||||
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
|
||||
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
|
||||
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
|
||||
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
|
||||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
|
||||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
||||
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
||||
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
||||
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
@ -1,8 +1,5 @@
|
||||
package whisper
|
||||
|
||||
// This file defines the whisper_token, whisper_token_data and whisper_full_params
|
||||
// structures, which are used by the whisper_full() function.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
)
|
||||
@ -50,7 +47,12 @@ func (p *Params) SetSpeedup(v bool) {
|
||||
p.speed_up = toBool(v)
|
||||
}
|
||||
|
||||
// Set language id
|
||||
func (p *Params) SetLanguage(lang int) error {
|
||||
if lang == -1 {
|
||||
p.language = nil
|
||||
return nil
|
||||
}
|
||||
str := C.whisper_lang_str(C.int(lang))
|
||||
if str == nil {
|
||||
return ErrInvalidLanguage
|
||||
@ -60,6 +62,7 @@ func (p *Params) SetLanguage(lang int) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Get language id
|
||||
func (p *Params) Language() int {
|
||||
if p.language == nil {
|
||||
return -1
|
||||
@ -67,18 +70,46 @@ func (p *Params) Language() int {
|
||||
return int(C.whisper_lang_id(p.language))
|
||||
}
|
||||
|
||||
// Threads available
|
||||
func (p *Params) Threads() int {
|
||||
return int(p.n_threads)
|
||||
}
|
||||
|
||||
// Set number of threads to use
|
||||
func (p *Params) SetThreads(threads int) {
|
||||
p.n_threads = C.int(threads)
|
||||
}
|
||||
|
||||
// Set start offset in ms
|
||||
func (p *Params) SetOffset(offset_ms int) {
|
||||
p.offset_ms = C.int(offset_ms)
|
||||
}
|
||||
|
||||
// Set audio duration to process in ms
|
||||
func (p *Params) SetDuration(duration_ms int) {
|
||||
p.duration_ms = C.int(duration_ms)
|
||||
}
|
||||
|
||||
// Set timestamp token probability threshold (~0.01)
|
||||
func (p *Params) SetTokenThreshold(t float32) {
|
||||
p.thold_pt = C.float(t)
|
||||
}
|
||||
|
||||
// Set timestamp token sum probability threshold (~0.01)
|
||||
func (p *Params) SetTokenSumThreshold(t float32) {
|
||||
p.thold_ptsum = C.float(t)
|
||||
}
|
||||
|
||||
// Set max segment length in characters
|
||||
func (p *Params) SetMaxSegmentLength(n int) {
|
||||
p.max_len = C.int(n)
|
||||
}
|
||||
|
||||
// Set max tokens per segment (0 = no limit)
|
||||
func (p *Params) SetMaxTokensPerSegment(n int) {
|
||||
p.max_tokens = C.int(n)
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// PRIVATE METHODS
|
||||
|
||||
|
@ -11,10 +11,11 @@ import (
|
||||
// ERRORS
|
||||
|
||||
var (
|
||||
ErrUnableToLoadModel = errors.New("unable to load model")
|
||||
ErrInternalAppError = errors.New("internal application error")
|
||||
ErrProcessingFailed = errors.New("processing failed")
|
||||
ErrUnsupportedLanguage = errors.New("unsupported language")
|
||||
ErrUnableToLoadModel = errors.New("unable to load model")
|
||||
ErrInternalAppError = errors.New("internal application error")
|
||||
ErrProcessingFailed = errors.New("processing failed")
|
||||
ErrUnsupportedLanguage = errors.New("unsupported language")
|
||||
ErrModelNotMultilingual = errors.New("model is not multilingual")
|
||||
)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -1,7 +1,9 @@
|
||||
package whisper
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"runtime"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
@ -24,7 +26,7 @@ var _ Context = (*context)(nil)
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// LIFECYCLE
|
||||
|
||||
func NewContext(model *model, params whisper.Params) (Context, error) {
|
||||
func newContext(model *model, params whisper.Params) (Context, error) {
|
||||
context := new(context)
|
||||
context.model = model
|
||||
context.params = params
|
||||
@ -41,7 +43,13 @@ func (context *context) SetLanguage(lang string) error {
|
||||
if context.model.ctx == nil {
|
||||
return ErrInternalAppError
|
||||
}
|
||||
if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
|
||||
if !context.model.IsMultilingual() {
|
||||
return ErrModelNotMultilingual
|
||||
}
|
||||
|
||||
if lang == "auto" {
|
||||
context.params.SetLanguage(-1)
|
||||
} else if id := context.model.ctx.Whisper_lang_id(lang); id < 0 {
|
||||
return ErrUnsupportedLanguage
|
||||
} else if err := context.params.SetLanguage(id); err != nil {
|
||||
return err
|
||||
@ -50,16 +58,94 @@ func (context *context) SetLanguage(lang string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (context *context) IsMultilingual() bool {
|
||||
return context.model.IsMultilingual()
|
||||
}
|
||||
|
||||
// Get language
|
||||
func (context *context) Language() string {
|
||||
id := context.params.Language()
|
||||
if id == -1 {
|
||||
return "auto"
|
||||
}
|
||||
return whisper.Whisper_lang_str(context.params.Language())
|
||||
}
|
||||
|
||||
// Set translate flag
|
||||
func (context *context) SetTranslate(v bool) {
|
||||
context.params.SetTranslate(v)
|
||||
}
|
||||
|
||||
// Set speedup flag
|
||||
func (context *context) SetSpeedup(v bool) {
|
||||
context.params.SetSpeedup(v)
|
||||
}
|
||||
|
||||
// Set number of threads to use
|
||||
func (context *context) SetThreads(v uint) {
|
||||
context.params.SetThreads(int(v))
|
||||
}
|
||||
|
||||
// Set time offset
|
||||
func (context *context) SetOffset(v time.Duration) {
|
||||
context.params.SetOffset(int(v.Milliseconds()))
|
||||
}
|
||||
|
||||
// Set duration of audio to process
|
||||
func (context *context) SetDuration(v time.Duration) {
|
||||
context.params.SetOffset(int(v.Milliseconds()))
|
||||
}
|
||||
|
||||
// Set timestamp token probability threshold (~0.01)
|
||||
func (context *context) SetTokenThreshold(t float32) {
|
||||
context.params.SetTokenThreshold(t)
|
||||
}
|
||||
|
||||
// Set timestamp token sum probability threshold (~0.01)
|
||||
func (context *context) SetTokenSumThreshold(t float32) {
|
||||
context.params.SetTokenSumThreshold(t)
|
||||
}
|
||||
|
||||
// Set max segment length in characters
|
||||
func (context *context) SetMaxSegmentLength(n uint) {
|
||||
context.params.SetMaxSegmentLength(int(n))
|
||||
}
|
||||
|
||||
// Set max tokens per segment (0 = no limit)
|
||||
func (context *context) SetMaxTokensPerSegment(n uint) {
|
||||
context.params.SetMaxTokensPerSegment(int(n))
|
||||
}
|
||||
|
||||
// ResetTimings resets the mode timings. Should be called before processing
|
||||
func (context *context) ResetTimings() {
|
||||
context.model.ctx.Whisper_reset_timings()
|
||||
}
|
||||
|
||||
// PrintTimings prints the model timings to stdout.
|
||||
func (context *context) PrintTimings() {
|
||||
context.model.ctx.Whisper_print_timings()
|
||||
}
|
||||
|
||||
// SystemInfo returns the system information
|
||||
func (context *context) SystemInfo() string {
|
||||
return fmt.Sprintf("system_info: n_threads = %d / %d | %s\n",
|
||||
context.params.Threads(),
|
||||
runtime.NumCPU(),
|
||||
whisper.Whisper_print_system_info(),
|
||||
)
|
||||
}
|
||||
|
||||
// Use mel data at offset_ms to try and auto-detect the spoken language
|
||||
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
|
||||
// Returns the probabilities of all languages.
|
||||
func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]float32, error) {
|
||||
langProbs, err := context.model.ctx.Whisper_lang_auto_detect(offset_ms, n_threads)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return langProbs, nil
|
||||
}
|
||||
|
||||
// Process new sample data and return any errors
|
||||
func (context *context) Process(data []float32, cb SegmentCallback) error {
|
||||
if context.model.ctx == nil {
|
||||
@ -119,6 +205,65 @@ func (context *context) NextSegment() (Segment, error) {
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// Test for text tokens
|
||||
func (context *context) IsText(t Token) bool {
|
||||
switch {
|
||||
case context.IsBEG(t):
|
||||
return false
|
||||
case context.IsSOT(t):
|
||||
return false
|
||||
case whisper.Token(t.Id) >= context.model.ctx.Whisper_token_eot():
|
||||
return false
|
||||
case context.IsPREV(t):
|
||||
return false
|
||||
case context.IsSOLM(t):
|
||||
return false
|
||||
case context.IsNOT(t):
|
||||
return false
|
||||
default:
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Test for "begin" token
|
||||
func (context *context) IsBEG(t Token) bool {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_beg()
|
||||
}
|
||||
|
||||
// Test for "start of transcription" token
|
||||
func (context *context) IsSOT(t Token) bool {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_sot()
|
||||
}
|
||||
|
||||
// Test for "end of transcription" token
|
||||
func (context *context) IsEOT(t Token) bool {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_eot()
|
||||
}
|
||||
|
||||
// Test for "start of prev" token
|
||||
func (context *context) IsPREV(t Token) bool {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_prev()
|
||||
}
|
||||
|
||||
// Test for "start of lm" token
|
||||
func (context *context) IsSOLM(t Token) bool {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_solm()
|
||||
}
|
||||
|
||||
// Test for "No timestamps" token
|
||||
func (context *context) IsNOT(t Token) bool {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_not()
|
||||
}
|
||||
|
||||
// Test for token associated with a specific language
|
||||
func (context *context) IsLANG(t Token, lang string) bool {
|
||||
if id := context.model.ctx.Whisper_lang_id(lang); id >= 0 {
|
||||
return whisper.Token(t.Id) == context.model.ctx.Whisper_token_lang(id)
|
||||
} else {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// PRIVATE METHODS
|
||||
|
||||
|
@ -20,15 +20,28 @@ type Model interface {
|
||||
// Return a new speech-to-text context.
|
||||
NewContext() (Context, error)
|
||||
|
||||
// Return true if the model is multilingual.
|
||||
IsMultilingual() bool
|
||||
|
||||
// Return all languages supported.
|
||||
Languages() []string
|
||||
}
|
||||
|
||||
// Context is the speach recognition context.
|
||||
type Context interface {
|
||||
SetLanguage(string) error // Set the language to use for speech recognition.
|
||||
SetLanguage(string) error // Set the language to use for speech recognition, use "auto" for auto detect language.
|
||||
SetTranslate(bool) // Set translate flag
|
||||
IsMultilingual() bool // Return true if the model is multilingual.
|
||||
Language() string // Get language
|
||||
SetSpeedup(bool) // Set speedup flag
|
||||
|
||||
SetOffset(time.Duration) // Set offset
|
||||
SetDuration(time.Duration) // Set duration
|
||||
SetThreads(uint) // Set number of threads to use
|
||||
SetSpeedup(bool) // Set speedup flag
|
||||
SetTokenThreshold(float32) // Set timestamp token probability threshold
|
||||
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
|
||||
SetMaxSegmentLength(uint) // Set max segment length in characters
|
||||
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
|
||||
|
||||
// Process mono audio data and return any errors.
|
||||
// If defined, newly generated segments are passed to the
|
||||
@ -38,6 +51,21 @@ type Context interface {
|
||||
// After process is called, return segments until the end of the stream
|
||||
// is reached, when io.EOF is returned.
|
||||
NextSegment() (Segment, error)
|
||||
|
||||
IsBEG(Token) bool // Test for "begin" token
|
||||
IsSOT(Token) bool // Test for "start of transcription" token
|
||||
IsEOT(Token) bool // Test for "end of transcription" token
|
||||
IsPREV(Token) bool // Test for "start of prev" token
|
||||
IsSOLM(Token) bool // Test for "start of lm" token
|
||||
IsNOT(Token) bool // Test for "No timestamps" token
|
||||
IsLANG(Token, string) bool // Test for token associated with a specific language
|
||||
IsText(Token) bool // Test for text token
|
||||
|
||||
// Timings
|
||||
PrintTimings()
|
||||
ResetTimings()
|
||||
|
||||
SystemInfo() string
|
||||
}
|
||||
|
||||
// Segment is the text result of a speech recognition.
|
||||
|
@ -23,7 +23,7 @@ var _ Model = (*model)(nil)
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// LIFECYCLE
|
||||
|
||||
func New(path string) (*model, error) {
|
||||
func New(path string) (Model, error) {
|
||||
model := new(model)
|
||||
if _, err := os.Stat(path); err != nil {
|
||||
return nil, err
|
||||
@ -64,6 +64,11 @@ func (model *model) String() string {
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// PUBLIC METHODS
|
||||
|
||||
// Return true if model is multilingual (language and translation options are supported)
|
||||
func (model *model) IsMultilingual() bool {
|
||||
return model.ctx.Whisper_is_multilingual() != 0
|
||||
}
|
||||
|
||||
// Return all recognized languages. Initially it is set to auto-detect
|
||||
func (model *model) Languages() []string {
|
||||
result := make([]string, 0, whisper.Whisper_lang_max_id())
|
||||
@ -91,5 +96,5 @@ func (model *model) NewContext() (Context, error) {
|
||||
params.SetThreads(runtime.NumCPU())
|
||||
|
||||
// Return new context
|
||||
return NewContext(model, params)
|
||||
return newContext(model, params)
|
||||
}
|
||||
|
@ -9,8 +9,7 @@ import (
|
||||
// CGO
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -I${SRCDIR}/../..
|
||||
#cgo LDFLAGS: -L${SRCDIR}/build -lwhisper -lm -lstdc++
|
||||
#cgo LDFLAGS: -lwhisper -lm -lstdc++
|
||||
#cgo darwin LDFLAGS: -framework Accelerate
|
||||
#include <whisper.h>
|
||||
#include <stdlib.h>
|
||||
@ -92,7 +91,7 @@ var (
|
||||
func Whisper_init(path string) *Context {
|
||||
cPath := C.CString(path)
|
||||
defer C.free(unsafe.Pointer(cPath))
|
||||
if ctx := C.whisper_init(cPath); ctx != nil {
|
||||
if ctx := C.whisper_init_from_file(cPath); ctx != nil {
|
||||
return (*Context)(ctx)
|
||||
} else {
|
||||
return nil
|
||||
@ -148,16 +147,6 @@ func (ctx *Context) Whisper_decode(tokens []Token, past, threads int) error {
|
||||
}
|
||||
}
|
||||
|
||||
// whisper_sample_best() returns the token with the highest probability
|
||||
func (ctx *Context) Whisper_sample_best() TokenData {
|
||||
return TokenData(C.whisper_sample_best((*C.struct_whisper_context)(ctx)))
|
||||
}
|
||||
|
||||
// whisper_sample_timestamp() returns the most probable timestamp token
|
||||
func (ctx *Context) Whisper_sample_timestamp(is_initial bool) TokenData {
|
||||
return TokenData(C.whisper_sample_timestamp((*C.struct_whisper_context)(ctx), C.bool(is_initial)))
|
||||
}
|
||||
|
||||
// Convert the provided text into tokens. The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success
|
||||
func (ctx *Context) Whisper_tokenize(text string, tokens []Token) (int, error) {
|
||||
@ -171,6 +160,10 @@ func (ctx *Context) Whisper_tokenize(text string, tokens []Token) (int, error) {
|
||||
}
|
||||
|
||||
// Return the id of the specified language, returns -1 if not found
|
||||
// Examples:
|
||||
//
|
||||
// "de" -> 2
|
||||
// "german" -> 2
|
||||
func (ctx *Context) Whisper_lang_id(lang string) int {
|
||||
return int(C.whisper_lang_id(C.CString(lang)))
|
||||
}
|
||||
@ -211,6 +204,10 @@ func (ctx *Context) Whisper_n_text_ctx() int {
|
||||
return int(C.whisper_n_text_ctx((*C.struct_whisper_context)(ctx)))
|
||||
}
|
||||
|
||||
func (ctx *Context) Whisper_n_audio_ctx() int {
|
||||
return int(C.whisper_n_audio_ctx((*C.struct_whisper_context)(ctx)))
|
||||
}
|
||||
|
||||
func (ctx *Context) Whisper_is_multilingual() int {
|
||||
return int(C.whisper_is_multilingual((*C.struct_whisper_context)(ctx)))
|
||||
}
|
||||
|
@ -50,7 +50,10 @@ func Test_Whisper_001(t *testing.T) {
|
||||
ctx := whisper.Whisper_init(ModelPath)
|
||||
assert.NotNil(ctx)
|
||||
defer ctx.Whisper_free()
|
||||
assert.NoError(ctx.Whisper_full(ctx.Whisper_full_default_params(whisper.SAMPLING_GREEDY), buf.AsFloat32Buffer().Data, nil, nil))
|
||||
params := ctx.Whisper_full_default_params(whisper.SAMPLING_GREEDY)
|
||||
data := buf.AsFloat32Buffer().Data
|
||||
err = ctx.Whisper_full(params, data, nil, nil)
|
||||
assert.NoError(err)
|
||||
|
||||
// Print out tokens
|
||||
num_segments := ctx.Whisper_full_n_segments()
|
||||
|
Submodule bindings/ios updated: 1502317fe0...d5c6d5c8a3
@ -20,7 +20,7 @@ struct whisper_context * g_context;
|
||||
EMSCRIPTEN_BINDINGS(whisper) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
if (g_context == nullptr) {
|
||||
g_context = whisper_init(path_model.c_str());
|
||||
g_context = whisper_init_from_file(path_model.c_str());
|
||||
if (g_context != nullptr) {
|
||||
return true;
|
||||
} else {
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.0.4",
|
||||
"version": "1.2.0",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
File diff suppressed because one or more lines are too long
17
cmake/DefaultTargetOptions.cmake
Normal file
17
cmake/DefaultTargetOptions.cmake
Normal file
@ -0,0 +1,17 @@
|
||||
# Set the default compile features and properties for a target.
|
||||
|
||||
if (NOT TARGET)
|
||||
message(FATAL_ERROR "TARGET not set before including DefaultTargetOptions")
|
||||
endif()
|
||||
|
||||
target_compile_features(${TARGET}
|
||||
PRIVATE
|
||||
cxx_std_11
|
||||
)
|
||||
|
||||
set_target_properties(${TARGET}
|
||||
PROPERTIES
|
||||
EXPORT_COMPILE_COMMANDS ON
|
||||
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
|
||||
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
|
||||
)
|
@ -24,6 +24,8 @@ if (EMSCRIPTEN)
|
||||
add_subdirectory(command.wasm)
|
||||
add_subdirectory(talk.wasm)
|
||||
add_subdirectory(bench.wasm)
|
||||
elseif(CMAKE_JS_VERSION)
|
||||
add_subdirectory(addon.node)
|
||||
else()
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(stream)
|
||||
|
3
examples/addon.node/.gitignore
vendored
Normal file
3
examples/addon.node/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
.idea
|
||||
node_modules
|
||||
build
|
31
examples/addon.node/CMakeLists.txt
Normal file
31
examples/addon.node/CMakeLists.txt
Normal file
@ -0,0 +1,31 @@
|
||||
set(TARGET whisper-addon)
|
||||
|
||||
# Base settings
|
||||
#==================================================================
|
||||
# env var supported by cmake-js
|
||||
add_definitions(-DNAPI_VERSION=4)
|
||||
include_directories(${CMAKE_JS_INC})
|
||||
#==================================================================
|
||||
|
||||
add_library(${TARGET} SHARED ${CMAKE_JS_SRC} addon.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES PREFIX "" SUFFIX ".node")
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
# Include N-API wrappers
|
||||
#==================================================================
|
||||
execute_process(COMMAND node -p "require('node-addon-api').include"
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE NODE_ADDON_API_DIR
|
||||
)
|
||||
string(REPLACE "\n" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
|
||||
string(REPLACE "\"" "" NODE_ADDON_API_DIR ${NODE_ADDON_API_DIR})
|
||||
target_include_directories(${TARGET} PRIVATE ${NODE_ADDON_API_DIR})
|
||||
#==================================================================
|
||||
|
||||
target_link_libraries(${TARGET} ${CMAKE_JS_LIB} whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
if(MSVC AND CMAKE_JS_NODELIB_DEF AND CMAKE_JS_NODELIB_TARGET)
|
||||
# Generate node.lib
|
||||
execute_process(COMMAND ${CMAKE_AR} /def:${CMAKE_JS_NODELIB_DEF} /out:${CMAKE_JS_NODELIB_TARGET} ${CMAKE_STATIC_LINKER_FLAGS})
|
||||
endif()
|
37
examples/addon.node/README.md
Normal file
37
examples/addon.node/README.md
Normal file
@ -0,0 +1,37 @@
|
||||
# addon
|
||||
|
||||
This is an addon demo that can **perform whisper model reasoning in `node` and `electron` environments**, based on [cmake-js](https://github.com/cmake-js/cmake-js).
|
||||
It can be used as a reference for using the whisper.cpp project in other node projects.
|
||||
|
||||
## Install
|
||||
|
||||
```shell
|
||||
npm install
|
||||
```
|
||||
|
||||
## Compile
|
||||
|
||||
Make sure it is in the project root directory and compiled with make-js.
|
||||
|
||||
```shell
|
||||
npx cmake-js compile -T whisper-addon -B Release
|
||||
```
|
||||
|
||||
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
|
||||
|
||||
> Such as appointing special cmake path:
|
||||
> ```shell
|
||||
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
|
||||
> ```
|
||||
|
||||
## Run
|
||||
|
||||
```shell
|
||||
cd examples/addon.node
|
||||
|
||||
node index.js --language='language' --model='model-path' --fname_inp='file-path'
|
||||
```
|
||||
|
||||
Because this is a simple Demo, only the above parameters are set in the node environment.
|
||||
|
||||
Other parameters can also be specified in the node environment.
|
15
examples/addon.node/__test__/whisper.spec.js
Normal file
15
examples/addon.node/__test__/whisper.spec.js
Normal file
@ -0,0 +1,15 @@
|
||||
const path = require('path');
|
||||
const { whisper } = require(path.join(__dirname, '../../../build/Release/whisper-addon'));
|
||||
|
||||
const whisperParamsMock = {
|
||||
language: 'en',
|
||||
model: path.join(__dirname, '../../../models/ggml-base.en.bin'),
|
||||
fname_inp: path.join(__dirname, '../../../samples/jfk.wav'),
|
||||
};
|
||||
|
||||
describe("Run whisper.node", () => {
|
||||
|
||||
test("it should receive a non-empty value", () => {
|
||||
expect(whisper(whisperParamsMock).length).toBeGreaterThan(0);
|
||||
});
|
||||
});
|
422
examples/addon.node/addon.cpp
Normal file
422
examples/addon.node/addon.cpp
Normal file
@ -0,0 +1,422 @@
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include "napi.h"
|
||||
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 5;
|
||||
int32_t beam_size = -1;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.4f;
|
||||
float logprob_thold = -1.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool diarize = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
std::string model = "../../ggml-large.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_outp = {};
|
||||
};
|
||||
|
||||
struct whisper_print_user_data {
|
||||
const whisper_params * params;
|
||||
|
||||
const std::vector<std::vector<float>> * pcmf32s;
|
||||
};
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
int64_t msec = t * 10;
|
||||
int64_t hr = msec / (1000 * 60 * 60);
|
||||
msec = msec - hr * (1000 * 60 * 60);
|
||||
int64_t min = msec / (1000 * 60);
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
int timestamp_to_sample(int64_t t, int n_samples) {
|
||||
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
std::string speaker = "";
|
||||
|
||||
int64_t t0;
|
||||
int64_t t1;
|
||||
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
|
||||
if (s0 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
for (int i = s0; i < n_segments; i++) {
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
}
|
||||
|
||||
if (!params.no_timestamps) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
}
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "(speaker 0)";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "(speaker 1)";
|
||||
} else {
|
||||
speaker = "(speaker ?)";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
}
|
||||
|
||||
// colorful print bug
|
||||
//
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s%s", speaker.c_str(), text);
|
||||
|
||||
|
||||
// with timestamps or speakers: each segment on new line
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
|
||||
if (params.fname_inp.empty()) {
|
||||
fprintf(stderr, "error: no input files specified\n");
|
||||
return 2;
|
||||
}
|
||||
|
||||
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
if (ctx == nullptr) {
|
||||
fprintf(stderr, "error: failed to initialize whisper context\n");
|
||||
return 3;
|
||||
}
|
||||
|
||||
// initial prompt
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str());
|
||||
fprintf(stderr, "initial tokens: [ ");
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); ++i) {
|
||||
fprintf(stderr, "%d ", prompt_tokens[i]);
|
||||
}
|
||||
fprintf(stderr, "]\n");
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_outp = f < (int)params.fname_outp.size() && !params.fname_outp[f].empty() ? params.fname_outp[f] : params.fname_inp[f];
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
// WAV input
|
||||
{
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
if (fname_inp == "-") {
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true)
|
||||
{
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return 4;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
|
||||
}
|
||||
else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
|
||||
return 5;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "error: WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (params.diarize && wav.channels != 2 && params.no_timestamps == false) {
|
||||
fprintf(stderr, "error: WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
|
||||
return 6;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "error: WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
|
||||
return 8;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "error: WAV file '%s' must be 16-bit\n", fname_inp.c_str());
|
||||
return 9;
|
||||
}
|
||||
|
||||
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.diarize) {
|
||||
// convert to stereo, float
|
||||
pcmf32s.resize(2);
|
||||
|
||||
pcmf32s[0].resize(n);
|
||||
pcmf32s[1].resize(n);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
|
||||
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, params.n_processors,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
|
||||
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = params.print_progress;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.translate = params.translate;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
wparams.duration_ms = params.duration_ms;
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
wparams.new_segment_callback = whisper_print_segment_callback;
|
||||
wparams.new_segment_callback_user_data = &user_data;
|
||||
}
|
||||
|
||||
// example for abort mechanism
|
||||
// in this example, we do not abort the processing, but we could if the flag is set to true
|
||||
// the callback is called before every encoder run - if it returns false, the processing is aborted
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
wparams.encoder_begin_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
|
||||
fprintf(stderr, "failed to process audio\n");
|
||||
return 10;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
result.resize(n_segments);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
result[i].emplace_back(to_timestamp(t0, true));
|
||||
result[i].emplace_back(to_timestamp(t1, true));
|
||||
result[i].emplace_back(text);
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Napi::Object whisper(const Napi::CallbackInfo& info) {
|
||||
Napi::Env env = info.Env();
|
||||
if (info.Length() <= 0 || !info[0].IsObject()) {
|
||||
Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException();
|
||||
}
|
||||
whisper_params params;
|
||||
std::vector<std::vector<std::string>> result;
|
||||
|
||||
Napi::Object whisper_params = info[0].As<Napi::Object>();
|
||||
std::string language = whisper_params.Get("language").As<Napi::String>();
|
||||
std::string model = whisper_params.Get("model").As<Napi::String>();
|
||||
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
|
||||
|
||||
params.language = language;
|
||||
params.model = model;
|
||||
params.fname_inp.emplace_back(input);
|
||||
|
||||
// run model
|
||||
run(params, result);
|
||||
|
||||
fprintf(stderr, "RESULT:\n");
|
||||
for (auto sentence:result) {
|
||||
fprintf(stderr, "t0: %s, t1: %s, content: %s \n",
|
||||
sentence[0].c_str(), sentence[1].c_str(), sentence[2].c_str());
|
||||
}
|
||||
|
||||
Napi::Object res = Napi::Array::New(env, result.size());
|
||||
for (uint64_t i = 0; i < result.size(); ++i) {
|
||||
Napi::Object tmp = Napi::Array::New(env, 3);
|
||||
for (uint64_t j = 0; j < 3; ++j) {
|
||||
tmp[j] = Napi::String::New(env, result[i][j]);
|
||||
}
|
||||
res[i] = tmp;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
Napi::Object Init(Napi::Env env, Napi::Object exports) {
|
||||
exports.Set(
|
||||
Napi::String::New(env, "whisper"),
|
||||
Napi::Function::New(env, whisper)
|
||||
);
|
||||
return exports;
|
||||
}
|
||||
|
||||
NODE_API_MODULE(whisper, Init);
|
27
examples/addon.node/index.js
Normal file
27
examples/addon.node/index.js
Normal file
@ -0,0 +1,27 @@
|
||||
const path = require('path');
|
||||
const { whisper } = require(path.join(__dirname, '../../build/Release/whisper-addon'));
|
||||
|
||||
const whisperParams = {
|
||||
language: 'en',
|
||||
model: path.join(__dirname, '../../models/ggml-base.en.bin'),
|
||||
fname_inp: '',
|
||||
};
|
||||
|
||||
const arguments = process.argv.slice(2);
|
||||
const params = Object.fromEntries(
|
||||
arguments.reduce((pre, item) => {
|
||||
if (item.startsWith("--")) {
|
||||
return [...pre, item.slice(2).split("=")];
|
||||
}
|
||||
return pre;
|
||||
}, []),
|
||||
);
|
||||
|
||||
for (const key in params) {
|
||||
if (whisperParams.hasOwnProperty(key)) {
|
||||
whisperParams[key] = params[key];
|
||||
}
|
||||
}
|
||||
|
||||
console.log('whisperParams =', whisperParams);
|
||||
console.log(whisper(whisperParams));
|
16
examples/addon.node/package.json
Normal file
16
examples/addon.node/package.json
Normal file
@ -0,0 +1,16 @@
|
||||
{
|
||||
"name": "whisper-addon",
|
||||
"version": "0.0.0",
|
||||
"description": "",
|
||||
"main": "index.js",
|
||||
"author": "Qanhe Chen",
|
||||
"license": "MIT",
|
||||
"scripts": {
|
||||
"test": "jest"
|
||||
},
|
||||
"devDependencies": {
|
||||
"cmake-js": "^7.1.1",
|
||||
"jest": "^29.4.0",
|
||||
"node-addon-api": "^5.0.0"
|
||||
}
|
||||
}
|
@ -8,6 +8,8 @@ add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
@ -28,6 +28,11 @@ void bench_main(size_t index) {
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
if (int ret = whisper_encode(ctx, 0, n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return;
|
||||
@ -52,7 +57,7 @@ EMSCRIPTEN_BINDINGS(bench) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
g_contexts[i] = whisper_init_from_file(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
|
@ -1,3 +1,6 @@
|
||||
set(TARGET bench)
|
||||
add_executable(${TARGET} bench.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
@ -7,6 +7,7 @@
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
|
||||
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
};
|
||||
@ -23,6 +24,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -41,19 +43,17 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
||||
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
|
||||
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
||||
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int whisper_bench_encoder(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
@ -92,3 +92,22 @@ int main(int argc, char ** argv) {
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ret = -1;
|
||||
|
||||
switch (params.what) {
|
||||
case 0: ret = whisper_bench_encoder(params); break;
|
||||
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
|
||||
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
|
||||
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
10
examples/chess/CMakeLists.txt
Normal file
10
examples/chess/CMakeLists.txt
Normal file
@ -0,0 +1,10 @@
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# chess
|
||||
set(TARGET chess)
|
||||
add_executable(${TARGET} chess.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
634
examples/chess/chess.cpp
Normal file
634
examples/chess/chess.cpp
Normal file
@ -0,0 +1,634 @@
|
||||
// Input chess moves via voice
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
std::string to_timestamp(int64_t t) {
|
||||
int64_t sec = t/100;
|
||||
int64_t msec = t - sec*100;
|
||||
int64_t min = sec/60;
|
||||
sec = sec - min*60;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t step_ms = 3000;
|
||||
int32_t length_ms = 10000;
|
||||
int32_t keep_ms = 200;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool no_context = true;
|
||||
bool no_timestamps = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string fname_inp;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--step") { params.step_ms = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--length") { params.length_ms = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--keep") { params.keep_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
|
||||
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
|
||||
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", params.fname_inp.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// SDL Audio capture
|
||||
//
|
||||
|
||||
class audio_async {
|
||||
public:
|
||||
audio_async(int len_ms);
|
||||
~audio_async();
|
||||
|
||||
bool init(int capture_id, int sample_rate);
|
||||
|
||||
// start capturing audio via the provided SDL callback
|
||||
// keep last len_ms seconds of audio in a circular buffer
|
||||
bool resume();
|
||||
bool pause();
|
||||
bool clear();
|
||||
|
||||
// callback to be called by SDL
|
||||
void callback(uint8_t * stream, int len);
|
||||
|
||||
// get audio data from the circular buffer
|
||||
void get(int ms, std::vector<float> & audio);
|
||||
|
||||
private:
|
||||
SDL_AudioDeviceID m_dev_id_in = 0;
|
||||
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
std::atomic_bool m_running;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
size_t m_audio_pos = 0;
|
||||
size_t m_audio_len = 0;
|
||||
};
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
|
||||
m_running = false;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
if (m_dev_id_in) {
|
||||
SDL_CloseAudioDevice(m_dev_id_in);
|
||||
}
|
||||
}
|
||||
|
||||
bool audio_async::init(int capture_id, int sample_rate) {
|
||||
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
||||
|
||||
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
||||
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
||||
|
||||
{
|
||||
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
||||
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
||||
for (int i = 0; i < nDevices; i++) {
|
||||
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
||||
}
|
||||
}
|
||||
|
||||
SDL_AudioSpec capture_spec_requested;
|
||||
SDL_AudioSpec capture_spec_obtained;
|
||||
|
||||
SDL_zero(capture_spec_requested);
|
||||
SDL_zero(capture_spec_obtained);
|
||||
|
||||
capture_spec_requested.freq = sample_rate;
|
||||
capture_spec_requested.format = AUDIO_F32;
|
||||
capture_spec_requested.channels = 1;
|
||||
capture_spec_requested.samples = 1024;
|
||||
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
||||
audio_async * audio = (audio_async *) userdata;
|
||||
audio->callback(stream, len);
|
||||
};
|
||||
capture_spec_requested.userdata = this;
|
||||
|
||||
if (capture_id >= 0) {
|
||||
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
||||
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
||||
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
||||
}
|
||||
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
||||
m_dev_id_in = 0;
|
||||
|
||||
return false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
||||
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
||||
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
||||
capture_spec_requested.format);
|
||||
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
||||
capture_spec_requested.channels);
|
||||
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
||||
}
|
||||
|
||||
m_sample_rate = capture_spec_obtained.freq;
|
||||
|
||||
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::resume() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_running) {
|
||||
fprintf(stderr, "%s: already running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
||||
|
||||
m_running = true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::pause() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: already paused!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
||||
|
||||
m_running = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool audio_async::clear() {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
m_audio_pos = 0;
|
||||
m_audio_len = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// callback to be called by SDL
|
||||
void audio_async::callback(uint8_t * stream, int len) {
|
||||
if (!m_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n_samples = len / sizeof(float);
|
||||
|
||||
m_audio_new.resize(n_samples);
|
||||
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
||||
|
||||
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (m_audio_pos + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - m_audio_pos;
|
||||
|
||||
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
||||
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = m_audio.size();
|
||||
} else {
|
||||
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
||||
|
||||
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
||||
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void audio_async::get(int ms, std::vector<float> & result) {
|
||||
if (!m_dev_id_in) {
|
||||
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_running) {
|
||||
fprintf(stderr, "%s: not running!\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
result.clear();
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
if (ms <= 0) {
|
||||
ms = m_len_ms;
|
||||
}
|
||||
|
||||
size_t n_samples = (m_sample_rate * ms) / 1000;
|
||||
if (n_samples > m_audio_len) {
|
||||
n_samples = m_audio_len;
|
||||
}
|
||||
|
||||
result.resize(n_samples);
|
||||
|
||||
int s0 = m_audio_pos - n_samples;
|
||||
if (s0 < 0) {
|
||||
s0 += m_audio.size();
|
||||
}
|
||||
|
||||
if (s0 + n_samples > m_audio.size()) {
|
||||
const size_t n0 = m_audio.size() - s0;
|
||||
|
||||
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
||||
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
||||
} else {
|
||||
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.keep_ms = std::min(params.keep_ms, params.step_ms);
|
||||
params.length_ms = std::max(params.length_ms, params.step_ms);
|
||||
|
||||
const int n_samples_step = (1e-3*params.step_ms )*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_len = (1e-3*params.length_ms)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_keep = (1e-3*params.keep_ms )*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = (1e-3*30000.0 )*WHISPER_SAMPLE_RATE;
|
||||
|
||||
const bool use_vad = n_samples_step <= 0; // sliding window mode uses VAD
|
||||
|
||||
const int n_new_line = !use_vad ? std::max(1, params.length_ms / params.step_ms - 1) : 1; // number of steps to print new line
|
||||
|
||||
params.no_timestamps = !use_vad;
|
||||
params.no_context |= use_vad;
|
||||
params.max_tokens = 0;
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(params.length_ms);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
|
||||
// whisper init
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
std::vector<float> pcmf32 (n_samples_30s, 0.0f);
|
||||
std::vector<float> pcmf32_old;
|
||||
std::vector<float> pcmf32_new(n_samples_30s, 0.0f);
|
||||
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing %d samples (step = %.1f sec / len = %.1f sec / keep = %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
n_samples_step,
|
||||
float(n_samples_step)/WHISPER_SAMPLE_RATE,
|
||||
float(n_samples_len )/WHISPER_SAMPLE_RATE,
|
||||
float(n_samples_keep)/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
if (!use_vad) {
|
||||
fprintf(stderr, "%s: n_new_line = %d, no_context = %d\n", __func__, n_new_line, params.no_context);
|
||||
} else {
|
||||
fprintf(stderr, "%s: using VAD, will transcribe on speech activity\n", __func__);
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
|
||||
printf("[Start speaking]");
|
||||
fflush(stdout);
|
||||
|
||||
auto t_last = std::chrono::high_resolution_clock::now();
|
||||
const auto t_start = t_last;
|
||||
|
||||
// main audio loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
|
||||
// process new audio
|
||||
|
||||
if (!use_vad) {
|
||||
while (true) {
|
||||
audio.get(params.step_ms, pcmf32_new);
|
||||
|
||||
if ((int) pcmf32_new.size() > 2*n_samples_step) {
|
||||
fprintf(stderr, "\n\n%s: WARNING: cannot process audio fast enough, dropping audio ...\n\n", __func__);
|
||||
audio.clear();
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((int) pcmf32_new.size() >= n_samples_step) {
|
||||
audio.clear();
|
||||
break;
|
||||
}
|
||||
|
||||
SDL_Delay(1);
|
||||
}
|
||||
|
||||
const int n_samples_new = pcmf32_new.size();
|
||||
|
||||
// take up to params.length_ms audio from previous iteration
|
||||
const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_keep + n_samples_len - n_samples_new));
|
||||
|
||||
//printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size());
|
||||
|
||||
pcmf32.resize(n_samples_new + n_samples_take);
|
||||
|
||||
for (int i = 0; i < n_samples_take; i++) {
|
||||
pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i];
|
||||
}
|
||||
|
||||
memcpy(pcmf32.data() + n_samples_take, pcmf32_new.data(), n_samples_new*sizeof(float));
|
||||
|
||||
pcmf32_old = pcmf32;
|
||||
} else {
|
||||
const auto t_now = std::chrono::high_resolution_clock::now();
|
||||
const auto t_diff = std::chrono::duration_cast<std::chrono::milliseconds>(t_now - t_last).count();
|
||||
|
||||
if (t_diff < 2000) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
audio.get(2000, pcmf32_new);
|
||||
|
||||
if (vad_simple(pcmf32_new, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, false)) {
|
||||
audio.get(params.length_ms, pcmf32);
|
||||
} else {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
t_last = t_now;
|
||||
}
|
||||
|
||||
// run the inference
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = !use_vad;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
|
||||
// disable temperature fallback
|
||||
wparams.temperature_inc = -1.0f;
|
||||
|
||||
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 6;
|
||||
}
|
||||
|
||||
// print result;
|
||||
{
|
||||
if (!use_vad) {
|
||||
printf("\33[2K\r");
|
||||
|
||||
// print long empty line to clear the previous line
|
||||
printf("%s", std::string(100, ' ').c_str());
|
||||
|
||||
printf("\33[2K\r");
|
||||
} else {
|
||||
const int64_t t1 = (t_last - t_start).count()/1000000;
|
||||
const int64_t t0 = std::max(0.0, t1 - pcmf32.size()*1000.0/WHISPER_SAMPLE_RATE);
|
||||
|
||||
printf("\n");
|
||||
printf("### Transcription %d START | t0 = %d ms | t1 = %d ms\n", n_iter, (int) t0, (int) t1);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
if (params.no_timestamps) {
|
||||
printf("%s", text);
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
}
|
||||
|
||||
if (use_vad){
|
||||
printf("\n");
|
||||
printf("### Transcription %d END\n", n_iter);
|
||||
}
|
||||
}
|
||||
|
||||
++n_iter;
|
||||
|
||||
if (!use_vad && (n_iter % n_new_line) == 0) {
|
||||
printf("\n");
|
||||
|
||||
// keep part of the audio for next iteration to try to mitigate word boundary issues
|
||||
pcmf32_old = std::vector<float>(pcmf32.end() - n_samples_keep, pcmf32.end());
|
||||
|
||||
// Add tokens of the last full length segment as the prompt
|
||||
if (!params.no_context) {
|
||||
prompt_tokens.clear();
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const int token_count = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < token_count; ++j) {
|
||||
prompt_tokens.push_back(whisper_full_get_token_id(ctx, i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -8,6 +8,8 @@ add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
@ -324,7 +324,7 @@ EMSCRIPTEN_BINDINGS(command) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
g_contexts[i] = whisper_init_from_file(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
|
@ -2,6 +2,9 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
# command
|
||||
set(TARGET command)
|
||||
add_executable(${TARGET} command.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
@ -9,7 +9,19 @@ More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/
|
||||
|
||||
# On Raspberry Pi, use tiny or base models + "-ac 768" for better performance
|
||||
./command -m ./models/ggml-tiny.en.bin -ac 768 -t 3 -c 0
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
|
||||
Web version: [examples/command.wasm](/examples/command.wasm)
|
||||
|
||||
## Guided mode
|
||||
|
||||
"Guided mode" allows you to specify a list of commands (i.e. strings) and the transcription will be guided to classify your command into one from the list. This can be useful in situations where a device is listening only for a small subset of commands.
|
||||
|
||||
Initial tests show that this approach might be extremely efficient in terms of performance, since it integrates very well with the "partial Encoder" idea from #137.
|
||||
|
||||
```bash
|
||||
# Run in guided mode, the list of allowed commands is in commands.txt
|
||||
./command -m ./models/ggml-base.en.bin -cmd ./examples/command/commands.txt
|
||||
|
||||
@ -17,9 +29,8 @@ More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/
|
||||
./command -m ./models/ggml-tiny.en.bin -cmd ./examples/command/commands.txt -ac 128 -t 3 -c 0
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9b8b-aeeb76bee969.mp4
|
||||
|
||||
Web version: [examples/command.wasm](/examples/command.wasm)
|
||||
|
||||
## Building
|
||||
|
||||
|
@ -11,6 +11,7 @@
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <sstream>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
@ -25,7 +26,7 @@
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t prompt_ms = 5000;
|
||||
int32_t command_ms = 4000;
|
||||
int32_t command_ms = 8000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
@ -43,6 +44,7 @@ struct whisper_params {
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string fname_out;
|
||||
std::string commands;
|
||||
std::string prompt;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -71,6 +73,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; }
|
||||
else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -103,6 +106,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str());
|
||||
fprintf(stderr, " -p, --prompt [%-7s] the required activation prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -510,6 +514,433 @@ std::vector<std::string> read_allowed_commands(const std::string & fname) {
|
||||
return allowed_commands;
|
||||
}
|
||||
|
||||
std::vector<std::string> get_words(const std::string &txt) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
std::istringstream iss(txt);
|
||||
std::string word;
|
||||
while (iss >> word) {
|
||||
words.push_back(word);
|
||||
}
|
||||
|
||||
return words;
|
||||
}
|
||||
|
||||
// returns true if no exit event was received
|
||||
bool process_sdl_events() {
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
return false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// command-list mode
|
||||
// guide the transcription to match the most likely command from a provided list
|
||||
int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: guided mode\n", __func__);
|
||||
|
||||
std::vector<std::string> allowed_commands = read_allowed_commands(params.commands);
|
||||
|
||||
if (allowed_commands.empty()) {
|
||||
fprintf(stderr, "%s: error: failed to read allowed commands from '%s'\n", __func__, params.commands.c_str());
|
||||
return 2;
|
||||
}
|
||||
|
||||
int max_len = 0;
|
||||
|
||||
std::vector<std::vector<whisper_token>> allowed_tokens;
|
||||
|
||||
for (const auto & cmd : allowed_commands) {
|
||||
whisper_token tokens[1024];
|
||||
allowed_tokens.emplace_back();
|
||||
|
||||
for (int l = 0; l < (int) cmd.size(); ++l) {
|
||||
// NOTE: very important to add the whitespace !
|
||||
// the reason is that the first decoded token starts with a whitespace too!
|
||||
std::string ss = std::string(" ") + cmd.substr(0, l + 1);
|
||||
|
||||
const int n = whisper_tokenize(ctx, ss.c_str(), tokens, 1024);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize command '%s'\n", __func__, cmd.c_str());
|
||||
return 3;
|
||||
}
|
||||
|
||||
if (n == 1) {
|
||||
allowed_tokens.back().push_back(tokens[0]);
|
||||
}
|
||||
}
|
||||
|
||||
max_len = std::max(max_len, (int) cmd.size());
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: allowed commands [ tokens ]:\n", __func__);
|
||||
fprintf(stderr, "\n");
|
||||
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
|
||||
fprintf(stderr, " - \033[1m%-*s\033[0m = [", max_len, allowed_commands[i].c_str());
|
||||
for (const auto & token : allowed_tokens[i]) {
|
||||
fprintf(stderr, " %5d", token);
|
||||
}
|
||||
fprintf(stderr, " ]\n");
|
||||
}
|
||||
|
||||
std::string k_prompt = "select one from the available words: ";
|
||||
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
|
||||
if (i > 0) {
|
||||
k_prompt += ", ";
|
||||
}
|
||||
k_prompt += allowed_commands[i];
|
||||
}
|
||||
k_prompt += ". selected word: ";
|
||||
|
||||
// tokenize prompt
|
||||
std::vector<whisper_token> k_tokens;
|
||||
{
|
||||
k_tokens.resize(1024);
|
||||
const int n = whisper_tokenize(ctx, k_prompt.c_str(), k_tokens.data(), 1024);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize prompt '%s'\n", __func__, k_prompt.c_str());
|
||||
return 4;
|
||||
}
|
||||
k_tokens.resize(n);
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, k_prompt.c_str());
|
||||
fprintf(stderr, "%s: tokens: [", __func__);
|
||||
for (const auto & token : k_tokens) {
|
||||
fprintf(stderr, " %d", token);
|
||||
}
|
||||
fprintf(stderr, " ]\n");
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: listening for a command ...\n", __func__);
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
bool is_running = true;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = process_sdl_events();
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = 1;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.prompt_tokens = k_tokens.data();
|
||||
wparams.prompt_n_tokens = k_tokens.size();
|
||||
|
||||
// run the transformer and a single decoding pass
|
||||
if (whisper_full(ctx, wparams, pcmf32_cur.data(), pcmf32_cur.size()) != 0) {
|
||||
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
|
||||
break;
|
||||
}
|
||||
|
||||
// estimate command probability
|
||||
// NOTE: not optimal
|
||||
{
|
||||
const auto * logits = whisper_get_logits(ctx);
|
||||
|
||||
std::vector<float> probs(whisper_n_vocab(ctx), 0.0f);
|
||||
|
||||
// compute probs from logits via softmax
|
||||
{
|
||||
float max = -1e9;
|
||||
for (int i = 0; i < (int) probs.size(); ++i) {
|
||||
max = std::max(max, logits[i]);
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < (int) probs.size(); ++i) {
|
||||
probs[i] = expf(logits[i] - max);
|
||||
sum += probs[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) probs.size(); ++i) {
|
||||
probs[i] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<float, int>> probs_id;
|
||||
|
||||
double psum = 0.0;
|
||||
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
|
||||
probs_id.emplace_back(probs[allowed_tokens[i][0]], i);
|
||||
for (int j = 1; j < (int) allowed_tokens[i].size(); ++j) {
|
||||
probs_id.back().first += probs[allowed_tokens[i][j]];
|
||||
}
|
||||
probs_id.back().first /= allowed_tokens[i].size();
|
||||
psum += probs_id.back().first;
|
||||
}
|
||||
|
||||
// normalize
|
||||
for (auto & p : probs_id) {
|
||||
p.first /= psum;
|
||||
}
|
||||
|
||||
// sort descending
|
||||
{
|
||||
using pair_type = decltype(probs_id)::value_type;
|
||||
std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
}
|
||||
|
||||
// print the commands and the respective probabilities
|
||||
{
|
||||
fprintf(stdout, "\n");
|
||||
for (const auto & cmd : probs_id) {
|
||||
fprintf(stdout, "%s: %s%-*s%s = %f | ", __func__, "\033[1m", max_len, allowed_commands[cmd.second].c_str(), "\033[0m", cmd.first);
|
||||
for (int token : allowed_tokens[cmd.second]) {
|
||||
fprintf(stdout, "'%4s' %f ", whisper_token_to_str(ctx, token), probs[token]);
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
// best command
|
||||
{
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
const float prob = probs_id[0].first;
|
||||
const int index = probs_id[0].second;
|
||||
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: detected command: %s%s%s | p = %f | t = %d ms\n", __func__,
|
||||
"\033[1m", allowed_commands[index].c_str(), "\033[0m", prob,
|
||||
(int) std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count());
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// always-prompt mode
|
||||
// transcribe the voice into text after valid prompt
|
||||
int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
|
||||
bool is_running = true;
|
||||
bool ask_prompt = true;
|
||||
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
|
||||
const std::string k_prompt = params.prompt;
|
||||
|
||||
const int k_prompt_length = get_words(k_prompt).size();
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: always-prompt mode\n", __func__);
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = process_sdl_events();
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
if (ask_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: The prompt is: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
ask_prompt = false;
|
||||
}
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
// detect the commands
|
||||
audio.get(params.command_ms, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
||||
|
||||
const auto words = get_words(txt);
|
||||
|
||||
std::string prompt;
|
||||
std::string command;
|
||||
|
||||
for (int i = 0; i < (int) words.size(); ++i) {
|
||||
if (i < k_prompt_length) {
|
||||
prompt += words[i] + " ";
|
||||
} else {
|
||||
command += words[i] + " ";
|
||||
}
|
||||
}
|
||||
|
||||
const float sim = similarity(prompt, k_prompt);
|
||||
|
||||
//debug
|
||||
//fprintf(stdout, "command size: %i\n", command_length);
|
||||
|
||||
if ((sim > 0.7f) && (command.size() > 0)) {
|
||||
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
||||
}
|
||||
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
audio.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// general-purpose mode
|
||||
// freely transcribe the voice into text
|
||||
int process_general_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) {
|
||||
bool is_running = true;
|
||||
bool have_prompt = false;
|
||||
bool ask_prompt = true;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string k_prompt = "Ok Whisper, start listening for commands.";
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: general-purpose mode\n", __func__);
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = process_sdl_events();
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
if (ask_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
ask_prompt = false;
|
||||
}
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
if (!have_prompt) {
|
||||
// wait for activation phrase
|
||||
audio.get(params.prompt_ms, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
const float sim = similarity(txt, k_prompt);
|
||||
|
||||
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
|
||||
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
|
||||
ask_prompt = true;
|
||||
} else {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
|
||||
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
// save the audio for the prompt
|
||||
pcmf32_prompt = pcmf32_cur;
|
||||
have_prompt = true;
|
||||
}
|
||||
} else {
|
||||
// we have heard the activation phrase, now detect the commands
|
||||
audio.get(params.command_ms, pcmf32_cur);
|
||||
|
||||
// prepend the prompt audio
|
||||
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
||||
|
||||
prob = 100.0f*(prob - prob0);
|
||||
|
||||
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
|
||||
|
||||
// find the prompt in the text
|
||||
float best_sim = 0.0f;
|
||||
size_t best_len = 0;
|
||||
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
||||
const auto prompt = txt.substr(0, n);
|
||||
|
||||
const float sim = similarity(prompt, k_prompt);
|
||||
|
||||
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
|
||||
|
||||
if (sim > best_sim) {
|
||||
best_sim = sim;
|
||||
best_len = n;
|
||||
}
|
||||
}
|
||||
|
||||
const std::string command = ::trim(txt.substr(best_len));
|
||||
|
||||
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
@ -525,7 +956,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
@ -561,300 +992,14 @@ int main(int argc, char ** argv) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
|
||||
audio.clear();
|
||||
|
||||
int max_len = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool have_prompt = false;
|
||||
bool ask_prompt = true;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
std::vector<std::string> allowed_commands;
|
||||
std::vector<std::vector<whisper_token>> allowed_tokens;
|
||||
|
||||
std::string k_prompt;
|
||||
std::vector<whisper_token> k_tokens;
|
||||
int ret_val = 0;
|
||||
|
||||
if (!params.commands.empty()) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: guided mode\n", __func__);
|
||||
|
||||
allowed_commands = read_allowed_commands(params.commands);
|
||||
|
||||
if (allowed_commands.empty()) {
|
||||
fprintf(stderr, "%s: error: failed to read allowed commands from '%s'\n", __func__, params.commands.c_str());
|
||||
return 2;
|
||||
}
|
||||
|
||||
for (const auto & cmd : allowed_commands) {
|
||||
whisper_token tokens[1024];
|
||||
allowed_tokens.emplace_back();
|
||||
|
||||
for (int l = 0; l < (int) cmd.size(); ++l) {
|
||||
// NOTE: very important to add the whitespace !
|
||||
// the reason is that the first decoded token starts with a whitespace too!
|
||||
std::string ss = std::string(" ") + cmd.substr(0, l + 1);
|
||||
|
||||
const int n = whisper_tokenize(ctx, ss.c_str(), tokens, 1024);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize command '%s'\n", __func__, cmd.c_str());
|
||||
return 3;
|
||||
}
|
||||
|
||||
if (n == 1) {
|
||||
allowed_tokens.back().push_back(tokens[0]);
|
||||
}
|
||||
}
|
||||
|
||||
max_len = std::max(max_len, (int) cmd.size());
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: allowed commands [ tokens ]:\n", __func__);
|
||||
fprintf(stderr, "\n");
|
||||
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
|
||||
fprintf(stderr, " - \033[1m%-*s\033[0m = [", max_len, allowed_commands[i].c_str());
|
||||
for (const auto & token : allowed_tokens[i]) {
|
||||
fprintf(stderr, " %5d", token);
|
||||
}
|
||||
fprintf(stderr, " ]\n");
|
||||
}
|
||||
|
||||
k_prompt = "select one from the available words: ";
|
||||
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
|
||||
if (i > 0) {
|
||||
k_prompt += ", ";
|
||||
}
|
||||
k_prompt += allowed_commands[i];
|
||||
}
|
||||
k_prompt += ". selected word: ";
|
||||
|
||||
// tokenize prompt
|
||||
{
|
||||
k_tokens.resize(1024);
|
||||
const int n = whisper_tokenize(ctx, k_prompt.c_str(), k_tokens.data(), 1024);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize prompt '%s'\n", __func__, k_prompt.c_str());
|
||||
return 4;
|
||||
}
|
||||
k_tokens.resize(n);
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, k_prompt.c_str());
|
||||
fprintf(stderr, "%s: tokens: [", __func__);
|
||||
for (const auto & token : k_tokens) {
|
||||
fprintf(stderr, " %d", token);
|
||||
}
|
||||
fprintf(stderr, " ]\n");
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: listening for a command ...\n", __func__);
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
ret_val = process_command_list(ctx, audio, params);
|
||||
} else if (!params.prompt.empty()) {
|
||||
ret_val = always_prompt_transcription(ctx, audio, params);
|
||||
} else {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: general-purpose mode\n", __func__);
|
||||
|
||||
k_prompt = "Ok Whisper, start listening for commands.";
|
||||
}
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
{
|
||||
SDL_Event event;
|
||||
while (SDL_PollEvent(&event)) {
|
||||
switch (event.type) {
|
||||
case SDL_QUIT:
|
||||
{
|
||||
is_running = false;
|
||||
} break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
if (allowed_commands.empty()) {
|
||||
// general-purpose mode
|
||||
// freely transcribe the voice into text
|
||||
|
||||
if (ask_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
ask_prompt = false;
|
||||
}
|
||||
|
||||
{
|
||||
int64_t t_ms = 0;
|
||||
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
if (!have_prompt) {
|
||||
// wait for activation phrase
|
||||
audio.get(params.prompt_ms, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
const float sim = similarity(txt, k_prompt);
|
||||
|
||||
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
|
||||
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
|
||||
ask_prompt = true;
|
||||
} else {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
|
||||
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
// save the audio for the prompt
|
||||
pcmf32_prompt = pcmf32_cur;
|
||||
have_prompt = true;
|
||||
}
|
||||
} else {
|
||||
// we have heard the activation phrase, now detect the commands
|
||||
audio.get(params.command_ms, pcmf32_cur);
|
||||
|
||||
// prepend the prompt audio
|
||||
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
||||
|
||||
prob = 100.0f*(prob - prob0);
|
||||
|
||||
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
|
||||
|
||||
// find the prompt in the text
|
||||
float best_sim = 0.0f;
|
||||
size_t best_len = 0;
|
||||
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
||||
const auto prompt = txt.substr(0, n);
|
||||
|
||||
const float sim = similarity(prompt, k_prompt);
|
||||
|
||||
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
|
||||
|
||||
if (sim > best_sim) {
|
||||
best_sim = sim;
|
||||
best_len = n;
|
||||
}
|
||||
}
|
||||
|
||||
const std::string command = ::trim(txt.substr(best_len));
|
||||
|
||||
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// command-list mode
|
||||
// guide the transcription to match the most likely command from a provided list
|
||||
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
||||
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = 1;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.prompt_tokens = k_tokens.data();
|
||||
wparams.prompt_n_tokens = k_tokens.size();
|
||||
|
||||
// run the transformer and a single decoding pass
|
||||
if (whisper_full(ctx, wparams, pcmf32_cur.data(), pcmf32_cur.size()) != 0) {
|
||||
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
|
||||
break;
|
||||
}
|
||||
|
||||
const auto * probs = whisper_get_probs(ctx);
|
||||
std::vector<std::pair<float, int>> probs_id;
|
||||
|
||||
double psum = 0.0;
|
||||
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
|
||||
probs_id.emplace_back(probs[allowed_tokens[i][0]], i);
|
||||
for (int j = 1; j < (int) allowed_tokens[i].size(); ++j) {
|
||||
probs_id.back().first += probs[allowed_tokens[i][j]];
|
||||
}
|
||||
probs_id.back().first /= allowed_tokens[i].size();
|
||||
psum += probs_id.back().first;
|
||||
}
|
||||
|
||||
// normalize
|
||||
for (auto & p : probs_id) {
|
||||
p.first /= psum;
|
||||
}
|
||||
|
||||
// sort descending
|
||||
{
|
||||
using pair_type = decltype(probs_id)::value_type;
|
||||
std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
}
|
||||
|
||||
// print the commands and the respective probabilities
|
||||
{
|
||||
fprintf(stdout, "\n");
|
||||
for (const auto & cmd : probs_id) {
|
||||
fprintf(stdout, "%s: %s%-*s%s = %f | ", __func__, "\033[1m", max_len, allowed_commands[cmd.second].c_str(), "\033[0m", cmd.first);
|
||||
for (int i = 0; i < (int) allowed_tokens[cmd.second].size(); ++i) {
|
||||
fprintf(stdout, "'%4s' %f ", whisper_token_to_str(ctx, allowed_tokens[cmd.second][i]), probs[allowed_tokens[cmd.second][i]]);
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
// best command
|
||||
{
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s: detected command: %s%s%s | p = %f | t = %d ms\n", __func__,
|
||||
"\033[1m", allowed_commands[probs_id[0].second].c_str(), "\033[0m", probs_id[0].first,
|
||||
(int) std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count());
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
}
|
||||
}
|
||||
ret_val = process_general_transcription(ctx, audio, params);
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
@ -862,5 +1007,5 @@ int main(int argc, char ** argv) {
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
return ret_val;
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ function convertTypedArray(src, type) {
|
||||
|
||||
var printTextarea = (function() {
|
||||
var element = document.getElementById('output');
|
||||
if (element) element.alue = ''; // clear browser cache
|
||||
if (element) element.value = ''; // clear browser cache
|
||||
return function(text) {
|
||||
if (arguments.length > 1) text = Array.prototype.slice.call(arguments).join(' ');
|
||||
console.log(text);
|
||||
@ -88,11 +88,15 @@ async function fetchRemote(url, cbProgress, cbPrint) {
|
||||
// - check if the data is already in the IndexedDB
|
||||
// - if not, fetch it from the remote URL and store it in the IndexedDB
|
||||
function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
|
||||
// query the storage quota and print it
|
||||
navigator.storage.estimate().then(function (estimate) {
|
||||
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
|
||||
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
|
||||
});
|
||||
if (!navigator.storage || !navigator.storage.estimate) {
|
||||
cbPrint('loadRemote: navigator.storage.estimate() is not supported');
|
||||
} else {
|
||||
// query the storage quota and print it
|
||||
navigator.storage.estimate().then(function (estimate) {
|
||||
cbPrint('loadRemote: storage quota: ' + estimate.quota + ' bytes');
|
||||
cbPrint('loadRemote: storage usage: ' + estimate.usage + ' bytes');
|
||||
});
|
||||
}
|
||||
|
||||
// check if the data is already in the IndexedDB
|
||||
var rq = indexedDB.open(dbName, dbVersion);
|
||||
|
@ -100,7 +100,7 @@ while [ $running -eq 1 ]; do
|
||||
err=$(cat /tmp/whisper-live.err | wc -l)
|
||||
done
|
||||
|
||||
./main -t 8 -m ./models/ggml-base.en.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
./main -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
|
||||
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
|
||||
sleep 1
|
||||
|
@ -1,3 +1,6 @@
|
||||
set(TARGET main)
|
||||
add_executable(${TARGET} main.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
@ -9,25 +9,35 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [-1 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [true ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
```
|
||||
|
@ -53,22 +53,29 @@ void replace_all(std::string & s, const std::string & search, const std::string
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 5;
|
||||
int32_t beam_size = -1;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.40f;
|
||||
float logprob_thold = -1.00f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool diarize = false;
|
||||
bool split_on_word = false;
|
||||
bool no_fallback = false;
|
||||
bool output_txt = false;
|
||||
bool output_vtt = false;
|
||||
bool output_srt = false;
|
||||
bool output_wts = false;
|
||||
bool output_csv = false;
|
||||
bool print_special = false;
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
@ -79,6 +86,7 @@ struct whisper_params {
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_outp = {};
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -103,14 +111,22 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
|
||||
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
|
||||
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
|
||||
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_outp.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
|
||||
@ -134,30 +150,38 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
|
||||
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
|
||||
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
|
||||
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
|
||||
fprintf(stderr, " -sow, --split-on-word [%-7s] split on word rather than on token\n", params.split_on_word ? "true" : "false");
|
||||
fprintf(stderr, " -bo N, --best-of N [%-7d] number of best candidates to keep\n", params.best_of);
|
||||
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
|
||||
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
|
||||
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
|
||||
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
|
||||
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
|
||||
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
|
||||
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -173,90 +197,81 @@ void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, voi
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
std::string speaker = "";
|
||||
|
||||
int64_t t0;
|
||||
int64_t t1;
|
||||
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
|
||||
if (s0 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
for (int i = s0; i < n_segments; i++) {
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
std::string speaker;
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "(speaker 0)";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "(speaker 1)";
|
||||
} else {
|
||||
speaker = "(speaker ?)";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
}
|
||||
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
printf("[%s --> %s] %s%s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), speaker.c_str(), text);
|
||||
}
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
}
|
||||
|
||||
if (!params.no_timestamps) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
}
|
||||
|
||||
if (params.diarize && pcmf32s.size() == 2) {
|
||||
const int64_t n_samples = pcmf32s[0].size();
|
||||
|
||||
const int64_t is0 = timestamp_to_sample(t0, n_samples);
|
||||
const int64_t is1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
double energy0 = 0.0f;
|
||||
double energy1 = 0.0f;
|
||||
|
||||
for (int64_t j = is0; j < is1; j++) {
|
||||
energy0 += fabs(pcmf32s[0][j]);
|
||||
energy1 += fabs(pcmf32s[1][j]);
|
||||
}
|
||||
|
||||
if (energy0 > 1.1*energy1) {
|
||||
speaker = "(speaker 0)";
|
||||
} else if (energy1 > 1.1*energy0) {
|
||||
speaker = "(speaker 1)";
|
||||
} else {
|
||||
speaker = "(speaker ?)";
|
||||
}
|
||||
|
||||
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
|
||||
}
|
||||
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
printf("%s%s", speaker.c_str(), text);
|
||||
}
|
||||
|
||||
// with timestamps or speakers: each segment on new line
|
||||
if (!params.no_timestamps || params.diarize) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
@ -325,6 +340,28 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
return true;
|
||||
}
|
||||
|
||||
bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
|
||||
fout << 10 * t0 << ", " << 10 * t1 << ", \"" << text << "\"\n";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
@ -458,7 +495,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
if (ctx == nullptr) {
|
||||
fprintf(stderr, "error: failed to initialize whisper context\n");
|
||||
@ -483,6 +520,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_outp = f < (int) params.fname_outp.size() && !params.fname_outp[f].empty() ? params.fname_outp[f] : params.fname_inp[f];
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
@ -528,7 +566,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], fname_inp.c_str());
|
||||
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", argv[0], fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
|
||||
return 8;
|
||||
}
|
||||
|
||||
@ -600,6 +638,8 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
|
||||
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = params.print_progress;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
@ -614,11 +654,19 @@ int main(int argc, char ** argv) {
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
wparams.split_on_word = params.split_on_word;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
@ -653,27 +701,34 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// output to text file
|
||||
if (params.output_txt) {
|
||||
const auto fname_txt = fname_inp + ".txt";
|
||||
const auto fname_txt = fname_outp + ".txt";
|
||||
output_txt(ctx, fname_txt.c_str());
|
||||
}
|
||||
|
||||
// output to VTT file
|
||||
if (params.output_vtt) {
|
||||
const auto fname_vtt = fname_inp + ".vtt";
|
||||
const auto fname_vtt = fname_outp + ".vtt";
|
||||
output_vtt(ctx, fname_vtt.c_str());
|
||||
}
|
||||
|
||||
// output to SRT file
|
||||
if (params.output_srt) {
|
||||
const auto fname_srt = fname_inp + ".srt";
|
||||
const auto fname_srt = fname_outp + ".srt";
|
||||
output_srt(ctx, fname_srt.c_str(), params);
|
||||
}
|
||||
|
||||
// output to WTS file
|
||||
if (params.output_wts) {
|
||||
const auto fname_wts = fname_inp + ".wts";
|
||||
const auto fname_wts = fname_outp + ".wts";
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
|
||||
// output to CSV file
|
||||
if (params.output_csv) {
|
||||
const auto fname_csv = fname_outp + ".csv";
|
||||
output_csv(ctx, fname_csv.c_str());
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,8 @@ add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
|
@ -49,6 +49,9 @@ void stream_main(size_t index) {
|
||||
wparams.max_tokens = 32;
|
||||
wparams.audio_ctx = 768; // partial encoder context for better performance
|
||||
|
||||
// disable temperature fallback
|
||||
wparams.temperature_inc = -1.0f;
|
||||
|
||||
wparams.language = "en";
|
||||
|
||||
printf("stream: using %d threads\n", wparams.n_threads);
|
||||
@ -129,7 +132,7 @@ EMSCRIPTEN_BINDINGS(stream) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
g_contexts[i] = whisper_init_from_file(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
|
@ -2,6 +2,9 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
# stream
|
||||
set(TARGET stream)
|
||||
add_executable(${TARGET} stream.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
@ -8,6 +8,7 @@
|
||||
#include <SDL.h>
|
||||
#include <SDL_audio.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
@ -144,8 +145,8 @@ private:
|
||||
int m_len_ms = 0;
|
||||
int m_sample_rate = 0;
|
||||
|
||||
bool m_running = false;
|
||||
std::mutex m_mutex;
|
||||
std::atomic_bool m_running;
|
||||
std::mutex m_mutex;
|
||||
|
||||
std::vector<float> m_audio;
|
||||
std::vector<float> m_audio_new;
|
||||
@ -155,6 +156,8 @@ private:
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
|
||||
m_running = false;
|
||||
}
|
||||
|
||||
audio_async::~audio_async() {
|
||||
@ -420,20 +423,21 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.keep_ms = std::min(params.keep_ms, params.step_ms); // cannot be more than step_ms
|
||||
params.keep_ms = std::min(params.keep_ms, params.step_ms);
|
||||
params.length_ms = std::max(params.length_ms, params.step_ms);
|
||||
|
||||
const int n_samples_step = (params.step_ms *1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_len = (params.length_ms*1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_keep = (params.keep_ms *1e-3)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = (30000 *1e-3)*WHISPER_SAMPLE_RATE;
|
||||
|
||||
const int n_new_line = params.length_ms / params.step_ms - 1; // number of steps to print new line
|
||||
|
||||
const bool use_vad = n_samples_step <= 0; // sliding window mode uses VAD
|
||||
|
||||
params.no_timestamps = !use_vad;
|
||||
params.no_context = use_vad;
|
||||
params.max_tokens = 0;
|
||||
const int n_new_line = !use_vad ? std::max(1, params.length_ms / params.step_ms - 1) : 1; // number of steps to print new line
|
||||
|
||||
params.no_timestamps = !use_vad;
|
||||
params.no_context |= use_vad;
|
||||
params.max_tokens = 0;
|
||||
|
||||
// init audio
|
||||
|
||||
@ -453,10 +457,10 @@ int main(int argc, char ** argv) {
|
||||
exit(0);
|
||||
}
|
||||
|
||||
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
|
||||
std::vector<float> pcmf32 (n_samples_30s, 0.0f);
|
||||
std::vector<float> pcmf32_old(n_samples_30s, 0.0f);
|
||||
std::vector<float> pcmf32_old;
|
||||
std::vector<float> pcmf32_new(n_samples_30s, 0.0f);
|
||||
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
@ -483,7 +487,7 @@ int main(int argc, char ** argv) {
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
if (!use_vad) {
|
||||
fprintf(stderr, "%s: n_new_line = %d\n", __func__, n_new_line);
|
||||
fprintf(stderr, "%s: n_new_line = %d, no_context = %d\n", __func__, n_new_line, params.no_context);
|
||||
} else {
|
||||
fprintf(stderr, "%s: using VAD, will transcribe on speech activity\n", __func__);
|
||||
}
|
||||
@ -612,6 +616,9 @@ int main(int argc, char ** argv) {
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
// disable temperature fallback
|
||||
wparams.temperature_inc = -1.0f;
|
||||
|
||||
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();
|
||||
|
||||
|
@ -9,6 +9,8 @@ add_executable(${TARGET}
|
||||
gpt-2.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
@ -31,8 +33,8 @@ set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1600MB \
|
||||
-s TOTAL_MEMORY=1600MB \
|
||||
-s INITIAL_MEMORY=1800MB \
|
||||
-s TOTAL_MEMORY=1800MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
|
@ -36,7 +36,7 @@ In order to run this demo efficiently, you need to have the following:
|
||||
- Latest Chrome or Firefox browser (Safari is not supported)
|
||||
- Run this on a desktop or laptop with modern CPU (a mobile phone will likely not be good enough)
|
||||
- Speak phrases that are no longer than 10 seconds - this is the audio context of the AI
|
||||
- The web-page uses about 1.6GB of RAM
|
||||
- The web-page uses about 1.8GB of RAM
|
||||
|
||||
Notice that this demo is using the smallest GPT-2 model, so the generated text responses are not always very good.
|
||||
Also, the prompting strategy can likely be improved to achieve better results.
|
||||
|
@ -271,7 +271,7 @@ EMSCRIPTEN_BINDINGS(talk) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
g_contexts[i] = whisper_init_from_file(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
|
@ -8,6 +8,9 @@ if (WHISPER_SUPPORT_SDL2)
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk.cpp gpt-2.cpp ../../ggml.c ../../whisper.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
||||
|
@ -498,7 +498,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init(params.model_wsp.c_str());
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file(params.model_wsp.c_str());
|
||||
|
||||
// gpt init
|
||||
|
||||
|
@ -64,16 +64,21 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
private suspend fun copyAssets() = withContext(Dispatchers.IO) {
|
||||
modelsPath.mkdirs()
|
||||
samplesPath.mkdirs()
|
||||
application.copyData("models", modelsPath, ::printMessage)
|
||||
//application.copyData("models", modelsPath, ::printMessage)
|
||||
application.copyData("samples", samplesPath, ::printMessage)
|
||||
printMessage("All data copied to working directory.\n")
|
||||
}
|
||||
|
||||
private suspend fun loadBaseModel() = withContext(Dispatchers.IO) {
|
||||
printMessage("Loading model...\n")
|
||||
val firstModel = modelsPath.listFiles()!!.first()
|
||||
whisperContext = WhisperContext.createContext(firstModel.absolutePath)
|
||||
printMessage("Loaded model ${firstModel.name}.\n")
|
||||
val models = application.assets.list("models/")
|
||||
if (models != null) {
|
||||
whisperContext = WhisperContext.createContextFromAsset(application.assets, "models/" + models[0])
|
||||
printMessage("Loaded model ${models[0]}.\n")
|
||||
}
|
||||
|
||||
//val firstModel = modelsPath.listFiles()!!.first()
|
||||
//whisperContext = WhisperContext.createContextFromFile(firstModel.absolutePath)
|
||||
}
|
||||
|
||||
fun transcribeSample() = viewModelScope.launch {
|
||||
|
@ -1,9 +1,11 @@
|
||||
package com.whispercppdemo.whisper
|
||||
|
||||
import android.content.res.AssetManager
|
||||
import android.os.Build
|
||||
import android.util.Log
|
||||
import kotlinx.coroutines.*
|
||||
import java.io.File
|
||||
import java.io.InputStream
|
||||
import java.util.concurrent.Executors
|
||||
|
||||
private const val LOG_TAG = "LibWhisper"
|
||||
@ -39,13 +41,31 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
}
|
||||
|
||||
companion object {
|
||||
fun createContext(filePath: String): WhisperContext {
|
||||
fun createContextFromFile(filePath: String): WhisperContext {
|
||||
val ptr = WhisperLib.initContext(filePath)
|
||||
if (ptr == 0L) {
|
||||
throw java.lang.RuntimeException("Couldn't create context with path $filePath")
|
||||
}
|
||||
return WhisperContext(ptr)
|
||||
}
|
||||
|
||||
fun createContextFromInputStream(stream: InputStream): WhisperContext {
|
||||
val ptr = WhisperLib.initContextFromInputStream(stream)
|
||||
|
||||
if (ptr == 0L) {
|
||||
throw java.lang.RuntimeException("Couldn't create context from input stream")
|
||||
}
|
||||
return WhisperContext(ptr)
|
||||
}
|
||||
|
||||
fun createContextFromAsset(assetManager: AssetManager, assetPath: String): WhisperContext {
|
||||
val ptr = WhisperLib.initContextFromAsset(assetManager, assetPath)
|
||||
|
||||
if (ptr == 0L) {
|
||||
throw java.lang.RuntimeException("Couldn't create context from asset $assetPath")
|
||||
}
|
||||
return WhisperContext(ptr)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -76,6 +96,8 @@ private class WhisperLib {
|
||||
}
|
||||
|
||||
// JNI methods
|
||||
external fun initContextFromInputStream(inputStream: InputStream): Long
|
||||
external fun initContextFromAsset(assetManager: AssetManager, assetPath: String): Long
|
||||
external fun initContext(modelPath: String): Long
|
||||
external fun freeContext(contextPtr: Long)
|
||||
external fun fullTranscribe(contextPtr: Long, audioData: FloatArray)
|
||||
|
@ -1,5 +1,5 @@
|
||||
WHISPER_LIB_DIR := $(LOCAL_PATH)/../../../../../../../
|
||||
LOCAL_LDLIBS := -llog
|
||||
LOCAL_LDLIBS := -landroid -llog
|
||||
|
||||
# Make the final output library smaller by only keeping the symbols referenced from the app.
|
||||
ifneq ($(APP_OPTIM),debug)
|
||||
|
@ -1,13 +1,17 @@
|
||||
#include <jni.h>
|
||||
#include <android/asset_manager.h>
|
||||
#include <android/asset_manager_jni.h>
|
||||
#include <android/log.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/sysinfo.h>
|
||||
#include <string.h>
|
||||
#include "whisper.h"
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define TAG "JNI"
|
||||
|
||||
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__)
|
||||
#define LOGW(...) __android_log_print(ANDROID_LOG_WARN, TAG, __VA_ARGS__)
|
||||
|
||||
static inline int min(int a, int b) {
|
||||
return (a < b) ? a : b;
|
||||
@ -17,13 +21,132 @@ static inline int max(int a, int b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
|
||||
struct input_stream_context {
|
||||
size_t offset;
|
||||
JNIEnv * env;
|
||||
jobject thiz;
|
||||
jobject input_stream;
|
||||
|
||||
jmethodID mid_available;
|
||||
jmethodID mid_read;
|
||||
};
|
||||
|
||||
size_t inputStreamRead(void * ctx, void * output, size_t read_size) {
|
||||
struct input_stream_context* is = (struct input_stream_context*)ctx;
|
||||
|
||||
jint avail_size = (*is->env)->CallIntMethod(is->env, is->input_stream, is->mid_available);
|
||||
jint size_to_copy = read_size < avail_size ? (jint)read_size : avail_size;
|
||||
|
||||
jbyteArray byte_array = (*is->env)->NewByteArray(is->env, size_to_copy);
|
||||
|
||||
jint n_read = (*is->env)->CallIntMethod(is->env, is->input_stream, is->mid_read, byte_array, 0, size_to_copy);
|
||||
|
||||
if (size_to_copy != read_size || size_to_copy != n_read) {
|
||||
LOGI("Insufficient Read: Req=%zu, ToCopy=%d, Available=%d", read_size, size_to_copy, n_read);
|
||||
}
|
||||
|
||||
jbyte* byte_array_elements = (*is->env)->GetByteArrayElements(is->env, byte_array, NULL);
|
||||
memcpy(output, byte_array_elements, size_to_copy);
|
||||
(*is->env)->ReleaseByteArrayElements(is->env, byte_array, byte_array_elements, JNI_ABORT);
|
||||
|
||||
(*is->env)->DeleteLocalRef(is->env, byte_array);
|
||||
|
||||
is->offset += size_to_copy;
|
||||
|
||||
return size_to_copy;
|
||||
}
|
||||
bool inputStreamEof(void * ctx) {
|
||||
struct input_stream_context* is = (struct input_stream_context*)ctx;
|
||||
|
||||
jint result = (*is->env)->CallIntMethod(is->env, is->input_stream, is->mid_available);
|
||||
return result <= 0;
|
||||
}
|
||||
void inputStreamClose(void * ctx) {
|
||||
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_initContextFromInputStream(
|
||||
JNIEnv *env, jobject thiz, jobject input_stream) {
|
||||
UNUSED(thiz);
|
||||
|
||||
struct whisper_context *context = NULL;
|
||||
struct whisper_model_loader loader = {};
|
||||
struct input_stream_context inp_ctx = {};
|
||||
|
||||
inp_ctx.offset = 0;
|
||||
inp_ctx.env = env;
|
||||
inp_ctx.thiz = thiz;
|
||||
inp_ctx.input_stream = input_stream;
|
||||
|
||||
jclass cls = (*env)->GetObjectClass(env, input_stream);
|
||||
inp_ctx.mid_available = (*env)->GetMethodID(env, cls, "available", "()I");
|
||||
inp_ctx.mid_read = (*env)->GetMethodID(env, cls, "read", "([BII)I");
|
||||
|
||||
loader.context = &inp_ctx;
|
||||
loader.read = inputStreamRead;
|
||||
loader.eof = inputStreamEof;
|
||||
loader.close = inputStreamClose;
|
||||
|
||||
loader.eof(loader.context);
|
||||
|
||||
context = whisper_init(&loader);
|
||||
return (jlong) context;
|
||||
}
|
||||
|
||||
static size_t asset_read(void *ctx, void *output, size_t read_size) {
|
||||
return AAsset_read((AAsset *) ctx, output, read_size);
|
||||
}
|
||||
|
||||
static bool asset_is_eof(void *ctx) {
|
||||
return AAsset_getRemainingLength64((AAsset *) ctx) <= 0;
|
||||
}
|
||||
|
||||
static void asset_close(void *ctx) {
|
||||
AAsset_close((AAsset *) ctx);
|
||||
}
|
||||
|
||||
static struct whisper_context *whisper_init_from_asset(
|
||||
JNIEnv *env,
|
||||
jobject assetManager,
|
||||
const char *asset_path
|
||||
) {
|
||||
LOGI("Loading model from asset '%s'\n", asset_path);
|
||||
AAssetManager *asset_manager = AAssetManager_fromJava(env, assetManager);
|
||||
AAsset *asset = AAssetManager_open(asset_manager, asset_path, AASSET_MODE_STREAMING);
|
||||
if (!asset) {
|
||||
LOGW("Failed to open '%s'\n", asset_path);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_model_loader loader = {
|
||||
.context = asset,
|
||||
.read = &asset_read,
|
||||
.eof = &asset_is_eof,
|
||||
.close = &asset_close
|
||||
};
|
||||
|
||||
return whisper_init(&loader);
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_initContextFromAsset(
|
||||
JNIEnv *env, jobject thiz, jobject assetManager, jstring asset_path_str) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = NULL;
|
||||
const char *asset_path_chars = (*env)->GetStringUTFChars(env, asset_path_str, NULL);
|
||||
context = whisper_init_from_asset(env, assetManager, asset_path_chars);
|
||||
(*env)->ReleaseStringUTFChars(env, asset_path_str, asset_path_chars);
|
||||
return (jlong) context;
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_initContext(
|
||||
JNIEnv *env, jobject thiz, jstring model_path_str) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = NULL;
|
||||
const char *model_path_chars = (*env)->GetStringUTFChars(env, model_path_str, NULL);
|
||||
context = whisper_init(model_path_chars);
|
||||
context = whisper_init_from_file(model_path_chars);
|
||||
(*env)->ReleaseStringUTFChars(env, model_path_str, model_path_chars);
|
||||
return (jlong) context;
|
||||
}
|
||||
|
@ -1,10 +0,0 @@
|
||||
## This file is automatically generated by Android Studio.
|
||||
# Do not modify this file -- YOUR CHANGES WILL BE ERASED!
|
||||
#
|
||||
# This file should *NOT* be checked into Version Control Systems,
|
||||
# as it contains information specific to your local configuration.
|
||||
#
|
||||
# Location of the SDK. This is only used by Gradle.
|
||||
# For customization when using a Version Control System, please read the
|
||||
# header note.
|
||||
sdk.dir=/Users/kevin/Library/Android/sdk
|
@ -61,7 +61,7 @@ void AudioInputCallback(void * inUserData,
|
||||
NSLog(@"Loading model from %@", modelPath);
|
||||
|
||||
// create ggml context
|
||||
stateInp.ctx = whisper_init([modelPath UTF8String]);
|
||||
stateInp.ctx = whisper_init_from_file([modelPath UTF8String]);
|
||||
|
||||
// check if the model was loaded successfully
|
||||
if (stateInp.ctx == NULL) {
|
||||
|
@ -10,3 +10,5 @@ To use:
|
||||
5. Select the "release" build configuration under "Run", then deploy and run to your device.
|
||||
|
||||
[^1]: I recommend the tiny, base or small models for running on an iOS device.
|
||||
|
||||

|
||||
|
@ -55,7 +55,7 @@ actor WhisperContext {
|
||||
}
|
||||
|
||||
static func createContext(path: String) throws -> WhisperContext {
|
||||
let context = whisper_init(path)
|
||||
let context = whisper_init_from_file(path)
|
||||
if let context {
|
||||
return WhisperContext(context: context)
|
||||
} else {
|
||||
|
0
examples/whisper.swiftui/whisper.swiftui.demo/Resources/models/.gitignore
vendored
Normal file
0
examples/whisper.swiftui/whisper.swiftui.demo/Resources/models/.gitignore
vendored
Normal file
0
examples/whisper.swiftui/whisper.swiftui.demo/Resources/samples/.gitignore
vendored
Normal file
0
examples/whisper.swiftui/whisper.swiftui.demo/Resources/samples/.gitignore
vendored
Normal file
@ -35,10 +35,10 @@
|
||||
0AAC5DA029539CD0003032C3 /* WhisperCppDemo.entitlements */ = {isa = PBXFileReference; lastKnownFileType = text.plist.entitlements; path = WhisperCppDemo.entitlements; sourceTree = "<group>"; };
|
||||
0AAC5DA229539CD0003032C3 /* Preview Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = "Preview Assets.xcassets"; sourceTree = "<group>"; };
|
||||
0AAC5DC629539EAF003032C3 /* WhisperCppDemo-Bridging-Header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "WhisperCppDemo-Bridging-Header.h"; sourceTree = "<group>"; };
|
||||
0AAC5DC729539EB0003032C3 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = whisper.cpp; path = ../../../whisper.cpp; sourceTree = "<group>"; };
|
||||
0AAC5DC829539EB0003032C3 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = whisper.h; path = ../../../whisper.h; sourceTree = "<group>"; };
|
||||
0AAC5DC929539EB0003032C3 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml.c; sourceTree = "<group>"; };
|
||||
0AAC5DCA29539EB0003032C3 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml.h; sourceTree = "<group>"; };
|
||||
0AAC5DC729539EB0003032C3 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = whisper.cpp; sourceTree = "<group>"; };
|
||||
0AAC5DC829539EB0003032C3 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = whisper.h; sourceTree = "<group>"; };
|
||||
0AAC5DC929539EB0003032C3 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = ggml.c; sourceTree = "<group>"; };
|
||||
0AAC5DCA29539EB0003032C3 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = ggml.h; sourceTree = "<group>"; };
|
||||
0AAC5DCD2953A05C003032C3 /* WhisperState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = WhisperState.swift; sourceTree = "<group>"; };
|
||||
0AAC5DD02953A394003032C3 /* LibWhisper.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibWhisper.swift; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
@ -129,7 +129,8 @@
|
||||
0AAC5DC729539EB0003032C3 /* whisper.cpp */,
|
||||
0AAC5DC829539EB0003032C3 /* whisper.h */,
|
||||
);
|
||||
path = whisper.cpp;
|
||||
name = whisper.cpp;
|
||||
path = ../..;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
0AAC5DCF2953A36C003032C3 /* whisper.cpp.swift */ = {
|
||||
|
@ -8,6 +8,8 @@ add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
)
|
||||
@ -30,8 +32,8 @@ set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1024MB \
|
||||
-s TOTAL_MEMORY=1024MB \
|
||||
-s INITIAL_MEMORY=1500MB \
|
||||
-s TOTAL_MEMORY=1500MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
|
@ -18,7 +18,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
|
||||
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init(path_model.c_str());
|
||||
g_contexts[i] = whisper_init_from_file(path_model.c_str());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
return i + 1;
|
||||
} else {
|
||||
|
@ -46,10 +46,12 @@
|
||||
|
||||
<div id="model">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
|
||||
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
|
||||
<button id="fetch-whisper-small" onclick="loadWhisper('small')">small (466 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
@ -60,8 +62,8 @@
|
||||
<!-- radio button to select between file upload or microphone -->
|
||||
<div id="input">
|
||||
Input:
|
||||
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> File
|
||||
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> Microphone
|
||||
<input type="radio" id="file" name="input" value="file" checked="checked" onchange="changeInput('file')" /> <label for="file">File</label>
|
||||
<input type="radio" id="mic" name="input" value="mic" onchange="changeInput('mic')" /> <label for="mic">Microphone</label>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
@ -284,27 +286,33 @@
|
||||
}
|
||||
reader.readAsArrayBuffer(file);
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
document.getElementById('fetch-whisper-tiny-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'tiny': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'tiny': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
|
||||
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
|
||||
'small': 'https://whisper.ggerganov.com/ggml-model-whisper-small.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'tiny': 75,
|
||||
'base.en': 142,
|
||||
'base': 142,
|
||||
'tiny.en': 75,
|
||||
'tiny': 75,
|
||||
'base.en': 142,
|
||||
'base': 142,
|
||||
'small.en': 466,
|
||||
'small': 466,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
@ -313,12 +321,14 @@
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
document.getElementById('fetch-whisper-tiny-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base' ).style.display = 'none';
|
||||
document.getElementById('fetch-whisper-small' ).style.display = 'none';
|
||||
document.getElementById('whisper-file' ).style.display = 'none';
|
||||
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
@ -327,12 +337,14 @@
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
el = document.getElementById('fetch-whisper-tiny-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-small' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
|
@ -1,20 +1,10 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Small shell script to more easily automatically download and transcribe live stream VODs.
|
||||
# This uses YT-DLP, ffmpeg and the CPP version of Whisper: https://github.com/ggerganov/whisper.cpp
|
||||
# Use `./examples/yt-wsp.sh help` to print help info.
|
||||
#
|
||||
# Sample usage:
|
||||
#
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# cd whisper.cpp
|
||||
# make
|
||||
# ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890
|
||||
#
|
||||
# shellcheck disable=2086
|
||||
|
||||
# MIT License
|
||||
|
||||
# Copyright (c) 2022 Daniils Petrovs
|
||||
# Copyright (c) 2023 Jennifer Capasso
|
||||
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
@ -34,114 +24,181 @@
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
# Small shell script to more easily automatically download and transcribe live stream VODs.
|
||||
# This uses YT-DLP, ffmpeg and the CPP version of Whisper: https://github.com/ggerganov/whisper.cpp
|
||||
# Use `./examples/yt-wsp.sh help` to print help info.
|
||||
#
|
||||
# Sample usage:
|
||||
#
|
||||
# git clone https://github.com/ggerganov/whisper.cpp
|
||||
# cd whisper.cpp
|
||||
# make
|
||||
# ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890
|
||||
#
|
||||
|
||||
set -Eeuo pipefail
|
||||
|
||||
# You can find how to download models in the OG repo: https://github.com/ggerganov/whisper.cpp/#usage
|
||||
MODEL_PATH="${MODEL_PATH:-models/ggml-base.en.bin}" # Set to a multilingual model if you want to translate from foreign lang to en
|
||||
WHISPER_EXECUTABLE="${WHISPER_EXECUTABLE:-whisper}" # Where to find the whisper.cpp executable
|
||||
WHISPER_LANG="${WHISPER_LANG:-en}" # Set to desired lang to translate from
|
||||
# get script file location
|
||||
SCRIPT_PATH="$(realpath -e ${BASH_SOURCE[0]})";
|
||||
SCRIPT_DIR="${SCRIPT_PATH%/*}"
|
||||
|
||||
################################################################################
|
||||
# Documentation on downloading models can be found in the whisper.cpp repo:
|
||||
# https://github.com/ggerganov/whisper.cpp/#usage
|
||||
#
|
||||
# note: unless a multilingual model is specified, WHISPER_LANG will be ignored
|
||||
# and the video will be transcribed as if the audio were in the English language
|
||||
################################################################################
|
||||
MODEL_PATH="${MODEL_PATH:-${SCRIPT_DIR}/../models/ggml-base.en.bin}"
|
||||
|
||||
################################################################################
|
||||
# Where to find the whisper.cpp executable. default to the examples directory
|
||||
# which holds this script in source control
|
||||
################################################################################
|
||||
WHISPER_EXECUTABLE="${WHISPER_EXECUTABLE:-${SCRIPT_DIR}/../main}";
|
||||
|
||||
# Set to desired language to be translated into english
|
||||
WHISPER_LANG="${WHISPER_LANG:-en}";
|
||||
|
||||
# Default to 4 threads (this was most performant on my 2020 M1 MBP)
|
||||
WHISPER_THREAD_COUNT="${WHISPER_THREAD_COUNT:-4}";
|
||||
|
||||
msg() {
|
||||
echo >&2 -e "${1-}"
|
||||
}
|
||||
|
||||
################################################################################
|
||||
# create a temporary directory to work in
|
||||
# set the temp_dir and temp_filename variables
|
||||
################################################################################
|
||||
temp_dir="$(mktemp -d ${SCRIPT_DIR}/tmp.XXXXXX)";
|
||||
temp_filename="${temp_dir}/yt-dlp-filename";
|
||||
|
||||
################################################################################
|
||||
# for now we only take one argument
|
||||
# TODO: a for loop
|
||||
################################################################################
|
||||
source_url="${1}"
|
||||
|
||||
|
||||
title_name="";
|
||||
|
||||
|
||||
cleanup() {
|
||||
msg "Cleaning up..."
|
||||
rm -rf "${temp_dir}" "vod-resampled.wav" "vod-resampled.wav.srt"
|
||||
local -r clean_me="${1}";
|
||||
|
||||
if [ -d "${clean_me}" ]; then
|
||||
msg "Cleaning up...";
|
||||
rm -rf "${clean_me}";
|
||||
else
|
||||
msg "'${clean_me}' does not appear to be a directory!";
|
||||
exit 1;
|
||||
fi;
|
||||
}
|
||||
|
||||
print_help() {
|
||||
echo "################################################################################"
|
||||
echo "Usage: ./examples/yt-wsp.sh <video_url>"
|
||||
echo "See configurable env variables in the script"
|
||||
echo "This will produce an MP4 muxed file called res.mp4 in the working directory"
|
||||
echo "Requirements: ffmpeg yt-dlp whisper"
|
||||
echo "Whisper needs to be built into the main binary with make, then you can rename it to something like 'whisper' and add it to your PATH for convenience."
|
||||
echo "E.g. in the root of Whisper.cpp, run: 'make && cp ./main /usr/local/bin/whisper'"
|
||||
echo "# See configurable env variables in the script; there are many!"
|
||||
echo "# This script will produce an MP4 muxed file in the working directory; it will"
|
||||
echo "# be named for the title and id of the video."
|
||||
echo "# passing in https://youtu.be/VYJtb2YXae8 produces a file named";
|
||||
echo "# 'Why_we_all_need_subtitles_now-VYJtb2YXae8-res.mp4'"
|
||||
echo "# Requirements: ffmpeg yt-dlp whisper.cpp"
|
||||
echo "################################################################################"
|
||||
}
|
||||
|
||||
check_requirements() {
|
||||
if ! command -v ffmpeg &>/dev/null; then
|
||||
echo "ffmpeg is required (https://ffmpeg.org)."
|
||||
echo "ffmpeg is required: https://ffmpeg.org";
|
||||
exit 1
|
||||
fi
|
||||
fi;
|
||||
|
||||
if ! command -v yt-dlp &>/dev/null; then
|
||||
echo "yt-dlp is required (https://github.com/yt-dlp/yt-dlp)."
|
||||
exit 1
|
||||
fi
|
||||
echo "yt-dlp is required: https://github.com/yt-dlp/yt-dlp";
|
||||
exit 1;
|
||||
fi;
|
||||
|
||||
if ! command -v "${WHISPER_EXECUTABLE}" &>/dev/null; then
|
||||
echo "The C++ implementation of Whisper is required: https://github.com/ggerganov/whisper.cpp"
|
||||
echo "Sample usage:";
|
||||
echo "";
|
||||
echo " git clone https://github.com/ggerganov/whisper.cpp";
|
||||
echo " cd whisper.cpp";
|
||||
echo " make";
|
||||
echo " ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890";
|
||||
echo "";
|
||||
exit 1;
|
||||
fi;
|
||||
|
||||
if ! command -v "$WHISPER_EXECUTABLE" &>/dev/null; then
|
||||
WHISPER_EXECUTABLE="./main"
|
||||
if ! command -v "$WHISPER_EXECUTABLE" &>/dev/null; then
|
||||
echo "Whisper is required (https://github.com/ggerganov/whisper.cpp):"
|
||||
echo "Sample usage:"
|
||||
echo ""
|
||||
echo " git clone https://github.com/ggerganov/whisper.cpp"
|
||||
echo " cd whisper.cpp"
|
||||
echo " make"
|
||||
echo " ./examples/yt-wsp.sh https://www.youtube.com/watch?v=1234567890"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
if [[ $# -lt 1 ]]; then
|
||||
print_help
|
||||
exit 1
|
||||
if [[ "${#}" -lt 1 ]]; then
|
||||
print_help;
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
if [[ "$1" == "help" ]]; then
|
||||
print_help
|
||||
exit 0
|
||||
if [[ "${1##-*}" == "help" ]]; then
|
||||
print_help;
|
||||
exit 0;
|
||||
fi
|
||||
|
||||
temp_dir="tmp"
|
||||
source_url="$1"
|
||||
check_requirements;
|
||||
|
||||
check_requirements
|
||||
msg "Downloading VOD...";
|
||||
|
||||
msg "Downloading VOD..."
|
||||
|
||||
# Optionally add --cookies-from-browser BROWSER[+KEYRING][:PROFILE][::CONTAINER] for members only VODs
|
||||
################################################################################
|
||||
# Download the video, put the dynamic output filename into a variable.
|
||||
# Optionally add --cookies-from-browser BROWSER[+KEYRING][:PROFILE][::CONTAINER]
|
||||
# for videos only available to logged-in users.
|
||||
################################################################################
|
||||
yt-dlp \
|
||||
-f "bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best" \
|
||||
-o "${temp_dir}/%(title)s-%(id)s.vod.mp4" \
|
||||
--print-to-file "%(filename)s" "${temp_filename}" \
|
||||
--no-simulate \
|
||||
--no-write-auto-subs \
|
||||
--restrict-filenames \
|
||||
--embed-thumbnail \
|
||||
--embed-chapters \
|
||||
--xattrs \
|
||||
"${source_url}" -o "${temp_dir}/vod.mp4"
|
||||
"${source_url}";
|
||||
|
||||
msg "Extracting audio and resampling..."
|
||||
title_name="$(xargs basename -s .vod.mp4 < ${temp_filename})";
|
||||
|
||||
ffmpeg -i "${temp_dir}/vod.mp4" \
|
||||
msg "Extracting audio and resampling...";
|
||||
|
||||
ffmpeg -i "${temp_dir}/${title_name}.vod.mp4" \
|
||||
-hide_banner \
|
||||
-vn \
|
||||
-loglevel error \
|
||||
-ar 16000 \
|
||||
-ac 1 \
|
||||
-c:a \
|
||||
pcm_s16le -y "vod-resampled.wav"
|
||||
-c:a pcm_s16le \
|
||||
-y \
|
||||
"${temp_dir}/${title_name}.vod-resampled.wav";
|
||||
|
||||
msg "Transcribing to subtitle file..."
|
||||
msg "Whisper specified at: ${WHISPER_EXECUTABLE}"
|
||||
msg "Transcribing to subtitle file...";
|
||||
msg "Whisper specified at: '${WHISPER_EXECUTABLE}'";
|
||||
|
||||
$WHISPER_EXECUTABLE \
|
||||
"${WHISPER_EXECUTABLE}" \
|
||||
-m "${MODEL_PATH}" \
|
||||
-l "${WHISPER_LANG}" \
|
||||
-f "vod-resampled.wav" \
|
||||
-t 8 \
|
||||
-f "${temp_dir}/${title_name}.vod-resampled.wav" \
|
||||
-t "${WHISPER_THREAD_COUNT}" \
|
||||
-osrt \
|
||||
--translate
|
||||
--translate;
|
||||
|
||||
msg "Embedding subtitle track..."
|
||||
msg "Embedding subtitle track...";
|
||||
|
||||
ffmpeg -i "${temp_dir}/vod.mp4" \
|
||||
ffmpeg -i "${temp_dir}/${title_name}.vod.mp4" \
|
||||
-hide_banner \
|
||||
-loglevel error \
|
||||
-i "vod-resampled.wav.srt" \
|
||||
-i "${temp_dir}/${title_name}.vod-resampled.wav.srt" \
|
||||
-c copy \
|
||||
-c:s mov_text \
|
||||
-y res.mp4
|
||||
-y "${title_name}-res.mp4";
|
||||
|
||||
cleanup
|
||||
cleanup "${temp_dir}";
|
||||
|
||||
msg "Done! Your finished file is ready: res.mp4"
|
||||
msg "Done! Your finished file is ready: ${title_name}-res.mp4";
|
||||
|
@ -12,6 +12,18 @@ fi
|
||||
|
||||
models=( "tiny" "base" "small" "medium" "large" )
|
||||
|
||||
printf "\n"
|
||||
printf "Running memcpy benchmark with 1 thread\n"
|
||||
printf "\n"
|
||||
|
||||
./bench -w 1 -t 1 2>&1
|
||||
|
||||
printf "\n"
|
||||
printf "Running ggml_mul_mat benchmark with $n_threads threads\n"
|
||||
printf "\n"
|
||||
|
||||
./bench -w 2 -t $n_threads 2>&1
|
||||
|
||||
printf "\n"
|
||||
printf "Running benchmark for all models\n"
|
||||
printf "This can take a while!\n"
|
||||
@ -56,4 +68,3 @@ for model in "${models[@]}"; do
|
||||
|
||||
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
|
||||
done
|
||||
|
||||
|
11
ggml.h
11
ggml.h
@ -301,6 +301,13 @@ struct ggml_cgraph {
|
||||
int64_t perf_time_us;
|
||||
};
|
||||
|
||||
// scratch buffer
|
||||
struct ggml_scratch {
|
||||
size_t offs;
|
||||
size_t size;
|
||||
void * data;
|
||||
};
|
||||
|
||||
struct ggml_init_params {
|
||||
// memory pool
|
||||
size_t mem_size; // bytes
|
||||
@ -327,6 +334,8 @@ void ggml_free(struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
@ -731,6 +740,8 @@ int ggml_cpu_has_f16c(void);
|
||||
int ggml_cpu_has_fp16_va(void);
|
||||
int ggml_cpu_has_wasm_simd(void);
|
||||
int ggml_cpu_has_blas(void);
|
||||
int ggml_cpu_has_sse3(void);
|
||||
int ggml_cpu_has_vsx(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -56,7 +56,7 @@ def bytes_to_unicode():
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
|
@ -40,7 +40,7 @@ if exist "ggml-%model%.bin" (
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/datasets/ggerganov/whisper.cpp/raw/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
|
3257
whisper.cpp
3257
whisper.cpp
File diff suppressed because it is too large
Load Diff
105
whisper.h
105
whisper.h
@ -1,6 +1,7 @@
|
||||
#ifndef WHISPER_H
|
||||
#define WHISPER_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
@ -40,7 +41,7 @@ extern "C" {
|
||||
//
|
||||
// ...
|
||||
//
|
||||
// struct whisper_context * ctx = whisper_init("/path/to/ggml-base.en.bin");
|
||||
// struct whisper_context * ctx = whisper_init_from_file("/path/to/ggml-base.en.bin");
|
||||
//
|
||||
// if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
// fprintf(stderr, "failed to process audio\n");
|
||||
@ -73,6 +74,7 @@ extern "C" {
|
||||
whisper_token tid; // forced timestamp token id
|
||||
|
||||
float p; // probability of the token
|
||||
float plog; // log probability of the token
|
||||
float pt; // probability of the timestamp token
|
||||
float ptsum; // sum of probabilities of all timestamp tokens
|
||||
|
||||
@ -84,9 +86,20 @@ extern "C" {
|
||||
float vlen; // voice length of the token
|
||||
} whisper_token_data;
|
||||
|
||||
// Allocates all memory needed for the model and loads the model from the given file.
|
||||
// Returns NULL on failure.
|
||||
WHISPER_API struct whisper_context * whisper_init(const char * path_model);
|
||||
typedef struct whisper_model_loader {
|
||||
void * context;
|
||||
|
||||
size_t (*read)(void * ctx, void * output, size_t read_size);
|
||||
bool (*eof)(void * ctx);
|
||||
void (*close)(void * ctx);
|
||||
} whisper_model_loader;
|
||||
|
||||
// Various functions for loading a ggml whisper model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
WHISPER_API struct whisper_context * whisper_init_from_file(const char * path_model);
|
||||
WHISPER_API struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size);
|
||||
WHISPER_API struct whisper_context * whisper_init(struct whisper_model_loader * loader);
|
||||
|
||||
// Frees all memory allocated by the model.
|
||||
WHISPER_API void whisper_free(struct whisper_context * ctx);
|
||||
@ -100,6 +113,16 @@ extern "C" {
|
||||
int n_samples,
|
||||
int n_threads);
|
||||
|
||||
// Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
|
||||
// The resulting spectrogram is stored inside the provided whisper context.
|
||||
// Returns 0 on success
|
||||
WHISPER_API int whisper_pcm_to_mel_phase_vocoder(
|
||||
struct whisper_context* ctx,
|
||||
const float* samples,
|
||||
int n_samples,
|
||||
int n_threads);
|
||||
|
||||
|
||||
// This can be used to set a custom log mel spectrogram inside the provided whisper context.
|
||||
// Use this instead of whisper_pcm_to_mel() if you want to provide your own log mel spectrogram.
|
||||
// n_mel must be 80
|
||||
@ -124,6 +147,7 @@ extern "C" {
|
||||
// tokens + n_tokens is the provided context for the decoder.
|
||||
// n_past is the number of tokens to use from previous decoder calls.
|
||||
// Returns 0 on success
|
||||
// TODO: add support for multiple decoders
|
||||
WHISPER_API int whisper_decode(
|
||||
struct whisper_context * ctx,
|
||||
const whisper_token * tokens,
|
||||
@ -131,14 +155,6 @@ extern "C" {
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Token sampling methods.
|
||||
// These are provided for convenience and can be used after each call to whisper_decode().
|
||||
// You can also implement your own sampling method using the whisper_get_probs() function.
|
||||
// whisper_sample_best() returns the token with the highest probability
|
||||
// whisper_sample_timestamp() returns the most probable timestamp token
|
||||
WHISPER_API whisper_token_data whisper_sample_best(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token_data whisper_sample_timestamp(struct whisper_context * ctx, bool is_initial);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
@ -148,7 +164,7 @@ extern "C" {
|
||||
struct whisper_context * ctx,
|
||||
const char * text,
|
||||
whisper_token * tokens,
|
||||
int n_max_tokens);
|
||||
int n_max_tokens);
|
||||
|
||||
// Largest language id (i.e. number of available languages - 1)
|
||||
WHISPER_API int whisper_lang_max_id();
|
||||
@ -177,10 +193,14 @@ extern "C" {
|
||||
WHISPER_API int whisper_n_len (struct whisper_context * ctx); // mel length
|
||||
WHISPER_API int whisper_n_vocab (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_n_text_ctx (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_n_audio_ctx (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_is_multilingual(struct whisper_context * ctx);
|
||||
|
||||
// The probabilities for the next token
|
||||
WHISPER_API float * whisper_get_probs(struct whisper_context * ctx);
|
||||
// Token logits obtained from the last call to whisper_decode()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
WHISPER_API float * whisper_get_logits(struct whisper_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
WHISPER_API const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token);
|
||||
@ -209,8 +229,8 @@ extern "C" {
|
||||
|
||||
// Available sampling strategies
|
||||
enum whisper_sampling_strategy {
|
||||
WHISPER_SAMPLING_GREEDY, // Always select the most probable token
|
||||
WHISPER_SAMPLING_BEAM_SEARCH, // TODO: not implemented yet!
|
||||
WHISPER_SAMPLING_GREEDY, // similar to OpenAI's GreefyDecoder
|
||||
WHISPER_SAMPLING_BEAM_SEARCH, // similar to OpenAI's BeamSearchDecoder
|
||||
};
|
||||
|
||||
// Text segment callback
|
||||
@ -230,30 +250,32 @@ extern "C" {
|
||||
enum whisper_sampling_strategy strategy;
|
||||
|
||||
int n_threads;
|
||||
int n_max_text_ctx;
|
||||
int n_max_text_ctx; // max tokens to use from past text as prompt for the decoder
|
||||
int offset_ms; // start offset in ms
|
||||
int duration_ms; // audio duration to process in ms
|
||||
|
||||
bool translate;
|
||||
bool no_context;
|
||||
bool no_context; // do not use past transcription (if any) as initial prompt for the decoder
|
||||
bool single_segment; // force single segment output (useful for streaming)
|
||||
bool print_special;
|
||||
bool print_progress;
|
||||
bool print_realtime;
|
||||
bool print_timestamps;
|
||||
bool print_special; // print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
|
||||
bool print_progress; // print progress information
|
||||
bool print_realtime; // print results from within whisper.cpp (avoid it, use callback instead)
|
||||
bool print_timestamps; // print timestamps for each text segment when printing realtime
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps
|
||||
bool token_timestamps; // enable token-level timestamps
|
||||
float thold_pt; // timestamp token probability threshold (~0.01)
|
||||
float thold_ptsum; // timestamp token sum probability threshold (~0.01)
|
||||
int max_len; // max segment length in characters
|
||||
bool split_on_word; // split on word rather than on token (when used with max_len)
|
||||
int max_tokens; // max tokens per segment (0 = no limit)
|
||||
|
||||
// [EXPERIMENTAL] speed-up techniques
|
||||
// note: these can significantly reduce the quality of the output
|
||||
bool speed_up; // speed-up the audio by 2x using Phase Vocoder
|
||||
int audio_ctx; // overwrite the audio context size (0 = use default)
|
||||
|
||||
// tokens to provide the whisper model as initial prompt
|
||||
// tokens to provide to the whisper decoder as initial prompt
|
||||
// these are prepended to any existing text context from a previous call
|
||||
const whisper_token * prompt_tokens;
|
||||
int prompt_n_tokens;
|
||||
@ -261,19 +283,36 @@ extern "C" {
|
||||
// for auto-detection, set to nullptr, "" or "auto"
|
||||
const char * language;
|
||||
|
||||
// common decoding parameters:
|
||||
bool suppress_blank; // ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/decoding.py#L89
|
||||
bool suppress_non_speech_tokens; // ref: https://github.com/openai/whisper/blob/7858aa9c08d98f75575035ecd6481f462d66ca27/whisper/tokenizer.py#L224-L253
|
||||
|
||||
float temperature; // initial decoding temperature, ref: https://ai.stackexchange.com/a/32478
|
||||
float max_initial_ts; // ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/decoding.py#L97
|
||||
float length_penalty; // ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L267
|
||||
|
||||
// fallback parameters
|
||||
// ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L274-L278
|
||||
float temperature_inc;
|
||||
float entropy_thold; // similar to OpenAI's "compression_ratio_threshold"
|
||||
float logprob_thold;
|
||||
float no_speech_thold; // TODO: not implemented
|
||||
|
||||
struct {
|
||||
int n_past;
|
||||
int best_of; // ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L264
|
||||
} greedy;
|
||||
|
||||
struct {
|
||||
int n_past;
|
||||
int beam_width;
|
||||
int n_best;
|
||||
int beam_size; // ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L265
|
||||
|
||||
float patience; // TODO: not implemented, ref: https://arxiv.org/pdf/2204.05424.pdf
|
||||
} beam_search;
|
||||
|
||||
// called for every newly generated text segment
|
||||
whisper_new_segment_callback new_segment_callback;
|
||||
void * new_segment_callback_user_data;
|
||||
|
||||
// called each time before the encoder starts
|
||||
whisper_encoder_begin_callback encoder_begin_callback;
|
||||
void * encoder_begin_callback_user_data;
|
||||
};
|
||||
@ -302,6 +341,9 @@ extern "C" {
|
||||
// A segment can be a few words, a sentence, or even a paragraph.
|
||||
WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx);
|
||||
|
||||
// Language id associated with the current context
|
||||
WHISPER_API int whisper_full_lang_id(struct whisper_context * ctx);
|
||||
|
||||
// Get the start and end time of the specified segment.
|
||||
WHISPER_API int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment);
|
||||
WHISPER_API int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment);
|
||||
@ -323,6 +365,13 @@ extern "C" {
|
||||
// Get the probability of the specified token in the specified segment.
|
||||
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Temporary helpers needed for exposing ggml interface
|
||||
|
||||
WHISPER_API int whisper_bench_memcpy(int n_threads);
|
||||
WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user