Compare commits

..

2 Commits

Author SHA1 Message Date
ba69578828 whisper : add whisper_token_count helper 2024-03-25 14:46:07 +02:00
5c2c07d479 whisper : improve handling of prompts 2024-03-21 08:00:11 +02:00
971 changed files with 125694 additions and 367232 deletions

View File

@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git cmake libsdl2-dev wget git
apt-get install -y build-essential git cmake
WORKDIR /app
@ -21,8 +21,8 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV GGML_CUDA=1
ENV WHISPER_CUBLAS=1
RUN make base.en
RUN make
ENTRYPOINT ["/app/main"]

View File

@ -13,9 +13,11 @@ WORKDIR /app
ARG CUDA_DOCKER_ARCH=all
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake git \
apt-get install -y build-essential \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012
@ -23,8 +25,7 @@ ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
COPY .. .
# Enable cuBLAS
RUN make base.en CMAKE_ARGS="-DGGML_CUDA=1"
RUN make
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
ENV CUDA_MAIN_VERSION=12.3
@ -32,9 +33,8 @@ ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg wget cmake git \
apt-get install -y curl ffmpeg \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -1,28 +0,0 @@
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. .
# Enable SYCL
ARG GGML_SYCL_F16=OFF
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
make base.en CMAKE_ARGS="-DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16}"
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -1,39 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc4.0.1
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-devel-ubuntu${UBUNTU_VERSION}
# Target the MUSA runtime image
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev wget cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* /tmp/* /var/tmp/*
COPY .. .
# Enable muBLAS
RUN make base.en CMAKE_ARGS="-DGGML_MUSA=1"
RUN find /app/build -name "*.o" -delete && \
find /app/build -name "*.a" -delete && \
rm -rf /app/build/CMakeFiles && \
rm -rf /app/build/cmake_install.cmake && \
rm -rf /app/build/_deps
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg wget cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* /tmp/* /var/tmp/*
COPY --from=build /app /app
RUN du -sh /app/*
RUN find /app -type f -size +100M
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -2,19 +2,18 @@ FROM ubuntu:22.04 AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential wget cmake git \
apt-get install -y build-essential \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. .
RUN make base.en
RUN make
FROM ubuntu:22.04 AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg libsdl2-dev wget cmake git \
apt-get install -y curl ffmpeg \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENV PATH=/app/build/bin:$PATH
ENTRYPOINT [ "bash", "-c" ]

View File

@ -1,3 +0,0 @@
build*/
.github/
.devops/

View File

@ -10,13 +10,13 @@ on:
- whisper.h
jobs:
ubuntu-22:
runs-on: ubuntu-22.04
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-go@v5
- uses: actions/setup-go@v3
with:
go-version: '^1.23'
- uses: actions/checkout@v4
go-version: '^1.19'
- uses: actions/checkout@v1
- run: |
cd bindings/go
make test

View File

@ -1,21 +1,22 @@
name: Bindings Tests (Ruby)
on:
push:
branches:
- master
paths:
- bindings/ruby/**
- whisper.h
pull_request:
types: [opened, synchronize, reopened]
paths:
- bindings/ruby/**
- whisper.h
jobs:
ubuntu-22:
runs-on: ubuntu-22.04
defaults:
run:
working-directory: bindings/ruby
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: ruby/setup-ruby@v1
with:
ruby-version: '3.2'
- uses: actions/checkout@v4
- run: rake test
ruby-version: '3.0'
- uses: actions/checkout@v1
- run: |
cd bindings/ruby/ext
ruby extconf.rb && make

File diff suppressed because it is too large Load Diff

View File

@ -11,18 +11,14 @@ jobs:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
matrix:
config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64" }
- { tag: "main-musa", dockerfile: ".devops/main-musa.Dockerfile", platform: "linux/amd64" }
- { tag: "main-intel", dockerfile: ".devops/main-intel.Dockerfile", platform: "linux/amd64" }
#TODO: the cuda image keeps failing - disable for now
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" }
- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
steps:
- name: Check out the repo
@ -30,8 +26,6 @@ jobs:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@ -49,7 +43,7 @@ jobs:
with:
context: .
push: true
platforms: ${{ matrix.config.platform }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
@ -58,6 +52,6 @@ jobs:
with:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platform }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}

View File

@ -1,91 +0,0 @@
name: Examples WASM
on:
push:
branches: ["master"]
workflow_dispatch:
permissions:
contents: read
pages: write
id-token: write
concurrency:
group: "pages"
cancel-in-progress: false
jobs:
deploy-wasm-github-pages:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup Pages
uses: actions/configure-pages@v4
- name: Setup emsdk
uses: mymindstorm/setup-emsdk@v14
- name: Build WASM Examples
# Enable for real build later in whisper.cpp
run: |
mkdir -p build-em && cd build-em
emcmake cmake .. -DCMAKE_BUILD_TYPE=Release
make -j
- name: Create staging directory
run: mkdir -p staging
- name: Create .nojekyll file in staging directory
run: touch staging/.nojekyll
- name: Copy application files
run: |
build_dir=build-em/bin
ls ${build_dir}
# command.wasm
target_dir=staging/command.wasm
mkdir -p ${target_dir}
cp ${build_dir}/command.wasm/{index.html,command.js,helpers.js} ${target_dir}
cp ${build_dir}/libcommand.js ${target_dir}
# bench.wasm
target_dir=staging/bench.wasm
mkdir -p ${target_dir}
cp ${build_dir}/bench.wasm/{index.html,bench.js,helpers.js} ${target_dir}
cp ${build_dir}/libbench.js ${target_dir}
# stream.wasm
target_dir=staging/stream.wasm
mkdir -p ${target_dir}
cp ${build_dir}/stream.wasm/{index.html,stream.js,helpers.js} ${target_dir}
cp ${build_dir}/libstream.js ${target_dir}
# whisper.wasm (this will be the main example page)
target_dir=staging
mkdir -p ${target_dir}
cp ${build_dir}/whisper.wasm/{index.html,main.js,helpers.js} ${target_dir}
cp ${build_dir}/libmain.js ${target_dir}
# Copy Cross-Origin Isolation service worker
cp -v examples/coi-serviceworker.js staging/
- name: List files in staging directory (for debugging)
run: |
echo "Files in staging directory:"
find staging -type f | sort
- name: Upload artifact
uses: actions/upload-pages-artifact@v3
with:
path: ./staging
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4

View File

@ -10,8 +10,8 @@ on:
- whisper.h
jobs:
addon_node-ubuntu-22:
runs-on: ubuntu-22.04
addon_node-ubuntu-latest:
runs-on: ubuntu-latest
strategy:
matrix:
node-version: [ 16.x, 18.x ]
@ -22,7 +22,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential git
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
@ -37,7 +37,7 @@ jobs:
run: npm install
- name: Compile addon.node
run: npx cmake-js compile -T addon.node -B Release
run: npx cmake-js compile -T whisper-addon -B Release
- name: Download test model
run: |

23
.gitignore vendored
View File

@ -1,29 +1,30 @@
*.o
*.a
*.d
.cache/
.coreml/
.test/
.venv/
.vs/
.vscode/
.DS_Store
.vimspector.json
/CMakeSettings.json
/talk-llama.dSYM/
build/
build-*/
build_*/
build-coreml/
build-em/
build-debug/
build-release/
build-rwdi/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
# SPM
.build/
.swiftpm
*.metallib
ggml-metal-embed.metal
ggml-metal-embed.metal.tmp
/main
/stream
/command
@ -50,8 +51,6 @@ extra/bench-gg.txt
models/*.mlmodel
models/*.mlmodelc
models/*.mlpackage
models/*-encoder-openvino.xml
models/*-encoder-openvino-cache/
bindings/java/.gradle/
bindings/java/.idea/
.idea/
@ -61,5 +60,3 @@ cmake-build-debug/
.cxx/
.gradle/
local.properties
.log
.exe

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "bindings/ios"]
path = bindings/ios
url = https://github.com/ggerganov/whisper.spm

510
AUTHORS
View File

@ -1,510 +0,0 @@
# date: Tue Feb 4 13:03:35 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0/0 <zero@imaskeleton.me>
0cc4m <picard12@live.de>
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
AIWintermuteAI <32562299+AIWintermuteAI@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Aaron Taylor <aaron@exphat.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
Adam Jones <domdomegg+git@gmail.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
AfryMask <AfryMask@163.com>
Ahmad Bilal <ahmad.bilal@empglabs.com>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Akash Mahajan <akash7190@gmail.com>
Akash Mahajan <akashmjn@stanford.edu>
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
Alan <unknown>
Albert Jin <albert.jin@gmail.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
Alex Azarov <alex@azarov.by>
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
Alex Evgrashin <aevgrashin@yandex.ru>
Alex O'Connell <35843486+acon96@users.noreply.github.com>
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
Alexandru Mariuti <alex@mariuti.com>
Alexey Kharlamov <alexey@kharlamov.biz>
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
Ali Alameh <ali.alameh@isae.edu.lb>
Alter <0x7c48@gmail.com>
Ananta Bastola <anantarajbastola@gmail.com>
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
Andreas Lubbe <git@lubbe.org>
Andreu Huguet <andreuhuguet@gmail.com>
Andrew Huynh <a5thuynh@gmail.com>
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andrew S <andrews54757@gmail.com>
Andy Maloney <asmaloney@gmail.com>
Anton Kostin <masguit42@users.noreply.github.com>
Artyom Mezin <psycho.fading@gmail.com>
Asad Memon <asad.lionpk@gmail.com>
Ashraful Islam <ashraful.meche@gmail.com>
AsukaMinato <asukaminato@nyan.eu.org>
AustinMroz <austinmroz@utexas.edu>
Avik Sengupta <avik@sengupta.net>
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
Baffin Lee <baffinlee@gmail.com>
Ben Ashbaugh <ben.ashbaugh@intel.com>
Ben Nortier <bjnortier@gmail.com>
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
Binozo <70137898+Binozo@users.noreply.github.com>
Bo-Yi Wu <appleboy.tw@gmail.com>
Boris Bliznioukov <blib@mail.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
Brian Murray <brian@bmurray.ca>
CRD716 <crd716@gmail.com>
Canis Lupus <Canis-UK@users.noreply.github.com>
Carlos Zoido <mrgalleta@gmail.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
CarterLi999 <664681047@qq.com>
ChangSeok Oh <shivamidow@users.noreply.github.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
Chen Xi <xixichen08@foxmail.com>
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
Chidi Williams <williamschidi1@gmail.com>
Chris Elrod <elrodc@gmail.com>
Christian <12550267+iceychris@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Clifford Heath <clifford.heath@gmail.com>
Clint Herron <hanclinto@gmail.com>
Colin <github@whoisc.cc>
Conrad Kramer <conrad@conradkramer.com>
Corey Earwood <iamcgn+github@gmail.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
DAN™ <dranger003@gmail.com>
DGdev91 <DGdev91@users.noreply.github.com>
Damian Czaja <trojan295@protonmail.com>
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
Dan Johansson <dan.johansson@arm.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Valdivia <18384552+dvaldivia@users.noreply.github.com>
Daniel Ziegenberg <daniel@ziegenberg.at>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Daven Sanassy <daven@vochlea.co.uk>
David <dnhkng@gmail.com>
David Thorpe <djt@mutablelogic.com>
DavidKorczynski <david@adalogics.com>
Davidson Francis <davidsondfgl@gmail.com>
Dener Stassun <denerstassun@gmail.com>
Dibakar Gope <dibakar.gope@arm.com>
Didzis Gosko <didzis@users.noreply.github.com>
Diego Devesa <slarengh@gmail.com>
Digipom <admin@digipom.com>
Dimo <dimo@ieee.org>
Djip007 <3705339+Djip007@users.noreply.github.com>
Djip007 <djip.perois@free.fr>
Dody Suria Wijaya <dodysw@gmail.com>
Dou Xinpeng <15529241576@163.com>
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Duncan McConnell <ddmcconnell4@gmail.com>
Egor Egorov <me@egorfine.com>
Elkana Bardugo <ttv200@gmail.com>
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Eric Curtin <ericcurtin17@gmail.com>
Eric Swanson <eswanson@alloscomp.com>
Eric Tendian <erictendian@gmail.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Martin <evan.martin@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kuznetsov <evgeny@kuznetsov.md>
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
Fangjun Kuang <csukuangfj@gmail.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
Frankie Robertson <frankier@users.noreply.github.com>
Gang Chen <goncha@gmail.com>
Gavin Cai <gavin1818@hotmail.com>
George Hindle <george@georgehindle.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <7817232+giladgd@users.noreply.github.com>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
GitAritron <103900385+GitAritron@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Gleicon Moraes <gleicon@gmail.com>
Gregor Jasny <gjasny@googlemail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hang <bebound@gmail.com>
Haus1 <haus.xda@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
HimariO <dsfhe49854@gmail.com>
Hong Bo PENG <penghb@cn.ibm.com>
Hrishikesh Barman <geekodour@users.noreply.github.com>
Hugo <hugo@whynothugo.nl>
Ian Bicking <ian@ianbicking.org>
Ian Bull <irbull@eclipsesource.com>
Ihar Hrachyshka <ihrachys@redhat.com>
Ikko Ashimine <eltociear@gmail.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Gorin <ivangorin21@gmail.com>
Ivo von Putzer Reibegg <ivo.putzer@gmail.com>
JJ <103335846+computerscienceiscool@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JacobLinCool <jacoblincool@gmail.com>
Jakub Ráček <blizzcz@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jay Binks <jaybinks@gmail.com>
Jayant <jayantyadav202@gmail.com>
Jeff Bolz <jbolz@nvidia.com>
Jeroen Mostert <jeroen.mostert@cm.com>
Jhen-Jie Hong <developer@jhen.me>
Jhen-Jie Hong <iainst0409@gmail.com>
JidongZhang-THU <1119708529@qq.com>
Jo Liss <joliss42@gmail.com>
Joe Todd <joe.todd@codeplay.com>
Johan <jr.raffin@gmail.com>
Johannes Gäßler <johannesg@5d6.de>
John Balis <phobossystems@gmail.com>
JohnnyB <jboero@users.noreply.github.com>
Jonathan Soo <jcsoo@agora.com>
Jonno <1160532+razodactyl@users.noreply.github.com>
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
Jose <34888496+Jerry-Master@users.noreply.github.com>
Josh Bleecher Snyder <josharian@gmail.com>
Josscii <jossciiweiyi@gmail.com>
Judd <foldl@users.noreply.github.com>
Jumper775 <78500318+jumpers775@users.noreply.github.com>
Jun Hee Yoo <contact.jhyoo@gmail.com>
Junil Kim <logyourself@gmail.com>
Justina Cho <justcho5@gmail.com>
Justine Tunney <jtunney@gmail.com>
Justine Tunney <jtunney@mozilla.com>
KITAITI Makoto <KitaitiMakoto@gmail.com>
KP Kaiser <kirk@zothcorp.com>
Kamilake <exjang0@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karthick <j.karthic2004@gmail.com>
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Kendrick Taylor <kendrick@circuitsix.com>
Kevin Brothaler <admin@digipom.com>
Kevin Gibbons <bakkot@gmail.com>
Konosuke Sakai <konosuke@konosuke.work>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kreijstal <rainb@tfwno.gf>
Kylin <56434533+KyL0N@users.noreply.github.com>
LBlue <153975653+lbluep@users.noreply.github.com>
Larry Battle <larry.battle.tech@gmail.com>
Laytan Laats <laytanlaats@hotmail.com>
Leo Moll <leo.moll@yeasoft.com>
Lexevolution <31176843+Lexevolution@users.noreply.github.com>
LittleLoli <26589867+WhichWho@users.noreply.github.com>
Lucas Zanek <57494138+LucasZNK@users.noreply.github.com>
Luis Herrera <herrera-luis@users.noreply.github.com>
Lukas Rist <glaslos@gmail.com>
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
M. Eren Akbiyik <erenakbiyik@gmail.com>
Ma Mingfei <mingfei.ma@intel.com>
Maciek <maciek.mab122@gmail.com>
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
Mark Karpelès <MagicalTux@users.noreply.github.com>
Mark Zhuang <zhuangqiubin@gmail.com>
Markus Tavenrath <mtavenrath@users.noreply.github.com>
Martin Delille <martin@delille.org>
Martin Warnaar <martinwarnaar@gmail.com>
Masaya, Kato <62578291+msy-kato@users.noreply.github.com>
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
Mathieu Baudier <mbaudier@argeo.org>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matija Pevec <mightymatth@users.noreply.github.com>
Matt Stephenson <mstephenson6@users.noreply.github.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
Meng, Hengyu <hengyu.meng@intel.com>
Mengqing Cao <cmq0113@163.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Rienstra <mrienstra@gmail.com>
Mikhail Grigorev <sleuthhound@gmail.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohit Agarwal <mohit@sdf.org>
Molly Sophia <mollysophia379@gmail.com>
Murilo Santana <mvrilo@gmail.com>
NETZkultur GmbH <mulholland@netzkultur.de>
Natsu <chino@hotococoa.moe>
Neil Chudleigh <nchudleigh@users.noreply.github.com>
Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nicholai Tukanov <nicholaitukanov@gmail.com>
Nicholas Albion <nalbion@yahoo.com>
Nico Bosshard <nico@bosshome.ch>
Nicolò Scipione <nicolo.scipione@codeplay.com>
Niels Mayer <Niels.Mayer@gmail.com>
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
Nikolaj Olsson <nikse.dk@gmail.com>
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
Oleg Sidorov <me@whitebox.io>
Oleg Sidorov <oleg@sidorov.nl>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondrej Kokes <ondrej.kokes@gmail.com>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
PAB <pierreantoine.bannier@gmail.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pedro Probst <pprobst@insiberia.net>
Peng <hzp1024@qq.com>
Peter <peter277@users.noreply.github.com>
Philipp Zabel <philipp.zabel@gmail.com>
Philippe Normand <phil@base-art.net>
Philippe Normand <philn@igalia.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
R0CKSTAR <xiaodong.ye@mthreads.com>
R0CKSTAR <yeahdongcn@gmail.com>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
Rahul Vadhyar <107788610+RahulVadhyar@users.noreply.github.com>
Raiya Araki <83504221+rai62@users.noreply.github.com>
Reinforce-II <fate@eastal.com>
Reinis Muiznieks <muiznieks.reinis@gmail.com>
RelatedTitle <r3latedtitle@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Rich Jones <miserlou@gmail.com>
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
Robin <robin.xw@hotmail.com>
Roddur Dasgupta <roddurd@gmail.com>
Roland Rabien <figbug@gmail.com>
Romain Biessy <romain.biessy@codeplay.com>
Ronsor <ronsor@ronsor.pw>
Rotem Dan <rotemdan@gmail.com>
Ryan Hitchman <hitchmanr@gmail.com>
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
RyanChang <ftes90015@gmail.com>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
Sacha Arbonel <sacha.arbonel@hotmail.fr>
Salman Faroz <stsfaroz@gmail.com>
Salvatore Mesoraca <s.mesoraca16@gmail.com>
Sam <49637763+Onlyartist9@users.noreply.github.com>
Sam Pullara <spullara@gmail.com>
Samuel Durante <44513615+samueldurantes@users.noreply.github.com>
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Sandro Hanea <40202887+sandrohanea@users.noreply.github.com>
Sergio López <slp@redhat.com>
Sergio López <slp@sinrega.org>
Shanshan Shen <467638484@qq.com>
Shijie <821898965@qq.com>
Shupei Fan <dymarkfan@outlook.com>
Siddharth Ramakrishnan <srr2141@columbia.edu>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Moisselin <simon.moisstoll@gmail.com>
Sindre Sorhus <sindresorhus@gmail.com>
Slava Primenko <primenko.s@gmail.com>
Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com>
Stavros Panakakis <53979866+Stavrospanakakis@users.noreply.github.com>
Stefan Sydow <s.sydow@heinlein-video.de>
Stefan Sydow <stefan@sydow.email>
Syahmi Azhar <prsyahmi@gmail.com>
Syed Jafri <syedjafri97@gmail.com>
Sơn Phan Trung <phantrungson17@gmail.com>
Taisei Mima <bhbstar.me@gmail.com>
Takeshi Inoue <inoue.takeshi@gmail.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Taras Glek <taras@thegp.com>
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
Thamster <Thamster@users.noreply.github.com>
Thijs Raymakers <thijs@raymakers.nl>
Thomas Fitzsimmons <fitzsim@fitzsim.org>
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
Tienshiao Ma <tienshiao@tienshiao.org>
Tim Miller <drasticactions@users.noreply.github.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Tobrun <tobrun.van.nuland@gmail.com>
Todd <taf2@users.noreply.github.com>
Toliver <teejae@gmail.com>
Tong Li <31761981+litongjava@users.noreply.github.com>
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
Topping1 <78745143+Topping1@users.noreply.github.com>
Travis Cline <travis.cline@gmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
UsernamesLame <156965854+UsernamesLame@users.noreply.github.com>
Vadim Peretokin <vperetokin@hey.com>
Valentin Gosu <1454649+valenting@users.noreply.github.com>
Vin Misra <vinith@alum.mit.edu>
Vulcan <93451215+trholding@users.noreply.github.com>
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
Wilson Silva <wilson.dsigns@gmail.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yajing Tang <phillis@google.com>
Yang Shen <aplshenyang@gmail.com>
Yunès <jean.baptiste.yunes@free.fr>
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Yusuf Redžić <48274562+redzic@users.noreply.github.com>
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
Zhiyuan Li <lizhiyuan@uniartisan.com>
Zhiyuan Li <uniartisan2017@gmail.com>
Zigfrid Zvezdin <ziggerZZ@gmail.com>
Zollner <24618122+Zolliner@users.noreply.github.com>
a3sh <38979186+A3shTnT@users.noreply.github.com>
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
agray3 <agray3@users.noreply.github.com>
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
aldorof <aldorof@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
amd-dwang <dong.wang@amd.com>
amritahs-ibm <amritahs@linux.vnet.ibm.com>
andypayne <apayne@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
arizhih <40765267+arizhih@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
be-next <jerome.ramette@gmail.com>
bert hubert <bert@hubertnet.nl>
billyct <billy_allen@126.com>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bocytko <bocytko+github@gmail.com>
boolemancer <48014766+boolemancer@users.noreply.github.com>
boolemancer <boolemancer@gmail.com>
bradmit <151883577+bradmit@users.noreply.github.com>
brunofaustino <b.fa.amorim@gmail.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cdosoftei <ciprian.dosoftei@gmail.com>
clach04 <Chris.Clark@actian.com>
compilade <113953597+compilade@users.noreply.github.com>
compilade <git@compilade.net>
conradg <conradjgodfrey@gmail.com>
crummyh <elijah@crums.us>
ddpasa <112642920+ddpasa@users.noreply.github.com>
denersc <denerstassun@gmail.com>
dscripka <dscripka@users.noreply.github.com>
duthils <duthils@duthils.net>
ecneladis <ecneladis@users.noreply.github.com>
faker <nspyia2002@gmail.com>
fitzsim <fitzsim@fitzsim.org>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
genevera (she/her) <genevera@users.noreply.github.com>
geniusnut <geniusnut@gmail.com>
gilbertgong <gilbert.gong@gmail.com>
gn64 <yukikaze.jp@gmail.com>
goldwaving <77494627+goldwaving@users.noreply.github.com>
greeshmay <greeshmay@gmail.com>
haopeng <657407891@qq.com>
hipudding <huafengchun@gmail.com>
hsinhoyeh <yhh92u@gmail.com>
hydai <z54981220@gmail.com>
iamthad <thadeus.j.fleming@gmail.com>
issixx <46835150+issixx@users.noreply.github.com>
james wolf <contractorwolf@hotmail.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jettoblack <jettoblack@gmail.com>
jiez <373447296@qq.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
jorismertz <35079666+jorismertz@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junkfood <69683722+JunkFood02@users.noreply.github.com>
jwijffels <jwijffels@bnosac.be>
k.h.lai <adrian.k.h.lai@outlook.com>
kamranjon <kamranjon@gmail.com>
katsu560 <katsu560oo-@docomo.ne.jp>
kennethge <57784063+kenneth-ge@users.noreply.github.com>
keyehzy <msamuel@aluno.puc-rio.br>
kunnis <kunnis@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
leejet <leejet714@gmail.com>
leo-pony <nengjunma@outlook.com>
lhez <quic_lih@quicinc.com>
litong <31761981+litongjava@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lnyan <lkwq007@gmail.com>
luoyu-intel <yu.luo@intel.com>
m.bell <m.bell@techsmith.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
mashizora <30516315+mashizora@users.noreply.github.com>
matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mgrachten <maarten@grachten.eu>
mkiol <mkiol@users.noreply.github.com>
mky_coder <47767389+mkycoder@users.noreply.github.com>
novag <7754358+novag@users.noreply.github.com>
pajowu <pajowu@pajowu.de>
pengxin99 <pengxin.yuan@intel.com>
petterreinholdtsen <pere-github@hungry.com>
polarmoon <90010972+polarmoon@users.noreply.github.com>
rlapray <lapray.romain@gmail.com>
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
semiformal-net <84111142+semiformal-net@users.noreply.github.com>
shibukazu <61775791+shibukazu@users.noreply.github.com>
shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
slaren <slarengh@gmail.com>
slashlib <slashlib@users.noreply.github.com>
snadampal <87143774+snadampal@users.noreply.github.com>
someone13574 <81528246+someone13574@users.noreply.github.com>
st-gr <38470677+st-gr@users.noreply.github.com>
stduhpf <stephduh@live.fr>
stormofice <58337328+stormofice@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thefinaldegree <thefinaldegree@gmail.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
toboil-features <160222185+toboil-features@users.noreply.github.com>
trixirt <trix@redhat.com>
ulatekh <ulatekh@yahoo.com>
undef <undefdev@gmail.com>
uvos <devnull@uvos.xyz>
uvos <philipp@uvos.xyz>
valVk <valVk@users.noreply.github.com>
venkr <venkateshrameshkumar+1@gmail.com>
vicalloy <zbirder@gmail.com>
wangshuai09 <391746016@qq.com>
woachk <24752637+woachk@users.noreply.github.com>
xctan <axunlei@gmail.com>
xdrudis <xavierdrudis@yahoo.es>
yuri@FreeBSD <yuri@FreeBSD>
zhangjixiong <code.zjx@gmail.com>
zhentaoyu <zhentao.yu@intel.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zhouwg <zhouwg2000@gmail.com>
谢乃闻 <sienaiwun@users.noreply.github.com>
布客飞龙 <562826179@qq.com>
Артём Земляк <azemlyak@smart-consulting.ru>

View File

@ -1,31 +1,22 @@
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.5)
include(CheckIncludeFileCXX)
cmake_minimum_required (VERSION 3.5)
project(whisper.cpp VERSION 1.5.4)
set(SOVERSION 1)
#set(CMAKE_WARN_DEPRECATED YES)
set(CMAKE_WARN_UNUSED_CLI YES)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(WHISPER_STANDALONE ON)
include(git-vars)
include(GitVars)
include(BuildTypes)
# configure project version
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
endif()
configure_file(${CMAKE_SOURCE_DIR}/bindings/javascript/package-tmpl.json ${CMAKE_SOURCE_DIR}/bindings/javascript/package.json @ONLY)
else()
set(WHISPER_STANDALONE OFF)
@ -35,16 +26,6 @@ if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(WHISPER_WASM_SINGLE_FILE "whisper: embed WASM inside the generated whisper.js" ON)
# TODO: without these, we get the following error:
# wasm-ld: error: --shared-memory is disallowed by whisper.cpp.o because it was not compiled with 'atomics' or 'bulk-memory' features.
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -s TOTAL_STACK=5242880")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated")
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@ -53,199 +34,614 @@ else()
endif()
endif()
option(BUILD_SHARED_LIBS "build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
# options
#
# option list
#
if (APPLE)
set(WHISPER_METAL_DEFAULT ON)
else()
set(WHISPER_METAL_DEFAULT OFF)
endif()
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
# debug
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
# build
option(WHISPER_FATAL_WARNINGS "whisper: enable -Werror flag" OFF)
option(WHISPER_USE_SYSTEM_GGML "whisper: use system-installed GGML library" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_METAL_EMBED_LIBRARY "whisper: embed Metal library" OFF)
else()
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
option(WHISPER_SYCL "whisper: use SYCL" OFF)
option(WHISPER_SYCL_F16 "whisper: use 16 bit floats for sycl calculations" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
# sanitizers
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
# extra artifacts
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_SERVER "whisper: build server example" ${WHISPER_STANDALONE})
# 3rd party libs
option(WHISPER_CURL "whisper: use libcurl to download model from an URL" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
endif()
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
# override ggml options
set(GGML_SANITIZE_THREAD ${WHISPER_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${WHISPER_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${WHISPER_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${WHISPER_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${WHISPER_FATAL_WARNINGS})
# transition helpers
function (whisper_option_depr TYPE OLD NEW)
if (${OLD})
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON)
if (NOT MSVC)
if (WHISPER_SANITIZE_THREAD)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
endif()
endfunction()
whisper_option_depr(FATAL_ERROR WHISPER_CUBLAS GGML_CUDA)
whisper_option_depr(WARNING WHISPER_CUDA GGML_CUDA)
whisper_option_depr(WARNING WHISPER_KOMPUTE GGML_KOMPUTE)
whisper_option_depr(WARNING WHISPER_METAL GGML_METAL)
whisper_option_depr(WARNING WHISPER_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
whisper_option_depr(WARNING WHISPER_NATIVE GGML_NATIVE)
whisper_option_depr(WARNING WHISPER_OPENMP GGML_OPENMP)
whisper_option_depr(WARNING WHISPER_RPC GGML_RPC)
whisper_option_depr(WARNING WHISPER_SYCL GGML_SYCL)
whisper_option_depr(WARNING WHISPER_SYCL_F16 GGML_SYCL_F16)
whisper_option_depr(WARNING WHISPER_CCACHE GGML_CCACHE)
if (WHISPER_SANITIZE_ADDRESS)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
endif()
if (GGML_CUDA AND NOT MSVC)
#GGML_CUDA enabled, add the necessary compile options -Wno-deprecated-gpu-targets
add_compile_options(-Wno-deprecated-gpu-targets)
if (WHISPER_SANITIZE_UNDEFINED)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
endif()
endif()
#
# build the library
#
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
if (NOT TARGET ggml)
if (WHISPER_USE_SYSTEM_GGML)
find_package(ggml REQUIRED)
if (NOT ggml_FOUND)
message(FATAL_ERROR "System-installed GGML library not found.")
# dependencies
find_package(Threads REQUIRED)
#compile flag sycl
if (WHISPER_SYCL)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64)
else()
message(FATAL_ERROR "Accelerate framework not found")
endif()
add_library(ggml ALIAS ggml::ggml)
endif()
if (WHISPER_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
if (METAL_FRAMEWORK)
message(STATUS "Metal framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
if (WHISPER_METAL_NDEBUG)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
endif()
else()
message(FATAL_ERROR "Metal framework not found")
endif()
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(ggml-common.h bin/ggml-common.h COPYONLY)
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
if (WHISPER_METAL_EMBED_LIBRARY)
enable_language(ASM)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_EMBED_LIBRARY)
set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
add_custom_command(
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${METALLIB_SOURCE}
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(FATAL_ERROR "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
endif()
endif()
endif()
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
endif()
if (WHISPER_BLAS)
if (WIN32)
if(DEFINED ENV{OPENBLAS_PATH})
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories($ENV{OPENBLAS_PATH}/include)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else ()
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
endif ()
else ()
set(BLA_STATIC 1)
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
set(BLA_SIZEOF_INTEGER 8)
set(BLA_PREFER_PKGCONFIG 1)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else()
message(FATAL_ERROR "BLAS library was not found")
endif()
endif ()
endif ()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (WHISPER_STATIC)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver)
else()
add_subdirectory(ggml)
if(WIN32)
# The following adds a _DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR macro and is a workaround for
# the Windows C++ standard library which does not support constexpr mutexes.
# From the release notes://github.com/microsoft/STL/wiki/Changelog
# Disable constexpr mutex constructor on Windows
# Fixed mutex's constructor to be constexpr. #3824 #4000 #4339
# Note: Programs that aren't following the documented restrictions on binary compatibility may encounter
# null dereferences in mutex machinery. You must follow this rule:
# When you mix binaries built by different supported versions of the toolset, the Redistributable version
# must be at least as new as the latest toolset used by any app component.
# You can define _DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR as an escape hatch.
#
# Specifically to whisper.cpp this would cause a crash when using the Java bindings.
# resulting in a Invalid memory access error.
target_compile_definitions(ggml-base PRIVATE _DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR)
message(FATAL_ERROR "cuBLAS not found")
endif()
endif()
if (WHISPER_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
if (WHISPER_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
else()
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(FATAL_ERROR "CLBlast not found")
endif()
endif()
if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
if (WHISPER_SYCL)
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
endif()
#todo: AOT
find_package(IntelSYCL REQUIRED)
if (WHISPER_SYCL_F16)
add_compile_definitions(GGML_SYCL_F16)
endif()
add_compile_definitions(GGML_USE_SYCL)
add_compile_options(-I./) #include DPCT
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
set(GGML_HEADERS_SYCL ggml-sycl.h)
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo")
endif ()
if (WHISPER_ALL_WARNINGS)
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wshadow \
-Wcast-qual \
-Wstrict-prototypes \
-Wpointer-arith \
-Wno-unused-function \
")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wcast-qual \
")
else()
# todo : msvc
endif()
endif()
if (NOT MSVC)
# TODO: temporary disabled until we figure out ggml-metal.m
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
endif()
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
message(STATUS "ARM detected")
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
message(STATUS "PowerPC detected")
else()
message(STATUS "x86 detected")
if (MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
endif()
if(NOT WHISPER_NO_AVX2)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
endif()
if(NOT WHISPER_NO_FMA)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
endif()
if(NOT WHISPER_NO_F16C)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
endif()
endif()
endif()
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
add_subdirectory(src)
#
# install
# POSIX conformance
#
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
endif()
if (WHISPER_OPENVINO)
set(TARGET whisper.openvino)
add_library(${TARGET} OBJECT
openvino/whisper-openvino-encoder.h
openvino/whisper-openvino-encoder.cpp
)
target_include_directories(${TARGET} PUBLIC
.
)
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
endif()
#
# whisper - this is the main library of the project
#
set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
ggml-alloc.h
ggml-alloc.c
ggml-backend.h
ggml-backend.c
ggml-quants.h
ggml-quants.c
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
${GGML_SOURCES_SYCL}
${GGML_HEADERS_SYCL}
whisper.h
whisper.cpp
)
# Set the version numbers
set_target_properties(whisper PROPERTIES
VERSION ${PROJECT_VERSION}
SOVERSION ${SOVERSION}
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -D_CRT_SECURE_NO_WARNINGS)
else()
target_link_libraries(${TARGET} PRIVATE m ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
endif()
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${TARGET} PUBLIC
${CMAKE_DL_LIBS}
)
target_compile_definitions(${TARGET} PUBLIC
WHISPER_SHARED
GGML_SHARED
)
target_compile_definitions(${TARGET} PRIVATE
WHISPER_BUILD
GGML_BUILD
)
if (WHISPER_METAL)
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
# but for some reason it does not work here like it does in llama.cpp
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
endif()
endif()
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
# Only configure gmml CUDA architectures is not globally set
if (NOT DEFINED GGML_CUDA_ARCHITECTURES)
# Not overriden by user, so set defaults
set(GGML_CUDA_ARCHITECTURES 52 61 70)
endif()
message(STATUS "GGML Configuring CUDA architectures ${GGML_CUDA_ARCHITECTURES}")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES ${GGML_CUDA_ARCHITECTURES})
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
if (EMSCRIPTEN)
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()
target_compile_definitions(${TARGET} PUBLIC
${WHISPER_EXTRA_FLAGS}
)
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "ggml.h;whisper.h")
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(WHISPER_BUILD_NUMBER ${BUILD_NUMBER})
set(WHISPER_BUILD_COMMIT ${BUILD_COMMIT})
set(WHISPER_INSTALL_VERSION ${CMAKE_PROJECT_VERSION})
install(TARGETS ${TARGET}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
RESOURCE DESTINATION bin
PUBLIC_HEADER DESTINATION include
)
set(WHISPER_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(WHISPER_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(WHISPER_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
#
# bindings
#
get_directory_property(WHISPER_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
set_target_properties(whisper PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/whisper.h)
install(TARGETS whisper LIBRARY PUBLIC_HEADER)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/whisper-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper
PATH_VARS
WHISPER_INCLUDE_INSTALL_DIR
WHISPER_LIB_INSTALL_DIR
WHISPER_BIN_INSTALL_DIR )
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
VERSION ${WHISPER_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper)
configure_file(cmake/whisper.pc.in
"${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
@ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
DESTINATION lib/pkgconfig)
add_subdirectory(bindings)
#
# programs, examples and tests
#
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
enable_testing()
add_subdirectory(tests)
endif ()
if (WHISPER_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
if (MSVC)
set(MSVC_WARNING_FLAGS
/wd4101 # Unreferenced local variable
/wd4005 # Macro redefinition
/wd4065 # switch statement contains 'default' but no 'case' labels
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
/wd4244 # Conversion from one type to another type, possible loss of ata
/wd4805 # Unsafe mix of type
/wd4305 # Truncation from 'type1' to 'type2' (often double to float)
/wd4996 # Function or variable may be unsafe/deprecated
)
function(disable_msvc_warnings target_name)
if(TARGET ${target_name})
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
endif()
endfunction()
if (WHISPER_BUILD_EXAMPLES)
disable_msvc_warnings(whisper)
disable_msvc_warnings(common)
disable_msvc_warnings(common-sdl)
disable_msvc_warnings(lsp)
disable_msvc_warnings(wchess-core)
disable_msvc_warnings(whisper-command)
disable_msvc_warnings(whisper-cli)
disable_msvc_warnings(whisper-server)
disable_msvc_warnings(whisper-stream)
disable_msvc_warnings(whisper-talk-llama)
disable_msvc_warnings(whisper-bench)
disable_msvc_warnings(quantize)
disable_msvc_warnings(vad-speech-segments)
endif()
endif()

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

450
Makefile
View File

@ -1,12 +1,422 @@
default: main bench quantize server
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif
ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
ifndef NVCC_VERSION
ifeq ($(call,$(shell which nvcc))$(.SHELLSTATUS),0)
NVCC_VERSION := $(shell nvcc --version | egrep -o "V[0-9]+.[0-9]+.[0-9]+" | cut -c2-)
endif
endif
CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)
# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
ifneq ($(UNAME_P),arm)
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
ifeq ($(SYSCTL_M),1)
# UNAME_P := arm
# UNAME_M := arm64
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
endif
endif
endif
#
# Compile flags
#
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
LDFLAGS =
ifdef MACOSX_DEPLOYMENT_TARGET
CFLAGS += -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET)
CXXFLAGS += -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET)
LDFLAGS += -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET)
endif
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
CFLAGS += -D_XOPEN_SOURCE=600
CXXFLAGS += -D_XOPEN_SOURCE=600
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
ifeq ($(UNAME_S),OpenBSD)
CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
endif
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
ifeq ($(UNAME_S),Linux)
CFLAGS += -D_GNU_SOURCE
CXXFLAGS += -D_GNU_SOURCE
endif
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
ifeq ($(UNAME_S),Darwin)
CFLAGS += -D_DARWIN_C_SOURCE
CXXFLAGS += -D_DARWIN_C_SOURCE
endif
ifeq ($(UNAME_S),DragonFly)
CFLAGS += -D__BSD_VISIBLE
CXXFLAGS += -D__BSD_VISIBLE
endif
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
ifeq ($(UNAME_S),FreeBSD)
CFLAGS += -D__BSD_VISIBLE
CXXFLAGS += -D__BSD_VISIBLE
endif
ifeq ($(UNAME_S),NetBSD)
CFLAGS += -D_NETBSD_SOURCE
CXXFLAGS += -D_NETBSD_SOURCE
endif
ifeq ($(UNAME_S),OpenBSD)
CFLAGS += -D_BSD_SOURCE
CXXFLAGS += -D_BSD_SOURCE
endif
# OS specific
# TODO: support Windows
ifeq ($(filter $(UNAME_S),Linux Darwin DragonFly FreeBSD NetBSD OpenBSD Haiku),$(UNAME_S))
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
# detect Windows
ifneq ($(findstring _NT,$(UNAME_S)),)
_WIN32 := 1
endif
# Windows Sockets 2 (Winsock) for network-capable apps
ifeq ($(_WIN32),1)
LWINSOCK2 := -lws2_32
endif
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
ifeq ($(UNAME_S),Darwin)
CPUINFO_CMD := sysctl machdep.cpu.features machdep.cpu.leaf7_features
else ifeq ($(UNAME_S),Linux)
CPUINFO_CMD := cat /proc/cpuinfo
else ifneq (,$(filter MINGW32_NT% MINGW64_NT% MSYS_NT%,$(UNAME_S)))
CPUINFO_CMD := cat /proc/cpuinfo
else ifneq (,$(filter DragonFly FreeBSD,$(UNAME_S)))
CPUINFO_CMD := grep Features /var/run/dmesg.boot
else ifeq ($(UNAME_S),Haiku)
CPUINFO_CMD := sysinfo -cpu
endif
ifdef CPUINFO_CMD
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
ifneq (,$(AVX_M))
CFLAGS += -mavx
CXXFLAGS += -mavx
endif
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
ifneq (,$(AVX2_M))
CFLAGS += -mavx2
CXXFLAGS += -mavx2
endif
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
ifneq (,$(FMA_M))
CFLAGS += -mfma
CXXFLAGS += -mfma
endif
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
ifneq (,$(F16C_M))
CFLAGS += -mf16c
CXXFLAGS += -mf16c
endif
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
ifneq (,$(SSE3_M))
CFLAGS += -msse3
CXXFLAGS += -msse3
endif
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
ifneq (,$(SSSE3_M))
CFLAGS += -mssse3
CXXFLAGS += -mssse3
endif
endif
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
CFLAGS += -mpower9-vector
endif
# Require c++23's std::byteswap for big-endian support.
ifeq ($(UNAME_M),ppc64)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
endif
endif
ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
CFLAGS += -DACCELERATE_NEW_LAPACK
CFLAGS += -DACCELERATE_LAPACK_ILP64
LDFLAGS += -framework Accelerate
endif
endif
ifdef WHISPER_COREML
CXXFLAGS += -DWHISPER_USE_COREML
LDFLAGS += -framework Foundation -framework CoreML
ifdef WHISPER_COREML_ALLOW_FALLBACK
CXXFLAGS += -DWHISPER_COREML_ALLOW_FALLBACK
endif
endif
ifndef WHISPER_NO_METAL
ifeq ($(UNAME_S),Darwin)
WHISPER_METAL := 1
CFLAGS += -DGGML_USE_METAL
CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
endif
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
LDFLAGS += -lopenblas
endif
ifdef WHISPER_CUBLAS
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
CUDA_ARCH_FLAG ?= native
else
CUDA_ARCH_FLAG ?= all
endif
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
WHISPER_OBJ += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef WHISPER_HIPBLAS
ROCM_PATH ?= /opt/rocm
HIPCC ?= $(ROCM_PATH)/bin/hipcc
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
WHISPER_OBJ += ggml-cuda.o
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif
ifdef WHISPER_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
CXXFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast
ifeq ($(UNAME_S),Darwin)
LDFLAGS += -framework OpenCL
else
LDFLAGS += -lOpenCL
endif
WHISPER_OBJ += ggml-opencl.o
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif
ifdef WHISPER_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# 32-bit Raspberry Pi 1, 2, 3
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# 32-bit ARM, for example on Armbian or possibly raspbian
#CFLAGS += -mfpu=neon -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
#CXXFLAGS += -mfpu=neon -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
# 64-bit ARM on 32-bit OS, use these (TODO: auto-detect 64-bit)
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
endif
#
# Print build information
#
$(info I whisper.cpp build info: )
$(info I UNAME_S: $(UNAME_S))
$(info I UNAME_P: $(UNAME_P))
$(info I UNAME_M: $(UNAME_M))
$(info I CFLAGS: $(CFLAGS))
$(info I CXXFLAGS: $(CXXFLAGS))
$(info I LDFLAGS: $(LDFLAGS))
$(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )
#
# Build library
#
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
WHISPER_OBJ += ggml.o ggml-alloc.o ggml-backend.o ggml-quants.o
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
$(CXX) $(CXXFLAGS) -c $< -o $@
ifndef WHISPER_COREML
WHISPER_OBJ += whisper.o
else
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder.mm -o whisper-encoder.o
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
ifdef WHISPER_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
WHISPER_OBJ += ggml-metal.o
ifdef WHISPER_METAL_EMBED_LIBRARY
CFLAGS += -DGGML_METAL_EMBED_LIBRARY
ggml-metal-embed.o: ggml-metal.metal
@echo "Embedding Metal library"
$(eval TEMP_ASSEMBLY=$(shell mktemp))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@
@rm -f ${TEMP_ASSEMBLY}
WHISPER_OBJ += ggml-metal-embed.o
endif
endif
libwhisper.a: $(WHISPER_OBJ)
$(AR) rcs libwhisper.a $(WHISPER_OBJ)
libwhisper.so: $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so $(WHISPER_OBJ) $(LDFLAGS)
clean:
rm -f *.o main stream command talk talk-llama bench quantize server lsp libwhisper.a libwhisper.so
#
# Examples
#
CC_SDL=`sdl2-config --cflags --libs`
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o main $(LDFLAGS)
./main -h
bench: examples/bench/bench.cpp $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp $(WHISPER_OBJ) -o bench $(LDFLAGS)
quantize: examples/quantize/quantize.cpp $(WHISPER_OBJ) $(SRC_COMMON)
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o quantize $(LDFLAGS)
server: examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o server $(LDFLAGS) $(LWINSOCK2)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o lsp $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
#
# Audio samples
#
.PHONY: build
build:
cmake -B build $(CMAKE_ARGS)
cmake --build build --config Release
# download a few audio samples into folder "./samples":
.PHONY: samples
samples:
@ -18,6 +428,17 @@ samples:
@wget --quiet --show-progress -O samples/mm1.wav https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav
@wget --quiet --show-progress -O samples/a13.mp3 https://upload.wikimedia.org/wikipedia/commons/transcoded/6/6f/Apollo13-wehaveaproblem.ogg/Apollo13-wehaveaproblem.ogg.mp3
@wget --quiet --show-progress -O samples/diffusion2023-07-03.flac https://archive.org/download/diffusion2023-07-03/diffusion2023-07-03.flac
@echo "Converting to 16-bit WAV ..."
@ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav
@ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav
@ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav
@rm samples/*.ogg
@ffmpeg -loglevel -0 -y -i samples/mm1.wav -ar 16000 -ac 1 -c:a pcm_s16le samples/mm0.wav
@rm samples/mm1.wav
@ffmpeg -loglevel -0 -y -i samples/a13.mp3 -ar 16000 -ac 1 -c:a pcm_s16le -ss 00:00:00 -to 00:00:30 samples/a13.wav
@rm samples/a13.mp3
@ffmpeg -loglevel -0 -y -i samples/diffusion2023-07-03.flac -ar 16000 -ac 1 -c:a pcm_s16le samples/diffusion2023-07-03.wav
@rm samples/diffusion2023-07-03.flac
#
# Models
@ -37,22 +458,27 @@ samples:
.PHONY: large-v1
.PHONY: large-v2
.PHONY: large-v3
.PHONY: large-v3-turbo
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large-v3 large-v3-turbo:
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large-v3: main
bash ./models/download-ggml-model.sh $@
cmake -B build $(CMAKE_ARGS)
cmake --build build --config Release
@echo ""
@echo "==============================================="
@echo "Running $@ on all samples in ./samples ..."
@echo "==============================================="
@echo ""
@for f in samples/*.{flac,mp3,ogg,wav}; do \
@for f in samples/*.wav; do \
echo "----------------------------------------------" ; \
echo "[+] Running $@ on $$f ... (run 'ffplay $$f' to listen)" ; \
echo "----------------------------------------------" ; \
echo "----------------------------------------------" ; \
echo "" ; \
./build/bin/whisper-cli -m models/ggml-$@.bin -f $$f ; \
./main -m models/ggml-$@.bin -f $$f ; \
echo "" ; \
done
#
# Tests
#
.PHONY: tests
tests:
bash ./tests/run-tests.sh $(word 2, $(MAKECMDGOALS))

61
Package.swift Normal file
View File

@ -0,0 +1,61 @@
// swift-tools-version:5.5
import PackageDescription
let package = Package(
name: "whisper",
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "whisper", targets: ["whisper"]),
],
targets: [
.target(
name: "whisper",
path: ".",
exclude: [
"bindings",
"cmake",
"coreml",
"examples",
"extra",
"models",
"samples",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: [
"ggml.c",
"whisper.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m"
],
resources: [.process("ggml-metal.metal")],
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
],
linkerSettings: [
.linkedFramework("Accelerate")
]
)
],
cxxLanguageStandard: .cxx11
)

670
README.md
View File

@ -2,30 +2,26 @@
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
[![Actions Status](https://github.com/ggml-org/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggml-org/whisper.cpp/actions)
[![Actions Status](https://github.com/ggerganov/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/whisper.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.7.5](https://github.com/ggml-org/whisper.cpp/releases/tag/v1.7.5) / [Roadmap](https://github.com/orgs/ggml-org/projects/4/)
Stable: [v1.5.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.5.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](#core-ml-support)
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- AVX intrinsics support for x86 architectures
- [VSX intrinsics support for POWER architectures](#power-vsx-intrinsics)
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- [Integer quantization support](#quantization)
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- Zero memory allocations at runtime
- [Vulkan support](#vulkan-gpu-support)
- Support for CPU-only inference
- [Efficient GPU support for NVIDIA](#nvidia-gpu-support)
- [OpenVINO Support](#openvino-support)
- [Ascend NPU Support](#ascend-npu-support)
- [Moore Threads GPU Support](#moore-threads-gpu-support)
- [C-style API](https://github.com/ggml-org/whisper.cpp/blob/master/include/whisper.h)
- [Voice Activity Detection (VAD)](#voice-activity-detection-vad)
- [Efficient GPU support for NVIDIA](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
Supported platforms:
@ -33,14 +29,14 @@ Supported platforms:
- [x] [iOS](examples/whisper.objc)
- [x] [Android](examples/whisper.android)
- [x] [Java](bindings/java/README.md)
- [x] Linux / [FreeBSD](https://github.com/ggml-org/whisper.cpp/issues/56#issuecomment-1350920264)
- [x] Linux / [FreeBSD](https://github.com/ggerganov/whisper.cpp/issues/56#issuecomment-1350920264)
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggml-org/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggml-org/whisper.cpp/issues/168))
- [x] [Raspberry Pi](https://github.com/ggml-org/whisper.cpp/discussions/166)
- [x] [Docker](https://github.com/ggml-org/whisper.cpp/pkgs/container/whisper.cpp)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
- [x] [docker](https://github.com/ggerganov/whisper.cpp/pkgs/container/whisper.cpp)
The entire high-level implementation of the model is contained in [whisper.h](include/whisper.h) and [whisper.cpp](src/whisper.cpp).
The rest of the code is part of the [`ggml`](https://github.com/ggml-org/ggml) machine learning library.
The entire high-level implementation of the model is contained in [whisper.h](whisper.h) and [whisper.cpp](whisper.cpp).
The rest of the code is part of the [`ggml`](https://github.com/ggerganov/ggml) machine learning library.
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device: [whisper.objc](examples/whisper.objc)
@ -53,48 +49,162 @@ https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a
On Apple Silicon, the inference runs fully on the GPU via Metal:
https://github.com/ggml-org/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
## Implementation details
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
- Sample usage is demonstrated in [main.cpp](examples/main)
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
- Various other examples are available in the [examples](examples) folder
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
## Quick start
First clone the repository:
```bash
git clone https://github.com/ggml-org/whisper.cpp.git
```
Navigate into the directory:
```
cd whisper.cpp
git clone https://github.com/ggerganov/whisper.cpp.git
```
Then, download one of the Whisper [models](models/README.md) converted in [`ggml` format](#ggml-format). For example:
```bash
sh ./models/download-ggml-model.sh base.en
bash ./models/download-ggml-model.sh base.en
```
Now build the [whisper-cli](examples/cli) example and transcribe an audio file like this:
Now build the [main](examples/main) example and transcribe an audio file like this:
```bash
# build the project
cmake -B build
cmake --build build --config Release
# build the main example
make
# transcribe an audio file
./build/bin/whisper-cli -f samples/jfk.wav
./main -f samples/jfk.wav
```
---
For a quick demo, simply run `make base.en`.
For a quick demo, simply run `make base.en`:
```text
$ make base.en
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
./main -h
usage: ./main [options] file0.wav file1.wav ...
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [5 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-olrc, --output-lrc [false ] output result in a lrc file
-owts, --output-words [false ] output script for generating karaoke video
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-ojf, --output-json-full [false ] include more information in the JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU
bash ./models/download-ggml-model.sh base.en
Downloading ggml model base.en ...
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
You can now use it like this:
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
===============================================
Running base.en on all samples in ./samples ...
===============================================
----------------------------------------------
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
----------------------------------------------
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 512
whisper_model_load: n_audio_head = 8
whisper_model_load: n_audio_layer = 6
whisper_model_load: n_text_ctx = 448
whisper_model_load: n_text_state = 512
whisper_model_load: n_text_head = 8
whisper_model_load: n_text_layer = 6
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 2
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
whisper_model_load: kv self size = 5.25 MB
whisper_model_load: kv cross size = 17.58 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: model ctx = 140.60 MB
whisper_model_load: model size = 140.54 MB
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
whisper_print_timings: fallbacks = 0 p / 0 h
whisper_print_timings: load time = 113.81 ms
whisper_print_timings: mel time = 15.40 ms
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
whisper_print_timings: total time = 476.31 ms
```
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
For detailed usage instructions, run: `./build/bin/whisper-cli -h`
For detailed usage instructions, run: `./main -h`
Note that the [whisper-cli](examples/cli) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use `ffmpeg` like this:
```bash
@ -106,7 +216,7 @@ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
If you want some extra audio samples to play with, simply run:
```
make -j samples
make samples
```
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
@ -114,18 +224,17 @@ This will download a few more audio files from Wikipedia and convert them to 16-
You can download and run the other models as follows:
```
make -j tiny.en
make -j tiny
make -j base.en
make -j base
make -j small.en
make -j small
make -j medium.en
make -j medium
make -j large-v1
make -j large-v2
make -j large-v3
make -j large-v3-turbo
make tiny.en
make tiny
make base.en
make base
make small.en
make small
make medium.en
make medium
make large-v1
make large-v2
make large-v3
```
## Memory usage
@ -138,21 +247,6 @@ make -j large-v3-turbo
| medium | 1.5 GiB | ~2.1 GB |
| large | 2.9 GiB | ~3.9 GB |
## POWER VSX Intrinsics
`whisper.cpp` supports POWER architectures and includes code which
significantly speeds operation on Linux running on POWER9/10, making it
capable of faster-than-realtime transcription on underclocked Raptor
Talos II. Ensure you have a BLAS package installed, and replace the
standard cmake setup with:
```bash
# build with GGML_BLAS defined
cmake -B build -DGGML_BLAS=1
cmake --build build --config Release
./build/bin/whisper-cli [ .. etc .. ]
```
## Quantization
`whisper.cpp` supports integer quantization of the Whisper `ggml` models.
@ -162,12 +256,11 @@ Here are the steps for creating and using a quantized model:
```bash
# quantize a model with Q5_0 method
cmake -B build
cmake --build build --config Release
./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
make quantize
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
# run the examples as usual, specifying the quantized model file
./build/bin/whisper-cli -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
```
## Core ML support
@ -184,11 +277,11 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
```
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
- Python 3.11 is recommended.
- Python 3.10 is recommended.
- MacOS Sonoma (version 14) or newer is recommended, as older versions of MacOS might experience issues with transcription hallucination.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- To create an environment, use: `conda create -n py311-whisper python=3.11 -y`
- To activate the environment, use: `conda activate py311-whisper`
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
- To activate the environment, use: `conda activate py310-whisper`
- Generate a Core ML model. For example, to generate a `base.en` model, use:
@ -201,6 +294,10 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- Build `whisper.cpp` with Core ML support:
```bash
# using Makefile
make clean
WHISPER_COREML=1 make -j
# using CMake
cmake -B build -DWHISPER_COREML=1
cmake --build build -j --config Release
@ -209,7 +306,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- Run the examples as usual. For example:
```text
$ ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/jfk.wav
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
@ -225,7 +322,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
Next runs are faster.
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggml-org/whisper.cpp/pull/566).
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## OpenVINO support
@ -267,7 +364,7 @@ This can result in significant speedup in encoder performance. Here are the inst
- Build `whisper.cpp` with OpenVINO support:
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2024.6.0](https://github.com/openvinotoolkit/openvino/releases/tag/2024.6.0). Ready to use Binaries of the required libraries can be found in the [OpenVino Archives](https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.6/)
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2023.0.0](https://github.com/openvinotoolkit/openvino/releases/tag/2023.0.0).
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
@ -293,7 +390,7 @@ This can result in significant speedup in encoder performance. Here are the inst
- Run the examples as usual. For example:
```text
$ ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/jfk.wav
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
@ -310,35 +407,41 @@ This can result in significant speedup in encoder performance. Here are the inst
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
cached for the next run.
For more information about the OpenVINO implementation please refer to PR [#1037](https://github.com/ggml-org/whisper.cpp/pull/1037).
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
## NVIDIA GPU support
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with CUDA support:
Now build `whisper.cpp` with cuBLAS support:
```
cmake -B build -DGGML_CUDA=1
make clean
WHISPER_CUBLAS=1 make -j
```
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
Now build `whisper.cpp` with CLBlast support:
```
Makefile:
cd whisper.cpp
make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp
cmake -B build -DWHISPER_CLBLAST=ON
cmake --build build -j --config Release
```
or for newer NVIDIA GPU's (RTX 5000 series):
```
cmake -B build -DGGML_CUDA=1 -DCMAKE_CUDA_ARCHITECTURES="86"
cmake --build build -j --config Release
```
## Vulkan GPU support
Cross-vendor solution which allows you to accelerate workload on your GPU.
First, make sure your graphics card driver provides support for Vulkan API.
Now build `whisper.cpp` with Vulkan support:
```
cmake -B build -DGGML_VULKAN=1
cmake --build build -j --config Release
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
@ -348,89 +451,8 @@ First, make sure you have installed `openblas`: https://www.openblas.net/
Now build `whisper.cpp` with OpenBLAS support:
```
cmake -B build -DGGML_BLAS=1
cmake --build build -j --config Release
```
## Ascend NPU support
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
First, check if your Ascend NPU device is supported:
**Verified devices**
| Ascend NPU | Status |
|:-----------------------------:|:-------:|
| Atlas 300T A2 | Support |
Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/software/cann/community) . The lasted version of CANN is recommanded.
Now build `whisper.cpp` with CANN support:
```
cmake -B build -DGGML_CANN=1
cmake --build build -j --config Release
```
Run the inference examples as usual, for example:
```
./build/bin/whisper-cli -f samples/jfk.wav -m models/ggml-base.en.bin -t 8
```
*Notes:*
- If you have trouble with Ascend NPU device, please create a issue with **[CANN]** prefix/tag.
- If you run successfully with your Ascend NPU device, please help update the table `Verified devices`.
## Moore Threads GPU support
With Moore Threads cards the processing of the models is done efficiently on the GPU via muBLAS and custom MUSA kernels.
First, make sure you have installed `MUSA SDK rc4.0.1`: https://developer.mthreads.com/sdk/download/musa?equipment=&os=&driverVersion=&version=4.0.1
Now build `whisper.cpp` with MUSA support:
```
cmake -B build -DGGML_MUSA=1
cmake --build build -j --config Release
```
or specify the architecture for your Moore Threads GPU. For example, if you have a MTT S80 GPU, you can specify the architecture as follows:
```
cmake -B build -DGGML_MUSA=1 -DMUSA_ARCHITECTURES="21"
cmake --build build -j --config Release
```
## FFmpeg support (Linux only)
If you want to support more audio formats (such as Opus and AAC), you can turn on the `WHISPER_FFMPEG` build flag to enable FFmpeg integration.
First, you need to install required libraries:
```bash
# Debian/Ubuntu
sudo apt install libavcodec-dev libavformat-dev libavutil-dev
# RHEL/Fedora
sudo dnf install libavcodec-free-devel libavformat-free-devel libavutil-free-devel
```
Then you can build the project as follows:
```bash
cmake -B build -D WHISPER_FFMPEG=yes
cmake --build build
```
Run the following example to confirm it's working:
```bash
# Convert an audio file to Opus format
ffmpeg -i samples/jfk.wav jfk.opus
# Transcribe the audio file
./build/bin/whisper-cli --model models/ggml-base.en.bin --file jfk.opus
make clean
WHISPER_OPENBLAS=1 make -j
```
## Docker
@ -444,9 +466,8 @@ ffmpeg -i samples/jfk.wav jfk.opus
We have two Docker images available for this project:
1. `ghcr.io/ggml-org/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggml-org/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
3. `ghcr.io/ggml-org/whisper.cpp:main-musa`: Same as `main` but compiled with MUSA support. (platforms: `linux/amd64`)
1. `ghcr.io/ggerganov/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
### Usage
@ -459,38 +480,109 @@ docker run -it --rm \
docker run -it --rm \
-v path/to/models:/models \
-v path/to/audios:/audios \
whisper.cpp:main "whisper-cli -m /models/ggml-base.bin -f /audios/jfk.wav"
whisper.cpp:main "./main -m /models/ggml-base.bin -f /audios/jfk.wav"
# transcribe an audio file in samples folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "whisper-cli -m /models/ggml-base.bin -f ./samples/jfk.wav"
whisper.cpp:main "./main -m /models/ggml-base.bin -f ./samples/jfk.wav"
```
## Installing with Conan
You can install pre-built binaries for whisper.cpp or build it from source using [Conan](https://conan.io/). Use the following command:
```
conan install --requires="whisper-cpp/[*]" --build=missing
```
For detailed instructions on how to use Conan, please refer to the [Conan documentation](https://docs.conan.io/2/).
## Limitations
- Inference only
## Another example
Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
in about half a minute on a MacBook M1 Pro, using `medium.en` model:
<details>
<summary>Expand to see the result</summary>
```text
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 1024
whisper_model_load: n_audio_head = 16
whisper_model_load: n_audio_layer = 24
whisper_model_load: n_text_ctx = 448
whisper_model_load: n_text_state = 1024
whisper_model_load: n_text_head = 16
whisper_model_load: n_text_layer = 24
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 4
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
whisper_model_load: kv self size = 42.00 MB
whisper_model_load: kv cross size = 140.62 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: model ctx = 1462.35 MB
whisper_model_load: model size = 1462.12 MB
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
[00:03:13.000 --> 00:03:19.000] [Silence]
whisper_print_timings: fallbacks = 1 p / 0 h
whisper_print_timings: load time = 569.03 ms
whisper_print_timings: mel time = 146.85 ms
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
whisper_print_timings: total time = 32733.52 ms
```
</details>
## Real-time audio input example
This is a naive example of performing real-time inference on audio from your microphone.
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
More info is available in [issue #10](https://github.com/ggml-org/whisper.cpp/issues/10).
You will need to have [sdl2](https://wiki.libsdl.org/SDL2/Installation) installed for it to work properly.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```bash
cmake -B build -DWHISPER_SDL2=ON
cmake --build build --config Release
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
make stream
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
@ -501,7 +593,7 @@ Adding the `--print-colors` argument will print the transcribed text using an ex
to highlight words with high or low confidence:
```bash
./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
```
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
@ -511,7 +603,7 @@ to highlight words with high or low confidence:
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
```text
$ ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
@ -535,7 +627,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
```text
$ ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
@ -573,7 +665,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
## Speaker segmentation via tinydiarize (experimental)
More information about this approach is available here: https://github.com/ggml-org/whisper.cpp/pull/1058
More information about this approach is available here: https://github.com/ggerganov/whisper.cpp/pull/1058
Sample usage:
@ -582,7 +674,7 @@ Sample usage:
./models/download-ggml-model.sh small.en-tdrz
# run as usual, adding the "-tdrz" command-line argument
./build/bin/whisper-cli -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
./main -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
...
main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ...
...
@ -599,14 +691,14 @@ main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 pr
## Karaoke-style movie generation (experimental)
The [whisper-cli](examples/cli) example provides support for output of karaoke-style movies, where the
currently pronounced word is highlighted. Use the `-owts` argument and run the generated bash script.
The [main](examples/main) example provides support for output of karaoke-style movies, where the
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
This requires to have `ffmpeg` installed.
Here are a few _"typical"_ examples:
Here are a few *"typical"* examples:
```bash
./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
source ./samples/jfk.wav.wts
ffplay ./samples/jfk.wav.mp4
```
@ -616,7 +708,7 @@ https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b
---
```bash
./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
source ./samples/mm0.wav.wts
ffplay ./samples/mm0.wav.mp4
```
@ -626,7 +718,7 @@ https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-9
---
```bash
./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
source ./samples/gb0.wav.wts
ffplay ./samples/gb0.wav.mp4
```
@ -637,10 +729,10 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
## Video comparison of different models
Use the [scripts/bench-wts.sh](https://github.com/ggml-org/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
```bash
./scripts/bench-wts.sh samples/jfk.wav
./extra/bench-wts.sh samples/jfk.wav
ffplay ./samples/jfk.wav.all.mp4
```
@ -651,17 +743,17 @@ https://user-images.githubusercontent.com/1991296/223206245-2d36d903-cf8e-4f09-8
## Benchmarks
In order to have an objective comparison of the performance of the inference across different system configurations,
use the [whisper-bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
use the [bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
took to execute it. The results are summarized in the following Github issue:
[Benchmark results](https://github.com/ggml-org/whisper.cpp/issues/89)
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](scripts/bench.py).
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](bench.py).
You can run it with the following command, by default it will run against any standard model in the models folder.
```bash
python3 scripts/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
```
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
@ -681,141 +773,30 @@ You can download the converted models using the [models/download-ggml-model.sh](
or manually from here:
- https://huggingface.co/ggerganov/whisper.cpp
- https://ggml.ggerganov.com
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or [models/README.md](models/README.md).
## [Bindings](https://github.com/ggml-org/whisper.cpp/discussions/categories/bindings)
## [Bindings](https://github.com/ggerganov/whisper.cpp/discussions/categories/bindings)
- [x] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggml-org/whisper.cpp/discussions/310)
- [x] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggml-org/whisper.cpp/discussions/309)
- [x] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [x] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
- [x] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggml-org/whisper.cpp/discussions/312)
- [x] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [x] Java:
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
- [x] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggml-org/whisper.cpp/discussions/507)
- [x] Objective-C / Swift: [ggml-org/whisper.spm](https://github.com/ggml-org/whisper.spm) | [#313](https://github.com/ggml-org/whisper.cpp/discussions/313)
- [x] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [x] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
- [x] .NET: | [#422](https://github.com/ggml-org/whisper.cpp/discussions/422)
- [x] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [x] Python: | [#9](https://github.com/ggml-org/whisper.cpp/issues/9)
- [x] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [abdeladim-s/pywhispercpp](https://github.com/abdeladim-s/pywhispercpp) (Pybind11)
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
## XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
and macOS. It can be used in Swift projects without the need to compile the
library from source. For examples:
```swift
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "Whisper",
targets: [
.executableTarget(
name: "Whisper",
dependencies: [
"WhisperFramework"
]),
.binaryTarget(
name: "WhisperFramework",
url: "https://github.com/ggml-org/whisper.cpp/releases/download/v1.7.5/whisper-v1.7.5-xcframework.zip",
checksum: "c7faeb328620d6012e130f3d705c51a6ea6c995605f2df50f6e1ad68c59c6c4a"
)
]
)
```
## Voice Activity Detection (VAD)
Support for Voice Activity Detection (VAD) can be enabled using the `--vad`
argument to `whisper-cli`. In addition to this option a VAD model is also
required.
The way this works is that first the audio samples are passed through
the VAD model which will detect speech segments. Using this information the
only the speech segments that are detected are extracted from the original audio
input and passed to whisper for processing. This reduces the amount of audio
data that needs to be processed by whisper and can significantly speed up the
transcription process.
The following VAD models are currently supported:
### Silero-VAD
[Silero-vad](https://github.com/snakers4/silero-vad) is a lightweight VAD model
written in Python that is fast and accurate.
Models can be downloaded by running the following command on Linux or MacOS:
```console
$ ./models/download-vad-model.sh silero-v5.1.2
Downloading ggml model silero-v5.1.2 from 'https://huggingface.co/ggml-org/whisper-vad' ...
ggml-silero-v5.1.2.bin 100%[==============================================>] 864.35K --.-KB/s in 0.04s
Done! Model 'silero-v5.1.2' saved in '/path/models/ggml-silero-v5.1.2.bin'
You can now use it like this:
$ ./build/bin/whisper-cli -vm /path/models/ggml-silero-v5.1.2.bin --vad -f samples/jfk.wav -m models/ggml-base.en.bin
```
And the following command on Windows:
```console
> .\models\download-vad-model.cmd silero-v5.1.2
Downloading vad model silero-v5.1.2...
Done! Model silero-v5.1.2 saved in C:\Users\danie\work\ai\whisper.cpp\ggml-silero-v5.1.2.bin
You can now use it like this:
C:\path\build\bin\Release\whisper-cli.exe -vm C:\path\ggml-silero-v5.1.2.bin --vad -m models/ggml-base.en.bin -f samples\jfk.wav
```
To see a list of all available models, run the above commands without any
arguments.
This model can be also be converted manually to ggml using the following command:
```console
$ python3 -m venv venv && source venv/bin/activate
$ (venv) pip install silero-vad
$ (venv) $ python models/convert-silero-vad-to-ggml.py --output models/silero.bin
Saving GGML Silero-VAD model to models/silero-v5.1.2-ggml.bin
```
And it can then be used with whisper as follows:
```console
$ ./build/bin/whisper-cli \
--file ./samples/jfk.wav \
--model ./models/ggml-base.en.bin \
--vad \
--vad-model ./models/silero-v5.1.2-ggml.bin
```
### VAD Options
* --vad-threshold: Threshold probability for speech detection. A probability
for a speech segment/frame above this threshold will be considered as speech.
* --vad-min-speech-duration-ms: Minimum speech duration in milliseconds. Speech
segments shorter than this value will be discarded to filter out brief noise or
false positives.
* --vad-min-silence-duration-ms: Minimum silence duration in milliseconds. Silence
periods must be at least this long to end a speech segment. Shorter silence
periods will be ignored and included as part of the speech.
* --vad-max-speech-duration-s: Maximum speech duration in seconds. Speech segments
longer than this will be automatically split into multiple segments at silence
points exceeding 98ms to prevent excessively long segments.
* --vad-speech-pad-ms: Speech padding in milliseconds. Adds this amount of padding
before and after each detected speech segment to avoid cutting off speech edges.
* --vad-samples-overlap: Amount of audio to extend from each speech segment into
the next one, in seconds (e.g., 0.10 = 100ms overlap). This ensures speech isn't
cut off abruptly between segments when they're concatenated together.
## Examples
There are various examples of using the library for different projects in the [examples](examples) folder.
@ -823,24 +804,25 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
| Example | Web | Description |
| --------------------------------------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
| [whisper-cli](examples/cli) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [whisper-bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [whisper-stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [whisper-command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [whisper-server](examples/server) | | HTTP transcription server with OAI-like API |
| [whisper-talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggml-org/whisper.cpp/issues/185) |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
| [server](examples/server) | | HTTP transcription server with OAI-like API |
## [Discussions](https://github.com/ggml-org/whisper.cpp/discussions)
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)
If you have any kind of feedback about this project feel free to use the Discussions section and open a new topic.
You can use the [Show and tell](https://github.com/ggml-org/whisper.cpp/discussions/categories/show-and-tell) category
You can use the [Show and tell](https://github.com/ggerganov/whisper.cpp/discussions/categories/show-and-tell) category
to share your own projects that use `whisper.cpp`. If you have a question, make sure to check the
[Frequently asked questions (#126)](https://github.com/ggml-org/whisper.cpp/discussions/126) discussion.
[Frequently asked questions (#126)](https://github.com/ggerganov/whisper.cpp/discussions/126) discussion.

View File

@ -1,249 +1,249 @@
# whisper.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware acceleratorssuch as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid re-inventing the wheel, this code refers other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The whisper.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use whisper.cpp for X86 (Intel MKL build).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel® oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute whisper.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav
```
or run by script:
```
./examples/sycl/run_whisper.sh
```
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|WHISPER_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, WHISPER_SYCL=ON is mandatory.|
|WHISPER_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path.For FP32, do not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.
# whisper.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators<EFBFBD>such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid re-inventing the wheel, this code refers other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel<EFBFBD> DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The whisper.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use whisper.cpp for X86 (Intel MKL build).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel<EFBFBD> oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel<EFBFBD> oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute whisper.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav
```
or run by script:
```
./examples/sycl/run_whisper.sh
```
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|WHISPER_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, WHISPER_SYCL=ON is mandatory.|
|WHISPER_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path.For FP32, do not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.

View File

@ -11,16 +11,11 @@ UNAME_M := $(shell uname -m)
endif
GGML_METAL_PATH_RESOURCES := $(abspath ../..)
BUILD_DIR := build_go
BUILD_DIR := build
MODELS_DIR := models
EXAMPLES_DIR := $(wildcard examples/*)
INCLUDE_PATH := $(abspath ../../include):$(abspath ../../ggml/include)
LIBRARY_PATH := $(abspath ../../${BUILD_DIR}/src:$(abspath ../../${BUILD_DIR}/ggml/src))
ifeq ($(GGML_CUDA),1)
LIBRARY_PATH := $(LIBRARY_PATH):$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib/
BUILD_FLAGS := -ldflags "-extldflags '-lcudart -lcuda -lcublas'"
endif
INCLUDE_PATH := $(abspath ../..)
LIBRARY_PATH := $(abspath ../..)
ifeq ($(UNAME_S),Darwin)
EXT_LDFLAGS := -framework Foundation -framework Metal -framework MetalKit
@ -29,10 +24,8 @@ endif
all: clean whisper examples
whisper: mkdir
cmake -S ../.. -B ../../${BUILD_DIR} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF
cmake --build ../../${BUILD_DIR} --target whisper
@echo Build whisper
@${MAKE} -C ../.. libwhisper.a
test: model-small whisper modtidy
ifeq ($(UNAME_S),Darwin)

View File

@ -31,7 +31,7 @@ func main() {
if err != nil {
panic(err)
}
if err := context.Process(samples, nil, nil, nil); err != nil {
if err := context.Process(samples, nil, nil); err != nil {
return err
}
@ -51,7 +51,7 @@ func main() {
In order to build, you need to have the Go compiler installed. You can get it from [here](https://golang.org/dl/). Run the tests with:
```bash
git clone https://github.com/ggml-org/whisper.cpp.git
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp/bindings/go
make test
```
@ -62,12 +62,6 @@ This will compile a static `libwhisper.a` in a `build` folder, download a model
make examples
```
To build using cuda support add `GGML_CUDA=1`:
```bash
GGML_CUDA=1 make examples
```
The examples are placed in the `build` directory. Once built, you can download all the models with the following command:
```bash
@ -98,7 +92,7 @@ The API Documentation:
Getting help:
* Follow the discussion for the go bindings [here](https://github.com/ggml-org/whisper.cpp/discussions/312)
* Follow the discussion for the go bindings [here](https://github.com/ggerganov/whisper.cpp/discussions/312)
## License

View File

@ -1,5 +1,5 @@
/*
github.com/ggml-org/whisper.cpp/bindings/go
github.com/ggerganov/whisper.cpp/bindings/go
provides a speech-to-text service bindings for the Go programming language.
*/
package whisper

View File

@ -9,23 +9,22 @@ import (
// ContextForSignal returns a context object which is cancelled when a signal
// is received. It returns nil if no signal parameter is provided
func ContextForSignal(signals ...os.Signal) context.Context {
if len(signals) == 0 {
return nil
}
if len(signals) == 0 {
return nil
}
ch := make(chan os.Signal, 1) // Buffered channel with space for 1 signal
ctx, cancel := context.WithCancel(context.Background())
ch := make(chan os.Signal)
ctx, cancel := context.WithCancel(context.Background())
// Send message on channel when signal received
signal.Notify(ch, signals...)
// Send message on channel when signal received
signal.Notify(ch, signals...)
// When any signal is received, call cancel
go func() {
<-ch
cancel()
}()
// When any signal received, call cancel
go func() {
<-ch
cancel()
}()
// Return success
return ctx
// Return success
return ctx
}

View File

@ -9,7 +9,6 @@ import (
"net/url"
"os"
"path/filepath"
"strings"
"syscall"
"time"
)
@ -18,27 +17,14 @@ import (
// CONSTANTS
const (
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/" // The location of the models
srcExt = ".bin" // Filename extension
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
srcUrl = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main" // The location of the models
srcExt = ".bin" // Filename extension
bufSize = 1024 * 64 // Size of the buffer used for downloading the model
)
var (
// The models which will be downloaded, if no model is specified as an argument
modelNames = []string{
"tiny", "tiny-q5_1", "tiny-q8_0",
"tiny.en", "tiny.en-q5_1", "tiny.en-q8_0",
"base", "base-q5_1", "base-q8_0",
"base.en", "base.en-q5_1", "base.en-q8_0",
"small", "small-q5_1", "small-q8_0",
"small.en", "small.en-q5_1", "small.en-q8_0",
"medium", "medium-q5_0", "medium-q8_0",
"medium.en", "medium.en-q5_0", "medium.en-q8_0",
"large-v1",
"large-v2", "large-v2-q5_0", "large-v2-q8_0",
"large-v3", "large-v3-q5_0",
"large-v3-turbo", "large-v3-turbo-q5_0", "large-v3-turbo-q8_0",
}
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3"}
)
var (
@ -58,25 +44,7 @@ var (
func main() {
flag.Usage = func() {
name := filepath.Base(flag.CommandLine.Name())
fmt.Fprintf(flag.CommandLine.Output(), `
Usage: %s [options] [<model>...]
Options:
-out string Specify the output folder where models will be saved.
Default: Current working directory.
-timeout duration Set the maximum duration for downloading a model.
Example: 10m, 1h (default: 30m0s).
-quiet Suppress all output except errors.
Examples:
1. Download a specific model:
%s -out ./models tiny-q8_0
2. Download all models:
%s -out ./models
`, name, name, name)
fmt.Fprintf(flag.CommandLine.Output(), "Usage: %s [options] <model>\n\n", name)
flag.PrintDefaults()
}
flag.Parse()
@ -146,87 +114,23 @@ func GetOut() (string, error) {
// GetModels returns the list of models to download
func GetModels() []string {
if flag.NArg() == 0 {
fmt.Println("No model specified.")
fmt.Println("Preparing to download all models...")
// Calculate total download size
fmt.Println("Calculating total download size...")
totalSize, err := CalculateTotalDownloadSize(modelNames)
if err != nil {
fmt.Println("Error calculating download sizes:", err)
os.Exit(1)
}
fmt.Println("View available models: https://huggingface.co/ggerganov/whisper.cpp/tree/main")
fmt.Printf("Total download size: %.2f GB\n", float64(totalSize)/(1024*1024*1024))
fmt.Println("Would you like to download all models? (y/N)")
// Prompt for user input
var response string
fmt.Scanln(&response)
if response != "y" && response != "Y" {
fmt.Println("Aborting. Specify a model to download.")
os.Exit(0)
}
return modelNames // Return all models if confirmed
return modelNames
} else {
return flag.Args()
}
return flag.Args() // Return specific models if arguments are provided
}
func CalculateTotalDownloadSize(models []string) (int64, error) {
var totalSize int64
client := http.Client{}
for _, model := range models {
modelURL, err := URLForModel(model)
if err != nil {
return 0, err
}
// Issue a HEAD request to get the file size
req, err := http.NewRequest("HEAD", modelURL, nil)
if err != nil {
return 0, err
}
resp, err := client.Do(req)
if err != nil {
return 0, err
}
resp.Body.Close()
if resp.StatusCode != http.StatusOK {
fmt.Printf("Warning: Unable to fetch size for %s (HTTP %d)\n", model, resp.StatusCode)
continue
}
size := resp.ContentLength
totalSize += size
}
return totalSize, nil
}
// URLForModel returns the URL for the given model on huggingface.co
func URLForModel(model string) (string, error) {
// Ensure "ggml-" prefix is added only once
if !strings.HasPrefix(model, "ggml-") {
model = "ggml-" + model
}
// Ensure ".bin" extension is added only once
if filepath.Ext(model) != srcExt {
model += srcExt
}
// Parse the base URL
url, err := url.Parse(srcUrl)
if err != nil {
return "", err
} else {
url.Path = filepath.Join(url.Path, model)
}
// Ensure no trailing slash in the base URL
url.Path = fmt.Sprintf("%s/%s", strings.TrimSuffix(url.Path, "/"), model)
return url.String(), nil
}

View File

@ -68,6 +68,10 @@ func (flags *Flags) GetOut() string {
return strings.ToLower(flags.Lookup("out").Value.String())
}
func (flags *Flags) IsSpeedup() bool {
return flags.Lookup("speedup").Value.String() == "true"
}
func (flags *Flags) IsTokens() bool {
return flags.Lookup("tokens").Value.String() == "true"
}
@ -107,6 +111,10 @@ func (flags *Flags) SetParams(context whisper.Context) error {
fmt.Fprintf(flags.Output(), "Setting duration to %v\n", duration)
context.SetDuration(duration)
}
if flags.IsSpeedup() {
fmt.Fprintf(flags.Output(), "Setting speedup to true\n")
context.SetSpeedup(true)
}
if threads := flags.GetThreads(); threads != 0 {
fmt.Fprintf(flags.Output(), "Setting threads to %d\n", threads)
context.SetThreads(threads)
@ -138,6 +146,7 @@ func registerFlags(flag *Flags) {
flag.Duration("offset", 0, "Time offset")
flag.Duration("duration", 0, "Duration of audio to process")
flag.Uint("threads", 0, "Number of threads to use")
flag.Bool("speedup", false, "Enable speedup")
flag.Uint("max-len", 0, "Maximum segment length in characters")
flag.Uint("max-tokens", 0, "Maximum tokens per segment")
flag.Float64("word-thold", 0, "Maximum segment score")

View File

@ -67,7 +67,7 @@ func Process(model whisper.Model, path string, flags *Flags) error {
// Process the data
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
context.ResetTimings()
if err := context.Process(data, nil, cb, nil); err != nil {
if err := context.Process(data, cb, nil); err != nil {
return err
}

View File

@ -1,10 +1,10 @@
module github.com/ggerganov/whisper.cpp/bindings/go
go 1.23
go 1.19
require (
github.com/go-audio/wav v1.1.0
github.com/stretchr/testify v1.9.0
github.com/stretchr/testify v1.8.1
)
require (

View File

@ -1,3 +1,4 @@
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
@ -8,9 +9,15 @@ github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=

View File

@ -47,6 +47,10 @@ func (p *Params) SetPrintTimestamps(v bool) {
p.print_timestamps = toBool(v)
}
func (p *Params) SetSpeedup(v bool) {
p.speed_up = toBool(v)
}
// Set language id
func (p *Params) SetLanguage(lang int) error {
if lang == -1 {
@ -119,28 +123,6 @@ func (p *Params) SetAudioCtx(n int) {
p.audio_ctx = C.int(n)
}
func (p *Params) SetMaxContext(n int) {
p.n_max_text_ctx = C.int(n)
}
func (p *Params) SetBeamSize(n int) {
p.beam_search.beam_size = C.int(n)
}
func (p *Params) SetEntropyThold(t float32) {
p.entropy_thold = C.float(t)
}
func (p *Params) SetTemperature(t float32) {
p.temperature = C.float(t)
}
// Sets the fallback temperature incrementation
// Pass -1.0 to disable this feature
func (p *Params) SetTemperatureFallback(t float32) {
p.temperature_inc = C.float(t)
}
// Set initial prompt
func (p *Params) SetInitialPrompt(prompt string) {
p.initial_prompt = C.CString(prompt)
@ -171,10 +153,6 @@ func (p *Params) String() string {
str += fmt.Sprintf(" duration_ms=%d", p.duration_ms)
str += fmt.Sprintf(" audio_ctx=%d", p.audio_ctx)
str += fmt.Sprintf(" initial_prompt=%s", C.GoString(p.initial_prompt))
str += fmt.Sprintf(" entropy_thold=%f", p.entropy_thold)
str += fmt.Sprintf(" temperature=%f", p.temperature)
str += fmt.Sprintf(" temperature_inc=%f", p.temperature_inc)
str += fmt.Sprintf(" beam_size=%d", p.beam_search.beam_size)
if p.translate {
str += " translate"
}
@ -199,6 +177,9 @@ func (p *Params) String() string {
if p.token_timestamps {
str += " token_timestamps"
}
if p.speed_up {
str += " speed_up"
}
return str + ">"
}

View File

@ -71,15 +71,16 @@ func (context *context) Language() string {
return whisper.Whisper_lang_str(context.params.Language())
}
func (context *context) DetectedLanguage() string {
return whisper.Whisper_lang_str(context.model.ctx.Whisper_full_lang_id())
}
// Set translate flag
func (context *context) SetTranslate(v bool) {
context.params.SetTranslate(v)
}
// Set speedup flag
func (context *context) SetSpeedup(v bool) {
context.params.SetSpeedup(v)
}
func (context *context) SetSplitOnWord(v bool) {
context.params.SetSplitOnWord(v)
}
@ -129,32 +130,6 @@ func (context *context) SetAudioCtx(n uint) {
context.params.SetAudioCtx(int(n))
}
// Set maximum number of text context tokens to store
func (context *context) SetMaxContext(n int) {
context.params.SetMaxContext(n)
}
// Set Beam Size
func (context *context) SetBeamSize(n int) {
context.params.SetBeamSize(n)
}
// Set Entropy threshold
func (context *context) SetEntropyThold(t float32) {
context.params.SetEntropyThold(t)
}
// Set Temperature
func (context *context) SetTemperature(t float32) {
context.params.SetTemperature(t)
}
// Set the fallback temperature incrementation
// Pass -1.0 to disable this feature
func (context *context) SetTemperatureFallback(t float32) {
context.params.SetTemperatureFallback(t)
}
// Set initial prompt
func (context *context) SetInitialPrompt(prompt string) {
context.params.SetInitialPrompt(prompt)
@ -193,7 +168,6 @@ func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]f
// Process new sample data and return any errors
func (context *context) Process(
data []float32,
callEncoderBegin EncoderBeginCallback,
callNewSegment SegmentCallback,
callProgress ProgressCallback,
) error {
@ -208,20 +182,7 @@ func (context *context) Process(
// We don't do parallel processing at the moment
processors := 0
if processors > 1 {
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, callEncoderBegin,
func(new int) {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
callNewSegment(toSegment(context.model.ctx, i))
}
}
}); err != nil {
return err
}
} else if err := context.model.ctx.Whisper_full(context.params, data, callEncoderBegin,
func(new int) {
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, nil, func(new int) {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
@ -229,11 +190,22 @@ func (context *context) Process(
callNewSegment(toSegment(context.model.ctx, i))
}
}
}, func(progress int) {
if callProgress != nil {
callProgress(progress)
}
}); err != nil {
return err
}
} else if err := context.model.ctx.Whisper_full(context.params, data, nil, func(new int) {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
callNewSegment(toSegment(context.model.ctx, i))
}
}
}, func(progress int) {
if callProgress != nil {
callProgress(progress)
}
}); err != nil {
return err
}

View File

@ -4,121 +4,52 @@ import (
"os"
"testing"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
// Packages
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
assert "github.com/stretchr/testify/assert"
)
func TestSetLanguage(t *testing.T) {
assert := assert.New(t)
const (
ModelPath = "../../models/ggml-tiny.bin"
SamplePath = "../../samples/jfk.wav"
)
func Test_Whisper_000(t *testing.T) {
assert := assert.New(t)
if _, err := os.Stat(ModelPath); os.IsNotExist(err) {
t.Skip("Skipping test, model not found:", ModelPath)
}
if _, err := os.Stat(SamplePath); os.IsNotExist(err) {
t.Skip("Skipping test, sample not found:", SamplePath)
}
// Load model
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
assert.NoError(model.Close())
t.Log("languages=", model.Languages())
}
func Test_Whisper_001(t *testing.T) {
assert := assert.New(t)
if _, err := os.Stat(ModelPath); os.IsNotExist(err) {
t.Skip("Skipping test, model not found:", ModelPath)
}
if _, err := os.Stat(SamplePath); os.IsNotExist(err) {
t.Skip("Skipping test, sample not found:", SamplePath)
}
// Load model
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
// Get context for decoding
ctx, err := model.NewContext()
assert.NoError(err)
assert.NotNil(ctx)
// This returns an error since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
err = context.SetLanguage("en")
assert.Error(err)
}
func TestContextModelIsMultilingual(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
isMultilingual := context.IsMultilingual()
// This returns false since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
assert.False(isMultilingual)
}
func TestLanguage(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
// This always returns en since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
expectedLanguage := "en"
actualLanguage := context.Language()
assert.Equal(expectedLanguage, actualLanguage)
}
func TestProcess(t *testing.T) {
assert := assert.New(t)
fh, err := os.Open(SamplePath)
assert.NoError(err)
defer fh.Close()
// Decode the WAV file - load the full buffer
dec := wav.NewDecoder(fh)
buf, err := dec.FullPCMBuffer()
assert.NoError(err)
assert.Equal(uint16(1), dec.NumChans)
data := buf.AsFloat32Buffer().Data
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
err = context.Process(data, nil, nil, nil)
assert.NoError(err)
}
func TestDetectedLanguage(t *testing.T) {
assert := assert.New(t)
fh, err := os.Open(SamplePath)
assert.NoError(err)
defer fh.Close()
// Decode the WAV file - load the full buffer
dec := wav.NewDecoder(fh)
buf, err := dec.FullPCMBuffer()
assert.NoError(err)
assert.Equal(uint16(1), dec.NumChans)
data := buf.AsFloat32Buffer().Data
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
err = context.Process(data, nil, nil, nil)
assert.NoError(err)
expectedLanguage := "en"
actualLanguage := context.DetectedLanguage()
assert.Equal(expectedLanguage, actualLanguage)
}

View File

@ -16,10 +16,6 @@ type SegmentCallback func(Segment)
// processing. It is called during the Process function
type ProgressCallback func(int)
// EncoderBeginCallback is the callback function for checking if we want to
// continue processing. It is called during the Process function
type EncoderBeginCallback func() bool
// Model is the interface to a whisper model. Create a new model with the
// function whisper.New(string)
type Model interface {
@ -35,35 +31,30 @@ type Model interface {
Languages() []string
}
// Context is the speech recognition context.
// Context is the speach recognition context.
type Context interface {
SetLanguage(string) error // Set the language to use for speech recognition, use "auto" for auto detect language.
SetTranslate(bool) // Set translate flag
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
DetectedLanguage() string // Get detected language
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetMaxContext(n int) // Set maximum number of text context tokens to store
SetBeamSize(n int) // Set Beam Size
SetEntropyThold(t float32) // Set Entropy threshold
SetInitialPrompt(prompt string) // Set initial prompt
SetTemperature(t float32) // Set temperature
SetTemperatureFallback(t float32) // Set temperature incrementation
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetInitialPrompt(prompt string) // Set initial prompt
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the
// callback function during processing.
Process([]float32, EncoderBeginCallback, SegmentCallback, ProgressCallback) error
Process([]float32, SegmentCallback, ProgressCallback) error
// After process is called, return segments until the end of the stream
// is reached, when io.EOF is returned.

View File

@ -1,91 +0,0 @@
package whisper_test
import (
"testing"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
assert "github.com/stretchr/testify/assert"
)
func TestNew(t *testing.T) {
assert := assert.New(t)
t.Run("valid model path", func(t *testing.T) {
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
})
t.Run("invalid model path", func(t *testing.T) {
invalidModelPath := "invalid-model-path.bin"
model, err := whisper.New(invalidModelPath)
assert.Error(err)
assert.Nil(model)
})
}
func TestClose(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
err = model.Close()
assert.NoError(err)
}
func TestNewContext(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
assert.NotNil(context)
}
func TestIsMultilingual(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
isMultilingual := model.IsMultilingual()
// This returns false since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
assert.False(isMultilingual)
}
func TestLanguages(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
expectedLanguages := []string{
"en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl",
"ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk",
"el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr",
"bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn",
"sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne",
"mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn",
"yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi",
"lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my",
"bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su",
}
actualLanguages := model.Languages()
assert.Equal(expectedLanguages, actualLanguages)
}

View File

@ -1,6 +0,0 @@
package whisper_test
const (
ModelPath = "../../models/ggml-small.en.bin"
SamplePath = "../../samples/jfk.wav"
)

View File

@ -9,7 +9,7 @@ import (
// CGO
/*
#cgo LDFLAGS: -lwhisper -lggml -lggml-base -lggml-cpu -lm -lstdc++ -fopenmp
#cgo LDFLAGS: -lwhisper -lm -lstdc++
#cgo darwin LDFLAGS: -framework Accelerate -framework Metal -framework Foundation -framework CoreGraphics
#include <whisper.h>
#include <stdlib.h>

1
bindings/ios Submodule

Submodule bindings/ios added at b21b6ff325

View File

@ -31,10 +31,10 @@ public class Example {
var whisperParams = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// custom configuration if required
whisperParams.temperature_inc = 0f;
var samples = readAudio(); // divide each value by 32767.0f
whisper.fullTranscribe(whisperParams, samples);
int segmentCount = whisper.getTextSegmentCount(context);
for (int i = 0; i < segmentCount; i++) {
String text = whisper.getTextSegment(context, i);
@ -52,7 +52,7 @@ public class Example {
In order to build, you need to have the JDK 8 or higher installed. Run the tests with:
```bash
git clone https://github.com/ggml-org/whisper.cpp.git
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp/bindings/java
./gradlew build
@ -67,5 +67,5 @@ copy /y ..\..\build\bin\Release\whisper.dll build\generated\resources\main\win32
## License
The license for the Java bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.

View File

@ -25,43 +25,25 @@ sourceSets {
}
tasks.register('copyLibwhisperDynlib', Copy) {
from '../../build/src'
include 'libwhisper.dylib'
into 'build/generated/resources/main'
from '../../build'
include 'libwhisper.dynlib'
into 'build/generated/resources/main/darwin'
}
tasks.register('copyLibwhisperSo', Copy) {
from '../../build/src'
from '../../build'
include 'libwhisper.so'
into 'build/generated/resources/main'
into 'build/generated/resources/main/linux-x86-64'
}
tasks.register('copyWhisperDLL', Copy) {
from '../../build/bin/Release'
tasks.register('copyWhisperDll', Copy) {
from '../../build/Release'
include 'whisper.dll'
into 'build/generated/resources/main'
}
tasks.register('copyGGML_BASE_DLL', Copy) {
from '../../build/bin/Release'
include 'ggml-base.dll'
into 'build/generated/resources/main'
}
tasks.register('copyGGML_DLL', Copy) {
from '../../build/bin/Release'
include 'ggml.dll'
into 'build/generated/resources/main'
}
tasks.register('copyGGML_CPU_DLL', Copy) {
from '../../build/bin/Release'
include 'ggml-cpu.dll'
into 'build/generated/resources/main'
into 'build/generated/resources/main/windows-x86-64'
}
tasks.register('copyLibs') {
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDLL, copyGGML_BASE_DLL, copyGGML_DLL, copyGGML_CPU_DLL
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDll
}
test {
@ -73,12 +55,7 @@ java {
withJavadocJar()
}
sourcesJar() {
dependsOn copyLibs
}
jar {
dependsOn copyLibs
exclude '**/whisper_java.exp', '**/whisper_java.lib'
}
@ -90,9 +67,6 @@ tasks.withType(Test) {
useJUnitPlatform()
}
test.dependsOn copyLibs
processResources.dependsOn copyLibs
dependencies {
implementation "net.java.dev.jna:jna:5.13.0"
testImplementation "org.junit.jupiter:junit-jupiter:5.9.2"

0
bindings/java/gradlew vendored Executable file → Normal file
View File

View File

@ -1,24 +0,0 @@
package io.github.ggerganov.whispercpp;
/**
* Presets for alignment heads in DTW token timestamps
*/
public class WhisperConstants {
// Alignment heads presets
public static final int WHISPER_AHEADS_NONE = 0;
public static final int WHISPER_AHEADS_TINY_EN = 1;
public static final int WHISPER_AHEADS_TINY = 2;
public static final int WHISPER_AHEADS_BASE_EN = 3;
public static final int WHISPER_AHEADS_BASE = 4;
public static final int WHISPER_AHEADS_SMALL_EN = 5;
public static final int WHISPER_AHEADS_SMALL = 6;
public static final int WHISPER_AHEADS_MEDIUM_EN = 7;
public static final int WHISPER_AHEADS_MEDIUM = 8;
public static final int WHISPER_AHEADS_LARGE_V1 = 9;
public static final int WHISPER_AHEADS_LARGE_V2 = 10;
public static final int WHISPER_AHEADS_LARGE_V3 = 11;
public static final int WHISPER_AHEADS_LARGE_V3_TURBO = 12;
public static final int WHISPER_AHEADS_CUSTOM = 13;
public static final int WHISPER_AHEADS_N_TOP_MOST = 14;
public static final int WHISPER_AHEADS_COUNT = 15;
}

View File

@ -1,9 +1,7 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.NativeLong;
import com.sun.jna.Structure;
import com.sun.jna.ptr.PointerByReference;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.ggml.GgmlType;
import io.github.ggerganov.whispercpp.WhisperModel;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
@ -11,26 +9,33 @@ import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import java.util.List;
public class WhisperContext extends Structure {
public NativeLong t_load_us;
public NativeLong t_start_us;
int t_load_us = 0;
int t_start_us = 0;
/** weight type (FP32 / FP16 / QX) */
public GgmlType wtype = GgmlType.GGML_TYPE_F16;
GgmlType wtype = GgmlType.GGML_TYPE_F16;
/** intermediate type (FP32 or FP16) */
public GgmlType itype = GgmlType.GGML_TYPE_F16;
GgmlType itype = GgmlType.GGML_TYPE_F16;
public WhisperContextParams.ByValue params;
public Pointer model;
public Pointer vocab;
public Pointer state;
// WhisperModel model;
public PointerByReference model;
// whisper_vocab vocab;
// whisper_state * state = nullptr;
public PointerByReference vocab;
public PointerByReference state;
/** populated by whisper_init_from_file_with_params() */
public Pointer path_model;
String path_model;
WhisperContextParams params;
@Override
protected List<String> getFieldOrder() {
return List.of("t_load_us", "t_start_us", "wtype", "itype",
"params", "model", "vocab", "state", "path_model");
}
// public static class ByReference extends WhisperContext implements Structure.ByReference {
// }
//
// public static class ByValue extends WhisperContext implements Structure.ByValue {
// }
//
// @Override
// protected List<String> getFieldOrder() {
// return List.of("t_load_us", "t_start_us", "wtype", "itype", "model", "vocab", "state", "path_model");
// }
}

View File

@ -43,11 +43,11 @@ public class WhisperCpp implements AutoCloseable {
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
* @param params - params to use when initialising the context
*/
public void initContext(String modelPath, WhisperContextParams.ByValue params) throws FileNotFoundException {
public void initContext(String modelPath, WhisperContextParams params) throws FileNotFoundException {
initContextImpl(modelPath, params);
}
private void initContextImpl(String modelPath, WhisperContextParams.ByValue params) throws FileNotFoundException {
private void initContextImpl(String modelPath, WhisperContextParams params) throws FileNotFoundException {
if (ctx != null) {
lib.whisper_free(ctx);
}
@ -69,13 +69,15 @@ public class WhisperCpp implements AutoCloseable {
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Returns a ByValue instance to ensure proper parameter passing to native code.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_context_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*/
public WhisperContextParams.ByValue getContextDefaultParams() {
WhisperContextParams.ByValue valueParams = new WhisperContextParams.ByValue(
lib.whisper_context_default_params_by_ref());
valueParams.read();
return valueParams;
public WhisperContextParams getContextDefaultParams() {
paramsPointer = lib.whisper_context_default_params_by_ref();
WhisperContextParams params = new WhisperContextParams(paramsPointer);
params.read();
return params;
}
/**
@ -86,7 +88,7 @@ public class WhisperCpp implements AutoCloseable {
*
* @param strategy - GREEDY
*/
public WhisperFullParams.ByValue getFullDefaultParams(WhisperSamplingStrategy strategy) {
public WhisperFullParams getFullDefaultParams(WhisperSamplingStrategy strategy) {
Pointer pointer;
// whisper_full_default_params_by_ref allocates memory which we need to delete, so only create max 1 pointer for each strategy.
@ -102,7 +104,7 @@ public class WhisperCpp implements AutoCloseable {
pointer = beamParamsPointer;
}
WhisperFullParams.ByValue params = new WhisperFullParams.ByValue(pointer);
WhisperFullParams params = new WhisperFullParams(pointer);
params.read();
return params;
}
@ -136,21 +138,15 @@ public class WhisperCpp implements AutoCloseable {
}
/**
* Run the entire model: PCM -&gt; log mel spectrogram -&gt; encoder -&gt; decoder -&gt; text.
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text.
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
public String fullTranscribe(WhisperFullParams.ByValue whisperParams, float[] audioData) throws IOException {
public String fullTranscribe(WhisperFullParams whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
/*
WhisperFullParams.ByValue valueParams = new WhisperFullParams.ByValue(
lib.whisper_full_default_params_by_ref(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH.ordinal()));
valueParams.read();
*/
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
throw new IOException("Failed to process audio");
}
@ -167,16 +163,7 @@ public class WhisperCpp implements AutoCloseable {
return str.toString().trim();
}
/**
* Full transcribe with time list.
*
* @param whisperParams the whisper params
* @param audioData the audio data
* @return the list
* @throws IOException the io exception
*/
public List<WhisperSegment> fullTranscribeWithTime(WhisperFullParams.ByValue whisperParams, float[] audioData) throws IOException {
public List<WhisperSegment> fullTranscribeWithTime(WhisperFullParams whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
@ -188,6 +175,7 @@ public class WhisperCpp implements AutoCloseable {
int nSegments = lib.whisper_full_n_segments(ctx);
List<WhisperSegment> segments= new ArrayList<>(nSegments);
for (int i = 0; i < nSegments; i++) {
long t0 = lib.whisper_full_get_segment_t0(ctx, i);
String text = lib.whisper_full_get_segment_text(ctx, i);

View File

@ -9,7 +9,6 @@ import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
public interface WhisperCppJnaLibrary extends Library {
WhisperCppJnaLibrary instance = Native.load("whisper", WhisperCppJnaLibrary.class);
String whisper_print_system_info();
@ -21,7 +20,7 @@ public interface WhisperCppJnaLibrary extends Library {
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file(String path_model);
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
@ -39,7 +38,7 @@ public interface WhisperCppJnaLibrary extends Library {
* @param params Pointer to whisper_context_params
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file_with_params(String path_model, WhisperContextParams.ByValue params);
Pointer whisper_init_from_file_with_params(String path_model, WhisperContextParams params);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer.
@ -181,12 +180,12 @@ public interface WhisperCppJnaLibrary extends Library {
/**
* @return the id of the specified language, returns -1 if not found.
* Examples:
* "de" -&gt; 2
* "german" -&gt; 2
* "de" -> 2
* "german" -> 2
*/
int whisper_lang_id(String lang);
/** @return the short string of the specified language id (e.g. 2 -&gt; "de"), returns nullptr if not found */
/** @return the short string of the specified language id (e.g. 2 -> "de"), returns nullptr if not found */
String whisper_lang_str(int id);
/**
@ -269,21 +268,20 @@ public interface WhisperCppJnaLibrary extends Library {
void whisper_free_params(Pointer params);
/**
* Run the entire model: PCM -&gt; log mel spectrogram -&gt; encoder -&gt; decoder -&gt; text
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
int whisper_full(Pointer ctx, WhisperFullParams.ByValue params, final float[] samples, int n_samples);
int whisper_full(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples);
public int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams.ByValue params, float[] samples, int n_samples);
//int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
// Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
// Result is stored in the default state of the context
// Not thread safe if executed in parallel on the same context.
// It seems this approach can offer some speedup in some cases.
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
int whisper_full_parallel(Pointer ctx, WhisperFullParams.ByValue params, final float[] samples, int n_samples, int n_processors);
int whisper_full_parallel(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples, int n_processors);
/**
* Number of generated text segments.
@ -306,6 +304,14 @@ public interface WhisperCppJnaLibrary extends Library {
/** Language id associated with the provided state */
int whisper_full_lang_id_from_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
* @return 0 on success
*/
int whisper_pcm_to_mel_phase_vocoder(Pointer ctx, final float[] samples, int n_samples, int n_threads);
int whisper_pcm_to_mel_phase_vocoder_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/** Get the start time of the specified segment. */
long whisper_full_get_segment_t0(Pointer ctx, int i_segment);

View File

@ -1,17 +0,0 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
/**
* Callback for aborting GGML computation
* Maps to the C typedef: bool (*ggml_abort_callback)(void * data)
*/
public interface GgmlAbortCallback extends Callback {
/**
* Return true to abort the computation, false to continue
*
* @param data User data passed to the callback
* @return true to abort, false to continue
*/
boolean invoke(com.sun.jna.Pointer data);
}

View File

@ -1,30 +0,0 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
public class WhisperAhead extends Structure {
public int n_text_layer;
public int n_head;
public WhisperAhead() {
super();
}
public WhisperAhead(int textLayer, int head) {
super();
this.n_text_layer = textLayer;
this.n_head = head;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("n_text_layer", "n_head");
}
public static class ByReference extends WhisperAhead implements Structure.ByReference {}
public static class ByValue extends WhisperAhead implements Structure.ByValue {}
}

View File

@ -1,41 +0,0 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
public class WhisperAheads extends Structure {
public NativeLong n_heads;
public Pointer heads;
public WhisperAheads() {
super();
}
/**
* Create alignment heads from an array of WhisperAhead objects
*/
public void setHeads(WhisperAhead[] aheadsArray) {
this.n_heads = new NativeLong(aheadsArray.length);
int structSize = aheadsArray[0].size();
Memory mem = new Memory(structSize * aheadsArray.length);
for (int i = 0; i < aheadsArray.length; i++) {
aheadsArray[i].write();
byte[] buffer = aheadsArray[i].getPointer().getByteArray(0, structSize);
mem.write(i * structSize, buffer, 0, buffer.length);
}
this.heads = mem;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("n_heads", "heads");
}
public static class ByReference extends WhisperAheads implements Structure.ByReference {}
public static class ByValue extends WhisperAheads implements Structure.ByValue {}
}

View File

@ -1,5 +1,7 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
@ -9,73 +11,21 @@ import java.util.List;
* whisper_context_default_params()
*/
public class WhisperContextParams extends Structure {
public WhisperContextParams(Pointer p) {
super(p);
}
public WhisperContextParams() {
super();
}
/** Use GPU for inference (default = true) */
/** Use GPU for inference Number (default = true) */
public CBool use_gpu;
/** Use flash attention (default = false) */
public CBool flash_attn;
/** CUDA device to use (default = 0) */
public int gpu_device;
/** [EXPERIMENTAL] Enable token-level timestamps with DTW (default = false) */
public CBool dtw_token_timestamps;
/** [EXPERIMENTAL] Alignment heads preset for DTW */
public int dtw_aheads_preset;
/** Number of top layers to use for DTW when using WHISPER_AHEADS_N_TOP_MOST preset */
public int dtw_n_top;
public WhisperAheads.ByValue dtw_aheads;
/** DTW memory size (internal use) */
public NativeLong dtw_mem_size;
/** Use GPU for inference */
/** Use GPU for inference Number (default = true) */
public void useGpu(boolean enable) {
use_gpu = enable ? CBool.TRUE : CBool.FALSE;
}
/** Use flash attention */
public void useFlashAttn(boolean enable) {
flash_attn = enable ? CBool.TRUE : CBool.FALSE;
}
/** Enable DTW token-level timestamps */
public void enableDtwTokenTimestamps(boolean enable) {
dtw_token_timestamps = enable ? CBool.TRUE : CBool.FALSE;
}
/** Set DTW alignment heads preset */
public void setDtwAheadsPreset(int preset) {
dtw_aheads_preset = preset;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList(
"use_gpu",
"flash_attn",
"gpu_device",
"dtw_token_timestamps",
"dtw_aheads_preset",
"dtw_n_top",
"dtw_aheads",
"dtw_mem_size"
);
}
public static class ByValue extends WhisperContextParams implements Structure.ByValue {
public ByValue() { super(); }
public ByValue(Pointer p) { super(p); }
return Arrays.asList("use_gpu");
}
}

View File

@ -5,7 +5,6 @@ import io.github.ggerganov.whispercpp.callbacks.WhisperEncoderBeginCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperLogitsFilterCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperNewSegmentCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperProgressCallback;
import io.github.ggerganov.whispercpp.callbacks.GgmlAbortCallback;
import java.util.Arrays;
import java.util.List;
@ -17,12 +16,10 @@ import java.util.List;
*/
public class WhisperFullParams extends Structure {
public WhisperFullParams() {
super();
}
public WhisperFullParams(Pointer p) {
super(p);
// super(p, ALIGN_MSVC);
// super(p, ALIGN_GNUC);
}
/** Sampling strategy for whisper_full() function. */
@ -72,10 +69,10 @@ public class WhisperFullParams extends Structure {
single_segment = single ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print special tokens (e.g., &lt;SOT&gt;, &lt;EOT&gt;, &lt;BEG&gt;, etc.). (default = false) */
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
public CBool print_special;
/** Flag to print special tokens (e.g., &lt;SOT&gt;, &lt;EOT&gt;, &lt;BEG&gt;, etc.). (default = false) */
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
public void printSpecial(boolean enable) {
print_special = enable ? CBool.TRUE : CBool.FALSE;
}
@ -132,12 +129,12 @@ public class WhisperFullParams extends Structure {
/** Maximum tokens per segment (0, default = no limit) */
public int max_tokens;
/** [EXPERIMENTAL] Enable debug mode for extra info */
public CBool debug_mode;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public CBool speed_up;
/** Enable debug mode */
public void enableDebugMode(boolean enable) {
debug_mode = enable ? CBool.TRUE : CBool.FALSE;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public void speedUp(boolean enable) {
speed_up = enable ? CBool.TRUE : CBool.FALSE;
}
/** Overwrite the audio context size (0 = use default). */
@ -151,9 +148,6 @@ public class WhisperFullParams extends Structure {
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
}
/** Regular expression matching tokens to suppress. */
public String suppress_regex;
/** Tokens to provide to the whisper decoder as an initial prompt.
* These are prepended to any existing text context from a previous call. */
public String initial_prompt;
@ -192,11 +186,11 @@ public class WhisperFullParams extends Structure {
}
/** Flag to suppress non-speech tokens. */
public CBool suppress_nst;
public CBool suppress_non_speech_tokens;
/** Flag to suppress non-speech tokens. */
public void suppressNonSpeechTokens(boolean enable) {
suppress_nst = enable ? CBool.TRUE : CBool.FALSE;
suppress_non_speech_tokens = enable ? CBool.TRUE : CBool.FALSE;
}
/** Initial decoding temperature. */
@ -285,16 +279,6 @@ public class WhisperFullParams extends Structure {
*/
public Pointer encoder_begin_callback_user_data;
/** Callback used to abort GGML computation */
public Pointer abort_callback;
/** User data for the abort_callback */
public Pointer abort_callback_user_data;
public void setAbortCallback(GgmlAbortCallback callback) {
abort_callback = CallbackReference.getFunctionPointer(callback);
}
/**
* Callback by each decoder to filter obtained logits.
* WhisperLogitsFilterCallback
@ -331,28 +315,17 @@ public class WhisperFullParams extends Structure {
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx",
"offset_ms", "duration_ms", "translate", "no_context",
"no_timestamps", "single_segment", "print_special",
"print_progress", "print_realtime", "print_timestamps",
"token_timestamps", "thold_pt", "thold_ptsum", "max_len",
"split_on_word", "max_tokens", "debug_mode", "audio_ctx",
"tdrz_enable", "suppress_regex", "initial_prompt",
"prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_nst", "temperature",
"max_initial_ts", "length_penalty", "temperature_inc",
"entropy_thold", "logprob_thold", "no_speech_thold", "greedy",
"beam_search", "new_segment_callback", "new_segment_callback_user_data",
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
"no_context", "single_segment", "no_timestamps",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",
"progress_callback", "progress_callback_user_data",
"encoder_begin_callback", "encoder_begin_callback_user_data",
"abort_callback", "abort_callback_user_data",
"logits_filter_callback", "logits_filter_callback_user_data",
"grammar_rules", "n_grammar_rules", "i_start_rule", "grammar_penalty");
}
public static class ByValue extends WhisperFullParams implements Structure.ByValue {
public ByValue() { super(); }
public ByValue(Pointer p) { super(p); }
}
}

View File

@ -76,7 +76,7 @@ class WhisperCppTest {
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams.ByValue params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";
@ -118,7 +118,7 @@ class WhisperCppTest {
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams.ByValue params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";

View File

@ -33,9 +33,6 @@ mkdir build-em && cd build-em
emcmake cmake .. && make -j
# run test
node ../tests/test-whisper.js
# For Node.js versions prior to v16.4.0, experimental features need to be enabled:
node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
# publish npm package

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.7.5",
"version": "1.5.4",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

View File

@ -1,9 +0,0 @@
LICENSE
pkg/
lib/whisper.*
ext/examples/
ext/ggml/
ext/include/
ext/scripts/
ext/src/
test/fixtures/

View File

@ -1,349 +0,0 @@
whispercpp
==========
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
Ruby bindings for [whisper.cpp][], an interface of automatic speech recognition model.
Installation
------------
Install the gem and add to the application's Gemfile by executing:
$ bundle add whispercpp
If bundler is not being used to manage dependencies, install the gem by executing:
$ gem install whispercpp
You can pass build options for whisper.cpp, for instance:
$ bundle config build.whispercpp --enable-ggml-cuda
or,
$ gem install whispercpp -- --enable-ggml-cuda
See whisper.cpp's [README](https://github.com/ggml-org/whisper.cpp/blob/master/README.md) for available options. You need convert options present the README to Ruby-style options, for example:
Boolean options:
* `-DGGML_BLAS=1` -> `--enable-ggml-blas`
* `-DWHISER_COREML=OFF` -> `--disable-whisper-coreml`
Argument options:
* `-DGGML_CUDA_COMPRESSION_MODE=size` -> `--ggml-cuda-compression-mode=size`
Combination:
* `-DGGML_CUDA=1 -DCMAKE_CUDA_ARCHITECTURES="86"` -> `--enable-ggml-cuda --cmake_cuda-architectures="86"`
For boolean options like `GGML_CUDA`, the README says `-DGGML_CUDA=1`. You need strip `-D`, prepend `--enable-` for `1` or `ON` (`--disable-` for `0` or `OFF`) and make it kebab-case: `--enable-ggml-cuda`.
For options which require arguments like `CMAKE_CUDA_ARCHITECTURES`, the README says `-DCMAKE_CUDA_ARCHITECTURES="86"`. You need strip `-D`, prepend `--`, make it kebab-case, append `=` and append argument: `--cmake-cuda-architectures="86"`.
Usage
-----
```ruby
require "whisper"
whisper = Whisper::Context.new("base")
params = Whisper::Params.new(
language: "en",
offset: 10_000,
duration: 60_000,
max_text_tokens: 300,
translate: true,
print_timestamps: false,
initial_prompt: "Initial prompt here."
)
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
puts whole_text
end
```
### Preparing model ###
Some models are prepared up-front:
You also can use shorthand for pre-converted models:
```ruby
whisper = Whisper::Context.new("base.en")
```
You can see the list of prepared model names by `Whisper::Model.pre_converted_models.keys`:
```ruby
puts Whisper::Model.pre_converted_models.keys
# tiny
# tiny.en
# tiny-q5_1
# tiny.en-q5_1
# tiny-q8_0
# base
# base.en
# base-q5_1
# base.en-q5_1
# base-q8_0
# :
# :
```
You can also retrieve each model:
```ruby
base_en = Whisper::Model.pre_converted_models["base.en"]
whisper = Whisper::Context.new(base_en)
```
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
```ruby
Whisper::Model.pre_converted_models["base"].clear_cache
```
You can also use local model files you prepared:
```ruby
whisper = Whisper::Context.new("path/to/your/model.bin")
```
Or, you can download model files:
```ruby
whisper = Whisper::Context.new("https://example.net/uri/of/your/model.bin")
# Or
whisper = Whisper::Context.new(URI("https://example.net/uri/of/your/model.bin"))
```
See [models][] page for details.
### Preparing audio file ###
Currently, whisper.cpp accepts only 16-bit WAV files.
### Voice Activity Detection (VAD) ###
Support for Voice Activity Detection (VAD) can be enabled by setting `Whisper::Params`'s `vad` argument to `true` and specifying VAD model:
```ruby
Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
# other arguments...
)
```
When you pass the model name (`"silero-v5.1.2"`) or URI (`https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin`), it will be downloaded automatically.
Currently, "silero-v5.1.2" is registered as pre-converted model like ASR models. You also specify file path or URI of model.
If you need configure VAD behavior, pass params for that:
```ruby
Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
vad_params: Whisper::VAD::Params.new(
threshold: 1.0, # defaults to 0.5
min_speech_duration_ms: 500, # defaults to 250
min_silence_duration_ms: 200, # defaults to 100
max_speech_duration_s: 30000, # default is FLT_MAX,
speech_pad_ms: 50, # defaults to 30
samples_overlap: 0.5 # defaults to 0.1
),
# other arguments...
)
```
For details on VAD, see [whisper.cpp's README](https://github.com/ggml-org/whisper.cpp?tab=readme-ov-file#voice-activity-detection-vad).
### Output ###
whispercpp supports SRT and WebVTT output:
```ruby
puts whisper.transcribe("path/to/audio.wav", Whisper::Params.new).to_webvtt
# =>
WEBVTT
1
00:00:00.000 --> 00:00:03.860
My thought I have nobody by a beauty and will as you poured.
2
00:00:03.860 --> 00:00:09.840
Mr. Rochester is sub in that so-don't find simplest, and devoted about, to let might in
3
00:00:09.840 --> 00:00:09.940
a
```
You may call `#to_srt`, too
API
---
### Transcription ###
By default, `Whisper::Context#transcribe` works in a single thread. You can make it work in parallel by passing `n_processors` option:
```ruby
whisper.transcribe("path/to/audio.wav", params, n_processors: Etc.nprocessors)
```
Note that transcription occasionally might be low accuracy when it works in parallel.
### Segments ###
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
```ruby
def format_time(time_ms)
sec, decimal_part = time_ms.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
whisper
.transcribe("path/to/audio.wav", params)
.each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1,
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_turn_next?
puts line
end
```
You can also add hook to params called on new segment:
```ruby
# Add hook before calling #transcribe
params.on_new_segment do |segment|
line = "[%{st} --> %{ed}] %{text}" % {
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_turn_next?
puts line
end
whisper.transcribe("path/to/audio.wav", params)
```
### Models ###
You can see model information:
```ruby
whisper = Whisper::Context.new("base")
model = whisper.model
model.n_vocab # => 51864
model.n_audio_ctx # => 1500
model.n_audio_state # => 512
model.n_audio_head # => 8
model.n_audio_layer # => 6
model.n_text_ctx # => 448
model.n_text_state # => 512
model.n_text_head # => 8
model.n_text_layer # => 6
model.n_mels # => 80
model.ftype # => 1
model.type # => "base"
```
### Logging ###
You can set log callback:
```ruby
prefix = "[MyApp] "
log_callback = ->(level, buffer, user_data) {
case level
when Whisper::LOG_LEVEL_NONE
puts "#{user_data}none: #{buffer}"
when Whisper::LOG_LEVEL_INFO
puts "#{user_data}info: #{buffer}"
when Whisper::LOG_LEVEL_WARN
puts "#{user_data}warn: #{buffer}"
when Whisper::LOG_LEVEL_ERROR
puts "#{user_data}error: #{buffer}"
when Whisper::LOG_LEVEL_DEBUG
puts "#{user_data}debug: #{buffer}"
when Whisper::LOG_LEVEL_CONT
puts "#{user_data}same to previous: #{buffer}"
end
}
Whisper.log_set log_callback, prefix
```
Using this feature, you are also able to suppress log:
```ruby
Whisper.log_set ->(level, buffer, user_data) {
# do nothing
}, nil
Whisper::Context.new("base")
```
### Low-level API to transcribe ###
You can also call `Whisper::Context#full` and `#full_parallel` with a Ruby array as samples. Although `#transcribe` with audio file path is recommended because it extracts PCM samples in C++ and is fast, `#full` and `#full_parallel` give you flexibility.
```ruby
require "whisper"
require "wavefile"
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
whisper = Whisper::Context.new("base")
whisper
.full(Whisper::Params.new, samples)
.each_segment do |segment|
puts segment.text
end
```
The second argument `samples` may be an array, an object with `length` and `each` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
Development
-----------
% git clone https://github.com/ggml-org/whisper.cpp.git
% cd whisper.cpp/bindings/ruby
% rake test
First call of `rake test` builds an extension and downloads a model for testing. After that, you add tests in `tests` directory and modify `ext/ruby_whisper.cpp`.
If something seems wrong on build, running `rake clean` solves some cases.
### Need help ###
* Windows support
* Refinement of C/C++ code, especially memory management
License
-------
The same to [whisper.cpp][].
[whisper.cpp]: https://github.com/ggml-org/whisper.cpp
[models]: https://github.com/ggml-org/whisper.cpp/tree/master/models

View File

@ -1,96 +0,0 @@
require 'rake/clean'
require "bundler/gem_tasks"
require "rake/testtask"
require_relative "extsources"
SOURCES_DIR = "ext/sources"
SOURCES = FileList[]
EXTSOURCES.each do |src|
basename = src.pathmap("%f")
dest = basename == "LICENSE" ? basename
: src.pathmap("%{\\.\\./\\.\\.,#{SOURCES_DIR}}p")
.pathmap("%{\\.\\./javascript,#{SOURCES_DIR}/bindings/javascript}p")
dir = dest.pathmap("%d")
file src
directory dir
file dest => [src, dir] do |t|
cp t.source, t.name
end
SOURCES.include dest
end
CLEAN.include SOURCES
SRC = FileList["ext/*.{c,cpp,h}"]
task build: SOURCES
directory "pkg"
CLOBBER.include "pkg"
LIB_NAME = "whisper".ext(RbConfig::CONFIG["DLEXT"])
SO_FILE = File.join("ext", LIB_NAME)
LIB_FILE = File.join("lib", LIB_NAME)
file "ext/Makefile" => SRC + ["ext/extconf.rb"] + SOURCES do |t|
chdir "ext" do
ruby "extconf.rb"
end
end
if File.exist? "ext/Makefile"
task :make_clean do
cd "ext" do
sh "make", "clean"
end
end
task clean: :make_clean
task :make_distclean do
cd "ext" do
sh "make", "distclean"
end
end
task clobber: :make_distclean
end
file SO_FILE => "ext/Makefile" do |t|
chdir "ext" do
sh "make"
end
end
CLEAN.include SO_FILE
directory "lib"
file LIB_FILE => [SO_FILE, "lib"] do |t|
copy t.source, t.name
end
CLEAN.include LIB_FILE
Rake::TestTask.new
TEST_FIXTURE_AUDIO = "test/fixtures/jfk.wav"
TEST_FIXTURE_AUDIO_SRC = File.expand_path(File.join(__dir__, "..", "..", "samples", "jfk.wav"))
TEST_FIXTURE_AUDIO_DIR = TEST_FIXTURE_AUDIO.pathmap("%d")
directory TEST_FIXTURE_AUDIO_DIR
if File.exist? TEST_FIXTURE_AUDIO_SRC
file TEST_FIXTURE_AUDIO => [TEST_FIXTURE_AUDIO_SRC, TEST_FIXTURE_AUDIO_DIR] do |t|
symlink t.source, t.name
end
else
require "open-uri"
file TEST_FIXTURE_AUDIO => TEST_FIXTURE_AUDIO_DIR do |t|
File.write t.name, URI("https://github.com/ggml-org/whisper.cpp/raw/refs/heads/master/samples/jfk.wav").read
end
end
TEST_MEMORY_VIEW = "test/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
file TEST_MEMORY_VIEW => "test/jfk_reader/jfk_reader.c" do |t|
chdir "test/jfk_reader" do
ruby "extconf.rb"
sh "make"
end
end
CLEAN.include TEST_MEMORY_VIEW
task test: [LIB_FILE, TEST_MEMORY_VIEW, TEST_FIXTURE_AUDIO]

View File

@ -1,9 +1,9 @@
Makefile
whisper.so
ggml.c
ggml.h
ggml-alloc.c
ggml-alloc.h
whisper.bundle
whisper.dll
*.o
*.a
sources/*
!sources/CMakeGraphVizOptions.cmake
mkmf.log
whisper.cpp
whisper.h
dr_wav.h

View File

@ -1,73 +0,0 @@
require "tsort"
class Dependencies
include TSort
def initialize(cmake, options)
@cmake = cmake
@options = options
@static_lib_shape = nil
@nodes = {}
@graph = Hash.new {|h, k| h[k] = []}
generate_dot
parse_dot
end
def libs
tsort.filter_map {|node|
label, shape = @nodes[node]
if shape == @static_lib_shape
label.gsub(/\\n\([^)]+\)/, '')
else
nil
end
}.reverse.collect {|lib| "lib#{lib}.a"}
end
def to_s
libs.join(" ")
end
private
def dot_path
File.join(__dir__, "build", "whisper.cpp.dot")
end
def generate_dot
args = ["-S", "sources", "-B", "build", "--graphviz", dot_path, "-D", "BUILD_SHARED_LIBS=OFF"]
args << @options.to_s unless @options.to_s.empty?
system @cmake, *args, exception: true
end
def parse_dot
File.open(dot_path).each_line do |line|
case line
when /\[\s*label\s*=\s*"Static Library"\s*,\s*shape\s*=\s*(?<shape>\w+)\s*\]/
@static_lib_shape = $~[:shape]
when /\A\s*"(?<node>\w+)"\s*\[\s*label\s*=\s*"(?<label>\S+)"\s*,\s*shape\s*=\s*(?<shape>\w+)\s*\]\s*;\s*\z/
node = $~[:node]
label = $~[:label]
shape = $~[:shape]
@nodes[node] = [label, shape]
when /\A\s*"(?<depender>\w+)"\s*->\s*"(?<dependee>\w+)"/
depender = $~[:depender]
dependee = $~[:dependee]
@graph[depender] << dependee
end
end
end
def tsort_each_node
@nodes.each_key do |node|
yield node
end
end
def tsort_each_child(node)
@graph[node].each do |child|
yield child
end
end
end

View File

@ -1,22 +1,30 @@
require "mkmf"
require_relative "options"
require_relative "dependencies"
require 'mkmf'
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-common.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")
cmake = find_executable("cmake") || abort
options = Options.new(cmake)
have_library("gomp") rescue nil
libs = Dependencies.new(cmake, options)
$INCFLAGS << " -Isources/include -Isources/ggml/include -Isources/examples"
$LOCAL_LIBS << " #{libs}"
$cleanfiles << " build #{libs}"
create_makefile "whisper" do |conf|
conf << <<~EOF
$(TARGET_SO): #{libs}
#{libs}: cmake-targets
cmake-targets:
#{"\t"}#{cmake} -S sources -B build -D BUILD_SHARED_LIBS=OFF -D CMAKE_ARCHIVE_OUTPUT_DIRECTORY=#{__dir__} -D CMAKE_POSITION_INDEPENDENT_CODE=ON #{options}
#{"\t"}#{cmake} --build build --config Release --target common whisper
EOF
# need to use c++ compiler flags
$CXXFLAGS << ' -std=c++11'
# Set to true when building binary gems
if enable_config('static-stdlib', false)
$LDFLAGS << ' -static-libgcc -static-libstdc++'
end
if enable_config('march-tune-native', false)
$CFLAGS << ' -march=native -mtune=native'
$CXXFLAGS << ' -march=native -mtune=native'
end
create_makefile('whisper')

View File

@ -0,0 +1,87 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,950 @@
#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED GGML_UNUSED
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// backend buffer
ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size) {
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
GGML_ASSERT(iface.get_base != NULL);
(*buffer) = (struct ggml_backend_buffer) {
/* .interface = */ iface,
/* .backend = */ backend,
/* .context = */ context,
/* .size = */ size,
};
return buffer;
}
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return;
}
if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer);
}
free(buffer);
}
size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
return ggml_backend_get_alignment(buffer->backend);
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
return base;
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buffer->iface.get_alloc_size) {
return buffer->iface.get_alloc_size(buffer, tensor);
}
return ggml_nbytes(tensor);
}
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
}
}
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// free_tensor is optional
if (buffer->iface.free_tensor) {
buffer->iface.free_tensor(buffer, tensor);
}
}
// backend
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
return tensor->buffer ? tensor->buffer->backend : NULL;
}
const char * ggml_backend_name(ggml_backend_t backend) {
if (backend == NULL) {
return "NULL";
}
return backend->iface.get_name(backend);
}
void ggml_backend_free(ggml_backend_t backend) {
if (backend == NULL) {
return;
}
backend->iface.free(backend);
}
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
return backend->iface.alloc_buffer(backend, size);
}
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
return backend->iface.get_alignment(backend);
}
void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
}
void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
}
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
backend->iface.synchronize(backend);
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
backend->iface.graph_plan_free(backend, plan);
}
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
backend->iface.graph_plan_compute(backend, plan);
}
bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return backend->iface.supports_op(backend, op);
}
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if (src == dst) {
return;
}
// TODO: allow backends to support copy to/from same backend
if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
} else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
} else {
// shouldn't be hit when copying from/to CPU
#ifndef NDEBUG
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
#endif
size_t nbytes = ggml_nbytes(src);
void * data = malloc(nbytes);
ggml_backend_tensor_get(src, data, 0, nbytes);
ggml_backend_tensor_set(dst, data, 0, nbytes);
free(data);
}
}
// backend CPU
struct ggml_backend_cpu_context {
int n_threads;
void * work_data;
size_t work_size;
};
static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
return "CPU";
UNUSED(backend);
}
static void ggml_backend_cpu_free(ggml_backend_t backend) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
free(cpu_ctx->work_data);
free(cpu_ctx);
free(backend);
}
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
return (void *)buffer->context;
}
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
UNUSED(buffer);
}
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .init_tensor = */ NULL, // no initialization required
/* .free_tensor = */ NULL, // no cleanup required
};
// for buffers from ptr, free is not called
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .init_tensor = */ NULL,
/* .free_tensor = */ NULL,
};
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
GGML_ASSERT(data != NULL && "failed to allocate buffer");
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
}
static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
return TENSOR_ALIGNMENT;
UNUSED(backend);
}
static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy((char *)tensor->data + offset, data, size);
UNUSED(backend);
}
static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(backend);
}
static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
UNUSED(backend);
}
static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
struct ggml_backend_plan_cpu {
struct ggml_cplan cplan;
struct ggml_cgraph cgraph;
};
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cgraph = *cgraph;
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
}
return cpu_plan;
}
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
free(cpu_plan->cplan.work_data);
free(cpu_plan);
UNUSED(backend);
}
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
UNUSED(backend);
}
static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
ggml_graph_compute(cgraph, &cplan);
}
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return true;
UNUSED(backend);
UNUSED(op);
}
static struct ggml_backend_i cpu_backend_i = {
/* .get_name = */ ggml_backend_cpu_name,
/* .free = */ ggml_backend_cpu_free,
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_get_alignment,
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
/* .synchronize = */ ggml_backend_cpu_synchronize,
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
};
ggml_backend_t ggml_backend_cpu_init(void) {
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->work_data = NULL;
ctx->work_size = 0;
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
*cpu_backend = (struct ggml_backend) {
/* .interface = */ cpu_backend_i,
/* .context = */ ctx
};
return cpu_backend;
}
bool ggml_backend_is_cpu(ggml_backend_t backend) {
return backend->iface.get_name == ggml_backend_cpu_name;
}
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->n_threads = n_threads;
}
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
}
// scheduler
#define GGML_MAX_BACKENDS 4
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
ggml_tallocr_t tallocr;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs;
struct ggml_cgraph * graph;
};
struct ggml_backend_sched {
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
ggml_gallocr_t galloc;
struct ggml_hash_set hash_set;
ggml_tallocr_t * node_talloc; // [hash_set.size]
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits;
struct ggml_context * ctx;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define node_allocr(node) sched->node_talloc[hash_id(node)]
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
// returns the priority of the backend, lower is better
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->backends[i] == backend) {
return i;
}
}
return INT_MAX;
}
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->tallocs[i] == allocr) {
return i;
}
}
return INT_MAX;
}
// returns the backend that should be used for the node based on the current locations
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst
ggml_backend_t cur_backend = ggml_get_backend(node);
if (cur_backend != NULL) {
sprintf(causes[hash_id(node)], "1.dst");
return cur_backend;
}
// view_src
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
sprintf(causes[hash_id(node)], "1.vsrc");
return ggml_get_backend(node->view_src);
}
// src
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = node->src[i];
if (src == NULL) {
break;
}
ggml_backend_t src_backend = ggml_get_backend(src);
if (src_backend != NULL) {
int src_prio = sched_backend_prio(sched, src_backend);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
cur_backend = src_backend;
sprintf(causes[hash_id(node)], "1.src%d", i);
}
}
}
return cur_backend;
}
static char * fmt_size(size_t size) {
static char buffer[128];
if (size >= 1024*1024) {
sprintf(buffer, "%zuM", size/1024/1024);
} else {
sprintf(buffer, "%zuK", size/1024);
}
return buffer;
}
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}
fprintf(stderr, "\n");
cur_split++;
}
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
}
fprintf(stderr, "\n");
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
dup->nb[i] = tensor->nb[i];
}
return dup;
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset state
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
sched->n_splits = 0;
struct ggml_init_params params = {
/*.mem_size = */ sizeof(sched->context_buffer),
/*.mem_buffer = */ sched->context_buffer,
/*.no_alloc = */ true
};
if (sched->ctx != NULL) {
ggml_free(sched->ctx);
}
sched->ctx = ggml_init(params);
// pass 1: assign backends to ops with allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
if (node_allocr(leaf) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
if (leaf_backend == NULL && leaf->view_src != NULL) {
leaf_backend = ggml_get_backend(leaf->view_src);
}
if (leaf_backend != NULL) {
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
}
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node_allocr(node) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
if (node_backend != NULL) {
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
}
}
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 2: assign backends to ops from current assignments
// TODO:
// - reuse sched_backend_from_cur
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != NULL) {
int src_prio = sched_allocr_prio(sched, src_allocr);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
node_allocr = src_allocr;
sprintf(causes[hash_id(node)], "2.src%d", j);
}
}
}
if (node_allocr != NULL) {
node_allocr(node) = node_allocr;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs)
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr == NULL) {
node_allocr(src) = node_allocr;
}
}
}
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 4: split graph, find tensors that need to be copied
// TODO:
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node->view_src == NULL) {
sched->splits[0].tallocr = node_allocr(node);
break;
}
}
sched->splits[0].i_start = 0;
sched->splits[0].n_inputs = 0;
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != cur_allocr) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
sched->splits[cur_split].tallocr = node_allocr;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
cur_allocr = node_allocr;
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
}
// find inputs that are not on the same backend
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr) {
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
// create copies
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
}
node->src[j] = sched->node_copies[id][cur_backend_id];
}
}
}
sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1;
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
#if 1
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
}
}
}
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
input_cpy->src[0] = input;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
}
for (int j = split->i_start; j < split->i_end; j++) {
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
sched->graph = graph_copy;
}
static void sched_alloc_splits(ggml_backend_sched_t sched) {
ggml_gallocr_alloc_graph_n(
sched->galloc,
sched->graph,
sched->hash_set,
sched->node_talloc);
}
static void sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
int split_backend_id = sched_backend_prio(sched, split_backend);
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
if (split->inputs[j]->buffer == NULL) {
if (split->inputs[j]->view_src == NULL) {
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
exit(1);
}
struct ggml_tensor * view = split->inputs[j];
view->backend = view->view_src->backend;
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
}
if (input_cpy->buffer == NULL) {
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
exit(1);
}
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
}
// ggml_backend_synchronize(split_backend);
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
ggml_backend_graph_compute(split_backend, split->graph);
// ggml_backend_synchronize(split_backend);
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
}
static void sched_reset(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_reset(sched->tallocs[i]);
}
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
memset(sched, 0, sizeof(struct ggml_backend_sched));
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
}
sched->galloc = ggml_gallocr_new();
// init measure allocs for each backend
for (int i = 0; i < n_backends; i++) {
sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
}
return sched;
}
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_free(sched->tallocs[i]);
}
ggml_gallocr_free(sched->galloc);
free(sched->hash_set.keys);
free(sched->node_talloc);
free(sched->node_copies);
free(sched);
}
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
// initialize hash tables
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
sched->hash_set.size = hash_size;
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
sched_split_graph(sched, measure_graph);
sched_alloc_splits(sched);
// allocate buffers and reset allocators
for (int i = 0; i < sched->n_backends; i++) {
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
ggml_tallocr_free(sched->tallocs[i]);
sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
}
sched_reset(sched);
}
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched_split_graph(sched, graph);
sched_alloc_splits(sched);
sched_compute_splits(sched);
sched_reset(sched);
}
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return sched->tallocs[backend_index];
}
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
node_allocr(node) = sched->tallocs[backend_index];
}

View File

@ -0,0 +1,136 @@
#pragma once
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
struct ggml_backend_buffer;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
// backend buffer functions
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
//
// Backend
//
struct ggml_backend;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
GGML_API void ggml_backend_free(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
// Allocate a graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,249 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,224 @@
#pragma once
#include "ggml-impl.h"
// GGML internal header
#include <stdint.h>
#include <stddef.h>
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
//
// Super-block quantization structures
//
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
// Effectively 2.5625 bits per weight
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
// 3-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 3.4375 bits per weight
#ifdef GGML_QKK_64
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[2];
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[12]; // scales, quantized with 6 bits
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif
// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif
// 5-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 5.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d; // super-block scale
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 6.5625 bits per weight
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
ggml_fp16_t d; // super-block scale
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
// This is only used for intermediate quantization and dot products
typedef struct {
float d; // delta
int8_t qs[QK_K]; // quants
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
// Quantization
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);

View File

@ -1,82 +0,0 @@
class Options
def initialize(cmake="cmake")
@cmake = cmake
@options = {}
configure
end
def to_s
@options
.reject {|name, (type, value)| value.nil?}
.collect {|name, (type, value)| "-D #{name}=#{value == true ? "ON" : value == false ? "OFF" : value.shellescape}"}
.join(" ")
end
def cmake_options
return @cmake_options if @cmake_options
output = nil
Dir.chdir __dir__ do
output = `#{@cmake.shellescape} -S sources -B build -L`
end
@cmake_options = output.lines.drop_while {|line| line.chomp != "-- Cache values"}.drop(1)
.filter_map {|line|
option, value = line.chomp.split("=", 2)
name, type = option.split(":", 2)
[
name,
[
type,
type == "BOOL" ? value == "ON" : value
]
]
}.to_h
end
private
def configure
cmake_options.each_pair do |name, (type, default_value)|
option = option_name(name)
value = type == "BOOL" ? enable_config(option) : arg_config("--#{option}")
@options[name] = [type, value]
end
configure_accelerate
configure_metal
configure_coreml
end
# See ggml/src/ggml-cpu/CMakeLists.txt
def configure_accelerate
if RUBY_PLATFORM.match?(/darwin/) && enabled?("GGML_ACCELERATE")
$LDFLAGS << " -framework Accelerate"
end
end
# See ggml/src/ggml-metal/CMakeLists.txt
def configure_metal
$LDFLAGS << " -framework Foundation -framework Metal -framework MetalKit" if enabled?("GGML_METAL")
end
# See src/CmakeLists.txt
def configure_coreml
if enabled?("WHISPER_COREML")
$LDFLAGS << " -framework Foundation -framework CoreML"
$CPPFLAGS << " -DRUBY_WHISPER_USE_COREML"
end
end
def option_name(name)
name.downcase.gsub("_", "-")
end
def enabled?(option)
if @options[option][1].nil?
cmake_options[option][1]
else
@options[option][1]
end
end
end

View File

@ -1,176 +0,0 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include "ruby_whisper.h"
VALUE mWhisper;
VALUE mVAD;
VALUE cContext;
VALUE cParams;
VALUE cVADParams;
VALUE eError;
VALUE cSegment;
VALUE cModel;
ID id_to_s;
ID id_call;
ID id___method__;
ID id_to_enum;
ID id_length;
ID id_next;
ID id_new;
ID id_to_path;
ID id_URI;
ID id_pre_converted_models;
ID id_coreml_compiled_models;
ID id_cache;
ID id_n_processors;
static bool is_log_callback_finalized = false;
// High level API
extern VALUE ruby_whisper_segment_allocate(VALUE klass);
extern void init_ruby_whisper_context(VALUE *mWhisper);
extern void init_ruby_whisper_params(VALUE *mWhisper);
extern void init_ruby_whisper_error(VALUE *mWhisper);
extern void init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cSegment);
extern void init_ruby_whisper_model(VALUE *mWhisper);
extern void init_ruby_whisper_vad_params(VALUE *mVAD);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
/*
* call-seq:
* lang_max_id -> Integer
*/
static VALUE ruby_whisper_s_lang_max_id(VALUE self) {
return INT2NUM(whisper_lang_max_id());
}
/*
* call-seq:
* lang_id(lang_name) -> Integer
*/
static VALUE ruby_whisper_s_lang_id(VALUE self, VALUE lang) {
const char * lang_str = StringValueCStr(lang);
const int id = whisper_lang_id(lang_str);
if (-1 == id) {
rb_raise(rb_eArgError, "language not found: %s", lang_str);
}
return INT2NUM(id);
}
/*
* call-seq:
* lang_str(lang_id) -> String
*/
static VALUE ruby_whisper_s_lang_str(VALUE self, VALUE id) {
const int lang_id = NUM2INT(id);
const char * str = whisper_lang_str(lang_id);
if (NULL == str) {
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
}
return rb_str_new2(str);
}
/*
* call-seq:
* lang_str(lang_id) -> String
*/
static VALUE ruby_whisper_s_lang_str_full(VALUE self, VALUE id) {
const int lang_id = NUM2INT(id);
const char * str_full = whisper_lang_str_full(lang_id);
if (NULL == str_full) {
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
}
return rb_str_new2(str_full);
}
/*
* call-seq:
* system_info_str -> String
*/
static VALUE ruby_whisper_s_system_info_str(VALUE self) {
return rb_str_new2(whisper_print_system_info());
}
static VALUE ruby_whisper_s_finalize_log_callback(VALUE self, VALUE id) {
is_log_callback_finalized = true;
return Qnil;
}
static void
ruby_whisper_log_callback(enum ggml_log_level level, const char * buffer, void * user_data) {
if (is_log_callback_finalized) {
return;
}
VALUE log_callback = rb_iv_get(mWhisper, "log_callback");
VALUE udata = rb_iv_get(mWhisper, "user_data");
rb_funcall(log_callback, id_call, 3, INT2NUM(level), rb_str_new2(buffer), udata);
}
/*
* call-seq:
* log_set ->(level, buffer, user_data) { ... }, user_data -> nil
*/
static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_data) {
VALUE old_callback = rb_iv_get(self, "log_callback");
if (!NIL_P(old_callback)) {
rb_undefine_finalizer(old_callback);
}
rb_iv_set(self, "log_callback", log_callback);
rb_iv_set(self, "user_data", user_data);
VALUE finalize_log_callback = rb_funcall(mWhisper, rb_intern("method"), 1, rb_str_new2("finalize_log_callback"));
rb_define_finalizer(log_callback, finalize_log_callback);
whisper_log_set(ruby_whisper_log_callback, NULL);
return Qnil;
}
void Init_whisper() {
id_to_s = rb_intern("to_s");
id_call = rb_intern("call");
id___method__ = rb_intern("__method__");
id_to_enum = rb_intern("to_enum");
id_length = rb_intern("length");
id_next = rb_intern("next");
id_new = rb_intern("new");
id_to_path = rb_intern("to_path");
id_URI = rb_intern("URI");
id_pre_converted_models = rb_intern("pre_converted_models");
id_coreml_compiled_models = rb_intern("coreml_compiled_models");
id_cache = rb_intern("cache");
id_n_processors = rb_intern("n_processors");
mWhisper = rb_define_module("Whisper");
mVAD = rb_define_module_under(mWhisper, "VAD");
rb_define_const(mWhisper, "LOG_LEVEL_NONE", INT2NUM(GGML_LOG_LEVEL_NONE));
rb_define_const(mWhisper, "LOG_LEVEL_INFO", INT2NUM(GGML_LOG_LEVEL_INFO));
rb_define_const(mWhisper, "LOG_LEVEL_WARN", INT2NUM(GGML_LOG_LEVEL_WARN));
rb_define_const(mWhisper, "LOG_LEVEL_ERROR", INT2NUM(GGML_LOG_LEVEL_ERROR));
rb_define_const(mWhisper, "LOG_LEVEL_DEBUG", INT2NUM(GGML_LOG_LEVEL_DEBUG));
rb_define_const(mWhisper, "LOG_LEVEL_CONT", INT2NUM(GGML_LOG_LEVEL_CONT));
rb_define_singleton_method(mWhisper, "lang_max_id", ruby_whisper_s_lang_max_id, 0);
rb_define_singleton_method(mWhisper, "lang_id", ruby_whisper_s_lang_id, 1);
rb_define_singleton_method(mWhisper, "lang_str", ruby_whisper_s_lang_str, 1);
rb_define_singleton_method(mWhisper, "lang_str_full", ruby_whisper_s_lang_str_full, 1);
rb_define_singleton_method(mWhisper, "system_info_str", ruby_whisper_s_system_info_str, 0);
rb_define_singleton_method(mWhisper, "log_set", ruby_whisper_s_log_set, 2);
rb_define_private_method(rb_singleton_class(mWhisper), "finalize_log_callback", ruby_whisper_s_finalize_log_callback, 1);
init_ruby_whisper_context(&mWhisper);
init_ruby_whisper_params(&mWhisper);
init_ruby_whisper_error(&mWhisper);
init_ruby_whisper_segment(&mWhisper, &cContext);
init_ruby_whisper_model(&mWhisper);
init_ruby_whisper_vad_params(&mVAD);
rb_require("whisper/context");
rb_require("whisper/segment");
rb_require("whisper/model/uri");
}

View File

@ -0,0 +1,426 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include <cmath>
#include <fstream>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#ifdef __cplusplus
extern "C" {
#endif
#define BOOL_PARAMS_SETTER(self, prop, value) \
ruby_whisper_params *rwp; \
Data_Get_Struct(self, ruby_whisper_params, rwp); \
if (value == Qfalse || value == Qnil) { \
rwp->params.prop = false; \
} else { \
rwp->params.prop = true; \
} \
return value; \
#define BOOL_PARAMS_GETTER(self, prop) \
ruby_whisper_params *rwp; \
Data_Get_Struct(self, ruby_whisper_params, rwp); \
if (rwp->params.prop) { \
return Qtrue; \
} else { \
return Qfalse; \
}
VALUE mWhisper;
VALUE cContext;
VALUE cParams;
static void ruby_whisper_free(ruby_whisper *rw) {
if (rw->context) {
whisper_free(rw->context);
rw->context = NULL;
}
}
static void ruby_whisper_params_free(ruby_whisper_params *rwp) {
}
void rb_whisper_mark(ruby_whisper *rw) {
// call rb_gc_mark on any ruby references in rw
}
void rb_whisper_free(ruby_whisper *rw) {
ruby_whisper_free(rw);
free(rw);
}
void rb_whisper_params_mark(ruby_whisper_params *rwp) {
}
void rb_whisper_params_free(ruby_whisper_params *rwp) {
ruby_whisper_params_free(rwp);
free(rwp);
}
static VALUE ruby_whisper_allocate(VALUE klass) {
ruby_whisper *rw;
rw = ALLOC(ruby_whisper);
rw->context = NULL;
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
}
static VALUE ruby_whisper_params_allocate(VALUE klass) {
ruby_whisper_params *rwp;
rwp = ALLOC(ruby_whisper_params);
rwp->params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
return Data_Wrap_Struct(klass, rb_whisper_params_mark, rb_whisper_params_free, rwp);
}
static VALUE ruby_whisper_initialize(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
VALUE whisper_model_file_path;
// TODO: we can support init from buffer here too maybe another ruby object to expose
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
Data_Get_Struct(self, ruby_whisper, rw);
if (!rb_respond_to(whisper_model_file_path, rb_intern("to_s"))) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
if (rw->context == nullptr) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}
return self;
}
/*
* transcribe a single file
* can emit to a block results
*
**/
static VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
ruby_whisper_params *rwp;
VALUE wave_file_path, blk, params;
rb_scan_args(argc, argv, "02&", &wave_file_path, &params, &blk);
Data_Get_Struct(self, ruby_whisper, rw);
Data_Get_Struct(params, ruby_whisper_params, rwp);
if (!rb_respond_to(wave_file_path, rb_intern("to_s"))) {
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
}
std::string fname_inp = StringValueCStr(wave_file_path);
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// WAV input - this is directly from main.cpp example
{
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname_inp == "-") {
{
uint8_t buf[1024];
while (true) {
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return self;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
} else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return self;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
return self;
}
if (rwp->diarize && wav.channels != 2 && rwp->params.print_timestamps == false) {
fprintf(stderr, "WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
return self;
}
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
fprintf(stderr, "WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
return self;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "WAV file '%s' must be 16-bit\n", fname_inp.c_str());
return self;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (rwp->diarize) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
}
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
rwp->params.encoder_begin_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
fprintf(stderr, "failed to process audio\n");
return self;
}
const int n_segments = whisper_full_n_segments(rw->context);
VALUE output = rb_str_new2("");
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(rw->context, i);
output = rb_str_concat(output, rb_str_new2(text));
}
VALUE idCall = rb_intern("call");
if (blk != Qnil) {
rb_funcall(blk, idCall, 1, output);
}
return self;
}
/*
* params.language = "auto" | "en", etc...
*/
static VALUE ruby_whisper_params_set_language(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (value == Qfalse || value == Qnil) {
rwp->params.language = "auto";
} else {
rwp->params.language = StringValueCStr(value);
}
return value;
}
static VALUE ruby_whisper_params_get_language(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (rwp->params.language) {
return rb_str_new2(rwp->params.language);
} else {
return rb_str_new2("auto");
}
}
static VALUE ruby_whisper_params_set_translate(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, translate, value)
}
static VALUE ruby_whisper_params_get_translate(VALUE self) {
BOOL_PARAMS_GETTER(self, translate)
}
static VALUE ruby_whisper_params_set_no_context(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, no_context, value)
}
static VALUE ruby_whisper_params_get_no_context(VALUE self) {
BOOL_PARAMS_GETTER(self, no_context)
}
static VALUE ruby_whisper_params_set_single_segment(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, single_segment, value)
}
static VALUE ruby_whisper_params_get_single_segment(VALUE self) {
BOOL_PARAMS_GETTER(self, single_segment)
}
static VALUE ruby_whisper_params_set_print_special(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_special, value)
}
static VALUE ruby_whisper_params_get_print_special(VALUE self) {
BOOL_PARAMS_GETTER(self, print_special)
}
static VALUE ruby_whisper_params_set_print_progress(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_progress, value)
}
static VALUE ruby_whisper_params_get_print_progress(VALUE self) {
BOOL_PARAMS_GETTER(self, print_progress)
}
static VALUE ruby_whisper_params_set_print_realtime(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_realtime, value)
}
static VALUE ruby_whisper_params_get_print_realtime(VALUE self) {
BOOL_PARAMS_GETTER(self, print_realtime)
}
static VALUE ruby_whisper_params_set_print_timestamps(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, print_timestamps, value)
}
static VALUE ruby_whisper_params_get_print_timestamps(VALUE self) {
BOOL_PARAMS_GETTER(self, print_timestamps)
}
static VALUE ruby_whisper_params_set_suppress_blank(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, suppress_blank, value)
}
static VALUE ruby_whisper_params_get_suppress_blank(VALUE self) {
BOOL_PARAMS_GETTER(self, suppress_blank)
}
static VALUE ruby_whisper_params_set_suppress_non_speech_tokens(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, suppress_non_speech_tokens, value)
}
static VALUE ruby_whisper_params_get_suppress_non_speech_tokens(VALUE self) {
BOOL_PARAMS_GETTER(self, suppress_non_speech_tokens)
}
static VALUE ruby_whisper_params_get_token_timestamps(VALUE self) {
BOOL_PARAMS_GETTER(self, token_timestamps)
}
static VALUE ruby_whisper_params_set_token_timestamps(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, token_timestamps, value)
}
static VALUE ruby_whisper_params_get_split_on_word(VALUE self) {
BOOL_PARAMS_GETTER(self, split_on_word)
}
static VALUE ruby_whisper_params_set_split_on_word(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, split_on_word, value)
}
static VALUE ruby_whisper_params_get_speed_up(VALUE self) {
BOOL_PARAMS_GETTER(self, speed_up)
}
static VALUE ruby_whisper_params_set_speed_up(VALUE self, VALUE value) {
BOOL_PARAMS_SETTER(self, speed_up, value)
}
static VALUE ruby_whisper_params_get_diarize(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (rwp->diarize) {
return Qtrue;
} else {
return Qfalse;
}
}
static VALUE ruby_whisper_params_set_diarize(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
if (value == Qfalse || value == Qnil) {
rwp->diarize = false;
} else {
rwp->diarize = true;
} \
return value;
}
static VALUE ruby_whisper_params_get_offset(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
return INT2NUM(rwp->params.offset_ms);
}
static VALUE ruby_whisper_params_set_offset(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
rwp->params.offset_ms = NUM2INT(value);
return value;
}
static VALUE ruby_whisper_params_get_duration(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
return INT2NUM(rwp->params.duration_ms);
}
static VALUE ruby_whisper_params_set_duration(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
rwp->params.duration_ms = NUM2INT(value);
return value;
}
static VALUE ruby_whisper_params_get_max_text_tokens(VALUE self) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
return INT2NUM(rwp->params.n_max_text_ctx);
}
static VALUE ruby_whisper_params_set_max_text_tokens(VALUE self, VALUE value) {
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper_params, rwp);
rwp->params.n_max_text_ctx = NUM2INT(value);
return value;
}
void Init_whisper() {
mWhisper = rb_define_module("Whisper");
cContext = rb_define_class_under(mWhisper, "Context", rb_cObject);
cParams = rb_define_class_under(mWhisper, "Params", rb_cObject);
rb_define_alloc_func(cContext, ruby_whisper_allocate);
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
rb_define_alloc_func(cParams, ruby_whisper_params_allocate);
rb_define_method(cParams, "language=", ruby_whisper_params_set_language, 1);
rb_define_method(cParams, "language", ruby_whisper_params_get_language, 0);
rb_define_method(cParams, "translate=", ruby_whisper_params_set_translate, 1);
rb_define_method(cParams, "translate", ruby_whisper_params_get_translate, 0);
rb_define_method(cParams, "no_context=", ruby_whisper_params_set_no_context, 1);
rb_define_method(cParams, "no_context", ruby_whisper_params_get_no_context, 0);
rb_define_method(cParams, "single_segment=", ruby_whisper_params_set_single_segment, 1);
rb_define_method(cParams, "single_segment", ruby_whisper_params_get_single_segment, 0);
rb_define_method(cParams, "print_special", ruby_whisper_params_get_print_special, 0);
rb_define_method(cParams, "print_special=", ruby_whisper_params_set_print_special, 1);
rb_define_method(cParams, "print_progress", ruby_whisper_params_get_print_progress, 0);
rb_define_method(cParams, "print_progress=", ruby_whisper_params_set_print_progress, 1);
rb_define_method(cParams, "print_realtime", ruby_whisper_params_get_print_realtime, 0);
rb_define_method(cParams, "print_realtime=", ruby_whisper_params_set_print_realtime, 1);
rb_define_method(cParams, "print_timestamps", ruby_whisper_params_get_print_timestamps, 0);
rb_define_method(cParams, "print_timestamps=", ruby_whisper_params_set_print_timestamps, 1);
rb_define_method(cParams, "suppress_blank", ruby_whisper_params_get_suppress_blank, 0);
rb_define_method(cParams, "suppress_blank=", ruby_whisper_params_set_suppress_blank, 1);
rb_define_method(cParams, "suppress_non_speech_tokens", ruby_whisper_params_get_suppress_non_speech_tokens, 0);
rb_define_method(cParams, "suppress_non_speech_tokens=", ruby_whisper_params_set_suppress_non_speech_tokens, 1);
rb_define_method(cParams, "token_timestamps", ruby_whisper_params_get_token_timestamps, 0);
rb_define_method(cParams, "token_timestamps=", ruby_whisper_params_set_token_timestamps, 1);
rb_define_method(cParams, "split_on_word", ruby_whisper_params_get_split_on_word, 0);
rb_define_method(cParams, "split_on_word=", ruby_whisper_params_set_split_on_word, 1);
rb_define_method(cParams, "speed_up", ruby_whisper_params_get_speed_up, 0);
rb_define_method(cParams, "speed_up=", ruby_whisper_params_set_speed_up, 1);
rb_define_method(cParams, "diarize", ruby_whisper_params_get_diarize, 0);
rb_define_method(cParams, "diarize=", ruby_whisper_params_set_diarize, 1);
rb_define_method(cParams, "offset", ruby_whisper_params_get_offset, 0);
rb_define_method(cParams, "offset=", ruby_whisper_params_set_offset, 1);
rb_define_method(cParams, "duration", ruby_whisper_params_get_duration, 0);
rb_define_method(cParams, "duration=", ruby_whisper_params_set_duration, 1);
rb_define_method(cParams, "max_text_tokens", ruby_whisper_params_get_max_text_tokens, 0);
rb_define_method(cParams, "max_text_tokens=", ruby_whisper_params_set_max_text_tokens, 1);
}
#ifdef __cplusplus
}
#endif

View File

@ -1,15 +1,8 @@
#ifndef RUBY_WHISPER_H
#define RUBY_WHISPER_H
#ifndef __RUBY_WHISPER_H
#define __RUBY_WHISPER_H
#include "whisper.h"
typedef struct {
VALUE *context;
VALUE user_data;
VALUE callback;
VALUE callbacks;
} ruby_whisper_callback_container;
typedef struct {
struct whisper_context *context;
} ruby_whisper;
@ -17,24 +10,6 @@ typedef struct {
typedef struct {
struct whisper_full_params params;
bool diarize;
ruby_whisper_callback_container *new_segment_callback_container;
ruby_whisper_callback_container *progress_callback_container;
ruby_whisper_callback_container *encoder_begin_callback_container;
ruby_whisper_callback_container *abort_callback_container;
VALUE vad_params;
} ruby_whisper_params;
typedef struct {
struct whisper_vad_params params;
} ruby_whisper_vad_params;
typedef struct {
VALUE context;
int index;
} ruby_whisper_segment;
typedef struct {
VALUE context;
} ruby_whisper_model;
#endif

View File

@ -1,672 +0,0 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include "ruby_whisper.h"
extern ID id_to_s;
extern ID id___method__;
extern ID id_to_enum;
extern ID id_length;
extern ID id_next;
extern ID id_new;
extern ID id_to_path;
extern ID id_URI;
extern ID id_pre_converted_models;
extern ID id_coreml_compiled_models;
extern ID id_cache;
extern ID id_n_processors;
extern VALUE cContext;
extern VALUE eError;
extern VALUE cModel;
extern const rb_data_type_t ruby_whisper_params_type;
extern VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self);
extern VALUE rb_whisper_model_s_new(VALUE context);
extern VALUE rb_whisper_segment_s_new(VALUE context, int index);
extern void prepare_transcription(ruby_whisper_params *rwp, VALUE *context);
ID transcribe_option_names[1];
static void
ruby_whisper_free(ruby_whisper *rw)
{
if (rw->context) {
whisper_free(rw->context);
rw->context = NULL;
}
}
void
rb_whisper_mark(ruby_whisper *rw)
{
// call rb_gc_mark on any ruby references in rw
}
void
rb_whisper_free(void *p)
{
ruby_whisper *rw = (ruby_whisper *)p;
ruby_whisper_free(rw);
free(rw);
}
static size_t
ruby_whisper_memsize(const void *p)
{
const ruby_whisper *rw = (const ruby_whisper *)p;
size_t size = sizeof(rw);
if (!rw) {
return 0;
}
if (rw->context) {
size += sizeof(rw->context);
}
return size;
}
const rb_data_type_t ruby_whisper_type = {
"ruby_whisper",
{0, rb_whisper_free, ruby_whisper_memsize,},
0, 0,
0
};
static VALUE
ruby_whisper_allocate(VALUE klass)
{
ruby_whisper *rw;
VALUE obj = TypedData_Make_Struct(klass, ruby_whisper, &ruby_whisper_type, rw);
rw->context = NULL;
return obj;
}
VALUE
ruby_whisper_normalize_model_path(VALUE model_path)
{
VALUE pre_converted_models = rb_funcall(cModel, id_pre_converted_models, 0);
VALUE pre_converted_model = rb_hash_aref(pre_converted_models, model_path);
if (!NIL_P(pre_converted_model)) {
model_path = pre_converted_model;
#ifdef RUBY_WHISPER_USE_COREML
VALUE coreml_converted_models = rb_funcall(cModel, id_coreml_compiled_models, 0);
VALUE coreml_converted_model = rb_hash_aref(coreml_converted_models, pre_converted_model);
if (!NIL_P(coreml_converted_model)) {
rb_funcall(coreml_converted_model, id_cache, 0);
}
#endif
}
else if (TYPE(model_path) == T_STRING) {
const char * model_path_str = StringValueCStr(model_path);
if (strncmp("http://", model_path_str, 7) == 0 || strncmp("https://", model_path_str, 8) == 0) {
VALUE uri_class = rb_const_get(cModel, id_URI);
model_path = rb_class_new_instance(1, &model_path, uri_class);
}
}
else if (rb_obj_is_kind_of(model_path, rb_path2class("URI::HTTP"))) {
VALUE uri_class = rb_const_get(cModel, id_URI);
model_path = rb_class_new_instance(1, &model_path, uri_class);
}
if (rb_respond_to(model_path, id_to_path)) {
model_path = rb_funcall(model_path, id_to_path, 0);
}
return model_path;
}
/*
* call-seq:
* new("base.en") -> Whisper::Context
* new("path/to/model.bin") -> Whisper::Context
* new(Whisper::Model::URI.new("https://example.net/uri/of/model.bin")) -> Whisper::Context
*/
static VALUE
ruby_whisper_initialize(int argc, VALUE *argv, VALUE self)
{
ruby_whisper *rw;
VALUE whisper_model_file_path;
// TODO: we can support init from buffer here too maybe another ruby object to expose
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
whisper_model_file_path = ruby_whisper_normalize_model_path(whisper_model_file_path);
if (!rb_respond_to(whisper_model_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
if (rw->context == NULL) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}
return self;
}
/*
* call-seq:
* model_n_vocab -> Integer
*/
VALUE ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
/*
* call-seq:
* model_n_audio_ctx -> Integer
*/
VALUE ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
/*
* call-seq:
* model_n_audio_state -> Integer
*/
VALUE ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
/*
* call-seq:
* model_n_audio_head -> Integer
*/
VALUE ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
/*
* call-seq:
* model_n_audio_layer -> Integer
*/
VALUE ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
/*
* call-seq:
* model_n_text_ctx -> Integer
*/
VALUE ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
/*
* call-seq:
* model_n_text_state -> Integer
*/
VALUE ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
/*
* call-seq:
* model_n_text_head -> Integer
*/
VALUE ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
/*
* call-seq:
* model_n_text_layer -> Integer
*/
VALUE ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
/*
* call-seq:
* model_n_mels -> Integer
*/
VALUE ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
/*
* call-seq:
* model_ftype -> Integer
*/
VALUE ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
/*
* call-seq:
* model_type -> String
*/
VALUE ruby_whisper_model_type(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
/*
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*
* call-seq:
* full(params, samples, n_samples) -> nil
* full(params, samples) -> nil
*
* The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
*/
VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
{
if (argc < 2 || argc > 3) {
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
}
ruby_whisper *rw;
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
VALUE params = argv[0];
TypedData_Get_Struct(params, ruby_whisper_params, &ruby_whisper_params_type, rwp);
VALUE samples = argv[1];
int n_samples;
rb_memory_view_t view;
const bool memory_view_available_p = rb_memory_view_available_p(samples);
if (argc == 3) {
n_samples = NUM2INT(argv[2]);
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) < n_samples) {
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
}
}
// Should check when samples.respond_to?(:length)?
} else {
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)RARRAY_LEN(samples);
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
ssize_t n_samples_size = view.byte_size / view.item_size;
if (n_samples_size > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)n_samples_size;
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
}
}
float * c_samples = (float *)malloc(n_samples * sizeof(float));
if (memory_view_available_p) {
c_samples = (float *)view.data;
} else {
if (TYPE(samples) == T_ARRAY) {
for (int i = 0; i < n_samples; i++) {
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
}
} else {
// TODO: use rb_block_call
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
for (int i = 0; i < n_samples; i++) {
// TODO: check if iter is exhausted and raise ArgumentError appropriately
VALUE sample = rb_funcall(iter, id_next, 0);
c_samples[i] = RFLOAT_VALUE(sample);
}
}
}
prepare_transcription(rwp, &self);
const int result = whisper_full(rw->context, rwp->params, c_samples, n_samples);
if (0 == result) {
return self;
} else {
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
}
}
/*
* Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
* Result is stored in the default state of the context
* Not thread safe if executed in parallel on the same context.
* It seems this approach can offer some speedup in some cases.
* However, the transcription accuracy can be worse at the beginning and end of each chunk.
*
* call-seq:
* full_parallel(params, samples) -> nil
* full_parallel(params, samples, n_samples) -> nil
* full_parallel(params, samples, n_samples, n_processors) -> nil
* full_parallel(params, samples, nil, n_processors) -> nil
*/
static VALUE
ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
{
if (argc < 2 || argc > 4) {
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
}
ruby_whisper *rw;
ruby_whisper_params *rwp;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
VALUE params = argv[0];
TypedData_Get_Struct(params, ruby_whisper_params, &ruby_whisper_params_type, rwp);
VALUE samples = argv[1];
int n_samples;
int n_processors;
rb_memory_view_t view;
const bool memory_view_available_p = rb_memory_view_available_p(samples);
switch (argc) {
case 2:
n_processors = 1;
break;
case 3:
n_processors = 1;
break;
case 4:
n_processors = NUM2INT(argv[3]);
break;
}
if (argc >= 3 && !NIL_P(argv[2])) {
n_samples = NUM2INT(argv[2]);
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) < n_samples) {
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
}
}
// Should check when samples.respond_to?(:length)?
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
ssize_t n_samples_size = view.byte_size / view.item_size;
if (n_samples_size > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)n_samples_size;
} else {
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) > INT_MAX) {
rb_raise(rb_eArgError, "samples are too long");
}
n_samples = (int)RARRAY_LEN(samples);
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
}
}
float * c_samples = (float *)malloc(n_samples * sizeof(float));
if (memory_view_available_p) {
c_samples = (float *)view.data;
} else {
if (TYPE(samples) == T_ARRAY) {
for (int i = 0; i < n_samples; i++) {
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
}
} else {
// FIXME: use rb_block_call
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
for (int i = 0; i < n_samples; i++) {
// TODO: check if iter is exhausted and raise ArgumentError
VALUE sample = rb_funcall(iter, id_next, 0);
c_samples[i] = RFLOAT_VALUE(sample);
}
}
}
prepare_transcription(rwp, &self);
const int result = whisper_full_parallel(rw->context, rwp->params, c_samples, n_samples, n_processors);
if (0 == result) {
return self;
} else {
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
}
}
/*
* Number of segments.
*
* call-seq:
* full_n_segments -> Integer
*/
static VALUE
ruby_whisper_full_n_segments(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_full_n_segments(rw->context));
}
/*
* Language ID, which can be converted to string by Whisper.lang_str and Whisper.lang_str_full.
*
* call-seq:
* full_lang_id -> Integer
*/
static VALUE
ruby_whisper_full_lang_id(VALUE self)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_full_lang_id(rw->context));
}
static int ruby_whisper_full_check_segment_index(const ruby_whisper * rw, const VALUE i_segment)
{
const int c_i_segment = NUM2INT(i_segment);
if (c_i_segment < 0 || c_i_segment >= whisper_full_n_segments(rw->context)) {
rb_raise(rb_eIndexError, "segment index %d out of range", c_i_segment);
}
return c_i_segment;
}
/*
* Start time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
*
* full_get_segment_t0(3) # => 1668 (16680 ms)
*
* call-seq:
* full_get_segment_t0(segment_index) -> Integer
*/
static VALUE
ruby_whisper_full_get_segment_t0(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, c_i_segment);
return LONG2NUM(t0);
}
/*
* End time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
*
* full_get_segment_t1(3) # => 1668 (16680 ms)
*
* call-seq:
* full_get_segment_t1(segment_index) -> Integer
*/
static VALUE
ruby_whisper_full_get_segment_t1(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, c_i_segment);
return LONG2NUM(t1);
}
/*
* Whether the next segment indexed by +segment_index+ is predicated as a speaker turn.
*
* full_get_segment_speacker_turn_next(3) # => true
*
* call-seq:
* full_get_segment_speacker_turn_next(segment_index) -> bool
*/
static VALUE
ruby_whisper_full_get_segment_speaker_turn_next(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const bool speaker_turn_next = whisper_full_get_segment_speaker_turn_next(rw->context, c_i_segment);
return speaker_turn_next ? Qtrue : Qfalse;
}
/*
* Text of a segment indexed by +segment_index+.
*
* full_get_segment_text(3) # => "ask not what your country can do for you, ..."
*
* call-seq:
* full_get_segment_text(segment_index) -> String
*/
static VALUE
ruby_whisper_full_get_segment_text(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const char * text = whisper_full_get_segment_text(rw->context, c_i_segment);
return rb_str_new2(text);
}
/*
* call-seq:
* full_get_segment_no_speech_prob(segment_index) -> Float
*/
static VALUE
ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const float no_speech_prob = whisper_full_get_segment_no_speech_prob(rw->context, c_i_segment);
return DBL2NUM(no_speech_prob);
}
// High level API
static VALUE
ruby_whisper_full_get_segment(VALUE self, VALUE i_segment)
{
return rb_whisper_segment_s_new(self, NUM2INT(i_segment));
}
/*
* Yields each Whisper::Segment:
*
* whisper.transcribe("path/to/audio.wav", params)
* whisper.each_segment do |segment|
* puts segment.text
* end
*
* Returns an Enumerator if no block given:
*
* whisper.transcribe("path/to/audio.wav", params)
* enum = whisper.each_segment
* enum.to_a # => [#<Whisper::Segment>, ...]
*
* call-seq:
* each_segment {|segment| ... }
* each_segment -> Enumerator
*/
static VALUE
ruby_whisper_each_segment(VALUE self)
{
if (!rb_block_given_p()) {
const VALUE method_name = rb_funcall(self, id___method__, 0);
return rb_funcall(self, id_to_enum, 1, method_name);
}
ruby_whisper *rw;
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
const int n_segments = whisper_full_n_segments(rw->context);
for (int i = 0; i < n_segments; ++i) {
rb_yield(rb_whisper_segment_s_new(self, i));
}
return self;
}
/*
* call-seq:
* model -> Whisper::Model
*/
static VALUE
ruby_whisper_get_model(VALUE self)
{
return rb_whisper_model_s_new(self);
}
void
init_ruby_whisper_context(VALUE *mWhisper)
{
cContext = rb_define_class_under(*mWhisper, "Context", rb_cObject);
transcribe_option_names[0] = id_n_processors;
rb_define_alloc_func(cContext, ruby_whisper_allocate);
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
rb_define_method(cContext, "model_n_vocab", ruby_whisper_model_n_vocab, 0);
rb_define_method(cContext, "model_n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
rb_define_method(cContext, "model_n_audio_state", ruby_whisper_model_n_audio_state, 0);
rb_define_method(cContext, "model_n_audio_head", ruby_whisper_model_n_audio_head, 0);
rb_define_method(cContext, "model_n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
rb_define_method(cContext, "model_n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
rb_define_method(cContext, "model_n_text_state", ruby_whisper_model_n_text_state, 0);
rb_define_method(cContext, "model_n_text_head", ruby_whisper_model_n_text_head, 0);
rb_define_method(cContext, "model_n_text_layer", ruby_whisper_model_n_text_layer, 0);
rb_define_method(cContext, "model_n_mels", ruby_whisper_model_n_mels, 0);
rb_define_method(cContext, "model_ftype", ruby_whisper_model_ftype, 0);
rb_define_method(cContext, "model_type", ruby_whisper_model_type, 0);
rb_define_method(cContext, "full_n_segments", ruby_whisper_full_n_segments, 0);
rb_define_method(cContext, "full_lang_id", ruby_whisper_full_lang_id, 0);
rb_define_method(cContext, "full_get_segment_t0", ruby_whisper_full_get_segment_t0, 1);
rb_define_method(cContext, "full_get_segment_t1", ruby_whisper_full_get_segment_t1, 1);
rb_define_method(cContext, "full_get_segment_speaker_turn_next", ruby_whisper_full_get_segment_speaker_turn_next, 1);
rb_define_method(cContext, "full_get_segment_text", ruby_whisper_full_get_segment_text, 1);
rb_define_method(cContext, "full_get_segment_no_speech_prob", ruby_whisper_full_get_segment_no_speech_prob, 1);
rb_define_method(cContext, "full", ruby_whisper_full, -1);
rb_define_method(cContext, "full_parallel", ruby_whisper_full_parallel, -1);
// High level
rb_define_method(cContext, "full_get_segment", ruby_whisper_full_get_segment, 1);
rb_define_method(cContext, "each_segment", ruby_whisper_each_segment, 0);
rb_define_method(cContext, "model", ruby_whisper_get_model, 0);
}

View File

@ -1,52 +0,0 @@
#include <ruby.h>
extern VALUE eError;
VALUE ruby_whisper_error_initialize(VALUE self, VALUE code)
{
const int c_code = NUM2INT(code);
const char *raw_message;
switch (c_code) {
case -2:
raw_message = "failed to compute log mel spectrogram";
break;
case -3:
raw_message = "failed to auto-detect language";
break;
case -4:
raw_message = "too many decoders requested";
break;
case -5:
raw_message = "audio_ctx is larger than the maximum allowed";
break;
case -6:
raw_message = "failed to encode";
break;
case -7:
raw_message = "whisper_kv_cache_init() failed for self-attention cache";
break;
case -8:
raw_message = "failed to decode";
break;
case -9:
raw_message = "failed to decode";
break;
default:
raw_message = "unknown error";
break;
}
const VALUE message = rb_str_new2(raw_message);
rb_call_super(1, &message);
rb_iv_set(self, "@code", code);
return self;
}
void
init_ruby_whisper_error(VALUE *mWhisper)
{
eError = rb_define_class_under(*mWhisper, "Error", rb_eStandardError);
rb_define_attr(eError, "code", true, false);
rb_define_method(eError, "initialize", ruby_whisper_error_initialize, 1);
}

View File

@ -1,232 +0,0 @@
#include <ruby.h>
#include "ruby_whisper.h"
extern const rb_data_type_t ruby_whisper_type;
extern VALUE cModel;
static void rb_whisper_model_mark(void *p) {
ruby_whisper_model *rwm = (ruby_whisper_model *)p;
if (rwm->context) {
rb_gc_mark(rwm->context);
}
}
static size_t
ruby_whisper_model_memsize(const void *p)
{
const ruby_whisper_model *rwm = (const ruby_whisper_model *)p;
size_t size = sizeof(rwm);
if (!rwm) {
return 0;
}
return size;
}
static const rb_data_type_t rb_whisper_model_type = {
"ruby_whisper_model",
{rb_whisper_model_mark, RUBY_DEFAULT_FREE, ruby_whisper_model_memsize,},
0, 0,
0
};
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
return TypedData_Make_Struct(klass, ruby_whisper_model, &rb_whisper_model_type, rwm);
}
VALUE rb_whisper_model_s_new(VALUE context) {
ruby_whisper_model *rwm;
const VALUE model = ruby_whisper_model_allocate(cModel);
TypedData_Get_Struct(model, ruby_whisper_model, &rb_whisper_model_type, rwm);
rwm->context = context;
return model;
};
/*
* call-seq:
* n_vocab -> Integer
*/
static VALUE
ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
/*
* call-seq:
* n_audio_ctx -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
/*
* call-seq:
* n_audio_state -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
/*
* call-seq:
* n_audio_head -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
/*
* call-seq:
* n_audio_layer -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
/*
* call-seq:
* n_text_ctx -> Integer
*/
static VALUE
ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
/*
* call-seq:
* n_text_state -> Integer
*/
static VALUE
ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
/*
* call-seq:
* n_text_head -> Integer
*/
static VALUE
ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
/*
* call-seq:
* n_text_layer -> Integer
*/
static VALUE
ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
/*
* call-seq:
* n_mels -> Integer
*/
static VALUE
ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
/*
* call-seq:
* ftype -> Integer
*/
static VALUE
ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
/*
* call-seq:
* type -> String
*/
static VALUE
ruby_whisper_model_type(VALUE self)
{
ruby_whisper_model *rwm;
TypedData_Get_Struct(self, ruby_whisper_model, &rb_whisper_model_type, rwm);
ruby_whisper *rw;
TypedData_Get_Struct(rwm->context, ruby_whisper, &ruby_whisper_type, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
void
init_ruby_whisper_model(VALUE *mWhisper)
{
cModel = rb_define_class_under(*mWhisper, "Model", rb_cObject);
rb_define_alloc_func(cModel, ruby_whisper_model_allocate);
rb_define_method(cModel, "n_vocab", ruby_whisper_model_n_vocab, 0);
rb_define_method(cModel, "n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
rb_define_method(cModel, "n_audio_state", ruby_whisper_model_n_audio_state, 0);
rb_define_method(cModel, "n_audio_head", ruby_whisper_model_n_audio_head, 0);
rb_define_method(cModel, "n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
rb_define_method(cModel, "n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
rb_define_method(cModel, "n_text_state", ruby_whisper_model_n_text_state, 0);
rb_define_method(cModel, "n_text_head", ruby_whisper_model_n_text_head, 0);
rb_define_method(cModel, "n_text_layer", ruby_whisper_model_n_text_layer, 0);
rb_define_method(cModel, "n_mels", ruby_whisper_model_n_mels, 0);
rb_define_method(cModel, "ftype", ruby_whisper_model_ftype, 0);
rb_define_method(cModel, "type", ruby_whisper_model_type, 0);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,220 +0,0 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define N_KEY_NAMES 5
static VALUE sym_start_time;
static VALUE sym_end_time;
static VALUE sym_text;
static VALUE sym_no_speech_prob;
static VALUE sym_speaker_turn_next;
static VALUE key_names;
extern const rb_data_type_t ruby_whisper_type;
extern VALUE cSegment;
static void
rb_whisper_segment_mark(void *p)
{
ruby_whisper_segment *rws = (ruby_whisper_segment *)p;
rb_gc_mark(rws->context);
}
static size_t
ruby_whisper_segment_memsize(const void *p)
{
const ruby_whisper_segment *rws = (const ruby_whisper_segment *)p;
size_t size = sizeof(rws);
if (!rws) {
return 0;
}
return size;
}
static const rb_data_type_t ruby_whisper_segment_type = {
"ruby_whisper_segment",
{rb_whisper_segment_mark, RUBY_DEFAULT_FREE, ruby_whisper_segment_memsize,},
0, 0,
0
};
VALUE
ruby_whisper_segment_allocate(VALUE klass)
{
ruby_whisper_segment *rws;
return TypedData_Make_Struct(klass, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
}
VALUE
rb_whisper_segment_s_new(VALUE context, int index)
{
ruby_whisper_segment *rws;
const VALUE segment = ruby_whisper_segment_allocate(cSegment);
TypedData_Get_Struct(segment, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
rws->context = context;
rws->index = index;
return segment;
};
/*
* Start time in milliseconds.
*
* call-seq:
* start_time -> Integer
*/
static VALUE
ruby_whisper_segment_get_start_time(VALUE self)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return LONG2NUM(t0 * 10);
}
/*
* End time in milliseconds.
*
* call-seq:
* end_time -> Integer
*/
static VALUE
ruby_whisper_segment_get_end_time(VALUE self)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return LONG2NUM(t1 * 10);
}
/*
* Whether the next segment is predicted as a speaker turn.
*
* call-seq:
* speaker_turn_next? -> bool
*/
static VALUE
ruby_whisper_segment_get_speaker_turn_next(VALUE self)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
return whisper_full_get_segment_speaker_turn_next(rw->context, rws->index) ? Qtrue : Qfalse;
}
/*
* call-seq:
* text -> String
*/
static VALUE
ruby_whisper_segment_get_text(VALUE self)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
const char * text = whisper_full_get_segment_text(rw->context, rws->index);
return rb_str_new2(text);
}
/*
* call-seq:
* no_speech_prob -> Float
*/
static VALUE
ruby_whisper_segment_get_no_speech_prob(VALUE self)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
return DBL2NUM(whisper_full_get_segment_no_speech_prob(rw->context, rws->index));
}
/*
* call-seq:
* deconstruct_keys(keys) -> hash
*
* Possible keys: :start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next
*
* whisper.each_segment do |segment|
* segment => {start_time:, end_time:, text:, no_speech_prob:, speaker_turn_next:}
*
* puts "[#{start_time} --> #{end_time}] #{text} (no speech prob: #{no_speech_prob}#{speaker_turn_next ? ', speaker turns next' : ''})"
* end
*/
static VALUE
ruby_whisper_segment_deconstruct_keys(VALUE self, VALUE keys)
{
ruby_whisper_segment *rws;
TypedData_Get_Struct(self, ruby_whisper_segment, &ruby_whisper_segment_type, rws);
ruby_whisper *rw;
TypedData_Get_Struct(rws->context, ruby_whisper, &ruby_whisper_type, rw);
VALUE hash = rb_hash_new();
long n_keys;
if (NIL_P(keys)) {
keys = key_names;
n_keys = N_KEY_NAMES;
} else {
n_keys = RARRAY_LEN(keys);
if (n_keys > N_KEY_NAMES) {
return hash;
}
}
for (int i = 0; i < n_keys; i++) {
VALUE key = rb_ary_entry(keys, i);
if (key == sym_start_time) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_start_time(self));
}
if (key == sym_end_time) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_end_time(self));
}
if (key == sym_text) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_text(self));
}
if (key == sym_no_speech_prob) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_no_speech_prob(self));
}
if (key == sym_speaker_turn_next) {
rb_hash_aset(hash, key, ruby_whisper_segment_get_speaker_turn_next(self));
}
}
return hash;
}
void
init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cContext)
{
cSegment = rb_define_class_under(*mWhisper, "Segment", rb_cObject);
sym_start_time = ID2SYM(rb_intern("start_time"));
sym_end_time = ID2SYM(rb_intern("end_time"));
sym_text = ID2SYM(rb_intern("text"));
sym_no_speech_prob = ID2SYM(rb_intern("no_speech_prob"));
sym_speaker_turn_next = ID2SYM(rb_intern("speaker_turn_next"));
key_names = rb_ary_new3(
N_KEY_NAMES,
sym_start_time,
sym_end_time,
sym_text,
sym_no_speech_prob,
sym_speaker_turn_next
);
rb_define_alloc_func(cSegment, ruby_whisper_segment_allocate);
rb_define_method(cSegment, "start_time", ruby_whisper_segment_get_start_time, 0);
rb_define_method(cSegment, "end_time", ruby_whisper_segment_get_end_time, 0);
rb_define_method(cSegment, "speaker_turn_next?", ruby_whisper_segment_get_speaker_turn_next, 0);
rb_define_method(cSegment, "text", ruby_whisper_segment_get_text, 0);
rb_define_method(cSegment, "no_speech_prob", ruby_whisper_segment_get_no_speech_prob, 0);
rb_define_method(cSegment, "deconstruct_keys", ruby_whisper_segment_deconstruct_keys, 1);
}

View File

@ -1,93 +0,0 @@
#include <ruby.h>
#include "ruby_whisper.h"
#include "common-whisper.h"
#include <string>
#include <vector>
#ifdef __cplusplus
extern "C" {
#endif
extern const rb_data_type_t ruby_whisper_type;
extern const rb_data_type_t ruby_whisper_params_type;
extern ID id_to_s;
extern ID id_call;
extern ID transcribe_option_names[1];
extern void
prepare_transcription(ruby_whisper_params * rwp, VALUE * self);
/*
* transcribe a single file
* can emit to a block results
*
* params = Whisper::Params.new
* params.duration = 60_000
* whisper.transcribe "path/to/audio.wav", params do |text|
* puts text
* end
*
* call-seq:
* transcribe(path_to_audio, params) {|text| ...}
**/
VALUE
ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
ruby_whisper_params *rwp;
VALUE wave_file_path, blk, params, kws;
VALUE opts[1];
rb_scan_args_kw(RB_SCAN_ARGS_LAST_HASH_KEYWORDS, argc, argv, "2:&", &wave_file_path, &params, &kws, &blk);
rb_get_kwargs(kws, transcribe_option_names, 0, 1, opts);
int n_processors = opts[0] == Qundef ? 1 : NUM2INT(opts[0]);
TypedData_Get_Struct(self, ruby_whisper, &ruby_whisper_type, rw);
TypedData_Get_Struct(params, ruby_whisper_params, &ruby_whisper_params_type, rwp);
if (!rb_respond_to(wave_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
}
std::string fname_inp = StringValueCStr(wave_file_path);
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
if (!read_audio_data(fname_inp, pcmf32, pcmf32s, rwp->diarize)) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return self;
}
// Commented out because it is work in progress
// {
// static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
// rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
// bool is_aborted = *(bool*)user_data;
// return !is_aborted;
// };
// rwp->params.encoder_begin_callback_user_data = &is_aborted;
// }
prepare_transcription(rwp, &self);
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), n_processors) != 0) {
fprintf(stderr, "failed to process audio\n");
return self;
}
if (NIL_P(blk)) {
return self;
}
const int n_segments = whisper_full_n_segments(rw->context);
VALUE output = rb_str_new2("");
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(rw->context, i);
output = rb_str_concat(output, rb_str_new2(text));
}
rb_funcall(blk, id_call, 1, output);
return self;
}
#ifdef __cplusplus
}
#endif

View File

@ -1,288 +0,0 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define DEFINE_PARAM(param_name, nth) \
id_ ## param_name = rb_intern(#param_name); \
param_names[nth] = id_ ## param_name; \
rb_define_method(cVADParams, #param_name, ruby_whisper_vad_params_get_ ## param_name, 0); \
rb_define_method(cVADParams, #param_name "=", ruby_whisper_vad_params_set_ ## param_name, 1);
#define NUM_PARAMS 6
extern VALUE cVADParams;
static size_t
ruby_whisper_vad_params_memsize(const void *p)
{
const struct ruby_whisper_vad_params *params = p;
size_t size = sizeof(params);
if (!params) {
return 0;
}
return size;
}
static ID param_names[NUM_PARAMS];
static ID id_threshold;
static ID id_min_speech_duration_ms;
static ID id_min_silence_duration_ms;
static ID id_max_speech_duration_s;
static ID id_speech_pad_ms;
static ID id_samples_overlap;
const rb_data_type_t ruby_whisper_vad_params_type = {
"ruby_whisper_vad_params",
{0, 0, ruby_whisper_vad_params_memsize,},
0, 0,
0
};
static VALUE
ruby_whisper_vad_params_s_allocate(VALUE klass)
{
ruby_whisper_vad_params *rwvp;
VALUE obj = TypedData_Make_Struct(klass, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params = whisper_vad_default_params();
return obj;
}
/*
* Probability threshold to consider as speech.
*
* call-seq:
* threshold = th -> th
*/
static VALUE
ruby_whisper_vad_params_set_threshold(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.threshold = RFLOAT_VALUE(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_threshold(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return DBL2NUM(rwvp->params.threshold);
}
/*
* Min duration for a valid speech segment.
*
* call-seq:
* min_speech_duration_ms = duration_ms -> duration_ms
*/
static VALUE
ruby_whisper_vad_params_set_min_speech_duration_ms(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.min_speech_duration_ms = NUM2INT(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_min_speech_duration_ms(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return INT2NUM(rwvp->params.min_speech_duration_ms);
}
/*
* Min silence duration to consider speech as ended.
*
* call-seq:
* min_silence_duration_ms = duration_ms -> duration_ms
*/
static VALUE
ruby_whisper_vad_params_set_min_silence_duration_ms(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.min_silence_duration_ms = NUM2INT(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_min_silence_duration_ms(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return INT2NUM(rwvp->params.min_silence_duration_ms);
}
/*
* Max duration of a speech segment before forcing a new segment.
*
* call-seq:
* max_speech_duration_s = duration_s -> duration_s
*/
static VALUE
ruby_whisper_vad_params_set_max_speech_duration_s(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.max_speech_duration_s = RFLOAT_VALUE(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_max_speech_duration_s(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return DBL2NUM(rwvp->params.max_speech_duration_s);
}
/*
* Padding added before and after speech segments.
*
* call-seq:
* speech_pad_ms = pad_ms -> pad_ms
*/
static VALUE
ruby_whisper_vad_params_set_speech_pad_ms(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.speech_pad_ms = NUM2INT(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_speech_pad_ms(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return INT2NUM(rwvp->params.speech_pad_ms);
}
/*
* Overlap in seconds when copying audio samples from speech segment.
*
* call-seq:
* samples_overlap = overlap -> overlap
*/
static VALUE
ruby_whisper_vad_params_set_samples_overlap(VALUE self, VALUE value)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rwvp->params.samples_overlap = RFLOAT_VALUE(value);
return value;
}
static VALUE
ruby_whisper_vad_params_get_samples_overlap(VALUE self)
{
ruby_whisper_vad_params *rwvp;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
return DBL2NUM(rwvp->params.samples_overlap);
}
static VALUE
ruby_whisper_vad_params_equal(VALUE self, VALUE other)
{
ruby_whisper_vad_params *rwvp1;
ruby_whisper_vad_params *rwvp2;
if (self == other) {
return Qtrue;
}
if (!rb_obj_is_kind_of(other, cVADParams)) {
return Qfalse;
}
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp1);
TypedData_Get_Struct(other, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp2);
if (rwvp1->params.threshold != rwvp2->params.threshold) {
return Qfalse;
}
if (rwvp1->params.min_speech_duration_ms != rwvp2->params.min_speech_duration_ms) {
return Qfalse;
}
if (rwvp1->params.min_silence_duration_ms != rwvp2->params.min_silence_duration_ms) {
return Qfalse;
}
if (rwvp1->params.max_speech_duration_s != rwvp2->params.max_speech_duration_s) {
return Qfalse;
}
if (rwvp1->params.speech_pad_ms != rwvp2->params.speech_pad_ms) {
return Qfalse;
}
if (rwvp1->params.samples_overlap != rwvp2->params.samples_overlap) {
return Qfalse;
}
return Qtrue;
}
#define SET_PARAM_IF_SAME(param_name) \
if (id == id_ ## param_name) { \
ruby_whisper_vad_params_set_ ## param_name(self, value); \
continue; \
}
VALUE
ruby_whisper_vad_params_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE kw_hash;
VALUE values[NUM_PARAMS] = {Qundef};
VALUE value;
ruby_whisper_vad_params *rwvp;
ID id;
int i;
TypedData_Get_Struct(self, ruby_whisper_vad_params, &ruby_whisper_vad_params_type, rwvp);
rb_scan_args_kw(RB_SCAN_ARGS_KEYWORDS, argc, argv, ":", &kw_hash);
if (NIL_P(kw_hash)) {
return self;
}
rb_get_kwargs(kw_hash, param_names, 0, NUM_PARAMS, values);
for (i = 0; i < NUM_PARAMS; i++) {
id = param_names[i];
value = values[i];
if (value == Qundef) {
continue;
}
SET_PARAM_IF_SAME(threshold)
SET_PARAM_IF_SAME(min_speech_duration_ms)
SET_PARAM_IF_SAME(min_silence_duration_ms)
SET_PARAM_IF_SAME(max_speech_duration_s)
SET_PARAM_IF_SAME(speech_pad_ms)
SET_PARAM_IF_SAME(samples_overlap)
}
return self;
}
#undef SET_PARAM_IF_SAME
void
init_ruby_whisper_vad_params(VALUE *mVAD)
{
cVADParams = rb_define_class_under(*mVAD, "Params", rb_cObject);
rb_define_alloc_func(cVADParams, ruby_whisper_vad_params_s_allocate);
rb_define_method(cVADParams, "initialize", ruby_whisper_vad_params_initialize, -1);
DEFINE_PARAM(threshold, 0)
DEFINE_PARAM(min_speech_duration_ms, 1)
DEFINE_PARAM(min_silence_duration_ms, 2)
DEFINE_PARAM(max_speech_duration_s, 3)
DEFINE_PARAM(speech_pad_ms, 4)
DEFINE_PARAM(samples_overlap, 5)
rb_define_method(cVADParams, "==", ruby_whisper_vad_params_equal, 1);
}
#undef DEFINE_PARAM
#undef NUM_PARAMS

View File

@ -1,8 +0,0 @@
set(GRAPHVIZ_EXECUTABLES FALSE)
set(GRAPHVIZ_STATIC_LIBS TRUE)
set(GRAPHVIZ_SHARED_LIBS FALSE)
set(GRAPHVIZ_MODULE_LIBS FALSE)
set(GRAPHVIZ_INTERFACE_LIBS FALSE)
set(GRAPHVIZ_OBJECT_LIBS FALSE)
set(GRAPHVIZ_UNKNOWN_LIBS FALSE)
set(GRAPHVIZ_GENERATE_DEPENDERS FALSE)

View File

@ -1,40 +0,0 @@
require "pathname"
root = Pathname("..")/".."
ignored_dirs = %w[
.devops
.github
ci
examples/wchess/wchess.wasm
examples/whisper.android
examples/whisper.android.java
examples/whisper.objc
examples/whisper.swiftui
grammars
models
samples
scripts
].collect {|dir| root/dir}
ignored_files = %w[
AUTHORS
Makefile
README.md
README_sycl.md
.gitignore
.gitmodules
.dockerignore
whisper.nvim
twitch.sh
yt-wsp.sh
close-issue.yml
]
EXTSOURCES =
`git ls-files -z #{root}`.split("\x0")
.collect {|file| Pathname(file)}
.reject {|file|
ignored_dirs.any? {|dir| file.descend.any? {|desc| desc == dir}} ||
ignored_files.include?(file.basename.to_path) ||
(file.descend.to_a[1] != root && file.descend.to_a[1] != Pathname("..")/"javascript")
}
.collect(&:to_path)

View File

@ -1,15 +0,0 @@
module Whisper
class Context
def to_srt
each_segment.with_index.reduce("") {|srt, (segment, index)|
srt << "#{index + 1}\n#{segment.to_srt_cue}\n"
}
end
def to_webvtt
each_segment.with_index.reduce("WEBVTT\n\n") {|webvtt, (segment, index)|
webvtt << "#{index + 1}\n#{segment.to_webvtt_cue}\n"
}
end
end
end

View File

@ -1,233 +0,0 @@
require "uri"
require "net/http"
require "time"
require "pathname"
require "io/console/size"
module Whisper
class Model
class URI
def initialize(uri)
@uri = URI(uri)
end
def to_path
cache
cache_path.to_path
end
def clear_cache
path = cache_path
path.delete if path.exist?
end
private
def cache_path
base_cache_dir/@uri.host/@uri.path[1..]
end
def base_cache_dir
base = case RUBY_PLATFORM
when /mswin|mingw/
ENV.key?("LOCALAPPDATA") ? Pathname(ENV["LOCALAPPDATA"]) : Pathname(Dir.home)/"AppData/Local"
when /darwin/
Pathname(Dir.home)/"Library/Caches"
else
ENV.key?("XDG_CACHE_HOME") ? Pathname(ENV["XDG_CACHE_HOME"]) : Pathname(Dir.home)/".cache"
end
base/"whisper.cpp"
end
def cache
path = cache_path
headers = {}
headers["if-modified-since"] = path.mtime.httpdate if path.exist?
request @uri, headers
path
end
def request(uri, headers)
Net::HTTP.start uri.host, uri.port, use_ssl: uri.scheme == "https" do |http|
request = Net::HTTP::Get.new(uri, headers)
http.request request do |response|
case response
when Net::HTTPNotModified
# noop
when Net::HTTPOK
return if !response.key?("last-modified") && cache_path.exist?
download response
when Net::HTTPRedirection
request URI(response["location"]), headers
else
return if headers.key?("if-modified-since") # Use cache file
raise "#{response.code} #{response.message}\n#{response.body}"
end
end
end
rescue => err
if cache_path.exist?
warn err
# Use cache file
else
raise
end
end
def download(response)
path = cache_path
path.dirname.mkpath unless path.dirname.exist?
downloading_path = Pathname("#{path}.downloading")
size = response.content_length
downloading_path.open "wb" do |file|
downloaded = 0
response.read_body do |chunk|
file << chunk
downloaded += chunk.bytesize
show_progress downloaded, size
end
$stderr.puts
end
downloading_path.rename path
end
def show_progress(current, size)
progress_rate_available = size && $stderr.tty?
unless @prev
@prev = Time.now
$stderr.puts "Downloading #{@uri} to #{cache_path}"
end
now = Time.now
if progress_rate_available
return if now - @prev < 1 && current < size
progress_width = 20
progress = current.to_f / size
arrow_length = progress * progress_width
arrow = "=" * (arrow_length - 1) + ">" + " " * (progress_width - arrow_length)
line = "[#{arrow}] (#{format_bytesize(current)} / #{format_bytesize(size)})"
padding = ' ' * ($stderr.winsize[1] - line.size)
$stderr.print "\r#{line}#{padding}"
else
return if now - @prev < 1
$stderr.print "."
end
@prev = now
end
def format_bytesize(bytesize)
return "0.0 B" if bytesize.zero?
units = %w[B KiB MiB GiB TiB]
exp = (Math.log(bytesize) / Math.log(1024)).to_i
format("%.1f %s", bytesize.to_f / 1024 ** exp, units[exp])
end
end
class ZipURI < URI
def cache
zip_path = super
dest = unzipped_path
return if dest.exist? && dest.mtime >= zip_path.mtime
escaping dest do
system "unzip", "-q", "-d", zip_path.dirname.to_path, zip_path.to_path, exception: true
end
zip_path
end
def clear_cache
super
unzipped_path.rmtree if unzipped_path.exist?
end
private
def unzipped_path
cache_path.sub_ext("")
end
def escaping(path)
escaped = Pathname("#{path}.removing")
if path.exist?
escaped.rmtree if escaped.exist?
path.rename escaped
end
yield
ensure
if path.exist?
escaped.rmtree if escaped.exist?
else
escaped.rename path if escaped.exist?
end
end
end
@pre_converted_models = %w[
tiny
tiny.en
tiny-q5_1
tiny.en-q5_1
tiny-q8_0
base
base.en
base-q5_1
base.en-q5_1
base-q8_0
small
small.en
small.en-tdrz
small-q5_1
small.en-q5_1
small-q8_0
medium
medium.en
medium-q5_0
medium.en-q5_0
medium-q8_0
large-v1
large-v2
large-v2-q5_0
large-v2-q8_0
large-v3
large-v3-q5_0
large-v3-turbo
large-v3-turbo-q5_0
large-v3-turbo-q8_0
].each_with_object({}) {|name, models|
models[name] = URI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}.bin")
}
%w[
silero-v5.1.2
].each do |name|
@pre_converted_models[name] = URI.new("https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-#{name}.bin")
end
@coreml_compiled_models = %w[
tiny
tiny.en
base
base.en
small
small.en
medium
medium.en
large-v1
large-v2
large-v3
large-v3-turbo
].each_with_object({}) do |name, models|
models[@pre_converted_models[name]] = ZipURI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}-encoder.mlmodelc.zip")
end
class << self
attr_reader :pre_converted_models, :coreml_compiled_models
end
end
end

View File

@ -1,58 +0,0 @@
module Whisper
class Segment
SRT_ESCAPES = {
"&" => "&amp;",
"<" => "&lt;",
">" => "&gt;",
}
SRT_ESCAPES_RE = Regexp.union(SRT_ESCAPES.keys)
private_constant :SRT_ESCAPES, :SRT_ESCAPES_RE
def to_srt_cue
"#{srt_start_time} --> #{srt_end_time}\n#{srt_text}\n"
end
def to_webvtt_cue
"#{webvtt_start_time} --> #{webvtt_end_time}\n#{webvtt_text}\n"
end
private
def time_to_a(time)
sec, decimal_part = time.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
[hour, min, sec, decimal_part]
end
def srt_time(time)
"%02d:%02d:%02d,%03d" % time_to_a(time)
end
def srt_start_time
srt_time(start_time)
end
def srt_end_time
srt_time(end_time)
end
def srt_text
text.gsub(SRT_ESCAPES_RE, SRT_ESCAPES)
end
def webvtt_time(time)
"%02d:%02d:%02d.%03d" % time_to_a(time)
end
def webvtt_start_time
webvtt_time(start_time)
end
def webvtt_end_time
webvtt_time(end_time)
end
alias webvtt_text srt_text
end
end

View File

@ -1,509 +0,0 @@
module Whisper
interface _Samples
def length: () -> Integer
def each: { (Float) -> void } -> void
end
type log_callback = ^(Integer level, String message, Object user_data) -> void
type new_segment_callback = ^(Whisper::Context, void, Integer n_new, Object user_data) -> void
type progress_callback = ^(Whisper::Context, void, Integer progress, Object user_data) -> void
type encoder_begin_callback = ^(Whisper::Context, void, Object user_data) -> void
type abort_callback = ^(Whisper::Context, void, Object user_data) -> boolish
LOG_LEVEL_NONE: Integer
LOG_LEVEL_INFO: Integer
LOG_LEVEL_WARN: Integer
LOG_LEVEL_ERROR: Integer
LOG_LEVEL_DEBUG: Integer
LOG_LEVEL_CONT: Integer
def self.lang_max_id: () -> Integer
def self.lang_id: (string name) -> Integer
def self.lang_str: (Integer id) -> String
def self.lang_str_full: (Integer id) -> String
def self.log_set: (log_callback, Object? user_data) -> log_callback
def self.system_info_str: () -> String
class Context
def self.new: (String | path | ::URI::HTTP) -> instance
# transcribe a single file
# can emit to a block results
#
# params = Whisper::Params.new
# params.duration = 60_000
# whisper.transcribe "path/to/audio.wav", params do |text|
# puts text
# end
#
def transcribe: (string, Params, ?n_processors: Integer) -> self
| (string, Params, ?n_processors: Integer) { (String) -> void } -> self
def model_n_vocab: () -> Integer
def model_n_audio_ctx: () -> Integer
def model_n_audio_state: () -> Integer
def model_n_text_head: () -> Integer
def model_n_text_layer: () -> Integer
def model_n_mels: () -> Integer
def model_ftype: () -> Integer
def model_type: () -> String
# Yields each Whisper::Segment:
#
# whisper.transcribe("path/to/audio.wav", params)
# whisper.each_segment do |segment|
# puts segment.text
# end
#
# Returns an Enumerator if no block given:
#
# whisper.transcribe("path/to/audio.wav", params)
# enum = whisper.each_segment
# enum.to_a # => [#<Whisper::Segment>, ...]
#
def each_segment: { (Segment) -> void } -> void
| () -> Enumerator[Segment]
def model: () -> Model
def full_get_segment: (Integer nth) -> Segment
def full_n_segments: () -> Integer
# Language ID, which can be converted to string by Whisper.lang_str and Whisper.lang_str_full.
#
def full_lang_id: () -> Integer
# Start time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
#
# full_get_segment_t0(3) # => 1668 (16680 ms)
#
def full_get_segment_t0: (Integer) -> Integer
# End time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
#
# full_get_segment_t1(3) # => 1668 (16680 ms)
#
def full_get_segment_t1: (Integer) -> Integer
# Whether the next segment indexed by +segment_index+ is predicated as a speaker turn.
#
# full_get_segment_speacker_turn_next(3) # => true
#
def full_get_segment_speaker_turn_next: (Integer) -> (true | false)
# Text of a segment indexed by +segment_index+.
#
# full_get_segment_text(3) # => "ask not what your country can do for you, ..."
#
def full_get_segment_text: (Integer) -> String
def full_get_segment_no_speech_prob: (Integer) -> Float
# Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
# Not thread safe for same context
# Uses the specified decoding strategy to obtain the text.
#
# The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
#
def full: (Params, Array[Float] samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
# Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
# Result is stored in the default state of the context
# Not thread safe if executed in parallel on the same context.
# It seems this approach can offer some speedup in some cases.
# However, the transcription accuracy can be worse at the beginning and end of each chunk.
#
def full_parallel: (Params, Array[Float], ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer? n_samples, Integer n_processors) -> self
def to_srt: () -> String
def to_webvtt: () -> String
end
class Params
def self.new: (
?language: string,
?translate: boolish,
?no_context: boolish,
?single_segment: boolish,
?print_special: boolish,
?print_progress: boolish,
?print_realtime: boolish,
?print_timestamps: boolish,
?suppress_blank: boolish,
?suppress_nst: boolish,
?token_timestamps: boolish,
?split_on_word: boolish,
?initial_prompt: string | nil,
?diarize: boolish,
?offset: Integer,
?duration: Integer,
?max_text_tokens: Integer,
?temperature: Float,
?max_initial_ts: Float,
?length_penalty: Float,
?temperature_inc: Float,
?entropy_thold: Float,
?logprob_thold: Float,
?no_speech_thold: Float,
?new_segment_callback: new_segment_callback,
?new_segment_callback_user_data: Object,
?progress_callback: progress_callback,
?progress_callback_user_data: Object,
?encoder_begin_callback: encoder_begin_callback,
?encoder_begin_callback_user_data: Object,
?abort_callback: abort_callback,
?abort_callback_user_data: Object,
?vad: boolish,
?vad_model_path: path | URI,
?vad_params: Whisper::VAD::Params
) -> instance
# params.language = "auto" | "en", etc...
#
def language=: (String) -> String # TODO: Enumerate lang names
def language: () -> String
def translate=: (boolish) -> boolish
def translate: () -> (true | false)
def no_context=: (boolish) -> boolish
# If true, does not use past transcription (if any) as initial prompt for the decoder.
#
def no_context: () -> (true | false)
def single_segment=: (boolish) -> boolish
# If true, forces single segment output (useful for streaming).
#
def single_segment: () -> (true | false)
def print_special=: (boolish) -> boolish
# If true, prints special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.).
#
def print_special: () -> (true | false)
def print_progress=: (boolish) -> boolish
# If true, prints progress information.
#
def print_progress: () -> (true | false)
def print_realtime=: (boolish) -> boolish
# If true, prints results from within whisper.cpp. (avoid it, use callback instead)
#
def print_realtime: () -> (true | false)
# If true, prints timestamps for each text segment when printing realtime.
#
def print_timestamps=: (boolish) -> boolish
def print_timestamps: () -> (true | false)
def suppress_blank=: (boolish) -> boolish
# If true, suppresses blank outputs.
#
def suppress_blank: () -> (true | false)
def suppress_nst=: (boolish) -> boolish
# If true, suppresses non-speech-tokens.
#
def suppress_nst: () -> (true | false)
def token_timestamps=: (boolish) -> boolish
# If true, enables token-level timestamps.
#
def token_timestamps: () -> (true | false)
def split_on_word=: (boolish) -> boolish
# If true, split on word rather than on token (when used with max_len).
#
def split_on_word: () -> (true | false)
def initial_prompt=: (_ToS) -> _ToS
# Tokens to provide to the whisper decoder as initial prompt
# these are prepended to any existing text context from a previous call
# use whisper_tokenize() to convert text to tokens.
# Maximum of whisper_n_text_ctx()/2 tokens are used (typically 224).
#
def initial_prompt: () -> (String | nil)
def diarize=: (boolish) -> boolish
# If true, enables diarization.
#
def diarize: () -> (true | false)
def offset=: (Integer) -> Integer
# Start offset in ms.
#
def offset: () -> Integer
def duration=: (Integer) -> Integer
# Audio duration to process in ms.
#
def duration: () -> Integer
def max_text_tokens=: (Integer) -> Integer
# Max tokens to use from past text as prompt for the decoder.
#
def max_text_tokens: () -> Integer
def temperature=: (Float) -> Float
def temperature: () -> Float
def max_initial_ts=: (Float) -> Float
# See https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/decoding.py#L97
#
def max_initial_ts: () -> Float
def length_penalty=: (Float) -> Float
def length_penalty: () -> Float
def temperature_inc=: (Float) -> Float
def temperature_inc: () -> Float
def entropy_thold=: (Float) -> Float
# Similar to OpenAI's "compression_ratio_threshold"
#
def entropy_thold: () -> Float
def logprob_thold=: (Float) -> Float
def logprob_thold: () -> Float
def no_speech_thold=: (Float) -> Float
def no_speech_thold: () -> Float
# Sets new segment callback, called for every newly generated text segment.
#
# params.new_segment_callback = ->(context, _, n_new, user_data) {
# # ...
# }
#
def new_segment_callback=: (new_segment_callback) -> new_segment_callback
def new_segment_callback: () -> (new_segment_callback | nil)
# Sets user data passed to the last argument of new segment callback.
#
def new_segment_callback_user_data=: (Object) -> Object
def new_segment_callback_user_data: () -> Object
# Sets progress callback, called on each progress update.
#
# params.new_segment_callback = ->(context, _, progress, user_data) {
# # ...
# }
#
# +progress+ is an Integer between 0 and 100.
#
def progress_callback=: (progress_callback) -> progress_callback
def progress_callback: () -> (progress_callback | nil)
# Sets user data passed to the last argument of progress callback.
#
def progress_callback_user_data=: (Object) -> Object
def progress_callback_user_data: () -> Object
# Sets encoder begin callback, called when the encoder starts.
#
def encoder_begin_callback=: (encoder_begin_callback) -> encoder_begin_callback
def encoder_begin_callback: () -> (encoder_begin_callback | nil)
# Sets user data passed to the last argument of encoder begin callback.
#
def encoder_begin_callback_user_data=: (Object) -> Object
def encoder_begin_callback_user_data: () -> Object
# Sets abort callback, called to check if the process should be aborted.
#
# params.abort_callback = ->(user_data) {
# # ...
# }
#
#
def abort_callback=: (abort_callback) -> abort_callback
def abort_callback: () -> (abort_callback | nil)
# Sets user data passed to the last argument of abort callback.
#
def abort_callback_user_data=: (Object) -> Object
def abort_callback_user_data: () -> Object
# Enable VAD
#
def vad=: (boolish) -> boolish
def vad: () -> (true | false)
# Path to the VAD model
def vad_model_path=: (path | URI | nil) -> (path | URI | nil)
def vad_model_path: () -> (String | nil)
def vad_params=: (Whisper::VAD::Params) -> Whisper::VAD::Params
def vad_params: () -> (Whisper::VAD::Params)
# Hook called on new segment. Yields each Whisper::Segment.
#
# whisper.on_new_segment do |segment|
# # ...
# end
#
def on_new_segment: { (Segment) -> void } -> void
# Hook called on progress update. Yields each progress Integer between 0 and 100.
#
def on_progress: { (Integer progress) -> void } -> void
# Hook called on encoder starts.
#
def on_encoder_begin: { () -> void } -> void
# Call block to determine whether abort or not. Return +true+ when you want to abort.
#
# params.abort_on do
# if some_condition
# true # abort
# else
# false # continue
# end
# end
#
def abort_on: { (Object user_data) -> boolish } -> void
end
class Model
def self.pre_converted_models: () -> Hash[String, Model::URI]
def self.coreml_compiled_models: () -> Hash[Model::URI, Model::ZipURI]
def self.new: () -> instance
def n_vocab: () -> Integer
def n_audio_ctx: () -> Integer
def n_audio_state: () -> Integer
def n_audio_head: () -> Integer
def n_audio_layer: () -> Integer
def n_text_ctx: () -> Integer
def n_text_state: () -> Integer
def n_text_head: () -> Integer
def n_text_layer: () -> Integer
def n_mels: () -> Integer
def ftype: () -> Integer
def type: () -> String
class URI
def self.new: (string | ::URI::HTTP) -> instance
def to_path: -> String
def clear_cache: -> void
end
class ZipURI < URI
def cache: () -> Pathname
def clear_cache: () -> void
end
end
class Segment
type deconstructed_keys = {
start_time: (Integer | nil),
end_time: (Integer | nil),
text: (String | nil),
no_speech_prob: (Float | nil),
speaker_turn_next: (true | false | nil)
}
# Start time in milliseconds.
#
def start_time: () -> Integer
# End time in milliseconds.
#
def end_time: () -> Integer
# Whether the next segment is predicted as a speaker turn.
def speaker_turn_next?: () -> (true | false)
def text: () -> String
def no_speech_prob: () -> Float
def to_srt_cue: () -> String
def to_webvtt_cue: () -> String
# Possible keys: :start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next
#
# whisper.each_segment do |segment|
# segment => {start_time:, end_time:, text:, no_speech_prob:, speaker_turn_next:}
#
# puts "[#{start_time} --> #{end_time}] #{text} (no speech prob: #{no_speech_prob}#{speaker_turn_next ? ', speaker turns next' : ''})"
# end
def deconstruct_keys: (Array[:start_time | :end_time | :text | :no_speech_prob | :speaker_turn_next] | nil) -> deconstructed_keys
end
module VAD
class Params
def self.new: (
?threshold: Float,
?min_speech_duration_ms: Integer,
?min_silence_duration_ms: Integer,
?max_speech_duration_s: Float,
?speech_pad_ms: Integer,
?samples_overlap: Float
) -> instance
# Probability threshold to consider as speech.
#
def threshold=: (Float) -> Float
def threshold: () -> Float
# Min duration for a valid speech segment.
#
def min_speech_duration_ms=: (Integer) -> Integer
def min_speech_duration_ms: () -> Integer
# Min silence duration to consider speech as ended.
#
def min_silence_duration_ms=: (Integer) -> Integer
def min_silence_duration_ms: () -> Integer
# Max duration of a speech segment before forcing a new segment.
def max_speech_duration_s=: (Float) -> Float
def max_speech_duration_s: () -> Float
# Padding added before and after speech segments.
#
def speech_pad_ms=: (Integer) -> Integer
def speech_pad_ms: () -> Integer
# Overlap in seconds when copying audio samples from speech segment.
#
def samples_overlap=: (Float) -> Float
def samples_overlap: () -> Float
def ==: (Params) -> (true | false)
end
end
class Error < StandardError
attr_reader code: Integer
def self.new: (Integer code) -> instance
end
end

View File

@ -1,24 +0,0 @@
require "test/unit"
require "whisper"
require_relative "jfk_reader/jfk_reader"
class TestBase < Test::Unit::TestCase
AUDIO = File.join(__dir__, "fixtures", "jfk.wav")
class << self
def whisper
return @whisper if @whisper
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
params.print_timestamps = false
@whisper.transcribe(TestBase::AUDIO, params)
end
end
private
def whisper
self.class.whisper
end
end

View File

@ -1,5 +0,0 @@
Makefile
jfk_reader.o
jfk_reader.so
jfk_reader.bundle
jfk_reader.dll

View File

@ -1,3 +0,0 @@
require "mkmf"
create_makefile("jfk_reader")

View File

@ -1,68 +0,0 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include <ruby/encoding.h>
static VALUE
jfk_reader_initialize(VALUE self, VALUE audio_path)
{
rb_iv_set(self, "audio_path", audio_path);
return Qnil;
}
static bool
jfk_reader_get_memory_view(const VALUE obj, rb_memory_view_t *view, int flags)
{
VALUE audio_path = rb_iv_get(obj, "audio_path");
const char *audio_path_str = StringValueCStr(audio_path);
const int n_samples = 176000;
float *data = (float *)malloc(n_samples * sizeof(float));
short *samples = (short *)malloc(n_samples * sizeof(short));
FILE *file = fopen(audio_path_str, "rb");
fseek(file, 78, SEEK_SET);
fread(samples, sizeof(short), n_samples, file);
fclose(file);
for (int i = 0; i < n_samples; i++) {
data[i] = samples[i]/32768.0;
}
view->obj = obj;
view->data = (void *)data;
view->byte_size = sizeof(float) * n_samples;
view->readonly = true;
view->format = "f";
view->item_size = sizeof(float);
view->item_desc.components = NULL;
view->item_desc.length = 0;
view->ndim = 1;
view->shape = NULL;
view->sub_offsets = NULL;
view->private_data = NULL;
return true;
}
static bool
jfk_reader_release_memory_view(const VALUE obj, rb_memory_view_t *view)
{
return true;
}
static bool
jfk_reader_memory_view_available_p(const VALUE obj)
{
return true;
}
static const rb_memory_view_entry_t jfk_reader_view_entry = {
jfk_reader_get_memory_view,
jfk_reader_release_memory_view,
jfk_reader_memory_view_available_p
};
void Init_jfk_reader(void)
{
VALUE cJFKReader = rb_define_class("JFKReader", rb_cObject);
rb_memory_view_register(cJFKReader, &jfk_reader_view_entry);
rb_define_method(cJFKReader, "initialize", jfk_reader_initialize, 1);
}

View File

@ -1,202 +0,0 @@
require_relative "helper"
class TestCallback < TestBase
def setup
GC.start
@params = Whisper::Params.new
@whisper = Whisper::Context.new("base.en")
@audio = File.join(AUDIO)
end
def test_new_segment_callback
@params.new_segment_callback = ->(context, state, n_new, user_data) {
assert_kind_of Integer, n_new
assert n_new > 0
assert_same @whisper, context
n_segments = context.full_n_segments
n_new.times do |i|
i_segment = n_segments - 1 + i
start_time = context.full_get_segment_t0(i_segment) * 10
end_time = context.full_get_segment_t1(i_segment) * 10
text = context.full_get_segment_text(i_segment)
assert_kind_of Integer, start_time
assert start_time >= 0
assert_kind_of Integer, end_time
assert end_time > 0
assert_match(/ask not what your country can do for you, ask what you can do for your country/, text) if i_segment == 0
end
}
@whisper.transcribe(@audio, @params)
end
def test_new_segment_callback_closure
search_word = "what"
@params.new_segment_callback = ->(context, state, n_new, user_data) {
n_segments = context.full_n_segments
n_new.times do |i|
i_segment = n_segments - 1 + i
text = context.full_get_segment_text(i_segment)
if text.include?(search_word)
t0 = context.full_get_segment_t0(i_segment)
t1 = context.full_get_segment_t1(i_segment)
raise "search word '#{search_word}' found at between #{t0} and #{t1}"
end
end
}
assert_raise RuntimeError do
@whisper.transcribe(@audio, @params)
end
end
def test_new_segment_callback_user_data
udata = Object.new
@params.new_segment_callback_user_data = udata
@params.new_segment_callback = ->(context, state, n_new, user_data) {
assert_same udata, user_data
}
@whisper.transcribe(@audio, @params)
end
def test_new_segment_callback_user_data_gc
@params.new_segment_callback_user_data = "My user data"
@params.new_segment_callback = ->(context, state, n_new, user_data) {
assert_equal "My user data", user_data
}
GC.start
assert_same @whisper, @whisper.transcribe(@audio, @params)
end
def test_progress_callback
first = nil
last = nil
@params.progress_callback = ->(context, state, progress, user_data) {
assert_kind_of Integer, progress
assert 0 <= progress && progress <= 100
assert_same @whisper, context
first = progress if first.nil?
last = progress
}
@whisper.transcribe(@audio, @params)
assert_equal 0, first
assert_equal 100, last
end
def test_progress_callback_user_data
udata = Object.new
@params.progress_callback_user_data = udata
@params.progress_callback = ->(context, state, n_new, user_data) {
assert_same udata, user_data
}
@whisper.transcribe(@audio, @params)
end
def test_on_progress
first = nil
last = nil
@params.on_progress do |progress|
assert_kind_of Integer, progress
assert 0 <= progress && progress <= 100
first = progress if first.nil?
last = progress
end
@whisper.transcribe(@audio, @params)
assert_equal 0, first
assert_equal 100, last
end
def test_encoder_begin_callback
i = 0
@params.encoder_begin_callback = ->(context, state, user_data) {
i += 1
}
@whisper.transcribe(@audio, @params)
assert i > 0
end
def test_encoder_begin_callback_abort
logs = []
Whisper.log_set -> (level, buffer, user_data) {
logs << buffer if level == Whisper::LOG_LEVEL_ERROR
}, logs
@params.encoder_begin_callback = ->(context, state, user_data) {
return false
}
@whisper.transcribe(@audio, @params)
assert_match(/encoder_begin_callback returned false - aborting/, logs.join)
Whisper.log_set ->(level, buffer, user_data) {}, nil
end
def test_encoder_begin_callback_user_data
udata = Object.new
@params.encoder_begin_callback_user_data = udata
yielded = nil
@params.encoder_begin_callback = ->(context, state, user_data) {
yielded = user_data
}
@whisper.transcribe(@audio, @params)
assert_same udata, yielded
end
def test_on_encoder_begin
i = 0
@params.on_encoder_begin do
i += 1
end
@whisper.transcribe(@audio, @params)
assert i > 0
end
def test_abort_callback
i = 0
@params.abort_callback = ->(user_data) {
assert_nil user_data
i += 1
return false
}
@whisper.transcribe(@audio, @params)
assert i > 0
end
def test_abort_callback_abort
i = 0
@params.abort_callback = ->(user_data) {
i += 1
return i == 3
}
@whisper.transcribe(@audio, @params)
assert_equal 3, i
end
def test_abort_callback_user_data
udata = Object.new
@params.abort_callback_user_data = udata
yielded = nil
@params.abort_callback = ->(user_data) {
yielded = user_data
}
@whisper.transcribe(@audio, @params)
assert_same udata, yielded
end
def test_abort_on
do_abort = false
_aborted_from_callback = false
@params.on_new_segment do |segment|
do_abort = true if segment.text.match?(/ask/)
end
i = 0
@params.abort_on do
i += 1
do_abort
end
@whisper.transcribe(@audio, @params)
assert i > 0
end
end

View File

@ -1,20 +0,0 @@
require_relative "helper"
class TestError < TestBase
def test_error
error = Whisper::Error.new(-2)
assert_equal "failed to compute log mel spectrogram", error.message
assert_equal(-2, error.code)
end
def test_unknown_error
error = Whisper::Error.new(-20)
assert_equal "unknown error", error.message
end
def test_non_int_code
assert_raise TypeError do
_error = Whisper::Error.new("non int")
end
end
end

View File

@ -1,118 +0,0 @@
require_relative "helper"
require "pathname"
class TestModel < TestBase
def test_model
whisper = Whisper::Context.new("base.en")
assert_instance_of Whisper::Model, whisper.model
end
def test_attributes
whisper = Whisper::Context.new("base.en")
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_gc
model = Whisper::Context.new("base.en").model
GC.start
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_pathname
path = Pathname(Whisper::Model.pre_converted_models["base.en"].to_path)
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_auto_download
path = Whisper::Model.pre_converted_models["base.en"].to_path
assert_path_exist path
assert_equal 147964211, File.size(path)
end
def test_uri_string
path = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin"
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_uri
path = URI("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin")
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_coreml_model_auto_download
uri = Whisper::Model.coreml_compiled_models[Whisper::Model.pre_converted_models["tiny"]]
model_path = Pathname(uri.to_path).sub_ext("")
model_path.rmtree if model_path.exist?
uri.cache
assert_path_exist model_path
end
end

View File

@ -1,50 +0,0 @@
require_relative "helper"
require 'tempfile'
require 'tmpdir'
require 'shellwords'
class TestPackage < TestBase
def test_build
Tempfile.create do |file|
assert system("gem", "build", "whispercpp.gemspec", "--output", file.to_path.shellescape, exception: true)
assert file.size > 0
assert_path_exist file.to_path
end
end
sub_test_case "Building binary on installation" do
def setup
system "rake", "build", exception: true
end
def test_install
gemspec = Gem::Specification.load("whispercpp.gemspec")
Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{gemspec.file_name.shellescape}", exception: true
assert_installed dir, gemspec.version
end
end
def test_install_with_coreml
omit_unless RUBY_PLATFORM.match?(/darwin/) do
gemspec = Gem::Specification.load("whispercpp.gemspec")
Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{gemspec.file_name.shellescape}", "--", "--enable-whisper-coreml", exception: true
assert_installed dir, gemspec.version
assert_nothing_raised do
libdir = File.join(dir, "gems", "#{gemspec.name}-#{gemspec.version}", "lib")
system "ruby", "-I", libdir, "-r", "whisper", "-e", "Whisper::Context.new('tiny')", exception: true
end
end
end
end
private
def assert_installed(dir, version)
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", "whisper.#{RbConfig::CONFIG["DLEXT"]}")
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/LICENSE")
assert_path_not_exist File.join(dir, "gems/whispercpp-#{version}/ext/build")
end
end
end

View File

@ -1,297 +0,0 @@
require_relative "helper"
class TestParams < TestBase
PARAM_NAMES = [
:language,
:translate,
:no_context,
:single_segment,
:print_special,
:print_progress,
:print_realtime,
:print_timestamps,
:suppress_blank,
:suppress_nst,
:token_timestamps,
:split_on_word,
:initial_prompt,
:diarize,
:offset,
:duration,
:max_text_tokens,
:temperature,
:max_initial_ts,
:length_penalty,
:temperature_inc,
:entropy_thold,
:logprob_thold,
:no_speech_thold,
:new_segment_callback,
:new_segment_callback_user_data,
:progress_callback,
:progress_callback_user_data,
:abort_callback,
:abort_callback_user_data,
:vad,
:vad_model_path,
:vad_params,
]
def setup
@params = Whisper::Params.new
end
def test_language
@params.language = "en"
assert_equal @params.language, "en"
@params.language = "auto"
assert_equal @params.language, "auto"
end
def test_offset
@params.offset = 10_000
assert_equal @params.offset, 10_000
@params.offset = 0
assert_equal @params.offset, 0
end
def test_duration
@params.duration = 60_000
assert_equal @params.duration, 60_000
@params.duration = 0
assert_equal @params.duration, 0
end
def test_max_text_tokens
@params.max_text_tokens = 300
assert_equal @params.max_text_tokens, 300
@params.max_text_tokens = 0
assert_equal @params.max_text_tokens, 0
end
def test_translate
@params.translate = true
assert @params.translate
@params.translate = false
assert !@params.translate
end
def test_no_context
@params.no_context = true
assert @params.no_context
@params.no_context = false
assert !@params.no_context
end
def test_single_segment
@params.single_segment = true
assert @params.single_segment
@params.single_segment = false
assert !@params.single_segment
end
def test_print_special
@params.print_special = true
assert @params.print_special
@params.print_special = false
assert !@params.print_special
end
def test_print_progress
@params.print_progress = true
assert @params.print_progress
@params.print_progress = false
assert !@params.print_progress
end
def test_print_realtime
@params.print_realtime = true
assert @params.print_realtime
@params.print_realtime = false
assert !@params.print_realtime
end
def test_print_timestamps
@params.print_timestamps = true
assert @params.print_timestamps
@params.print_timestamps = false
assert !@params.print_timestamps
end
def test_suppress_blank
@params.suppress_blank = true
assert @params.suppress_blank
@params.suppress_blank = false
assert !@params.suppress_blank
end
def test_suppress_nst
@params.suppress_nst = true
assert @params.suppress_nst
@params.suppress_nst = false
assert !@params.suppress_nst
end
def test_token_timestamps
@params.token_timestamps = true
assert @params.token_timestamps
@params.token_timestamps = false
assert !@params.token_timestamps
end
def test_split_on_word
@params.split_on_word = true
assert @params.split_on_word
@params.split_on_word = false
assert !@params.split_on_word
end
def test_initial_prompt
assert_nil @params.initial_prompt
@params.initial_prompt = "You are a polite person."
assert_equal "You are a polite person.", @params.initial_prompt
end
def test_temperature
assert_equal 0.0, @params.temperature
@params.temperature = 0.5
assert_equal 0.5, @params.temperature
end
def test_max_initial_ts
assert_equal 1.0, @params.max_initial_ts
@params.max_initial_ts = 600.0
assert_equal 600.0, @params.max_initial_ts
end
def test_length_penalty
assert_equal(-1.0, @params.length_penalty)
@params.length_penalty = 0.5
assert_equal 0.5, @params.length_penalty
end
def test_temperature_inc
assert_in_delta 0.2, @params.temperature_inc
@params.temperature_inc = 0.5
assert_in_delta 0.5, @params.temperature_inc
end
def test_entropy_thold
assert_in_delta 2.4, @params.entropy_thold
@params.entropy_thold = 3.0
assert_in_delta 3.0, @params.entropy_thold
end
def test_logprob_thold
assert_in_delta(-1.0, @params.logprob_thold)
@params.logprob_thold = -0.5
assert_in_delta(-0.5, @params.logprob_thold)
end
def test_no_speech_thold
assert_in_delta 0.6, @params.no_speech_thold
@params.no_speech_thold = 0.2
assert_in_delta 0.2, @params.no_speech_thold
end
def test_vad
assert_false @params.vad
@params.vad = true
assert_true @params.vad
end
def test_vad_model_path
assert_nil @params.vad_model_path
@params.vad_model_path = "silero-v5.1.2"
assert_equal Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path, @params.vad_model_path
end
def test_vad_model_path_with_nil
@params.vad_model_path = "silero-v5.1.2"
@params.vad_model_path = nil
assert_nil @params.vad_model_path
end
def test_vad_model_path_with_invalid
assert_raise TypeError do
@params.vad_model_path = Object.new
end
end
def test_vad_model_path_with_URI_string
@params.vad_model_path = "https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin"
assert_equal @params.vad_model_path, Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path
end
def test_vad_model_path_with_URI
@params.vad_model_path = URI("https://huggingface.co/ggml-org/whisper-vad/resolve/main/ggml-silero-v5.1.2.bin")
assert_equal @params.vad_model_path, Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path
end
def test_vad_params
assert_kind_of Whisper::VAD::Params, @params.vad_params
default_params = @params.vad_params
assert_same default_params, @params.vad_params
assert_equal 0.5, default_params.threshold
new_params = Whisper::VAD::Params.new
@params.vad_params = new_params
assert_same new_params, @params.vad_params
end
def test_new_with_kw_args
params = Whisper::Params.new(language: "es")
assert_equal "es", params.language
assert_equal 1.0, params.max_initial_ts
end
def test_new_with_kw_args_non_existent
assert_raise ArgumentError do
Whisper::Params.new(non_existent: "value")
end
end
def test_new_with_kw_args_wrong_type
assert_raise TypeError do
Whisper::Params.new(language: 3)
end
end
data(PARAM_NAMES.collect {|param| [param, param]}.to_h)
def test_new_with_kw_args_default_values(param)
default_value = @params.send(param)
value = case [param, default_value]
in [*, true | false]
!default_value
in [*, Integer | Float]
default_value + 1
in [:language, *]
"es"
in [:initial_prompt, *]
"Initial prompt"
in [/_callback\Z/, *]
proc {}
in [/_user_data\Z/, *]
Object.new
in [:vad_model_path, *]
Whisper::Model.pre_converted_models["silero-v5.1.2"].to_path
in [:vad_params, *]
Whisper::VAD::Params.new
end
params = Whisper::Params.new(param => value)
if Float === value
assert_in_delta value, params.send(param)
else
assert_equal value, params.send(param)
end
PARAM_NAMES.reject {|name| name == param}.each do |name|
expected = @params.send(name)
actual = params.send(name)
if Float === expected
assert_in_delta expected, actual
else
assert_equal expected, actual
end
end
end
end

View File

@ -1,136 +0,0 @@
require_relative "helper"
class TestSegment < TestBase
def test_iteration
whisper.each_segment do |segment|
assert_instance_of Whisper::Segment, segment
end
end
def test_enumerator
enum = whisper.each_segment
assert_instance_of Enumerator, enum
enum.to_a.each_with_index do |segment, index|
assert_instance_of Whisper::Segment, segment
assert_kind_of Integer, index
end
end
def test_start_time
i = 0
whisper.each_segment do |segment|
assert_equal 0, segment.start_time if i == 0
i += 1
end
end
def test_end_time
i = 0
whisper.each_segment do |segment|
assert_equal whisper.full_get_segment_t1(i) * 10, segment.end_time
i += 1
end
end
def test_no_speech_prob
no_speech_prob = nil
whisper.each_segment do |segment|
no_speech_prob = segment.no_speech_prob
end
assert no_speech_prob > 0.0
end
def test_on_new_segment
params = Whisper::Params.new
seg = nil
index = 0
params.on_new_segment do |segment|
assert_instance_of Whisper::Segment, segment
if index == 0
seg = segment
assert_equal 0, segment.start_time
assert_match(/ask not what your country can do for you, ask what you can do for your country/, segment.text)
end
index += 1
end
whisper.transcribe(AUDIO, params)
assert_equal 0, seg.start_time
assert_match(/ask not what your country can do for you, ask what you can do for your country/, seg.text)
end
def test_on_new_segment_twice
params = Whisper::Params.new
seg = nil
params.on_new_segment do |segment|
seg = segment
return
end
params.on_new_segment do |segment|
assert_same seg, segment
return
end
whisper.transcribe(AUDIO, params)
end
def test_pattern_matching
segment = whisper.each_segment.first
segment => {start_time:, end_time:, text:, no_speech_prob:, speaker_turn_next:}
assert_equal segment.start_time, start_time
assert_equal segment.end_time, end_time
assert_equal segment.text, text
assert_equal segment.no_speech_prob, no_speech_prob
assert_equal segment.speaker_turn_next?, speaker_turn_next
end
def test_pattern_matching_partial
segment = whisper.each_segment.first
segment => {start_time:, end_time:, text:}
assert_equal segment.start_time, start_time
assert_equal segment.end_time, end_time
assert_equal segment.text, text
end
def test_deconstruct_keys
segment = whisper.each_segment.first
expected = {
start_time: segment.start_time,
end_time: segment.end_time,
text: segment.text,
no_speech_prob: segment.no_speech_prob,
speaker_turn_next: segment.speaker_turn_next?
}
assert_equal expected, segment.deconstruct_keys([:start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next])
end
def test_deconstruct_keys_non_existent
omit "Undefined behavior"
segment = whisper.each_segment.first
assert_equal({}, segment.deconstruct_keys([:non_existent]))
end
def test_deconstruct_keys_too_many_keys
omit "Undefined behavior"
segment = whisper.each_segment.first
assert_equal({}, segment.deconstruct_keys([:start_time, :end_time, :text, :no_speech_prob, :speaker_turn_next, :extra_key]))
end
def test_deconstruct_keys_includes_non_existent_keys_not_too_many
omit "Undefined behavior"
segment = whisper.each_segment.first
expected = {
start_time: segment.start_time,
end_time: segment.end_time,
text: segment.text,
no_speech_prob: segment.no_speech_prob
}
assert_equal(expected, segment.deconstruct_keys([:start_time, :end_time, :text, :no_speech_prob, :non_existent]))
end
end

View File

@ -1,19 +0,0 @@
require_relative "helper"
class TestVAD < TestBase
def setup
@whisper = Whisper::Context.new("base.en")
vad_params = Whisper::VAD::Params.new
@params = Whisper::Params.new(
vad: true,
vad_model_path: "silero-v5.1.2",
vad_params:
)
end
def test_transcribe
@whisper.transcribe(TestBase::AUDIO, @params) do |text|
assert_match(/ask not what your country can do for you[,.] ask what you can do for your country/i, text)
end
end
end

View File

@ -1,103 +0,0 @@
require_relative "helper"
class TestVADParams < TestBase
PARAM_NAMES = [
:threshold,
:min_speech_duration_ms,
:min_silence_duration_ms,
:max_speech_duration_s,
:speech_pad_ms,
:samples_overlap
]
def setup
@params = Whisper::VAD::Params.new
end
def test_new
params = Whisper::VAD::Params.new
assert_kind_of Whisper::VAD::Params, params
end
def test_threshold
assert_in_delta @params.threshold, 0.5
@params.threshold = 0.7
assert_in_delta @params.threshold, 0.7
end
def test_min_speech_duration
pend
end
def test_min_speech_duration_ms
assert_equal 250, @params.min_speech_duration_ms
@params.min_speech_duration_ms = 500
assert_equal 500, @params.min_speech_duration_ms
end
def test_min_silence_duration_ms
assert_equal 100, @params.min_silence_duration_ms
@params.min_silence_duration_ms = 200
assert_equal 200, @params.min_silence_duration_ms
end
def test_max_speech_duration
pend
end
def test_max_speech_duration_s
assert @params.max_speech_duration_s >= 10e37 # Defaults to FLT_MAX
@params.max_speech_duration_s = 60.0
assert_equal 60.0, @params.max_speech_duration_s
end
def test_speech_pad_ms
assert_equal 30, @params.speech_pad_ms
@params.speech_pad_ms = 50
assert_equal 50, @params.speech_pad_ms
end
def test_samples_overlap
assert_in_delta @params.samples_overlap, 0.1
@params.samples_overlap = 0.5
assert_in_delta @params.samples_overlap, 0.5
end
def test_equal
assert_equal @params, Whisper::VAD::Params.new
end
def test_new_with_kw_args
params = Whisper::VAD::Params.new(threshold: 0.7)
assert_in_delta params.threshold, 0.7
assert_equal 250, params.min_speech_duration_ms
end
def test_new_with_kw_args_non_existent
assert_raise ArgumentError do
Whisper::VAD::Params.new(non_existent: "value")
end
end
data(PARAM_NAMES.collect {|param| [param, param]}.to_h)
def test_new_with_kw_args_default_values(param)
default_value = @params.send(param)
value = default_value + 1
params = Whisper::VAD::Params.new(param => value)
if Float === value
assert_in_delta value, params.send(param)
else
assert_equal value, params.send(param)
end
PARAM_NAMES.reject {|name| name == param}.each do |name|
expected = @params.send(name)
actual = params.send(name)
if Float === expected
assert_in_delta expected, actual
else
assert_equal expected, actual
end
end
end
end

View File

@ -1,292 +0,0 @@
require_relative "helper"
require "stringio"
require "etc"
# Exists to detect memory-related bug
Whisper.log_set ->(level, buffer, user_data) {}, nil
class TestWhisper < TestBase
def setup
@params = Whisper::Params.new
end
def test_whisper
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
params.print_timestamps = false
@whisper.transcribe(AUDIO, params) {|text|
assert_match(/ask not what your country can do for you, ask what you can do for your country/, text)
}
end
def test_transcribe_non_parallel
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
@whisper.transcribe(AUDIO, params, n_processors: 1) {|text|
assert_match(/ask not what your country can do for you, ask what you can do for your country/, text)
}
end
def test_transcribe_n_processors
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
@whisper.transcribe(AUDIO, params, n_processors: 4) {|text|
assert_match(/ask not what your country can do for you[,.] ask what you can do for your country/i, text)
}
end
sub_test_case "After transcription" do
def test_full_n_segments
assert_equal 1, whisper.full_n_segments
end
def test_full_lang_id
assert_equal 0, whisper.full_lang_id
end
def test_full_get_segment
segment = whisper.full_get_segment(0)
assert_equal 0, segment.start_time
assert_match(/ask not what your country can do for you, ask what you can do for your country/, segment.text)
end
def test_full_get_segment_t0
assert_equal 0, whisper.full_get_segment_t0(0)
assert_raise IndexError do
whisper.full_get_segment_t0(whisper.full_n_segments)
end
assert_raise IndexError do
whisper.full_get_segment_t0(-1)
end
end
def test_full_get_segment_t1
t1 = whisper.full_get_segment_t1(0)
assert_kind_of Integer, t1
assert t1 > 0
assert_raise IndexError do
whisper.full_get_segment_t1(whisper.full_n_segments)
end
end
def test_full_get_segment_speaker_turn_next
assert_false whisper.full_get_segment_speaker_turn_next(0)
end
def test_full_get_segment_text
assert_match(/ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0))
end
def test_full_get_segment_no_speech_prob
prob = whisper.full_get_segment_no_speech_prob(0)
assert prob > 0.0
assert prob < 1.0
end
end
def test_lang_max_id
assert_kind_of Integer, Whisper.lang_max_id
end
def test_lang_id
assert_equal 0, Whisper.lang_id("en")
assert_raise ArgumentError do
Whisper.lang_id("non existing language")
end
end
def test_lang_str
assert_equal "en", Whisper.lang_str(0)
assert_raise IndexError do
Whisper.lang_str(Whisper.lang_max_id + 1)
end
end
def test_lang_str_full
assert_equal "english", Whisper.lang_str_full(0)
assert_raise IndexError do
Whisper.lang_str_full(Whisper.lang_max_id + 1)
end
end
def test_system_info_str
assert_match(/\AWHISPER : COREML = \d | OPENVINO = \d |/, Whisper.system_info_str)
end
def test_log_set
user_data = Object.new
logs = []
log_callback = ->(level, buffer, udata) {
logs << [level, buffer, udata]
}
Whisper.log_set log_callback, user_data
Whisper::Context.new("base.en")
assert logs.length > 30
logs.each do |log|
assert_include [Whisper::LOG_LEVEL_DEBUG, Whisper::LOG_LEVEL_INFO, Whisper::LOG_LEVEL_WARN], log[0]
assert_same user_data, log[2]
end
end
def test_log_suppress
stderr = $stderr
Whisper.log_set ->(level, buffer, user_data) {
# do nothing
}, nil
dev = StringIO.new("")
$stderr = dev
Whisper::Context.new("base.en")
assert_empty dev.string
ensure
$stderr = stderr
end
sub_test_case "full" do
def setup
super
@whisper = Whisper::Context.new("base.en")
@samples = File.read(AUDIO, nil, 78).unpack("s<*").collect {|i| i.to_f / 2**15}
end
def test_full
@whisper.full(@params, @samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_without_length
@whisper.full(@params, @samples)
assert_equal 1, @whisper.full_n_segments
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_enumerator
samples = @samples.each
@whisper.full(@params, samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_enumerator_without_length
samples = @samples.each
assert_raise ArgumentError do
@whisper.full(@params, samples)
end
end
def test_full_enumerator_with_too_large_length
samples = @samples.each.take(10).to_enum
assert_raise StopIteration do
@whisper.full(@params, samples, 11)
end
end
def test_full_with_memory_view
samples = JFKReader.new(AUDIO)
@whisper.full(@params, samples)
assert_equal 1, @whisper.full_n_segments
assert_match(/ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text)
end
def test_full_parallel
nprocessors = 2
@whisper.full_parallel(@params, @samples, @samples.length, nprocessors)
assert_equal nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_with_memory_view
nprocessors = 2
samples = JFKReader.new(AUDIO)
@whisper.full_parallel(@params, samples, nil, nprocessors)
assert_equal nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_without_length_and_n_processors
@whisper.full_parallel(@params, @samples)
assert_equal 1, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_without_length
nprocessors = 2
@whisper.full_parallel(@params, @samples, nil, nprocessors)
assert_equal nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
def test_full_parallel_without_n_processors
@whisper.full_parallel(@params, @samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match(/ask what you can do/i, text)
assert_match(/for your country/i, text)
end
end
def test_to_srt
whisper = Whisper::Context.new("base.en")
whisper.transcribe AUDIO, @params
lines = whisper.to_srt.lines
assert_match(/\A\d+\n/, lines[0])
assert_match(/\d{2}:\d{2}:\d{2},\d{3} --> \d{2}:\d{2}:\d{2},\d{3}\n/, lines[1])
assert_match(/ask not what your country can do for you, ask what you can do for your country/, lines[2])
end
def test_to_webvtt
whisper = Whisper::Context.new("base.en")
whisper.transcribe AUDIO, @params
lines = whisper.to_webvtt.lines
assert_equal "WEBVTT\n", lines[0]
assert_equal "\n", lines[1]
assert_match(/\A\d+\n/, lines[2])
assert_match(/\d{2}:\d{2}:\d{2}\.\d{3} --> \d{2}:\d{2}:\d{2}\.\d{3}\n/, lines[3])
assert_match(/ask not what your country can do for you, ask what you can do for your country/, lines[4])
end
sub_test_case "Format needs escape" do
def setup
@whisper = Whisper::Context.new("base.en")
@whisper.transcribe AUDIO, Whisper::Params.new
segment = @whisper.each_segment.first
segment.define_singleton_method :text do
"& so my fellow Americans --> ask not what your country can do for you <-- ask what you can do for your country."
end
@whisper.define_singleton_method :each_segment do
Enumerator.new(3) {|yielder| 3.times {yielder << segment}}
end
end
def test_to_srt_escape
assert_equal "&amp; so my fellow Americans --&gt; ask not what your country can do for you &lt;-- ask what you can do for your country.\n", @whisper.to_srt.lines[2]
end
def test_to_webvtt_escape
assert_equal "&amp; so my fellow Americans --&gt; ask not what your country can do for you &lt;-- ask what you can do for your country.\n", @whisper.to_webvtt.lines[4]
end
end
end

View File

@ -0,0 +1,138 @@
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
EXTDIR = File.join(TOPDIR, 'ext')
#$LIBDIR = File.join(TOPDIR, 'lib')
#$:.unshift(LIBDIR)
$:.unshift(EXTDIR)
require 'whisper'
require 'test/unit'
class TestWhisper < Test::Unit::TestCase
def setup
@params = Whisper::Params.new
end
def test_language
@params.language = "en"
assert_equal @params.language, "en"
@params.language = "auto"
assert_equal @params.language, "auto"
end
def test_offset
@params.offset = 10_000
assert_equal @params.offset, 10_000
@params.offset = 0
assert_equal @params.offset, 0
end
def test_duration
@params.duration = 60_000
assert_equal @params.duration, 60_000
@params.duration = 0
assert_equal @params.duration, 0
end
def test_max_text_tokens
@params.max_text_tokens = 300
assert_equal @params.max_text_tokens, 300
@params.max_text_tokens = 0
assert_equal @params.max_text_tokens, 0
end
def test_translate
@params.translate = true
assert @params.translate
@params.translate = false
assert !@params.translate
end
def test_no_context
@params.no_context = true
assert @params.no_context
@params.no_context = false
assert !@params.no_context
end
def test_single_segment
@params.single_segment = true
assert @params.single_segment
@params.single_segment = false
assert !@params.single_segment
end
def test_print_special
@params.print_special = true
assert @params.print_special
@params.print_special = false
assert !@params.print_special
end
def test_print_progress
@params.print_progress = true
assert @params.print_progress
@params.print_progress = false
assert !@params.print_progress
end
def test_print_realtime
@params.print_realtime = true
assert @params.print_realtime
@params.print_realtime = false
assert !@params.print_realtime
end
def test_print_timestamps
@params.print_timestamps = true
assert @params.print_timestamps
@params.print_timestamps = false
assert !@params.print_timestamps
end
def test_suppress_blank
@params.suppress_blank = true
assert @params.suppress_blank
@params.suppress_blank = false
assert !@params.suppress_blank
end
def test_suppress_non_speech_tokens
@params.suppress_non_speech_tokens = true
assert @params.suppress_non_speech_tokens
@params.suppress_non_speech_tokens = false
assert !@params.suppress_non_speech_tokens
end
def test_token_timestamps
@params.token_timestamps = true
assert @params.token_timestamps
@params.token_timestamps = false
assert !@params.token_timestamps
end
def test_split_on_word
@params.split_on_word = true
assert @params.split_on_word
@params.split_on_word = false
assert !@params.split_on_word
end
def test_speed_up
@params.speed_up = true
assert @params.speed_up
@params.speed_up = false
assert !@params.speed_up
end
def test_whisper
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new
params.print_timestamps = false
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
@whisper.transcribe(jfk, params) {|text|
assert_match /ask not what your country can do for you, ask what you can do for your country/, text
}
end
end

View File

@ -1,36 +0,0 @@
require_relative "extsources"
Gem::Specification.new do |s|
s.name = "whispercpp"
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
s.version = '1.3.3'
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
s.email = 'todd.fisher@gmail.com'
s.extra_rdoc_files = ['LICENSE', 'README.md']
s.files = `git ls-files . -z`.split("\x0") +
EXTSOURCES.collect {|file|
basename = File.basename(file)
if s.extra_rdoc_files.include?(basename)
basename
else
file.sub("../..", "ext/sources")
.sub("../javascript", "ext/sources/bindings/javascript")
end
}
s.summary = %q{Ruby whisper.cpp bindings}
s.test_files = s.files.select {|file| file.start_with? "test/"}
s.extensions << 'ext/extconf.rb'
s.required_ruby_version = '>= 3.1.0'
#### Documentation and testing.
s.homepage = 'https://github.com/ggml-org/whisper.cpp'
s.rdoc_options = ['--main', 'README.md']
s.platform = Gem::Platform::RUBY
s.licenses = ['MIT']
end

View File

@ -1,547 +0,0 @@
#!/bin/bash
#
# Options
IOS_MIN_OS_VERSION=16.4
MACOS_MIN_OS_VERSION=13.3
VISIONOS_MIN_OS_VERSION=1.0
TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
WHISPER_BUILD_EXAMPLES=OFF
WHISPER_BUILD_TESTS=OFF
WHISPER_BUILD_SERVER=OFF
GGML_METAL=ON
GGML_METAL_EMBED_LIBRARY=ON
GGML_BLAS_DEFAULT=ON
GGML_METAL_USE_BF16=ON
GGML_OPENMP=OFF
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
# Common options for all builds
COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DWHISPER_BUILD_EXAMPLES=${WHISPER_BUILD_EXAMPLES}
-DWHISPER_BUILD_TESTS=${WHISPER_BUILD_TESTS}
-DWHISPER_BUILD_SERVER=${WHISPER_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
-DGGML_METAL=${GGML_METAL}
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
-DGGML_NATIVE=OFF
-DGGML_OPENMP=${GGML_OPENMP}
)
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
check_required_tool() {
local tool=$1
local install_message=$2
if ! command -v $tool &> /dev/null; then
echo "Error: $tool is required but not found."
echo "$install_message"
exit 1
fi
}
echo "Checking for required tools..."
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
set -e
## Clean up previous builds
rm -rf build-apple
rm -rf build-ios-sim
rm -rf build-ios-device
rm -rf build-macos
rm -rf build-visionos
rm -rf build-visionos-sim
rm -rf build-tvos-sim
rm -rf build-tvos-device
# Setup the xcframework build directory structure
setup_framework_structure() {
local build_dir=$1
local min_os_version=$2
local platform=$3 # "ios", "macos", "visionos", or "tvos"
local framework_name="whisper"
echo "Creating ${platform}-style framework structure for ${build_dir}"
if [[ "$platform" == "macos" ]]; then
# macOS versioned structure uses versioned directories
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
# Create symbolic links
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
else
# iOS/VisionOS/tvOS use a flat structure
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
# Remove any existing structure to ensure clean build
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
fi
# Copy all required headers (common for all platforms)
cp include/whisper.h ${header_path}
cp ggml/include/ggml.h ${header_path}
cp ggml/include/ggml-alloc.h ${header_path}
cp ggml/include/ggml-backend.h ${header_path}
cp ggml/include/ggml-metal.h ${header_path}
cp ggml/include/ggml-cpu.h ${header_path}
cp ggml/include/ggml-blas.h ${header_path}
cp ggml/include/gguf.h ${header_path}
# Create module map (common for all platforms)
cat > ${module_path}module.modulemap << EOF
framework module whisper {
header "whisper.h"
header "ggml.h"
header "ggml-alloc.h"
header "ggml-backend.h"
header "ggml-metal.h"
header "ggml-cpu.h"
header "ggml-blas.h"
header "gguf.h"
link "c++"
link framework "Accelerate"
link framework "Metal"
link framework "Foundation"
export *
}
EOF
# Platform-specific settings for Info.plist
local platform_name=""
local sdk_name=""
local supported_platform=""
case "$platform" in
"ios")
platform_name="iphoneos"
sdk_name="iphoneos${min_os_version}"
supported_platform="iPhoneOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>1</integer>
<integer>2</integer>
</array>'
;;
"macos")
platform_name="macosx"
sdk_name="macosx${min_os_version}"
supported_platform="MacOSX"
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
local device_family=""
;;
"visionos")
platform_name="xros"
sdk_name="xros${min_os_version}"
supported_platform="XRPlatform"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=""
;;
"tvos")
platform_name="appletvos"
sdk_name="appletvos${min_os_version}"
supported_platform="AppleTVOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>3</integer>
</array>'
;;
esac
# Create Info.plist
cat > ${plist_path} << EOF
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleExecutable</key>
<string>whisper</string>
<key>CFBundleIdentifier</key>
<string>org.ggml.whisper</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>whisper</string>
<key>CFBundlePackageType</key>
<string>FMWK</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>MinimumOSVersion</key>
<string>${min_os_version}</string>
<key>CFBundleSupportedPlatforms</key>
<array>
<string>${supported_platform}</string>
</array>${device_family}
<key>DTPlatformName</key>
<string>${platform_name}</string>
<key>DTSDKName</key>
<string>${sdk_name}</string>
</dict>
</plist>
EOF
}
# Create dynamic libraries from static libraries.
combine_static_libraries() {
local build_dir="$1"
local release_dir="$2"
local platform="$3" # "ios", "macos", "visionos", or "tvos"
local is_simulator="$4"
local base_dir="$(pwd)"
local framework_name="whisper"
# Determine output path based on platform
local output_lib=""
if [[ "$platform" == "macos" ]]; then
# macOS uses versioned structure
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
else
# iOS, visionOS, and tvOS use a directory flat structure
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
fi
local libs=(
"${base_dir}/${build_dir}/src/${release_dir}/libwhisper.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
)
if [[ "$platform" == "macos" || "$platform" == "ios" ]]; then
echo "Adding libwhisper.coreml library to the build."
libs+=(
"${base_dir}/${build_dir}/src/${release_dir}/libwhisper.coreml.a"
)
fi
# Create temporary directory for processing
local temp_dir="${base_dir}/${build_dir}/temp"
echo "Creating temporary directory: ${temp_dir}"
mkdir -p "${temp_dir}"
# Since we have multiple architectures libtool will find object files that do not
# match the target architecture. We suppress these warnings.
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
# Determine SDK, architectures, and install_name based on platform and simulator flag.
local sdk=""
local archs=""
local min_version_flag=""
local install_name=""
local frameworks="-framework Foundation -framework Metal -framework Accelerate"
case "$platform" in
"ios")
if [[ "$is_simulator" == "true" ]]; then
sdk="iphonesimulator"
archs="arm64 x86_64"
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
else
sdk="iphoneos"
archs="arm64"
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
fi
install_name="@rpath/whisper.framework/whisper"
frameworks+=" -framework CoreML"
;;
"macos")
sdk="macosx"
archs="arm64 x86_64"
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
install_name="@rpath/whisper.framework/Versions/Current/whisper"
frameworks+=" -framework CoreML"
;;
"visionos")
if [[ "$is_simulator" == "true" ]]; then
sdk="xrsimulator"
archs="arm64 x86_64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
else
sdk="xros"
archs="arm64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
fi
# Use flat structure for visionOS, same as iOS
install_name="@rpath/whisper.framework/whisper"
;;
"tvos")
if [[ "$is_simulator" == "true" ]]; then
sdk="appletvsimulator"
archs="arm64 x86_64"
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
else
sdk="appletvos"
archs="arm64"
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
fi
install_name="@rpath/whisper.framework/whisper"
;;
esac
# Build architecture flags
local arch_flags=""
for arch in $archs; do
arch_flags+=" -arch $arch"
done
# Create dynamic library
echo "Creating dynamic library for ${platform}."
xcrun -sdk $sdk clang++ -dynamiclib \
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
$arch_flags \
$min_version_flag \
-Wl,-force_load,"${temp_dir}/combined.a" \
$frameworks \
-install_name "$install_name" \
-o "${base_dir}/${output_lib}"
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v xcrun vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
echo "Xcode version greater than 16.2, using visionOS."
VISION_OS_BUILD_VERSION="visionos"
else
echo "Xcode version less than or equal to 16.2, using xros."
VISION_OS_BUILD_VERSION="xros"
fi
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
else
echo "Warning: vtool not found. Binary may not pass App Store validation."
fi
fi
echo "Creating properly formatted dSYM..."
# Create a separate directory for dSYMs for all platforms
mkdir -p "${base_dir}/${build_dir}/dSYMs"
# iOS and visionOS style dSYM (flat structure)
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/whisper.dSYM"
# Create a copy of the binary that will be stripped
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
# Strip debug symbols from the copy
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
# Replace the original with the stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
else
# macOS style dSYM
# First strip debug info to a separate file
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/whisper.dSYM"
# Replace original binary with stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
fi
# Remove any automatically generated dSYM files in the framework structure as they will
# otherwise case Invalid Bundle Structure validation errors.
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
rm -rf "${base_dir}/${output_lib}.dSYM"
fi
# Clean up
rm -rf "${temp_dir}"
}
echo "Building for iOS simulator..."
cmake -B build-ios-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DIOS=ON \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphonesimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DWHISPER_COREML="ON" \
-DWHISPER_COREML_ALLOW_FALLBACK="ON" \
-S .
cmake --build build-ios-sim --config Release -- -quiet
echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DWHISPER_COREML="ON" \
-DWHISPER_COREML_ALLOW_FALLBACK="ON" \
-S .
cmake --build build-ios-device --config Release -- -quiet
echo "Building for macOS..."
cmake -B build-macos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DWHISPER_COREML="ON" \
-DWHISPER_COREML_ALLOW_FALLBACK="ON" \
-S .
cmake --build build-macos --config Release -- -quiet
echo "Building for visionOS..."
cmake -B build-visionos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos --config Release -- -quiet
echo "Building for visionOS simulator..."
cmake -B build-visionos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
echo "Building for tvOS simulator..."
cmake -B build-tvos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvsimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
echo "Building for tvOS devices..."
cmake -B build-tvos-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-device --config Release -- -quiet
# Setup frameworks and copy binaries and headers
echo "Setting up framework structures..."
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
# Create dynamic libraries from static libraries
echo "Creating dynamic libraries from static libraries..."
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
combine_static_libraries "build-macos" "Release" "macos" "false"
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
# Create XCFramework with correct debug symbols paths
echo "Creating XCFramework..."
xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-sim/framework/whisper.framework \
-debug-symbols $(pwd)/build-ios-sim/dSYMs/whisper.dSYM \
-framework $(pwd)/build-ios-device/framework/whisper.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/whisper.dSYM \
-framework $(pwd)/build-macos/framework/whisper.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/whisper.dSYM \
-framework $(pwd)/build-visionos/framework/whisper.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/whisper.dSYM \
-framework $(pwd)/build-visionos-sim/framework/whisper.framework \
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/whisper.dSYM \
-framework $(pwd)/build-tvos-device/framework/whisper.framework \
-debug-symbols $(pwd)/build-tvos-device/dSYMs/whisper.dSYM \
-framework $(pwd)/build-tvos-sim/framework/whisper.framework \
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/whisper.dSYM \
-output $(pwd)/build-apple/whisper.xcframework

View File

@ -1,41 +0,0 @@
# CI
In addition to [Github Actions](https://github.com/ggerganov/whisper.cpp/actions) `whisper.cpp` uses a custom CI framework:
https://github.com/ggml-org/ci
It monitors the `master` branch for new commits and runs the
[ci/run.sh](https://github.com/ggerganov/whisper.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
to cover various hardware architectures, including GPU and Apple Silicon instances.
Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
Only the branches of this repo are monitored for this keyword.
It is a good practice, before publishing changes to execute the full CI locally on your machine:
```bash
mkdir tmp
# CPU-only build
bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with CUDA support
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
## Environment Variables
The CI script supports several environment variables to control the build:
| Variable | Description |
|----------|-------------|
| `GG_BUILD_CUDA` | Enable NVIDIA CUDA GPU acceleration |
| `GG_BUILD_SYCL` | Enable Intel SYCL acceleration |
| `GG_BUILD_VULKAN` | Enable Vulkan GPU acceleration |
| `GG_BUILD_METAL` | Enable Metal acceleration on Apple Silicon |
| `GG_BUILD_BLAS` | Enable BLAS CPU acceleration |
| `GG_BUILD_OPENVINO` | Enable OpenVINO support |
| `GG_BUILD_COREML` | Enable Core ML support for Apple Neural Engine |
| `GG_BUILD_LOW_PERF` | Limit tests for low-performance hardware |
| `GG_BUILD_TEST_MODELS` | Comma-separated list of models to test (e.g. "tiny.en,tiny,base,medium", defaults to all models unless `GG_BUILD_LOW_PERF` is set) |

336
ci/run.sh
View File

@ -1,336 +0,0 @@
#!/bin/bash
#
# sample usage:
#
# mkdir tmp
#
# # CPU-only build
# bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with CUDA support
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
exit 1
fi
mkdir -p "$1"
mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
sd=`dirname $0`
cd $sd/../
SRC=`pwd`
ALL_MODELS=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" "large-v3-turbo" )
BENCH_N_THREADS=4
BENCH_ENCODER_ONLY=0
BENCH_FLASH_ATTN=0
# check for user-specified models first. if not specified, use fast models
if [ ! -z ${GG_BUILD_TEST_MODELS} ]; then
IFS=',' read -r -a MODELS <<< "${GG_BUILD_TEST_MODELS}"
else
if [ ! -z ${GG_BUILD_LOW_PERF} ]; then
MODELS=( "tiny" "base" "small" )
else
MODELS=("${ALL_MODELS[@]}")
fi
fi
CMAKE_EXTRA="-DWHISPER_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_OPENVINO} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DWHISPER_OPENVINO=ON"
fi
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=ON"
fi
if [ ! -z ${GG_BUILD_BLAS} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_BLAS=ON"
fi
if [ ! -z ${GG_BUILD_COREML} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DWHISPER_COREML=ON"
fi
## helpers
# download a file if it does not exist or if it is outdated
function gg_wget {
local out=$1
local url=$2
local cwd=`pwd`
mkdir -p $out
cd $out
# should not re-download if file is the same
wget -nv -N $url
cd $cwd
}
function gg_download_model {
local model_name=$1
local model_file="$MNT/models/ggml-${model_name}.bin"
if [ ! -f ${model_file} ]; then
local cwd=`pwd`
mkdir -p "$MNT/models"
cd "$MNT/models"
bash "$cwd/models/download-ggml-model.sh" ${model_name} .
cd "$cwd"
fi
}
function gg_printf {
printf -- "$@" >> $OUT/README.md
}
# Helper function to check command exit status
function gg_check_last_command_status {
local exit_file=$1
local command_name=$2
local exit_status=$?
echo "$exit_status" > "$exit_file"
if [ $exit_status -ne 0 ]; then
echo "Error: Command $command_name failed with exit status $exit_status"
return 1
fi
return 0
}
# Usage: gg_run <test_name> [additional_args...]
#
# Parameters:
# test_name - Name of the test to run (calls gg_run_<test_name>)
# additional_args - Any additional arguments to pass to the test function (first argument is appended to the log filename)
function gg_run {
ci=$1
if [ $# -gt 1 ]; then
ci="${ci}_${2}"
fi
set -o pipefail
set -x
gg_run_$1 "$@" | tee $OUT/$ci.log
cur=$?
echo "$cur" > $OUT/$ci.exit
set +x
set +o pipefail
gg_sum_$1 "$@"
ret=$((ret | cur))
}
function gg_check_build_requirements {
if ! command -v cmake &> /dev/null; then
gg_printf 'cmake not found, please install'
fi
if ! command -v make &> /dev/null; then
gg_printf 'make not found, please install'
fi
}
## ci
function gg_run_ctest {
mode=$2
cd ${SRC}
rm -rf build-ci-${mode} && mkdir build-ci-${mode} && cd build-ci-${mode}
set -e
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=${mode} ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
function gg_sum_ctest {
mode=$2
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest in '${mode}' mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
function gg_run_bench {
cd ${SRC}
# set flash attention flag if enabled
fattn=""
if [ "$BENCH_FLASH_ATTN" -eq 1 ]; then
fattn="-fa"
fi
# run memcpy benchmark if not encoder-only mode
if [ "$BENCH_ENCODER_ONLY" -eq 0 ]; then
echo "Running memcpy benchmark"
(time ./build-ci-release/bin/whisper-bench -w 1 -t $BENCH_N_THREADS 2>&1) | tee -a $OUT/${ci}-memcpy.log
gg_check_last_command_status "$OUT/${ci}-memcpy.exit" "memcpy benchmark"
echo "Running ggml_mul_mat benchmark with $BENCH_N_THREADS threads"
(time ./build-ci-release/bin/whisper-bench -w 2 -t $BENCH_N_THREADS 2>&1) | tee -a $OUT/${ci}-mul_mat.log
gg_check_last_command_status "$OUT/${ci}-mul_mat.exit" "ggml_mul_mat benchmark"
fi
echo "Running benchmark for all models"
# generate header for the benchmark table
{
printf "| %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "Config" "Model" "Th" "FA" "Enc." "Dec." "Bch5" "PP" "Commit"
printf "| %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---"
} | tee -a $OUT/${ci}-models-table.log
# run benchmark for each model
for model in "${MODELS[@]}"; do
echo "Benchmarking model: $model"
# run the benchmark and capture output
output=$(./build-ci-release/bin/whisper-bench -m $MNT/models/ggml-$model.bin -t $BENCH_N_THREADS $fattn 2>&1)
ret=$?
# save the raw output
echo "$output" > $OUT/${ci}-bench-$model.log
if [ $ret -eq 0 ]; then
# parse the benchmark results
encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
batchd_time=$(echo "$output" | grep "batchd time" | awk '{print $11}')
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
system_info=$(echo "$output" | grep "system_info")
actual_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
# determine configuration
config=""
if [[ $system_info == *"AVX2 = 1"* ]]; then
config="$config AVX2"
fi
if [[ $system_info == *"NEON = 1"* ]]; then
config="$config NEON"
fi
if [[ $system_info == *"BLAS = 1"* ]]; then
config="$config BLAS"
fi
if [[ $system_info == *"COREML = 1"* ]]; then
config="$config COREML"
fi
if [[ $system_info == *"CUDA = 1"* ]]; then
config="$config CUDA"
fi
if [[ $system_info == *"METAL = 1"* ]]; then
config="$config METAL"
fi
# get commit hash
commit=$(git rev-parse --short HEAD)
# add row to benchmark table
printf "| %16s | %13s | %3s | %3s | %7s | %7s | %7s | %7s | %7s |\n" \
"$config" "$model" "$actual_threads" "$BENCH_FLASH_ATTN" "$encode_time" "$decode_time" "$batchd_time" "$prompt_time" "$commit" \
| tee -a $OUT/${ci}-models-table.log
else
echo "Benchmark failed for model: $model" | tee -a $OUT/${ci}-bench-errors.log
fi
done
}
function gg_sum_bench {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Whisper Benchmark Results\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
# show memcpy and ggml_mul_mat benchmark results if available
if [ "$BENCH_ENCODER_ONLY" -eq 0 ]; then
if [ -f "$OUT/${ci}-memcpy.log" ]; then
gg_printf '#### memcpy Benchmark\n\n'
gg_printf '```\n%s\n```\n\n' "$(cat $OUT/${ci}-memcpy.log)"
fi
if [ -f "$OUT/${ci}-mul_mat.log" ]; then
gg_printf '#### ggml_mul_mat Benchmark\n\n'
gg_printf '```\n%s\n```\n\n' "$(cat $OUT/${ci}-mul_mat.log)"
fi
fi
# show model benchmark results
gg_printf '#### Model Benchmarks\n\n'
if [ -f "$OUT/${ci}-models-table.log" ]; then
gg_printf '%s\n\n' "$(cat $OUT/${ci}-models-table.log)"
else
gg_printf 'No model benchmark results available.\n\n'
fi
# show any errors that occurred
if [ -f "$OUT/${ci}-bench-errors.log" ]; then
gg_printf '#### Benchmark Errors\n\n'
gg_printf '```\n%s\n```\n\n' "$(cat $OUT/${ci}-bench-errors.log)"
fi
}
ret=0
for model in "${MODELS[@]}"; do
test $ret -eq 0 && gg_download_model ${model}
done
if [ -z ${GG_BUILD_SYCL}]; then
test $ret -eq 0 && gg_run ctest debug
fi
test $ret -eq 0 && gg_run ctest release
test $ret -eq 0 && gg_run bench
exit $ret

Some files were not shown because too many files have changed in this diff Show More