mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-25 01:19:10 +00:00
Compare commits
135 Commits
gg/prompt-
...
v1.6.2
Author | SHA1 | Date | |
---|---|---|---|
c7b6988678 | |||
05042a782d | |||
a7dc2aab16 | |||
22d46b7ba4 | |||
c10db6ea28 | |||
1b51fdf170 | |||
adee3f9c1f | |||
4798be1f9a | |||
08981d1bac | |||
7094ea5e75 | |||
9d5771ae43 | |||
f56b8305c4 | |||
1056ad762c | |||
c451080c8b | |||
8e7c22fbdb | |||
e57e95eb0d | |||
130f43e4b8 | |||
d8356a1cc2 | |||
4ef8d9f44e | |||
3928dbd206 | |||
2ced6f0742 | |||
30f73109b8 | |||
17fa62d3d3 | |||
1da5edcde0 | |||
0bb05b113d | |||
f141b2b938 | |||
2b434c449e | |||
e93081f83f | |||
b6bbce4ae9 | |||
7705dc52da | |||
e6acaf9d91 | |||
2c81e6fd51 | |||
9506267ce5 | |||
fbeb80b5f0 | |||
3fa7d29876 | |||
fe179ae0cc | |||
40aeeeecc4 | |||
5a863fbe18 | |||
91c646c61d | |||
accada542a | |||
e54329da7b | |||
284fac39fb | |||
fe454b8d9e | |||
c114b75aee | |||
4be936b88b | |||
26c550f772 | |||
24f0aa460b | |||
69efc39d5c | |||
a2ad810118 | |||
1ae1a9cd56 | |||
b5521fea19 | |||
9b84195225 | |||
11c1df0436 | |||
c754494fdd | |||
1bce67999d | |||
6c39ea46b6 | |||
156a33a990 | |||
5167ebdfca | |||
b574646d75 | |||
388c3462a6 | |||
9ad202bee9 | |||
f0d3fb4a7e | |||
9d4c8b8aa5 | |||
ecfac1e240 | |||
6f7140f568 | |||
05b17112cf | |||
a15fb5cd79 | |||
63fd148d8f | |||
6c3971b29b | |||
a6d264f331 | |||
2959686019 | |||
c96b0a938e | |||
c97796aa0f | |||
7a4f7d825e | |||
fdb2c87350 | |||
98c0b77e0c | |||
9d6d50d933 | |||
c1320c1f0c | |||
66aaf03a7a | |||
00a0947c65 | |||
60f3713026 | |||
37e6757453 | |||
8dcefdf4a9 | |||
73d13ad19a | |||
b6680fab50 | |||
f760756078 | |||
58210d6a76 | |||
8fac6455ff | |||
22b6598cc9 | |||
858452d58d | |||
7f85e1d7fd | |||
b0c3cbf2e8 | |||
a750868428 | |||
7395c70a74 | |||
9fab28135c | |||
08d3eef97d | |||
1b5439a6c2 | |||
c7f95b7ca2 | |||
5c554c04ff | |||
c383f091a1 | |||
8f253ef3af | |||
c7dc37f97c | |||
526332873b | |||
1d2721ca72 | |||
219e601dab | |||
3b8aade3c2 | |||
52ccd4a3a8 | |||
5275074d37 | |||
c15b4cda7d | |||
d3cfb6ca2b | |||
956ef860bc | |||
671b4bde6c | |||
c8eeb93a6a | |||
319fe5146e | |||
13c22321d1 | |||
ccbe9d5676 | |||
81a3c41aa0 | |||
a50207c65d | |||
97878e53fd | |||
61b05815e0 | |||
1dce94cf26 | |||
f12e982c0b | |||
fa966b9b40 | |||
b83a9fc9d3 | |||
3adbf2fb03 | |||
700d146127 | |||
a74fde9b4c | |||
1d7657f409 | |||
ac283dbce7 | |||
1e8f28c42a | |||
fc366b807a | |||
9fb308d90f | |||
2948c740a2 | |||
1558ec5a16 | |||
fff24a0148 |
166
.github/workflows/build.yml
vendored
166
.github/workflows/build.yml
vendored
@ -15,10 +15,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
@ -36,7 +36,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
@ -53,10 +53,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
uses: cross-platform-actions/action@v0.15.0
|
||||
uses: cross-platform-actions/action@v0.24.0
|
||||
with:
|
||||
operating_system: freebsd
|
||||
version: '13.2'
|
||||
@ -77,10 +77,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
@ -105,10 +105,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
@ -133,10 +133,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
@ -152,21 +152,21 @@ jobs:
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
dwhisper_sycl: [ON]
|
||||
dcmake_c_compiler: [icx]
|
||||
dcmake_cxx_compiler: [icpx]
|
||||
dcmake_cxx_compiler: [icpx]
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
run: |
|
||||
@ -189,8 +189,8 @@ jobs:
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@ -202,21 +202,21 @@ jobs:
|
||||
|
||||
ubuntu-22-cmake-sycl-fp16:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
dwhisper_sycl: [ON]
|
||||
dcmake_c_compiler: [icx]
|
||||
dcmake_cxx_compiler: [icpx]
|
||||
dcmake_cxx_compiler: [icpx]
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
run: |
|
||||
@ -239,8 +239,8 @@ jobs:
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@ -249,7 +249,65 @@ jobs:
|
||||
cd build
|
||||
cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
|
||||
- { sys: CLANG64, env: clang-x86_64, build: Release }
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup ${{ matrix.sys }}
|
||||
uses: msys2/setup-msys2@v2
|
||||
with:
|
||||
update: true
|
||||
msystem: ${{matrix.sys}}
|
||||
install: >-
|
||||
base-devel
|
||||
mingw-w64-${{matrix.env}}-toolchain
|
||||
mingw-w64-${{matrix.env}}-cmake
|
||||
mingw-w64-${{matrix.env}}-SDL2
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
|
||||
- name: Build using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Clean after building using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make clean
|
||||
|
||||
- name: Build using make w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make WHISPER_OPENBLAS=1 -j $(nproc)
|
||||
|
||||
- name: Build using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
cmake -B build
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
- name: Clean after building using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
rm -rf build
|
||||
|
||||
- name: Build using CMake w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
cmake -B build -DWHISPER_OPENBLAS=ON
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
@ -270,10 +328,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
uses: microsoft/setup-msbuild@v2
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
@ -298,14 +356,14 @@ jobs:
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload dll
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.jnaPath }}_whisper.dll
|
||||
path: build/bin/${{ matrix.build }}/whisper.dll
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: whisper-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
@ -334,10 +392,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
uses: microsoft/setup-msbuild@v2
|
||||
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
@ -395,7 +453,7 @@ jobs:
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: whisper-blas${{ matrix.clblast == 'ON' && '-clblast' || ''}}-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
@ -418,14 +476,14 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
uses: microsoft/setup-msbuild@v2
|
||||
|
||||
- name: Install CUDA Toolkit
|
||||
id: cuda-toolkit
|
||||
uses: Jimver/cuda-toolkit@v0.2.11
|
||||
uses: Jimver/cuda-toolkit@v0.2.15
|
||||
with:
|
||||
cuda: '${{ matrix.cuda-toolkit }}'
|
||||
|
||||
@ -461,7 +519,7 @@ jobs:
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v1
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
@ -475,10 +533,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup emsdk
|
||||
uses: mymindstorm/setup-emsdk@v12
|
||||
uses: mymindstorm/setup-emsdk@v14
|
||||
|
||||
- name: Verify
|
||||
run: emcc -v
|
||||
@ -497,7 +555,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Configure
|
||||
run: |
|
||||
@ -515,24 +573,24 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
path: whisper
|
||||
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: ggerganov/ggml
|
||||
path: ggml
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v3
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: zulu
|
||||
java-version: 17
|
||||
java-version: 21
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: android-actions/setup-android@v2
|
||||
uses: android-actions/setup-android@v3
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
@ -550,20 +608,19 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: set up JDK 11
|
||||
uses: actions/setup-java@v3
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
java-version: '11'
|
||||
distribution: 'temurin'
|
||||
cache: gradle
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: android-actions/setup-android@v2
|
||||
uses: android-actions/setup-android@v3
|
||||
with:
|
||||
api-level: 30
|
||||
build-tools-version: 30.0.3
|
||||
cmdline-tools-version: 9.0
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
@ -575,15 +632,16 @@ jobs:
|
||||
needs: [ 'windows' ]
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v1
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
java-version: 17
|
||||
distribution: zulu
|
||||
java-version: 20
|
||||
|
||||
- name: Download Windows lib
|
||||
uses: actions/download-artifact@v3
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: win32-x86-64_whisper.dll
|
||||
path: bindings/java/build/generated/resources/main/win32-x86-64
|
||||
@ -596,7 +654,7 @@ jobs:
|
||||
./gradlew build
|
||||
|
||||
- name: Upload jar
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: whispercpp.jar
|
||||
path: bindings/java/build/libs/whispercpp-*.jar
|
||||
@ -618,7 +676,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Test quantize
|
||||
run: |
|
||||
|
2
.github/workflows/examples.yml
vendored
2
.github/workflows/examples.yml
vendored
@ -37,7 +37,7 @@ jobs:
|
||||
run: npm install
|
||||
|
||||
- name: Compile addon.node
|
||||
run: npx cmake-js compile -T whisper-addon -B Release
|
||||
run: npx cmake-js compile -T addon.node -B Release
|
||||
|
||||
- name: Download test model
|
||||
run: |
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -7,6 +7,7 @@
|
||||
.vscode/
|
||||
.DS_Store
|
||||
.vimspector.json
|
||||
/CMakeSettings.json
|
||||
|
||||
build/
|
||||
build-coreml/
|
||||
|
301
AUTHORS
Normal file
301
AUTHORS
Normal file
@ -0,0 +1,301 @@
|
||||
# date: Tue Apr 9 20:27:03 EEST 2024
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0/0 <zero@imaskeleton.me>
|
||||
0cc4m <picard12@live.de>
|
||||
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
|
||||
Aaron Taylor <aaron@exphat.com>
|
||||
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
|
||||
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
|
||||
AfryMask <AfryMask@163.com>
|
||||
Ahmad Bilal <ahmad.bilal@empglabs.com>
|
||||
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
Akash Mahajan <akash7190@gmail.com>
|
||||
Akash Mahajan <akashmjn@stanford.edu>
|
||||
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
|
||||
Alan <unknown>
|
||||
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
|
||||
Alex Evgrashin <aevgrashin@yandex.ru>
|
||||
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
|
||||
Alexandru Mariuti <alex@mariuti.com>
|
||||
Alexey Kharlamov <alexey@kharlamov.biz>
|
||||
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
|
||||
Ali Alameh <ali.alameh@isae.edu.lb>
|
||||
Ananta Bastola <anantarajbastola@gmail.com>
|
||||
Andreu Huguet <andreuhuguet@gmail.com>
|
||||
Andrew Huynh <a5thuynh@gmail.com>
|
||||
Andrew S <andrews54757@gmail.com>
|
||||
Andy Maloney <asmaloney@gmail.com>
|
||||
Anton Kostin <masguit42@users.noreply.github.com>
|
||||
Artyom Mezin <psycho.fading@gmail.com>
|
||||
Asad Memon <asad.lionpk@gmail.com>
|
||||
Ashraful Islam <ashraful.meche@gmail.com>
|
||||
AsukaMinato <asukaminato@nyan.eu.org>
|
||||
AustinMroz <austinmroz@utexas.edu>
|
||||
Avik Sengupta <avik@sengupta.net>
|
||||
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
|
||||
Baffin Lee <baffinlee@gmail.com>
|
||||
Ben Nortier <bjnortier@gmail.com>
|
||||
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
|
||||
Bo-Yi Wu <appleboy.tw@gmail.com>
|
||||
Boris Bliznioukov <blib@mail.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
|
||||
Brian Murray <brian@bmurray.ca>
|
||||
CRD716 <crd716@gmail.com>
|
||||
Canis Lupus <Canis-UK@users.noreply.github.com>
|
||||
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
|
||||
ChangSeok Oh <shivamidow@users.noreply.github.com>
|
||||
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
|
||||
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
|
||||
Chidi Williams <williamschidi1@gmail.com>
|
||||
Christian <12550267+iceychris@users.noreply.github.com>
|
||||
Clifford Heath <clifford.heath@gmail.com>
|
||||
Colin <github@whoisc.cc>
|
||||
DGdev91 <DGdev91@users.noreply.github.com>
|
||||
Damian Czaja <trojan295@protonmail.com>
|
||||
Daniel Bevenius <daniel.bevenius@gmail.com>
|
||||
David <dnhkng@gmail.com>
|
||||
David Thorpe <djt@mutablelogic.com>
|
||||
Davidson Francis <davidsondfgl@gmail.com>
|
||||
Dener Stassun <denerstassun@gmail.com>
|
||||
Didzis Gosko <didzis@users.noreply.github.com>
|
||||
Digipom <admin@digipom.com>
|
||||
Dimo <dimo@ieee.org>
|
||||
Dody Suria Wijaya <dodysw@gmail.com>
|
||||
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
|
||||
Duncan McConnell <ddmcconnell4@gmail.com>
|
||||
Egor Egorov <me@egorfine.com>
|
||||
Elkana Bardugo <ttv200@gmail.com>
|
||||
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
|
||||
Engininja2 <139037756+Engininja2@users.noreply.github.com>
|
||||
Eric Swanson <eswanson@alloscomp.com>
|
||||
Eric Tendian <erictendian@gmail.com>
|
||||
Erik Scholz <Green-Sky@users.noreply.github.com>
|
||||
Evan Jones <evan.q.jones@gmail.com>
|
||||
Evan Martin <evan.martin@gmail.com>
|
||||
Eve <139727413+netrunnereve@users.noreply.github.com>
|
||||
Evgeny Kuznetsov <evgeny@kuznetsov.md>
|
||||
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
|
||||
Fangjun Kuang <csukuangfj@gmail.com>
|
||||
Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
|
||||
Gang Chen <goncha@gmail.com>
|
||||
Gavin Cai <gavin1818@hotmail.com>
|
||||
George Hindle <george@georgehindle.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
GitAritron <103900385+GitAritron@users.noreply.github.com>
|
||||
GiviMAD <GiviMAD@users.noreply.github.com>
|
||||
Gleicon Moraes <gleicon@gmail.com>
|
||||
Gregor Jasny <gjasny@googlemail.com>
|
||||
Guillaume Wenzek <gwenzek@users.noreply.github.com>
|
||||
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
Hang <bebound@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
Hrishikesh Barman <geekodour@users.noreply.github.com>
|
||||
Ian Bicking <ian@ianbicking.org>
|
||||
Ian Bull <irbull@eclipsesource.com>
|
||||
Ikko Ashimine <eltociear@gmail.com>
|
||||
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
|
||||
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
|
||||
Ivan Gorin <ivangorin21@gmail.com>
|
||||
JJ <103335846+computerscienceiscool@users.noreply.github.com>
|
||||
Jack Mousseau <jmousseau@users.noreply.github.com>
|
||||
JacobLinCool <jacoblincool@gmail.com>
|
||||
Jakub Ráček <blizzcz@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jay Binks <jaybinks@gmail.com>
|
||||
Jhen-Jie Hong <developer@jhen.me>
|
||||
Jhen-Jie Hong <iainst0409@gmail.com>
|
||||
JidongZhang-THU <1119708529@qq.com>
|
||||
Jo Liss <joliss42@gmail.com>
|
||||
Johan <jr.raffin@gmail.com>
|
||||
Johannes Gäßler <johannesg@5d6.de>
|
||||
John Balis <phobossystems@gmail.com>
|
||||
Jonathan Soo <jcsoo@agora.com>
|
||||
Jonno <1160532+razodactyl@users.noreply.github.com>
|
||||
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
|
||||
Jose <34888496+Jerry-Master@users.noreply.github.com>
|
||||
Josh Bleecher Snyder <josharian@gmail.com>
|
||||
Judd <foldl@users.noreply.github.com>
|
||||
Jumper775 <78500318+jumpers775@users.noreply.github.com>
|
||||
Justine Tunney <jtunney@gmail.com>
|
||||
KP Kaiser <kirk@zothcorp.com>
|
||||
Kamilake <exjang0@gmail.com>
|
||||
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
|
||||
Kasumi <90275229+kasumi-1@users.noreply.github.com>
|
||||
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
|
||||
Kevin Brothaler <admin@digipom.com>
|
||||
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
|
||||
Kreijstal <rainb@tfwno.gf>
|
||||
Kylin <56434533+KyL0N@users.noreply.github.com>
|
||||
LBlue <153975653+lbluep@users.noreply.github.com>
|
||||
Larry Battle <larry.battle.tech@gmail.com>
|
||||
Laytan Laats <laytanlaats@hotmail.com>
|
||||
Leo Moll <leo.moll@yeasoft.com>
|
||||
Lexevolution <31176843+Lexevolution@users.noreply.github.com>
|
||||
LittleLoli <26589867+WhichWho@users.noreply.github.com>
|
||||
Lucas Zanek <57494138+LucasZNK@users.noreply.github.com>
|
||||
Luis Herrera <herrera-luis@users.noreply.github.com>
|
||||
Lukas Rist <glaslos@gmail.com>
|
||||
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
|
||||
M. Eren Akbiyik <erenakbiyik@gmail.com>
|
||||
Maciek <maciek.mab122@gmail.com>
|
||||
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
|
||||
Martin Warnaar <martinwarnaar@gmail.com>
|
||||
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
|
||||
Mathijs de Bruin <mathijs@mathijsfietst.nl>
|
||||
Matija Pevec <mightymatth@users.noreply.github.com>
|
||||
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
|
||||
Meng, Hengyu <hengyu.meng@intel.com>
|
||||
Michael Podvitskiy <podvitskiymichael@gmail.com>
|
||||
Michael Rienstra <mrienstra@gmail.com>
|
||||
Mikhail Grigorev <sleuthhound@gmail.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Mohit Agarwal <mohit@sdf.org>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
Neil Chudleigh <nchudleigh@users.noreply.github.com>
|
||||
Neo Zhang Jianyu <jianyu.zhang@intel.com>
|
||||
Neuman Vong <neuman.vong@gmail.com>
|
||||
Nicholas Albion <nalbion@yahoo.com>
|
||||
Niels Mayer <Niels.Mayer@gmail.com>
|
||||
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
|
||||
Oleg Sidorov <me@whitebox.io>
|
||||
Oleg Sidorov <oleg@sidorov.nl>
|
||||
Ondrej Kokes <ondrej.kokes@gmail.com>
|
||||
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Philipp Zabel <philipp.zabel@gmail.com>
|
||||
Philippe Normand <phil@base-art.net>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
|
||||
Radosław Gryta <radek.gryta@gmail.com>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Reinis Muiznieks <muiznieks.reinis@gmail.com>
|
||||
RelatedTitle <r3latedtitle@gmail.com>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Rich Jones <miserlou@gmail.com>
|
||||
Robin <robin.xw@hotmail.com>
|
||||
Roddur Dasgupta <roddurd@gmail.com>
|
||||
Roland Rabien <figbug@gmail.com>
|
||||
Rotem Dan <rotemdan@gmail.com>
|
||||
Ryan Hitchman <hitchmanr@gmail.com>
|
||||
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
|
||||
RyanChang <ftes90015@gmail.com>
|
||||
Sam <49637763+Onlyartist9@users.noreply.github.com>
|
||||
Sam Pullara <spullara@gmail.com>
|
||||
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
|
||||
Sergio López <slp@sinrega.org>
|
||||
Siddharth Ramakrishnan <srr2141@columbia.edu>
|
||||
Simon Moisselin <simon.moisstoll@gmail.com>
|
||||
Sindre Sorhus <sindresorhus@gmail.com>
|
||||
Slava Primenko <primenko.s@gmail.com>
|
||||
Syahmi Azhar <prsyahmi@gmail.com>
|
||||
Syed Jafri <syedjafri97@gmail.com>
|
||||
Sơn Phan Trung <phantrungson17@gmail.com>
|
||||
Taisei Mima <bhbstar.me@gmail.com>
|
||||
Takeshi Inoue <inoue.takeshi@gmail.com>
|
||||
Tamotsu Takahashi <ttakah+github@gmail.com>
|
||||
Taras Glek <taras@thegp.com>
|
||||
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
|
||||
Thijs Raymakers <thijs@raymakers.nl>
|
||||
Thomas Fitzsimmons <fitzsim@fitzsim.org>
|
||||
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
|
||||
Tienshiao Ma <tienshiao@tienshiao.org>
|
||||
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
|
||||
Tobrun <tobrun.van.nuland@gmail.com>
|
||||
Todd <taf2@users.noreply.github.com>
|
||||
Tong Li <31761981+litongjava@users.noreply.github.com>
|
||||
Topping1 <78745143+Topping1@users.noreply.github.com>
|
||||
Travis Cline <travis.cline@gmail.com>
|
||||
UEXTM.com <84163508+uextm@users.noreply.github.com>
|
||||
Vadim Peretokin <vperetokin@hey.com>
|
||||
Valentin Gosu <1454649+valenting@users.noreply.github.com>
|
||||
Vulcan <93451215+trholding@users.noreply.github.com>
|
||||
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
|
||||
Xiang (Kevin) Li <kevinli020508@gmail.com>
|
||||
Xiao-Yong Jin <jinxiaoyong@gmail.com>
|
||||
XiaotaoChen <chenxiaotao1234@gmail.com>
|
||||
Yajing Tang <phillis@google.com>
|
||||
Yang Shen <aplshenyang@gmail.com>
|
||||
Yunès <jean.baptiste.yunes@free.fr>
|
||||
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
|
||||
Zigfrid Zvezdin <ziggerZZ@gmail.com>
|
||||
Zollner <24618122+Zolliner@users.noreply.github.com>
|
||||
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
|
||||
alonfaraj <alonfaraj@gmail.com>
|
||||
andypayne <apayne@gmail.com>
|
||||
ardfork <134447697+ardfork@users.noreply.github.com>
|
||||
automaticcat <daogiatuank54@gmail.com>
|
||||
be-next <jerome.ramette@gmail.com>
|
||||
bert hubert <bert@hubertnet.nl>
|
||||
bmwl <brian.marshall@tolko.com>
|
||||
bobqianic <129547291+bobqianic@users.noreply.github.com>
|
||||
bocytko <bocytko+github@gmail.com>
|
||||
boolemancer <48014766+boolemancer@users.noreply.github.com>
|
||||
boolemancer <boolemancer@gmail.com>
|
||||
bradmit <151883577+bradmit@users.noreply.github.com>
|
||||
brunofaustino <b.fa.amorim@gmail.com>
|
||||
bssrdf <merlintiger@hotmail.com>
|
||||
byte-6174 <88070277+byte-6174@users.noreply.github.com>
|
||||
cdosoftei <ciprian.dosoftei@gmail.com>
|
||||
clach04 <Chris.Clark@actian.com>
|
||||
compilade <113953597+compilade@users.noreply.github.com>
|
||||
conradg <conradjgodfrey@gmail.com>
|
||||
ddpasa <112642920+ddpasa@users.noreply.github.com>
|
||||
denersc <denerstassun@gmail.com>
|
||||
dscripka <dscripka@users.noreply.github.com>
|
||||
duthils <duthils@duthils.net>
|
||||
ecneladis <ecneladis@users.noreply.github.com>
|
||||
faker <nspyia2002@gmail.com>
|
||||
fitzsim <fitzsim@fitzsim.org>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
genevera (she/her) <genevera@users.noreply.github.com>
|
||||
geniusnut <geniusnut@gmail.com>
|
||||
greeshmay <greeshmay@gmail.com>
|
||||
hydai <z54981220@gmail.com>
|
||||
iamthad <thadeus.j.fleming@gmail.com>
|
||||
james wolf <contractorwolf@hotmail.com>
|
||||
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
|
||||
jorismertz <35079666+jorismertz@users.noreply.github.com>
|
||||
junkfood <69683722+JunkFood02@users.noreply.github.com>
|
||||
jwijffels <jwijffels@bnosac.be>
|
||||
kamranjon <kamranjon@gmail.com>
|
||||
katsu560 <katsu560oo-@docomo.ne.jp>
|
||||
kennethge <57784063+kenneth-ge@users.noreply.github.com>
|
||||
keyehzy <msamuel@aluno.puc-rio.br>
|
||||
leejet <leejet714@gmail.com>
|
||||
litong <31761981+litongjava@users.noreply.github.com>
|
||||
lnyan <lkwq007@gmail.com>
|
||||
m.bell <m.bell@techsmith.com>
|
||||
mkiol <mkiol@users.noreply.github.com>
|
||||
novag <7754358+novag@users.noreply.github.com>
|
||||
pajowu <pajowu@pajowu.de>
|
||||
polarmoon <90010972+polarmoon@users.noreply.github.com>
|
||||
rlapray <lapray.romain@gmail.com>
|
||||
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
|
||||
semiformal-net <84111142+semiformal-net@users.noreply.github.com>
|
||||
shibukazu <61775791+shibukazu@users.noreply.github.com>
|
||||
shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
|
||||
slaren <slarengh@gmail.com>
|
||||
slashlib <slashlib@users.noreply.github.com>
|
||||
snadampal <87143774+snadampal@users.noreply.github.com>
|
||||
st-gr <38470677+st-gr@users.noreply.github.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thefinaldegree <thefinaldegree@gmail.com>
|
||||
trixirt <trix@redhat.com>
|
||||
ulatekh <ulatekh@yahoo.com>
|
||||
undef <undefdev@gmail.com>
|
||||
venkr <venkateshrameshkumar+1@gmail.com>
|
||||
vicalloy <zbirder@gmail.com>
|
||||
xdrudis <xavierdrudis@yahoo.es>
|
||||
zhouwg <6889919+zhouwg@users.noreply.github.com>
|
||||
布客飞龙 <562826179@qq.com>
|
||||
Артём Земляк <azemlyak@smart-consulting.ru>
|
217
CMakeLists.txt
217
CMakeLists.txt
@ -1,6 +1,9 @@
|
||||
cmake_minimum_required (VERSION 3.5)
|
||||
|
||||
project(whisper.cpp VERSION 1.5.4)
|
||||
# Allow for the creation of solution folders.
|
||||
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
|
||||
|
||||
project(whisper.cpp VERSION 1.6.2)
|
||||
set(SOVERSION 1)
|
||||
|
||||
# Add path to modules
|
||||
@ -56,10 +59,17 @@ option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDA
|
||||
|
||||
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
|
||||
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
|
||||
endif()
|
||||
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_AVX512 "whisper: disable AVX512" ON)
|
||||
option(WHISPER_NO_AVX512_VBMI "whisper: disable AVX512-VBMI" ON)
|
||||
option(WHISPER_NO_AVX512_VNNI "whisper: disable AVX512-VNNI" ON)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
|
||||
|
||||
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
|
||||
|
||||
@ -74,9 +84,12 @@ else()
|
||||
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
|
||||
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
|
||||
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
|
||||
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
|
||||
option(WHISPER_OPENBLAS_INTERFACE64 "whisper: use OpenBLAS w/ 64-bit interface" OFF)
|
||||
option(WHISPER_CUDA "whisper: support for CUDA" OFF)
|
||||
option(WHISPER_CUBLAS "whisper: support for CUDA (deprecated)" OFF)
|
||||
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
|
||||
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
|
||||
option(WHISPER_MKL "whisper: use Intel Math Kernel Library (MKL)" OFF)
|
||||
option(WHISPER_SYCL "whisper: use SYCL" OFF)
|
||||
option(WHISPER_SYCL_F16 "whisper: use 16 bit floats for sycl calculations" OFF)
|
||||
endif()
|
||||
@ -116,6 +129,26 @@ else()
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
endif()
|
||||
|
||||
if (WHISPER_FFMPEG)
|
||||
# As of cmake 3.27, there is no official cmake support for FindFFmpeg.
|
||||
# Consequnelty we added a FindFFmpeg.cmake script the cmake subfolder:
|
||||
# whisper.cpp does not need the full ffmpeg libs, just AVFORMAT AVCODEC AVUTIL SWRESAMPLE
|
||||
# libswresample performs highly optimized audio resampling, rematrixing and sample format conversion operations
|
||||
# libavcodec provides a generic encoding/decoding framework and contains multiple decoders and encoders for audio, video and subtitle streams, and several bitstream filters.
|
||||
# libavformat provides a generic framework for multiplexing and demultiplexing (muxing and demuxing) audio, video and subtitle streams.
|
||||
find_package(FFmpeg REQUIRED)
|
||||
if (NOT ${FFMPEG_FOUND})
|
||||
message(FATAL_ERROR "Cannot find ffmpeg libs/headers")
|
||||
endif()
|
||||
message(STATUS "Found ffmpeg libs: ${FFMPEG_LIBRARIES}")
|
||||
message(STATUS "Found ffmpeg headers in: ${FFMPEG_INCLUDE_DIRS}")
|
||||
message(STATUS "ffmpeg definitions: ${FFMPEG_DEFINITIONS}")
|
||||
message(STATUS "Found avformat ${AVFORMAT_VERSION}")
|
||||
include_directories(${FFMPEG_INCLUDE_DIRS})
|
||||
add_compile_definitions(WHISPER_FFMPEG)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${FFMPEG_LIBRARIES})
|
||||
endif()
|
||||
|
||||
# on APPLE
|
||||
if (APPLE)
|
||||
# include Accelerate framework
|
||||
@ -164,20 +197,29 @@ if (APPLE)
|
||||
enable_language(ASM)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_EMBED_LIBRARY)
|
||||
|
||||
set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal")
|
||||
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
set(COMMON_HEADER "${CMAKE_CURRENT_SOURCE_DIR}/ggml-common.h")
|
||||
|
||||
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
|
||||
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
|
||||
set(EMBED_METALLIB_SOURCE "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-combined.metal")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${EMBED_METALLIB_SOURCE}
|
||||
COMMAND sed -e "/^#include \\\"ggml-common.h\\\"/r ${COMMON_HEADER}" -e "/^#include \\\"ggml-common.h\\\"/d" ${METALLIB_SOURCE} > ${EMBED_METALLIB_SOURCE}
|
||||
DEPENDS ${METALLIB_SOURCE} ${COMMON_HEADER}
|
||||
COMMENT "Generating combined Metal library for embedding"
|
||||
)
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".incbin \\\"${EMBED_METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
DEPENDS ${METALLIB_SOURCE}
|
||||
DEPENDS ${EMBED_METALLIB_SOURCE}
|
||||
COMMENT "Generate assembly for embedded Metal library"
|
||||
)
|
||||
|
||||
@ -206,30 +248,82 @@ endif()
|
||||
if (WHISPER_OPENBLAS)
|
||||
set(WHISPER_BLAS_VENDOR "OpenBLAS")
|
||||
set(WHISPER_BLAS ON)
|
||||
# BLA_PKGCONFIG_BLAS is supported since CMake 3.25.
|
||||
# FindBLAS.cmake pkg-config logic seems incomplete, because when
|
||||
# BLA_SIZEOF_INTEGER is 8, then it should search for blas64 instead of blas.
|
||||
# blas.pc/blas64.pc are not always provided, so let's be more specific
|
||||
# and go with openblas.pc/openblas64.pc if WHISPER_OPENBLAS is on.
|
||||
if (WHISPER_OPENBLAS_INTERFACE64)
|
||||
set(WHISPER_BLAS_LIB "openblas64")
|
||||
else ()
|
||||
set(WHISPER_BLAS_LIB "openblas")
|
||||
endif ()
|
||||
set(BLA_PKGCONFIG_BLAS ${WHISPER_BLAS_LIB})
|
||||
# OpenBLAS prebuilt libraries for Windows do not have "64" suffix in filename.
|
||||
# (But .pc file has "64" suffix in filename for USE_64BITINT=1 Windows build.)
|
||||
if (MSVC)
|
||||
set(WHISPER_BLAS_LIB "openblas")
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
if (WHISPER_BLAS)
|
||||
if (WIN32)
|
||||
if(DEFINED ENV{OPENBLAS_PATH})
|
||||
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
|
||||
message(STATUS "Libraries ${BLAS_LIBRARIES}")
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
include_directories($ENV{OPENBLAS_PATH}/include)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
if (NOT "$ENV{OPENBLAS_PATH}" STREQUAL "")
|
||||
if (WHISPER_STATIC)
|
||||
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_STATIC_LIBRARY_PREFIX})
|
||||
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else ()
|
||||
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
|
||||
if (CMAKE_IMPORT_LIBRARY_SUFFIX)
|
||||
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_IMPORT_LIBRARY_PREFIX})
|
||||
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_IMPORT_LIBRARY_SUFFIX})
|
||||
else ()
|
||||
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_SHARED_LIBRARY_PREFIX})
|
||||
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif ()
|
||||
endif ()
|
||||
# OpenBLAS prebuilt libraries hardcode "lib" prefix in filename even on Windows
|
||||
if (WHISPER_OPENBLAS)
|
||||
set(WHISPER_BLAS_LIB_PREFIX "lib")
|
||||
endif ()
|
||||
message(STATUS "BLAS compatible library path provided")
|
||||
set(BLAS_LIBRARIES "$ENV{OPENBLAS_PATH}/lib/${WHISPER_BLAS_LIB_PREFIX}${WHISPER_BLAS_LIB}${WHISPER_BLAS_LIB_SUFFIX}")
|
||||
message(STATUS "Libraries ${BLAS_LIBRARIES}")
|
||||
set(BLAS_INCLUDE_DIRS "$ENV{OPENBLAS_PATH}/include")
|
||||
message(STATUS "Include dirs ${BLAS_INCLUDE_DIRS}")
|
||||
if (NOT EXISTS "${BLAS_LIBRARIES}")
|
||||
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH misdefined.")
|
||||
endif ()
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
include_directories(${BLAS_INCLUDE_DIRS})
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
else ()
|
||||
set(BLA_STATIC 1)
|
||||
if (WHISPER_STATIC)
|
||||
# FindBLAS.cmake pkg-config logic seems incomplete, because when
|
||||
# BLA_STATIC is on, then it should use pkg_check_modules_static
|
||||
# instead of pkg_check_modules.
|
||||
# Some manual variable overriding may be necessary if you don't
|
||||
# achieve desired results.
|
||||
set(BLA_STATIC 1)
|
||||
endif ()
|
||||
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
if (WHISPER_OPENBLAS_INTERFACE64)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
else ()
|
||||
set(BLA_SIZEOF_INTEGER 4)
|
||||
endif()
|
||||
set(BLA_PREFER_PKGCONFIG 1)
|
||||
find_package(BLAS)
|
||||
|
||||
if(BLAS_FOUND)
|
||||
message(STATUS "BLAS compatible library found")
|
||||
message(STATUS "Libraries ${BLAS_LIBRARIES}")
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
|
||||
if (NOT DEFINED BLAS_INCLUDE_DIRS)
|
||||
if (PKGC_BLAS_FOUND)
|
||||
set(BLAS_INCLUDE_DIRS "${PKGC_BLAS_INCLUDE_DIRS}")
|
||||
else ()
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas)
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Include dirs ${BLAS_INCLUDE_DIRS}")
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
include_directories(${BLAS_INCLUDE_DIRS})
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
@ -239,7 +333,19 @@ if (WHISPER_BLAS)
|
||||
endif ()
|
||||
endif ()
|
||||
|
||||
if (WHISPER_MKL)
|
||||
find_package(MKL CONFIG REQUIRED PATHS $ENV{MKLROOT})
|
||||
message(STATUS "Imported oneMKL targets: ${MKL_IMPORTED_TARGETS}")
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
if (WHISPER_CUBLAS)
|
||||
message(WARNING "WHISPER_CUBLAS is deprecated and will be removed in the future.\nUse WHISPER_CUDA instead")
|
||||
set(WHISPER_CUDA ON)
|
||||
endif()
|
||||
|
||||
if (WHISPER_CUDA)
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
@ -249,9 +355,11 @@ if (WHISPER_CUBLAS)
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
|
||||
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ggml-cuda.h)
|
||||
list(APPEND GGML_SOURCES_CUDA ggml-cuda.cu)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
add_compile_definitions(GGML_USE_CUDA)
|
||||
|
||||
if (WHISPER_STATIC)
|
||||
if (WIN32)
|
||||
@ -286,16 +394,18 @@ if (WHISPER_HIPBLAS)
|
||||
|
||||
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
set(GGML_HEADERS_ROCM "ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
|
||||
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
|
||||
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
if (WHISPER_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
else()
|
||||
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||
endif()
|
||||
@ -392,16 +502,30 @@ else()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
|
||||
if(NOT WHISPER_NO_AVX2)
|
||||
if(NOT WHISPER_NO_AVX512)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX512")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX512")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX512")
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (NOT WHISPER_NO_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (NOT WHISPER_NO_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
elseif(NOT WHISPER_NO_AVX2)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
|
||||
else()
|
||||
if(NOT WHISPER_NO_AVX)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
|
||||
endif()
|
||||
elseif(NOT WHISPER_NO_AVX)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
|
||||
endif()
|
||||
else()
|
||||
if (EMSCRIPTEN)
|
||||
@ -414,6 +538,15 @@ else()
|
||||
if(NOT WHISPER_NO_AVX2)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
|
||||
endif()
|
||||
if(NOT WHISPER_NO_AVX512)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw")
|
||||
if(NOT WHISPER_NO_AVX512_VBMI)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512vbmi")
|
||||
endif()
|
||||
if(NOT WHISPER_NO_AVX512_VNNI)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512vnni")
|
||||
endif()
|
||||
endif()
|
||||
if(NOT WHISPER_NO_FMA)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
|
||||
endif()
|
||||
@ -500,6 +633,7 @@ if (WHISPER_COREML)
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
COMPILE_FLAGS "-fobjc-arc"
|
||||
)
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENVINO)
|
||||
@ -518,6 +652,7 @@ if (WHISPER_OPENVINO)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
endif()
|
||||
|
||||
#
|
||||
@ -538,12 +673,15 @@ add_library(${TARGET}
|
||||
${GGML_SOURCES_METAL}
|
||||
${GGML_SOURCES_CUDA}
|
||||
${GGML_SOURCES_OPENCL}
|
||||
${GGML_SOURCES_SYCL}
|
||||
${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
whisper.h
|
||||
whisper.cpp
|
||||
)
|
||||
|
||||
include_directories (
|
||||
.
|
||||
)
|
||||
# Set the version numbers
|
||||
set_target_properties(whisper PROPERTIES
|
||||
VERSION ${PROJECT_VERSION}
|
||||
@ -564,6 +702,10 @@ if (WHISPER_OPENVINO)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
|
||||
endif()
|
||||
|
||||
if (WHISPER_MKL)
|
||||
target_link_libraries(${TARGET} PUBLIC MKL::MKL)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
@ -616,6 +758,7 @@ target_compile_definitions(${TARGET} PUBLIC
|
||||
)
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "ggml.h;whisper.h")
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
|
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
Copyright (c) 2023-2024 The ggml authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
163
Makefile
163
Makefile
@ -18,6 +18,17 @@ ifndef NVCC_VERSION
|
||||
endif
|
||||
endif
|
||||
|
||||
# In GNU make default CXX is g++ instead of c++. Let's fix that so that users
|
||||
# of non-gcc compilers don't have to provide g++ alias or wrapper.
|
||||
DEFCC := cc
|
||||
DEFCXX := c++
|
||||
ifeq ($(origin CC),default)
|
||||
CC := $(DEFCC)
|
||||
endif
|
||||
ifeq ($(origin CXX),default)
|
||||
CXX := $(DEFCXX)
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
@ -131,42 +142,69 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
CPUINFO_CMD := sysinfo -cpu
|
||||
endif
|
||||
|
||||
# x86 ISA extensions (chronological order)
|
||||
ifdef CPUINFO_CMD
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
|
||||
ifneq (,$(AVX_M))
|
||||
CFLAGS += -mavx
|
||||
CXXFLAGS += -mavx
|
||||
endif
|
||||
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
|
||||
ifneq (,$(AVX2_M))
|
||||
CFLAGS += -mavx2
|
||||
CXXFLAGS += -mavx2
|
||||
endif
|
||||
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
|
||||
ifneq (,$(FMA_M))
|
||||
CFLAGS += -mfma
|
||||
CXXFLAGS += -mfma
|
||||
endif
|
||||
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
|
||||
ifneq (,$(F16C_M))
|
||||
CFLAGS += -mf16c
|
||||
CXXFLAGS += -mf16c
|
||||
endif
|
||||
|
||||
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
|
||||
AVX512F_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX512F')
|
||||
AVX512VBMI_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX512VBMI')
|
||||
AVX512VNNI_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX512_VNNI|AVX512VNNI')
|
||||
|
||||
# AVX-512 has many subsets, so let's make it easy to disable them all
|
||||
ifneq ($(filter-out 0,$(WHISPER_NO_AVX512)),)
|
||||
AVX512F_M :=
|
||||
AVX512VBMI_M :=
|
||||
AVX512VNNI_M :=
|
||||
endif
|
||||
|
||||
ifneq (,$(SSE3_M))
|
||||
CFLAGS += -msse3
|
||||
CXXFLAGS += -msse3
|
||||
endif
|
||||
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
|
||||
ifneq (,$(SSSE3_M))
|
||||
CFLAGS += -mssse3
|
||||
CXXFLAGS += -mssse3
|
||||
endif
|
||||
|
||||
ifneq (,$(AVX_M))
|
||||
CFLAGS += -mavx
|
||||
CXXFLAGS += -mavx
|
||||
endif
|
||||
|
||||
ifneq (,$(F16C_M))
|
||||
CFLAGS += -mf16c
|
||||
CXXFLAGS += -mf16c
|
||||
endif
|
||||
|
||||
ifneq (,$(FMA_M))
|
||||
CFLAGS += -mfma
|
||||
CXXFLAGS += -mfma
|
||||
endif
|
||||
|
||||
ifneq (,$(AVX2_M))
|
||||
CFLAGS += -mavx2
|
||||
CXXFLAGS += -mavx2
|
||||
endif
|
||||
|
||||
ifneq (,$(AVX512F_M))
|
||||
CFLAGS += -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw
|
||||
CXXFLAGS += -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw
|
||||
endif
|
||||
|
||||
ifneq (,$(AVX512VBMI_M))
|
||||
CFLAGS += -mavx512vbmi
|
||||
CXXFLAGS += -mavx512vbmi
|
||||
endif
|
||||
|
||||
ifneq (,$(AVX512VNNI_M))
|
||||
CFLAGS += -mavx512vnni
|
||||
CXXFLAGS += -mavx512vnni
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
@ -210,26 +248,54 @@ ifndef WHISPER_NO_METAL
|
||||
endif
|
||||
endif
|
||||
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
ifneq ($(filter-out 0,$(WHISPER_OPENBLAS)),) # OpenBLAS
|
||||
WHISPER_OPENBLAS_INTERFACE64 ?= 0 # use 32-bit interface by default
|
||||
ifneq ($(filter-out 0,$(WHISPER_OPENBLAS_INTERFACE64)),)
|
||||
WHISPER_BLAS_LIB := openblas64
|
||||
else
|
||||
WHISPER_BLAS_LIB := openblas
|
||||
endif
|
||||
ifneq ($(OPENBLAS_PATH),)
|
||||
WHISPER_BLAS_CFLAGS := -I$(OPENBLAS_PATH)/include
|
||||
WHISPER_BLAS_LDFLAGS := -L$(OPENBLAS_PATH)/lib -l$(WHISPER_BLAS_LIB)
|
||||
else
|
||||
WHISPER_BLAS_LIB_PC_EXISTS := $(shell pkg-config --exists $(WHISPER_BLAS_LIB) && echo 1)
|
||||
ifneq ($(filter-out 0,$(WHISPER_BLAS_LIB_PC_EXISTS)),)
|
||||
WHISPER_BLAS_CFLAGS := $(shell pkg-config --cflags $(WHISPER_BLAS_LIB))
|
||||
WHISPER_BLAS_LDFLAGS := $(shell pkg-config --libs $(WHISPER_BLAS_LIB))
|
||||
else
|
||||
WHISPER_BLAS_CFLAGS := -I/usr/include/openblas
|
||||
WHISPER_BLAS_LDFLAGS := -l$(WHISPER_BLAS_LIB)
|
||||
endif
|
||||
endif
|
||||
CFLAGS += $(WHISPER_BLAS_CFLAGS) -DGGML_USE_OPENBLAS
|
||||
LDFLAGS += $(WHISPER_BLAS_LDFLAGS)
|
||||
endif
|
||||
|
||||
ifdef WHISPER_CUBLAS
|
||||
# WHISPER_CUBLAS is deprecated and will be removed in the future
|
||||
WHISPER_CUDA := 1
|
||||
endif
|
||||
|
||||
ifdef WHISPER_CUDA
|
||||
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
|
||||
CUDA_ARCH_FLAG ?= native
|
||||
else
|
||||
CUDA_ARCH_FLAG ?= all
|
||||
endif
|
||||
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
CFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
WHISPER_OBJ += ggml-cuda.o
|
||||
WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
NVCC = nvcc
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
||||
endif
|
||||
|
||||
@ -237,14 +303,18 @@ ifdef WHISPER_HIPBLAS
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
|
||||
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
|
||||
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
WHISPER_OBJ += ggml-cuda.o
|
||||
WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
endif
|
||||
|
||||
@ -309,6 +379,13 @@ $(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
ifdef WHISPER_CUBLAS
|
||||
$(info !!!!)
|
||||
$(info WHISPER_CUBLAS is deprecated and will be removed in the future. Use WHISPER_CUDA instead.)
|
||||
$(info !!!!)
|
||||
$(info )
|
||||
endif
|
||||
|
||||
#
|
||||
# Build library
|
||||
#
|
||||
@ -351,17 +428,19 @@ WHISPER_OBJ += ggml-metal.o
|
||||
ifdef WHISPER_METAL_EMBED_LIBRARY
|
||||
CFLAGS += -DGGML_METAL_EMBED_LIBRARY
|
||||
|
||||
ggml-metal-embed.o: ggml-metal.metal
|
||||
ggml-metal-embed.o: ggml-metal.metal ggml-common.h
|
||||
@echo "Embedding Metal library"
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp))
|
||||
$(eval TEMP_METALLIB=$(shell mktemp))
|
||||
@sed "/^#include \"ggml-common.h\"/{r ggml-common.h"$$'\n'"d;}" ggml-metal.metal > $(TEMP_METALLIB)
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"$(TEMP_METALLIB)\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
|
||||
@$(AS) $(TEMP_ASSEMBLY) -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}
|
||||
@rm -f $(TEMP_ASSEMBLY) $(TEMP_METALLIB)
|
||||
|
||||
WHISPER_OBJ += ggml-metal-embed.o
|
||||
endif
|
||||
@ -382,7 +461,7 @@ clean:
|
||||
|
||||
CC_SDL=`sdl2-config --cflags --libs`
|
||||
|
||||
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
|
||||
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp examples/grammar-parser.cpp
|
||||
SRC_COMMON_SDL = examples/common-sdl.cpp
|
||||
|
||||
main: examples/main/main.cpp $(SRC_COMMON) $(WHISPER_OBJ)
|
||||
@ -401,8 +480,8 @@ server: examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ)
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o lsp $(CC_SDL) $(LDFLAGS)
|
||||
@ -410,8 +489,8 @@ lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
|
||||
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
28
README.md
28
README.md
@ -6,7 +6,7 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
Stable: [v1.5.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.5.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Stable: [v1.6.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.6.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
@ -414,11 +414,11 @@ For more information about the Core ML implementation please refer to PR [#1037]
|
||||
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
|
||||
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
||||
|
||||
Now build `whisper.cpp` with cuBLAS support:
|
||||
Now build `whisper.cpp` with CUDA support:
|
||||
|
||||
```
|
||||
make clean
|
||||
WHISPER_CUBLAS=1 make -j
|
||||
WHISPER_CUDA=1 make -j
|
||||
```
|
||||
|
||||
## OpenCL GPU support via CLBlast
|
||||
@ -455,6 +455,21 @@ make clean
|
||||
WHISPER_OPENBLAS=1 make -j
|
||||
```
|
||||
|
||||
## BLAS CPU support via Intel MKL
|
||||
|
||||
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
|
||||
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
|
||||
|
||||
Now build `whisper.cpp` with Intel MKL BLAS support:
|
||||
|
||||
```
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DWHISPER_MKL=ON ..
|
||||
WHISPER_MKL=1 make -j
|
||||
```
|
||||
|
||||
## Docker
|
||||
|
||||
### Prerequisites
|
||||
@ -729,10 +744,10 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
|
||||
|
||||
## Video comparison of different models
|
||||
|
||||
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
|
||||
Use the [scripts/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
|
||||
|
||||
```bash
|
||||
./extra/bench-wts.sh samples/jfk.wav
|
||||
./scripts/bench-wts.sh samples/jfk.wav
|
||||
ffplay ./samples/jfk.wav.all.mp4
|
||||
```
|
||||
|
||||
@ -753,7 +768,7 @@ Additionally a script to run whisper.cpp with different models and audio files i
|
||||
You can run it with the following command, by default it will run against any standard model in the models folder.
|
||||
|
||||
```bash
|
||||
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
|
||||
python3 scripts/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
|
||||
```
|
||||
|
||||
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
|
||||
@ -793,6 +808,7 @@ For more details, see the conversion script [models/convert-pt-to-ggml.py](model
|
||||
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
|
||||
- [x] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
|
||||
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
|
||||
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
|
||||
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
|
||||
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
|
||||
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
|
||||
|
Submodule bindings/ios updated: b21b6ff325...a2085436c2
@ -148,6 +148,9 @@ public class WhisperFullParams extends Structure {
|
||||
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Regular expression matching tokens to suppress. */
|
||||
public String suppress_regex;
|
||||
|
||||
/** Tokens to provide to the whisper decoder as an initial prompt.
|
||||
* These are prepended to any existing text context from a previous call. */
|
||||
public String initial_prompt;
|
||||
@ -319,7 +322,7 @@ public class WhisperFullParams extends Structure {
|
||||
"no_context", "single_segment", "no_timestamps",
|
||||
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
|
||||
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
|
||||
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
|
||||
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
|
||||
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
|
||||
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
|
||||
"new_segment_callback", "new_segment_callback_user_data",
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.5.4",
|
||||
"version": "1.6.2",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
12
bindings/ruby/Rakefile
Normal file
12
bindings/ruby/Rakefile
Normal file
@ -0,0 +1,12 @@
|
||||
require 'rake/clean'
|
||||
require 'rubygems/package'
|
||||
|
||||
desc 'Build gem'
|
||||
task :package do
|
||||
spec_source = File.read File.join(File.dirname(__FILE__),'whispercpp.gemspec')
|
||||
spec = nil
|
||||
# see: http://gist.github.com/16215
|
||||
Thread.new { spec = eval("#{spec_source}") }.join
|
||||
spec.validate
|
||||
Gem::Package.build(spec)
|
||||
end
|
@ -12,31 +12,63 @@ extern "C" {
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
// buffer type
|
||||
typedef void * ggml_backend_buffer_type_context_t;
|
||||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
||||
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
|
||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||
// check if tensor data is in host memory
|
||||
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
|
||||
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer_type {
|
||||
struct ggml_backend_buffer_type_i iface;
|
||||
ggml_backend_buffer_type_context_t context;
|
||||
};
|
||||
|
||||
// buffer
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
|
||||
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
|
||||
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
|
||||
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
||||
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_i iface;
|
||||
|
||||
ggml_backend_t backend;
|
||||
struct ggml_backend_buffer_i iface;
|
||||
ggml_backend_buffer_type_t buft;
|
||||
ggml_backend_buffer_context_t context;
|
||||
|
||||
size_t size;
|
||||
enum ggml_backend_buffer_usage usage;
|
||||
};
|
||||
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
struct ggml_backend * backend,
|
||||
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
ggml_backend_buffer_context_t context,
|
||||
size_t size);
|
||||
|
||||
// do not use directly, use ggml_backend_tensor_copy instead
|
||||
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// buffer that contains a collection of buffers
|
||||
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
|
||||
//
|
||||
// Backend
|
||||
//
|
||||
@ -44,44 +76,66 @@ extern "C" {
|
||||
typedef void * ggml_backend_context_t;
|
||||
|
||||
struct ggml_backend_i {
|
||||
const char * (*get_name)(ggml_backend_t backend);
|
||||
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
|
||||
|
||||
void (*free)(ggml_backend_t backend);
|
||||
void (*GGML_CALL free)(ggml_backend_t backend);
|
||||
|
||||
// buffer allocation
|
||||
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
|
||||
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
|
||||
|
||||
// get buffer alignment
|
||||
size_t (*get_alignment)(ggml_backend_t backend);
|
||||
// (optional) asynchronous tensor data access
|
||||
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// tensor data access
|
||||
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
void (*synchronize) (ggml_backend_t backend);
|
||||
// (optional) complete all pending operations
|
||||
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
||||
|
||||
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
// compute graph with a plan (not used currently)
|
||||
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph with a plan
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph without a plan
|
||||
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// compute graph without a plan (async)
|
||||
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if the backend supports an operation
|
||||
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||
// even if the weight has to be copied from the CPU temporarily
|
||||
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||
void (*GGML_CALL event_record) (ggml_backend_event_t event);
|
||||
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
struct ggml_backend_i iface;
|
||||
ggml_guid_t guid;
|
||||
|
||||
struct ggml_backend_i iface;
|
||||
ggml_backend_context_t context;
|
||||
};
|
||||
|
||||
struct ggml_backend_event {
|
||||
ggml_backend_t backend;
|
||||
void * context;
|
||||
};
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
|
||||
|
||||
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -7,69 +7,123 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend_event * ggml_backend_event_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
// buffer type
|
||||
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
|
||||
// backend buffer functions
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
// buffer
|
||||
enum ggml_backend_buffer_usage {
|
||||
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
||||
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
|
||||
//
|
||||
// Backend
|
||||
//
|
||||
|
||||
struct ggml_backend;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
|
||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
|
||||
|
||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// asynchronous copy
|
||||
// the copy is performed after all the currently queued operations in backend_src
|
||||
// backend_dst will wait for the copy to complete before performing other operations
|
||||
// automatic fallback to sync copy if async is not supported
|
||||
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// events
|
||||
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
#endif
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
|
||||
|
||||
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
|
||||
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
|
||||
|
||||
//
|
||||
// Backend scheduler
|
||||
@ -83,53 +137,96 @@ extern "C" {
|
||||
/*
|
||||
Example usage:
|
||||
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
|
||||
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
|
||||
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
|
||||
// preferrably to run on the same backend as the buffer
|
||||
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
|
||||
// initialize buffers from a measure graph
|
||||
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
|
||||
|
||||
// in build_graph:
|
||||
build_graph(...) {
|
||||
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
|
||||
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
|
||||
ggml_allocr_alloc(alloc_cpu, tensor);
|
||||
// initialize buffers from a max size graph (optional)
|
||||
reserve_graph = build_graph(sched, max_batch_size);
|
||||
|
||||
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
|
||||
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
||||
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
|
||||
}
|
||||
// manually assign nodes to a backend (optional, should not be needed in most cases)
|
||||
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
||||
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
|
||||
|
||||
// allocate backend buffers from measure graph
|
||||
ggml_backend_sched_init_measure(sched, measure_graph);
|
||||
|
||||
// the scheduler is now ready to compute graphs
|
||||
ggml_backend_sched_reserve(sched, reserve_graph);
|
||||
|
||||
// compute
|
||||
graph = build_graph(sched);
|
||||
ggml_backend_sched_graph_compute(sched, graph);
|
||||
|
||||
// if there are graph inputs:
|
||||
ggml_backend_sched_reset(sched);
|
||||
ggml_backend_sched_alloc_graph(sched, graph);
|
||||
ggml_backend_tensor_set(input_tensor, ...);
|
||||
ggml_backend_sched_graph_compute(sched, graph);
|
||||
}
|
||||
*/
|
||||
|
||||
struct ggml_backend_sched;
|
||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||
|
||||
// Initialize a backend scheduler
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
|
||||
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
||||
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
||||
//
|
||||
// when ask == false, the scheduler is passing the node tensor to the user for observation
|
||||
// if the user returns false, the scheduler will cancel the graph compute
|
||||
//
|
||||
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
// Initialize a backend scheduler
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
|
||||
// Initialize backend buffers from a measure graph
|
||||
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
|
||||
|
||||
// Reset all assignments and allocators - must be called before changing the node backends
|
||||
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
||||
|
||||
// Set a callback to be called for each resulting node during graph compute
|
||||
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
|
||||
|
||||
//
|
||||
// Utils
|
||||
//
|
||||
|
||||
struct ggml_backend_graph_copy {
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx_allocated;
|
||||
struct ggml_context * ctx_unallocated;
|
||||
struct ggml_cgraph * graph;
|
||||
};
|
||||
|
||||
// Copy a graph to a different backend
|
||||
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
||||
|
||||
typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
|
||||
// Allocate a graph on the backend scheduler
|
||||
GGML_API void ggml_backend_sched_graph_compute(
|
||||
ggml_backend_sched_t sched,
|
||||
struct ggml_cgraph * graph);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
1853
bindings/ruby/ext/ggml-common.h
Normal file
1853
bindings/ruby/ext/ggml-common.h
Normal file
File diff suppressed because it is too large
Load Diff
43
bindings/ruby/ext/ggml-cuda.h
Normal file
43
bindings/ruby/ext/ggml-cuda.h
Normal file
@ -0,0 +1,43 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#else
|
||||
#define GGML_CUDA_NAME "CUDA"
|
||||
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
|
||||
// device buffer
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -5,6 +5,7 @@
|
||||
// GGML internal header
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h> // memcpy
|
||||
@ -18,6 +19,7 @@ extern "C" {
|
||||
// fall back to the _Static_assert C11 keyword.
|
||||
// if C99 - static_assert is noop
|
||||
// ref: https://stackoverflow.com/a/53923785/4039976
|
||||
#ifndef __cplusplus
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
@ -25,6 +27,7 @@ extern "C" {
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
@ -34,16 +37,17 @@ extern "C" {
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
@ -56,14 +60,30 @@ extern "C" {
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ((float) (x))
|
||||
#define GGML_FP32_TO_FP16(x) (x)
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
ggml_fp16_internal_t tmp;
|
||||
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||
return (float)tmp;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
ggml_fp16_internal_t tmp = f;
|
||||
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
@ -217,8 +237,7 @@ extern float ggml_table_f32_f16[1 << 16];
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
|
||||
|
||||
#if !defined(GGML_FP16_TO_FP32)
|
||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
uint16_t s;
|
||||
memcpy(&s, &f, sizeof(uint16_t));
|
||||
@ -226,19 +245,23 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
}
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_FP32_TO_FP16)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
||||
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
|
||||
|
||||
struct ggml_hash_set ggml_hash_set_new(size_t size);
|
||||
|
||||
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
||||
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
||||
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
||||
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// return index, asserts if table is full
|
||||
|
46
bindings/ruby/ext/ggml-kompute.h
Normal file
46
bindings/ruby/ext/ggml-kompute.h
Normal file
@ -0,0 +1,46 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_vk_device {
|
||||
int index;
|
||||
int type; // same as VkPhysicalDeviceType
|
||||
size_t heapSize;
|
||||
const char * name;
|
||||
const char * vendor;
|
||||
int subgroupSize;
|
||||
uint64_t bufferAlignment;
|
||||
uint64_t maxAlloc;
|
||||
};
|
||||
|
||||
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
|
||||
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
|
||||
bool ggml_vk_has_vulkan(void);
|
||||
bool ggml_vk_has_device(void);
|
||||
struct ggml_vk_device ggml_vk_current_device(void);
|
||||
|
||||
//
|
||||
// backend API
|
||||
//
|
||||
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
66
bindings/ruby/ext/ggml-metal.h
Normal file
66
bindings/ruby/ext/ggml-metal.h
Normal file
@ -0,0 +1,66 @@
|
||||
// An interface allowing to compute ggml_cgraph with Metal
|
||||
//
|
||||
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
||||
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
|
||||
//
|
||||
// How it works?
|
||||
//
|
||||
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
|
||||
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
|
||||
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
|
||||
//
|
||||
// You only need to make sure that all memory buffers that you used during the graph creation
|
||||
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
||||
// used during the graph evaluation to determine the arguments of the compute kernels.
|
||||
//
|
||||
// Synchronization between device and host memory (for example for input and output tensors)
|
||||
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 64
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// backend API
|
||||
// user-code should use only these functions
|
||||
//
|
||||
|
||||
GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
|
||||
|
||||
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
36
bindings/ruby/ext/ggml-opencl.h
Normal file
36
bindings/ruby/ext/ggml-opencl.h
Normal file
@ -0,0 +1,36 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
GGML_API void ggml_cl_init(void);
|
||||
|
||||
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
|
||||
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
// GGML_API void * ggml_cl_host_malloc(size_t size);
|
||||
// GGML_API void ggml_cl_host_free(void * ptr);
|
||||
|
||||
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
|
||||
|
||||
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
|
||||
// backend API
|
||||
|
||||
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
|
||||
|
||||
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
|
||||
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,224 +1,133 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // delta
|
||||
ggml_fp16_t m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
#define QK5_0 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // delta
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||
} block_q5_0;
|
||||
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
|
||||
|
||||
#define QK5_1 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // delta
|
||||
ggml_fp16_t m; // min
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
||||
} block_q5_1;
|
||||
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
||||
|
||||
#define QK8_0 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
||||
|
||||
#define QK8_1 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float s; // d * sum(qs[i])
|
||||
int8_t qs[QK8_1]; // quants
|
||||
} block_q8_1;
|
||||
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
|
||||
|
||||
//
|
||||
// Super-block quantization structures
|
||||
//
|
||||
|
||||
// Super-block size
|
||||
#ifdef GGML_QKK_64
|
||||
#define QK_K 64
|
||||
#define K_SCALE_SIZE 4
|
||||
#else
|
||||
#define QK_K 256
|
||||
#define K_SCALE_SIZE 12
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// 2-bit quantization
|
||||
// weight is represented as x = a * q + b
|
||||
// 16 blocks of 16 elements each
|
||||
// Effectively 2.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||
uint8_t qs[QK_K/4]; // quants
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
} block_q2_K;
|
||||
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
||||
|
||||
// 3-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elements each
|
||||
// Effectively 3.4375 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[2];
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||
uint8_t scales[12]; // scales, quantized with 6 bits
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q3_K;
|
||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 4-bit quantization
|
||||
// 8 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 4.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_fp16_t d[2]; // super-block scales/mins
|
||||
uint8_t scales[2]; // 4-bit block scales/mins
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 5-bit quantization
|
||||
// 8 blocks of 32 elements each
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 5.5 bits per weight
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale
|
||||
int8_t scales[QK_K/16]; // 8-bit block scales
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // super-block scale for quantized scales
|
||||
ggml_fp16_t dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qh[QK_K/8]; // quants, high bit
|
||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||
} block_q5_K;
|
||||
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
||||
#endif
|
||||
|
||||
// 6-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elements each
|
||||
// Effectively 6.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
ggml_fp16_t d; // super-block scale
|
||||
} block_q6_K;
|
||||
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
|
||||
|
||||
// This is only used for intermediate quantization and dot products
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
int8_t qs[QK_K]; // quants
|
||||
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
|
||||
} block_q8_K;
|
||||
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
|
||||
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
|
||||
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
|
||||
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
|
||||
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
|
||||
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
|
||||
void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
|
||||
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
|
||||
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
|
||||
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||
void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
|
||||
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
void iq2xs_init_impl(enum ggml_type type);
|
||||
void iq2xs_free_impl(enum ggml_type type);
|
||||
void iq3xs_init_impl(int grid_size);
|
||||
void iq3xs_free_impl(int grid_size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
49
bindings/ruby/ext/ggml-sycl.h
Normal file
49
bindings/ruby/ext/ggml-sycl.h
Normal file
@ -0,0 +1,49 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_SYCL_MAX_DEVICES 48
|
||||
#define GGML_SYCL_NAME "SYCL"
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
|
||||
// devide buffer
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
|
||||
|
||||
// TODO: these are temporary
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
|
||||
|
||||
// SYCL doesn't support registering host memory, keep here for reference
|
||||
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
29
bindings/ruby/ext/ggml-vulkan.h
Normal file
29
bindings/ruby/ext/ggml-vulkan.h
Normal file
@ -0,0 +1,29 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_VK_NAME "Vulkan"
|
||||
#define GGML_VK_MAX_DEVICES 16
|
||||
|
||||
GGML_API void ggml_vk_instance_init(void);
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
28
bindings/ruby/whispercpp.gemspec
Normal file
28
bindings/ruby/whispercpp.gemspec
Normal file
@ -0,0 +1,28 @@
|
||||
Gem::Specification.new do |s|
|
||||
s.name = "whispercpp"
|
||||
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
|
||||
s.version = '1.3.0'
|
||||
s.date = '2024-05-14'
|
||||
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
|
||||
s.email = 'todd.fisher@gmail.com'
|
||||
s.extra_rdoc_files = ['LICENSE', 'README.md']
|
||||
|
||||
s.files = ["LICENSE", "README.md", "Rakefile", "ext/extconf.rb", "ext/ggml.c", "ext/ruby_whisper.cpp", "ext/whisper.cpp", "ext/dr_wav.h", "ext/ggml.h", "ext/ruby_whisper.h", "ext/whisper.h"]
|
||||
|
||||
#### Load-time details
|
||||
s.require_paths = ['lib','ext']
|
||||
s.summary = %q{Ruby whisper.cpp bindings}
|
||||
s.test_files = ["tests/test_whisper.rb"]
|
||||
|
||||
s.extensions << 'ext/extconf.rb'
|
||||
|
||||
|
||||
#### Documentation and testing.
|
||||
s.homepage = 'https://github.com/ggerganov/whisper.cpp'
|
||||
s.rdoc_options = ['--main', '../../README.md']
|
||||
|
||||
|
||||
s.platform = Gem::Platform::RUBY
|
||||
|
||||
s.licenses = ['MIT']
|
||||
end
|
163
cmake/FindFFmpeg.cmake
Normal file
163
cmake/FindFFmpeg.cmake
Normal file
@ -0,0 +1,163 @@
|
||||
# From
|
||||
# https://github.com/snikulov/cmake-modules/blob/master/FindFFmpeg.cmake
|
||||
#
|
||||
# vim: ts=2 sw=2
|
||||
# - Try to find the required ffmpeg components(default: AVFORMAT, AVUTIL, AVCODEC)
|
||||
#
|
||||
# Once done this will define
|
||||
# FFMPEG_FOUND - System has the all required components.
|
||||
# FFMPEG_INCLUDE_DIRS - Include directory necessary for using the required components headers.
|
||||
# FFMPEG_LIBRARIES - Link these to use the required ffmpeg components.
|
||||
# FFMPEG_DEFINITIONS - Compiler switches required for using the required ffmpeg components.
|
||||
#
|
||||
# For each of the components it will additionally set.
|
||||
# - AVCODEC
|
||||
# - AVDEVICE
|
||||
# - AVFORMAT
|
||||
# - AVFILTER
|
||||
# - AVUTIL
|
||||
# - POSTPROC
|
||||
# - SWSCALE
|
||||
# the following variables will be defined
|
||||
# <component>_FOUND - System has <component>
|
||||
# <component>_INCLUDE_DIRS - Include directory necessary for using the <component> headers
|
||||
# <component>_LIBRARIES - Link these to use <component>
|
||||
# <component>_DEFINITIONS - Compiler switches required for using <component>
|
||||
# <component>_VERSION - The components version
|
||||
#
|
||||
# Copyright (c) 2006, Matthias Kretz, <kretz@kde.org>
|
||||
# Copyright (c) 2008, Alexander Neundorf, <neundorf@kde.org>
|
||||
# Copyright (c) 2011, Michael Jansen, <kde@michael-jansen.biz>
|
||||
#
|
||||
# Redistribution and use is allowed according to the terms of the BSD license.
|
||||
# For details see the accompanying COPYING-CMAKE-SCRIPTS file.
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
|
||||
# The default components were taken from a survey over other FindFFMPEG.cmake files
|
||||
if (NOT FFmpeg_FIND_COMPONENTS)
|
||||
set(FFmpeg_FIND_COMPONENTS AVFORMAT AVCODEC AVUTIL SWRESAMPLE)
|
||||
endif()
|
||||
|
||||
#
|
||||
### Macro: set_component_found
|
||||
#
|
||||
# Marks the given component as found if both *_LIBRARIES AND *_INCLUDE_DIRS is present.
|
||||
#
|
||||
macro(set_component_found _component )
|
||||
if (${_component}_LIBRARIES AND ${_component}_INCLUDE_DIRS)
|
||||
message(DEBUG " - ${_component} found.")
|
||||
set(${_component}_FOUND TRUE)
|
||||
else ()
|
||||
message(DEBUG " - ${_component} not found.")
|
||||
endif ()
|
||||
endmacro()
|
||||
|
||||
#
|
||||
### Macro: find_component
|
||||
#
|
||||
# Checks for the given component by invoking pkgconfig and then looking up the libraries and
|
||||
# include directories.
|
||||
#
|
||||
macro(find_component _component _pkgconfig _library _header)
|
||||
|
||||
if (NOT WIN32)
|
||||
# use pkg-config to get the directories and then use these values
|
||||
# in the FIND_PATH() and FIND_LIBRARY() calls
|
||||
find_package(PkgConfig)
|
||||
if (PKG_CONFIG_FOUND)
|
||||
pkg_check_modules(PC_${_component} ${_pkgconfig})
|
||||
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDEDIR}")
|
||||
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDE_DIRS}")
|
||||
message(STATUS "${PC_${_component}_CFLAGS}")
|
||||
endif ()
|
||||
endif (NOT WIN32)
|
||||
|
||||
|
||||
find_path(${_component}_INCLUDE_DIRS ${_header}
|
||||
HINTS
|
||||
${PC_${_component}_INCLUDEDIR}
|
||||
${PC_${_component}_INCLUDE_DIRS}
|
||||
PATH_SUFFIXES
|
||||
ffmpeg
|
||||
)
|
||||
|
||||
# CMake's default is to search first for shared libraries and then for static libraries.
|
||||
# Todo later: add option to prefer static libs over dynamic:
|
||||
find_library(${_component}_LIBRARIES NAMES ${_library} lib${_library}.a
|
||||
HINTS
|
||||
${PC_${_component}_LIBDIR}
|
||||
${PC_${_component}_LIBRARY_DIRS}
|
||||
)
|
||||
|
||||
set(${_component}_DEFINITIONS ${PC_${_component}_CFLAGS_OTHER} CACHE STRING "The ${_component} CFLAGS.")
|
||||
set(${_component}_VERSION ${PC_${_component}_VERSION} CACHE STRING "The ${_component} version number.")
|
||||
|
||||
set_component_found(${_component})
|
||||
|
||||
mark_as_advanced(
|
||||
${_component}_INCLUDE_DIRS
|
||||
${_component}_LIBRARIES
|
||||
${_component}_DEFINITIONS
|
||||
${_component}_VERSION)
|
||||
|
||||
endmacro()
|
||||
|
||||
|
||||
# Check for cached results. If there are skip the costly part.
|
||||
if (NOT FFMPEG_LIBRARIES)
|
||||
|
||||
# Check for all possible component.
|
||||
find_component(AVCODEC libavcodec avcodec libavcodec/avcodec.h)
|
||||
find_component(AVFORMAT libavformat avformat libavformat/avformat.h)
|
||||
find_component(AVDEVICE libavdevice avdevice libavdevice/avdevice.h)
|
||||
#find_component(AVRESAMPLE libavresample avresample libavresample/avresample.h) # old name for swresample
|
||||
find_component(AVUTIL libavutil avutil libavutil/avutil.h)
|
||||
find_component(AVFILTER libavfilter avfilter libavfilter/avfilter.h)
|
||||
find_component(SWSCALE libswscale swscale libswscale/swscale.h)
|
||||
find_component(POSTPROC libpostproc postproc libpostproc/postprocess.h)
|
||||
find_component(SWRESAMPLE libswresample swresample libswresample/swresample.h)
|
||||
|
||||
# Check if the required components were found and add their stuff to the FFMPEG_* vars.
|
||||
foreach (_component ${FFmpeg_FIND_COMPONENTS})
|
||||
if (${_component}_FOUND)
|
||||
# message(STATUS "Required component ${_component} present.")
|
||||
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} ${${_component}_LIBRARIES})
|
||||
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} ${${_component}_DEFINITIONS})
|
||||
list(APPEND FFMPEG_INCLUDE_DIRS ${${_component}_INCLUDE_DIRS})
|
||||
else ()
|
||||
# message(STATUS "Required component ${_component} missing.")
|
||||
endif ()
|
||||
endforeach ()
|
||||
|
||||
# Build the include path with duplicates removed.
|
||||
if (FFMPEG_INCLUDE_DIRS)
|
||||
list(REMOVE_DUPLICATES FFMPEG_INCLUDE_DIRS)
|
||||
endif ()
|
||||
|
||||
# cache the vars.
|
||||
set(FFMPEG_INCLUDE_DIRS ${FFMPEG_INCLUDE_DIRS} CACHE STRING "The FFmpeg include directories." FORCE)
|
||||
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} CACHE STRING "The FFmpeg libraries." FORCE)
|
||||
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} CACHE STRING "The FFmpeg cflags." FORCE)
|
||||
|
||||
mark_as_advanced(FFMPEG_INCLUDE_DIRS
|
||||
FFMPEG_LIBRARIES
|
||||
FFMPEG_DEFINITIONS)
|
||||
|
||||
endif ()
|
||||
|
||||
# Now set the noncached _FOUND vars for the components.
|
||||
# whisper.cpp does not need SWSCALE
|
||||
foreach (_component AVCODEC AVDEVICE AVFORMAT AVRESAMPLE AVUTIL POSTPROCESS)
|
||||
set_component_found(${_component})
|
||||
endforeach ()
|
||||
|
||||
# Compile the list of required vars
|
||||
set(_FFmpeg_REQUIRED_VARS FFMPEG_LIBRARIES FFMPEG_INCLUDE_DIRS)
|
||||
foreach (_component ${FFmpeg_FIND_COMPONENTS})
|
||||
list(APPEND _FFmpeg_REQUIRED_VARS ${_component}_LIBRARIES ${_component}_INCLUDE_DIRS)
|
||||
endforeach ()
|
||||
|
||||
# Give a nice error message if some of the required vars are missing.
|
||||
find_package_handle_standard_args(FFmpeg DEFAULT_MSG ${_FFmpeg_REQUIRED_VARS})
|
||||
|
@ -22,12 +22,18 @@ endif()
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
if (WHISPER_FFMPEG)
|
||||
set(COMMON_SOURCES_FFMPEG ffmpeg-transcode.cpp)
|
||||
endif()
|
||||
|
||||
add_library(${TARGET} STATIC
|
||||
common.h
|
||||
common.cpp
|
||||
common-ggml.h
|
||||
common-ggml.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
${COMMON_SOURCES_FFMPEG}
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
@ -35,6 +41,7 @@ include(DefaultTargetOptions)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper)
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
|
||||
if (WHISPER_SDL2)
|
||||
# common-sdl
|
||||
@ -52,10 +59,12 @@ if (WHISPER_SDL2)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
endif()
|
||||
|
||||
# add json lib
|
||||
add_library(json_cpp INTERFACE json.hpp)
|
||||
add_library(json_cpp INTERFACE)
|
||||
target_include_directories(json_cpp INTERFACE ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
# examples
|
||||
|
||||
@ -63,25 +72,50 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
add_subdirectory(whisper.wasm)
|
||||
set_target_properties(libmain PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(stream.wasm)
|
||||
set_target_properties(libstream PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(command.wasm)
|
||||
set_target_properties(libcommand PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(talk.wasm)
|
||||
set_target_properties(libtalk PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(bench.wasm)
|
||||
set_target_properties(libbench PROPERTIES FOLDER "libs")
|
||||
elseif(CMAKE_JS_VERSION)
|
||||
add_subdirectory(addon.node)
|
||||
set_target_properties(addon.node PROPERTIES FOLDER "examples")
|
||||
else()
|
||||
add_subdirectory(main)
|
||||
set_target_properties(main PROPERTIES FOLDER "examples")
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(stream)
|
||||
set_target_properties(stream PROPERTIES FOLDER "examples")
|
||||
endif (WHISPER_SDL2)
|
||||
add_subdirectory(server)
|
||||
set_target_properties(server PROPERTIES FOLDER "examples")
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(command)
|
||||
set_target_properties(command PROPERTIES FOLDER "examples")
|
||||
endif (WHISPER_SDL2)
|
||||
add_subdirectory(bench)
|
||||
set_target_properties(bench PROPERTIES FOLDER "examples")
|
||||
add_subdirectory(quantize)
|
||||
set_target_properties(quantize PROPERTIES FOLDER "examples")
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(talk)
|
||||
set_target_properties(talk PROPERTIES FOLDER "examples")
|
||||
add_subdirectory(talk-llama)
|
||||
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
|
||||
add_subdirectory(lsp)
|
||||
set_target_properties(lsp PROPERTIES FOLDER "examples")
|
||||
if (LLAMA_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
set_target_properties(sycl PROPERTIES FOLDER "examples")
|
||||
endif()
|
||||
endif (WHISPER_SDL2)
|
||||
endif()
|
||||
|
||||
add_subdirectory(wchess)
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(wchess)
|
||||
set_target_properties(wchess PROPERTIES FOLDER "examples")
|
||||
endif (WHISPER_SDL2)
|
||||
|
@ -1,4 +1,4 @@
|
||||
set(TARGET whisper-addon)
|
||||
set(TARGET addon.node)
|
||||
|
||||
# Base settings
|
||||
#==================================================================
|
||||
|
@ -14,14 +14,14 @@ npm install
|
||||
Make sure it is in the project root directory and compiled with make-js.
|
||||
|
||||
```shell
|
||||
npx cmake-js compile -T whisper-addon -B Release
|
||||
npx cmake-js compile -T addon.node -B Release
|
||||
```
|
||||
|
||||
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
|
||||
|
||||
> Such as appointing special cmake path:
|
||||
> ```shell
|
||||
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
|
||||
> npx cmake-js compile -c 'xxx/cmake' -T addon.node -B Release
|
||||
> ```
|
||||
|
||||
## Run
|
||||
|
@ -1,7 +1,7 @@
|
||||
const path = require("path");
|
||||
const { whisper } = require(path.join(
|
||||
__dirname,
|
||||
"../../../build/Release/whisper-addon"
|
||||
"../../../build/Release/addon.node"
|
||||
));
|
||||
const { promisify } = require("util");
|
||||
|
||||
@ -12,6 +12,12 @@ const whisperParamsMock = {
|
||||
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
|
||||
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
|
||||
use_gpu: true,
|
||||
flash_attn: false,
|
||||
no_prints: true,
|
||||
comma_in_time: false,
|
||||
translate: true,
|
||||
no_timestamps: false,
|
||||
audio_ctx: 0,
|
||||
};
|
||||
|
||||
describe("Run whisper.node", () => {
|
||||
|
@ -19,6 +19,7 @@ struct whisper_params {
|
||||
int32_t max_len = 0;
|
||||
int32_t best_of = 5;
|
||||
int32_t beam_size = -1;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.4f;
|
||||
@ -36,7 +37,10 @@ struct whisper_params {
|
||||
bool print_colors = false;
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
bool no_prints = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
bool comma_in_time = true;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
@ -44,6 +48,8 @@ struct whisper_params {
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_out = {};
|
||||
|
||||
std::vector<float> pcmf32 = {}; // mono-channel F32 PCM
|
||||
};
|
||||
|
||||
struct whisper_print_user_data {
|
||||
@ -120,9 +126,15 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
|
||||
}
|
||||
}
|
||||
|
||||
void cb_log_disable(enum ggml_log_level, const char *, void *) {}
|
||||
|
||||
int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
if (params.fname_inp.empty()) {
|
||||
fprintf(stderr, "error: no input files specified\n");
|
||||
if (params.no_prints) {
|
||||
whisper_log_set(cb_log_disable, NULL);
|
||||
}
|
||||
|
||||
if (params.fname_inp.empty() && params.pcmf32.empty()) {
|
||||
fprintf(stderr, "error: no input files or audio buffer specified\n");
|
||||
return 2;
|
||||
}
|
||||
|
||||
@ -135,6 +147,7 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
if (ctx == nullptr) {
|
||||
@ -142,6 +155,14 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// if params.pcmf32 is provided, set params.fname_inp to "buffer"
|
||||
// this is simpler than further modifications in the code
|
||||
if (!params.pcmf32.empty()) {
|
||||
fprintf(stderr, "info: using audio buffer as input\n");
|
||||
params.fname_inp.clear();
|
||||
params.fname_inp.emplace_back("buffer");
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
@ -149,20 +170,25 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
|
||||
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
|
||||
continue;
|
||||
// read the input audio file if params.pcmf32 is not provided
|
||||
if (params.pcmf32.empty()) {
|
||||
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
|
||||
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
pcmf32 = params.pcmf32;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
if (!params.no_prints) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
|
||||
}
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
if (!params.no_prints) {
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
@ -171,12 +197,13 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n",
|
||||
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
|
||||
params.n_threads, params.n_processors,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
params.no_timestamps ? 0 : 1,
|
||||
params.audio_ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
@ -203,6 +230,7 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
@ -211,6 +239,8 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
|
||||
wparams.no_timestamps = params.no_timestamps;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s };
|
||||
|
||||
// this callback is called on each new segment
|
||||
@ -246,8 +276,8 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
result[i].emplace_back(to_timestamp(t0, true));
|
||||
result[i].emplace_back(to_timestamp(t1, true));
|
||||
result[i].emplace_back(to_timestamp(t0, params.comma_in_time));
|
||||
result[i].emplace_back(to_timestamp(t1, params.comma_in_time));
|
||||
result[i].emplace_back(text);
|
||||
}
|
||||
|
||||
@ -298,11 +328,33 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
|
||||
std::string model = whisper_params.Get("model").As<Napi::String>();
|
||||
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
|
||||
bool use_gpu = whisper_params.Get("use_gpu").As<Napi::Boolean>();
|
||||
bool flash_attn = whisper_params.Get("flash_attn").As<Napi::Boolean>();
|
||||
bool no_prints = whisper_params.Get("no_prints").As<Napi::Boolean>();
|
||||
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
|
||||
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
|
||||
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
|
||||
|
||||
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
|
||||
std::vector<float> pcmf32_vec;
|
||||
if (pcmf32Value.IsTypedArray()) {
|
||||
Napi::Float32Array pcmf32 = pcmf32Value.As<Napi::Float32Array>();
|
||||
size_t length = pcmf32.ElementLength();
|
||||
pcmf32_vec.reserve(length);
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
pcmf32_vec.push_back(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
params.language = language;
|
||||
params.model = model;
|
||||
params.fname_inp.emplace_back(input);
|
||||
params.use_gpu = use_gpu;
|
||||
params.flash_attn = flash_attn;
|
||||
params.no_prints = no_prints;
|
||||
params.no_timestamps = no_timestamps;
|
||||
params.audio_ctx = audio_ctx;
|
||||
params.pcmf32 = pcmf32_vec;
|
||||
params.comma_in_time = comma_in_time;
|
||||
|
||||
Napi::Function callback = info[1].As<Napi::Function>();
|
||||
Worker* worker = new Worker(callback, params);
|
||||
|
@ -1,7 +1,7 @@
|
||||
const path = require("path");
|
||||
const { whisper } = require(path.join(
|
||||
__dirname,
|
||||
"../../build/Release/whisper-addon"
|
||||
"../../build/Release/addon.node"
|
||||
));
|
||||
const { promisify } = require("util");
|
||||
|
||||
@ -10,15 +10,27 @@ const whisperAsync = promisify(whisper);
|
||||
const whisperParams = {
|
||||
language: "en",
|
||||
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
|
||||
fname_inp: "../../samples/jfk.wav",
|
||||
fname_inp: path.join(__dirname, "../../samples/jfk.wav"),
|
||||
use_gpu: true,
|
||||
flash_attn: false,
|
||||
no_prints: true,
|
||||
comma_in_time: false,
|
||||
translate: true,
|
||||
no_timestamps: false,
|
||||
audio_ctx: 0,
|
||||
};
|
||||
|
||||
const arguments = process.argv.slice(2);
|
||||
const params = Object.fromEntries(
|
||||
arguments.reduce((pre, item) => {
|
||||
if (item.startsWith("--")) {
|
||||
return [...pre, item.slice(2).split("=")];
|
||||
const [key, value] = item.slice(2).split("=");
|
||||
if (key === "audio_ctx") {
|
||||
whisperParams[key] = parseInt(value);
|
||||
} else {
|
||||
whisperParams[key] = value;
|
||||
}
|
||||
return pre;
|
||||
}
|
||||
return pre;
|
||||
}, [])
|
||||
@ -33,5 +45,6 @@ for (const key in params) {
|
||||
console.log("whisperParams =", whisperParams);
|
||||
|
||||
whisperAsync(whisperParams).then((result) => {
|
||||
console.log(`Result from whisper: ${result}`);
|
||||
console.log();
|
||||
console.log(result);
|
||||
});
|
||||
|
@ -1,5 +1,5 @@
|
||||
{
|
||||
"name": "whisper-addon",
|
||||
"name": "addon.node",
|
||||
"version": "0.0.0",
|
||||
"description": "",
|
||||
"main": "index.js",
|
||||
|
@ -12,7 +12,8 @@ struct whisper_params {
|
||||
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
bool use_gpu = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -25,10 +26,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -49,6 +51,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " %-7s 0 - whisper\n", "");
|
||||
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
||||
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
||||
@ -59,7 +62,9 @@ int whisper_bench_full(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
|
@ -44,6 +44,7 @@ struct whisper_params {
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -52,6 +53,9 @@ struct whisper_params {
|
||||
std::string prompt;
|
||||
std::string context;
|
||||
std::string grammar;
|
||||
|
||||
// A regular expression that matches tokens to suppress
|
||||
std::string suppress_regex;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -77,6 +81,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
@ -85,6 +90,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
|
||||
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
|
||||
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
|
||||
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -114,6 +120,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
@ -122,6 +129,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
|
||||
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
|
||||
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
|
||||
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -167,6 +175,8 @@ std::string transcribe(
|
||||
|
||||
wparams.initial_prompt = params.context.data();
|
||||
|
||||
wparams.suppress_regex = params.suppress_regex.c_str();
|
||||
|
||||
const auto & grammar_parsed = params.grammar_parsed;
|
||||
auto grammar_rules = grammar_parsed.c_rules();
|
||||
|
||||
@ -689,7 +699,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
|
@ -70,6 +70,8 @@ bool ggml_common_quantize_0(
|
||||
case GGML_FTYPE_MOSTLY_IQ1_S:
|
||||
case GGML_FTYPE_MOSTLY_IQ4_NL:
|
||||
case GGML_FTYPE_MOSTLY_IQ4_XS:
|
||||
case GGML_FTYPE_MOSTLY_IQ1_M:
|
||||
case GGML_FTYPE_MOSTLY_BF16:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
@ -193,6 +195,8 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_I64:
|
||||
case GGML_TYPE_F64:
|
||||
case GGML_TYPE_Q8_1:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
@ -203,6 +207,8 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
|
@ -19,6 +19,16 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#endif
|
||||
|
||||
#ifdef WHISPER_FFMPEG
|
||||
// as implemented in ffmpeg_trancode.cpp only embedded in common lib if whisper built with ffmpeg support
|
||||
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data);
|
||||
#endif
|
||||
|
||||
// Function to check if the next argument exists
|
||||
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
|
||||
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
||||
@ -632,10 +642,14 @@ bool is_wav_buffer(const std::string buf) {
|
||||
|
||||
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin or ffmpeg decoding output
|
||||
|
||||
if (fname == "-") {
|
||||
{
|
||||
#ifdef _WIN32
|
||||
_setmode(_fileno(stdin), _O_BINARY);
|
||||
#endif
|
||||
|
||||
uint8_t buf[1024];
|
||||
while (true)
|
||||
{
|
||||
@ -661,27 +675,42 @@ bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector
|
||||
}
|
||||
}
|
||||
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
|
||||
#if defined(WHISPER_FFMPEG)
|
||||
if (ffmpeg_decode_audio(fname, wav_data) != 0) {
|
||||
fprintf(stderr, "error: failed to ffmpeg decode '%s' \n", fname.c_str());
|
||||
return false;
|
||||
}
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to read wav data as wav \n");
|
||||
return false;
|
||||
}
|
||||
#else
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
|
||||
drwav_uninit(&wav);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (stereo && wav.channels != 2) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
|
||||
drwav_uninit(&wav);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
|
||||
drwav_uninit(&wav);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
|
||||
drwav_uninit(&wav);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
350
examples/ffmpeg-transcode.cpp
Normal file
350
examples/ffmpeg-transcode.cpp
Normal file
@ -0,0 +1,350 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
/*
|
||||
* transcode.c - convert audio file to WAVE
|
||||
*
|
||||
* Copyright (C) 2019 Andrew Clayton <andrew@digital-domain.net>
|
||||
* Copyright (C) 2024 William Tambellini <william.tambellini@gmail.com>
|
||||
*/
|
||||
|
||||
// Just for conveninent C++ API
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
// C
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/mman.h>
|
||||
|
||||
extern "C" {
|
||||
#include <libavutil/opt.h>
|
||||
#include <libavcodec/avcodec.h>
|
||||
#include <libavformat/avformat.h>
|
||||
#include <libswresample/swresample.h>
|
||||
}
|
||||
|
||||
typedef uint64_t u64;
|
||||
typedef int64_t s64;
|
||||
typedef uint32_t u32;
|
||||
typedef int32_t s32;
|
||||
typedef uint16_t u16;
|
||||
typedef int16_t s16;
|
||||
typedef uint8_t u8;
|
||||
typedef int8_t s8;
|
||||
|
||||
#define WAVE_SAMPLE_RATE 16000
|
||||
#define AVIO_CTX_BUF_SZ 4096
|
||||
|
||||
static const char* ffmpegLog = getenv("FFMPEG_LOG");
|
||||
// Todo: add __FILE__ __LINE__
|
||||
#define LOG(...) \
|
||||
do { if (ffmpegLog) fprintf(stderr, __VA_ARGS__); } while(0) // C99
|
||||
|
||||
/*
|
||||
* WAVE file header based on definition from
|
||||
* https://gist.github.com/Jon-Schneider/8b7c53d27a7a13346a643dac9c19d34f
|
||||
*
|
||||
* We must ensure this structure doesn't have any holes or
|
||||
* padding so we can just map it straight to the WAVE data.
|
||||
*/
|
||||
struct wave_hdr {
|
||||
/* RIFF Header: "RIFF" */
|
||||
char riff_header[4];
|
||||
/* size of audio data + sizeof(struct wave_hdr) - 8 */
|
||||
int wav_size;
|
||||
/* "WAVE" */
|
||||
char wav_header[4];
|
||||
|
||||
/* Format Header */
|
||||
/* "fmt " (includes trailing space) */
|
||||
char fmt_header[4];
|
||||
/* Should be 16 for PCM */
|
||||
int fmt_chunk_size;
|
||||
/* Should be 1 for PCM. 3 for IEEE Float */
|
||||
s16 audio_format;
|
||||
s16 num_channels;
|
||||
int sample_rate;
|
||||
/*
|
||||
* Number of bytes per second
|
||||
* sample_rate * num_channels * bit_depth/8
|
||||
*/
|
||||
int byte_rate;
|
||||
/* num_channels * bytes per sample */
|
||||
s16 sample_alignment;
|
||||
/* bits per sample */
|
||||
s16 bit_depth;
|
||||
|
||||
/* Data Header */
|
||||
/* "data" */
|
||||
char data_header[4];
|
||||
/*
|
||||
* size of audio
|
||||
* number of samples * num_channels * bit_depth/8
|
||||
*/
|
||||
int data_bytes;
|
||||
} __attribute__((__packed__));
|
||||
|
||||
struct audio_buffer {
|
||||
u8 *ptr;
|
||||
int size; /* size left in the buffer */
|
||||
};
|
||||
|
||||
static void set_wave_hdr(wave_hdr& wh, size_t size) {
|
||||
memcpy(&wh.riff_header, "RIFF", 4);
|
||||
wh.wav_size = size + sizeof(struct wave_hdr) - 8;
|
||||
memcpy(&wh.wav_header, "WAVE", 4);
|
||||
memcpy(&wh.fmt_header, "fmt ", 4);
|
||||
wh.fmt_chunk_size = 16;
|
||||
wh.audio_format = 1;
|
||||
wh.num_channels = 1;
|
||||
wh.sample_rate = WAVE_SAMPLE_RATE;
|
||||
wh.sample_alignment = 2;
|
||||
wh.bit_depth = 16;
|
||||
wh.byte_rate = wh.sample_rate * wh.sample_alignment;
|
||||
memcpy(&wh.data_header, "data", 4);
|
||||
wh.data_bytes = size;
|
||||
}
|
||||
|
||||
static void write_wave_hdr(int fd, size_t size) {
|
||||
struct wave_hdr wh;
|
||||
set_wave_hdr(wh, size);
|
||||
write(fd, &wh, sizeof(struct wave_hdr));
|
||||
}
|
||||
|
||||
static int map_file(int fd, u8 **ptr, size_t *size)
|
||||
{
|
||||
struct stat sb;
|
||||
|
||||
fstat(fd, &sb);
|
||||
*size = sb.st_size;
|
||||
|
||||
*ptr = (u8*)mmap(NULL, *size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
|
||||
if (*ptr == MAP_FAILED) {
|
||||
perror("mmap");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int read_packet(void *opaque, u8 *buf, int buf_size)
|
||||
{
|
||||
struct audio_buffer *audio_buf = (audio_buffer*)opaque;
|
||||
|
||||
buf_size = FFMIN(buf_size, audio_buf->size);
|
||||
|
||||
/* copy internal buffer data to buf */
|
||||
memcpy(buf, audio_buf->ptr, buf_size);
|
||||
audio_buf->ptr += buf_size;
|
||||
audio_buf->size -= buf_size;
|
||||
|
||||
return buf_size;
|
||||
}
|
||||
|
||||
static void convert_frame(struct SwrContext *swr, AVCodecContext *codec,
|
||||
AVFrame *frame, s16 **data, int *size, bool flush)
|
||||
{
|
||||
int nr_samples;
|
||||
s64 delay;
|
||||
u8 *buffer;
|
||||
|
||||
delay = swr_get_delay(swr, codec->sample_rate);
|
||||
nr_samples = av_rescale_rnd(delay + frame->nb_samples,
|
||||
WAVE_SAMPLE_RATE, codec->sample_rate,
|
||||
AV_ROUND_UP);
|
||||
av_samples_alloc(&buffer, NULL, 1, nr_samples, AV_SAMPLE_FMT_S16, 0);
|
||||
|
||||
/*
|
||||
* !flush is used to check if we are flushing any remaining
|
||||
* conversion buffers...
|
||||
*/
|
||||
nr_samples = swr_convert(swr, &buffer, nr_samples,
|
||||
!flush ? (const u8 **)frame->data : NULL,
|
||||
!flush ? frame->nb_samples : 0);
|
||||
|
||||
*data = (s16*)realloc(*data, (*size + nr_samples) * sizeof(s16));
|
||||
memcpy(*data + *size, buffer, nr_samples * sizeof(s16));
|
||||
*size += nr_samples;
|
||||
av_freep(&buffer);
|
||||
}
|
||||
|
||||
static bool is_audio_stream(const AVStream *stream)
|
||||
{
|
||||
if (stream->codecpar->codec_type == AVMEDIA_TYPE_AUDIO)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Return non zero on error, 0 on success
|
||||
// audio_buffer: input memory
|
||||
// data: decoded output audio data (wav file)
|
||||
// size: size of output data
|
||||
static int decode_audio(struct audio_buffer *audio_buf, s16 **data, int *size)
|
||||
{
|
||||
LOG("decode_audio: input size: %d\n", audio_buf->size);
|
||||
AVFormatContext *fmt_ctx;
|
||||
AVIOContext *avio_ctx;
|
||||
AVStream *stream;
|
||||
AVCodecContext *codec;
|
||||
AVPacket packet;
|
||||
AVFrame *frame;
|
||||
struct SwrContext *swr;
|
||||
u8 *avio_ctx_buffer;
|
||||
unsigned int i;
|
||||
int stream_index = -1;
|
||||
int err;
|
||||
const size_t errbuffsize = 1024;
|
||||
char errbuff[errbuffsize];
|
||||
|
||||
av_register_all(); // from avformat. Still a must-have call for ffmpeg v3! (can be skipped for later versions)
|
||||
|
||||
fmt_ctx = avformat_alloc_context();
|
||||
avio_ctx_buffer = (u8*)av_malloc(AVIO_CTX_BUF_SZ);
|
||||
LOG("Creating an avio context: AVIO_CTX_BUF_SZ=%d\n", AVIO_CTX_BUF_SZ);
|
||||
avio_ctx = avio_alloc_context(avio_ctx_buffer, AVIO_CTX_BUF_SZ, 0, audio_buf, &read_packet, NULL, NULL);
|
||||
fmt_ctx->pb = avio_ctx;
|
||||
|
||||
// open the input stream and read header
|
||||
err = avformat_open_input(&fmt_ctx, NULL, NULL, NULL);
|
||||
if (err) {
|
||||
LOG("Could not read audio buffer: %d: %s\n", err, av_make_error_string(errbuff, errbuffsize, err));
|
||||
return err;
|
||||
}
|
||||
|
||||
err = avformat_find_stream_info(fmt_ctx, NULL);
|
||||
if (err < 0) {
|
||||
LOG("Could not retrieve stream info from audio buffer: %d\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
for (i = 0; i < fmt_ctx->nb_streams; i++) {
|
||||
if (is_audio_stream(fmt_ctx->streams[i])) {
|
||||
stream_index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (stream_index == -1) {
|
||||
LOG("Could not retrieve audio stream from buffer\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
stream = fmt_ctx->streams[stream_index];
|
||||
codec = avcodec_alloc_context3(
|
||||
avcodec_find_decoder(stream->codecpar->codec_id));
|
||||
avcodec_parameters_to_context(codec, stream->codecpar);
|
||||
err = avcodec_open2(codec, avcodec_find_decoder(codec->codec_id),
|
||||
NULL);
|
||||
if (err) {
|
||||
LOG("Failed to open decoder for stream #%d in audio buffer\n", stream_index);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* prepare resampler */
|
||||
swr = swr_alloc();
|
||||
|
||||
av_opt_set_int(swr, "in_channel_count", codec->channels, 0);
|
||||
av_opt_set_int(swr, "out_channel_count", 1, 0);
|
||||
av_opt_set_int(swr, "in_channel_layout", codec->channel_layout, 0);
|
||||
av_opt_set_int(swr, "out_channel_layout", AV_CH_LAYOUT_MONO, 0);
|
||||
av_opt_set_int(swr, "in_sample_rate", codec->sample_rate, 0);
|
||||
av_opt_set_int(swr, "out_sample_rate", WAVE_SAMPLE_RATE, 0);
|
||||
av_opt_set_sample_fmt(swr, "in_sample_fmt", codec->sample_fmt, 0);
|
||||
av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
|
||||
|
||||
swr_init(swr);
|
||||
if (!swr_is_initialized(swr)) {
|
||||
LOG("Resampler has not been properly initialized\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
av_init_packet(&packet);
|
||||
frame = av_frame_alloc();
|
||||
if (!frame) {
|
||||
LOG("Error allocating the frame\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* iterate through frames */
|
||||
*data = NULL;
|
||||
*size = 0;
|
||||
while (av_read_frame(fmt_ctx, &packet) >= 0) {
|
||||
avcodec_send_packet(codec, &packet);
|
||||
|
||||
err = avcodec_receive_frame(codec, frame);
|
||||
if (err == AVERROR(EAGAIN))
|
||||
continue;
|
||||
|
||||
convert_frame(swr, codec, frame, data, size, false);
|
||||
}
|
||||
/* Flush any remaining conversion buffers... */
|
||||
convert_frame(swr, codec, frame, data, size, true);
|
||||
|
||||
av_frame_free(&frame);
|
||||
swr_free(&swr);
|
||||
//avio_context_free(); // todo?
|
||||
avcodec_close(codec);
|
||||
avformat_close_input(&fmt_ctx);
|
||||
avformat_free_context(fmt_ctx);
|
||||
|
||||
if (avio_ctx) {
|
||||
av_freep(&avio_ctx->buffer);
|
||||
av_freep(&avio_ctx);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// in mem decoding/conversion/resampling:
|
||||
// ifname: input file path
|
||||
// owav_data: in mem wav file. Can be forwarded as it to whisper/drwav
|
||||
// return 0 on success
|
||||
int ffmpeg_decode_audio(const std::string &ifname, std::vector<uint8_t>& owav_data) {
|
||||
LOG("ffmpeg_decode_audio: %s\n", ifname.c_str());
|
||||
int ifd = open(ifname.c_str(), O_RDONLY);
|
||||
if (ifd == -1) {
|
||||
fprintf(stderr, "Couldn't open input file %s\n", ifname.c_str());
|
||||
return -1;
|
||||
}
|
||||
u8 *ibuf = NULL;
|
||||
size_t ibuf_size;
|
||||
int err = map_file(ifd, &ibuf, &ibuf_size);
|
||||
if (err) {
|
||||
LOG("Couldn't map input file %s\n", ifname.c_str());
|
||||
return err;
|
||||
}
|
||||
LOG("Mapped input file: %x size: %d\n", ibuf, ibuf_size);
|
||||
struct audio_buffer inaudio_buf;
|
||||
inaudio_buf.ptr = ibuf;
|
||||
inaudio_buf.size = ibuf_size;
|
||||
|
||||
s16 *odata=NULL;
|
||||
int osize=0;
|
||||
|
||||
err = decode_audio(&inaudio_buf, &odata, &osize);
|
||||
LOG("decode_audio returned %d \n", err);
|
||||
if (err != 0) {
|
||||
LOG("decode_audio failed\n");
|
||||
return err;
|
||||
}
|
||||
LOG("decode_audio output size: %d\n", osize);
|
||||
|
||||
wave_hdr wh;
|
||||
const size_t outdatasize = osize * sizeof(s16);
|
||||
set_wave_hdr(wh, outdatasize);
|
||||
owav_data.resize(sizeof(wave_hdr) + outdatasize);
|
||||
// header:
|
||||
memcpy(owav_data.data(), &wh, sizeof(wave_hdr));
|
||||
// the data:
|
||||
memcpy(owav_data.data() + sizeof(wave_hdr), odata, osize* sizeof(s16));
|
||||
|
||||
return 0;
|
||||
}
|
@ -190,7 +190,7 @@ namespace grammar_parser {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
|
@ -34,9 +34,6 @@ async function fetchRemote(url, cbProgress, cbPrint) {
|
||||
url,
|
||||
{
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/octet-stream',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
|
@ -31,6 +31,7 @@ struct whisper_params {
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -74,6 +75,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else {
|
||||
@ -105,6 +107,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
@ -436,7 +439,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
// init audio
|
||||
|
||||
|
@ -3,4 +3,4 @@ add_executable(${TARGET} main.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${FFMPEG_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
@ -1,10 +1,12 @@
|
||||
#include "common.h"
|
||||
|
||||
#include "whisper.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <cstdio>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
@ -38,9 +40,12 @@ struct whisper_params {
|
||||
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.40f;
|
||||
float logprob_thold = -1.00f;
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.40f;
|
||||
float logprob_thold = -1.00f;
|
||||
float grammar_penalty = 100.0f;
|
||||
float temperature = 0.0f;
|
||||
float temperature_inc = 0.2f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool debug_mode = false;
|
||||
@ -65,21 +70,29 @@ struct whisper_params {
|
||||
bool no_timestamps = false;
|
||||
bool log_score = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
std::string grammar;
|
||||
std::string grammar_rule;
|
||||
|
||||
// [TDRZ] speaker turn string
|
||||
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
|
||||
|
||||
// A regular expression that matches tokens to suppress
|
||||
std::string suppress_regex;
|
||||
|
||||
std::string openvino_encode_device = "CPU";
|
||||
|
||||
std::string dtw = "";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
std::vector<std::string> fname_out = {};
|
||||
|
||||
grammar_parser::parse_state grammar_parsed;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -123,6 +136,8 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(argv[++i]); }
|
||||
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(argv[++i]); }
|
||||
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
@ -154,6 +169,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
|
||||
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
|
||||
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
|
||||
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; }
|
||||
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -184,6 +204,8 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
|
||||
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
|
||||
fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature);
|
||||
fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc);
|
||||
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
@ -214,6 +236,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
|
||||
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
|
||||
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
|
||||
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
|
||||
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -453,6 +480,38 @@ char *escape_double_quotes_and_backslashes(const char *str) {
|
||||
return escaped;
|
||||
}
|
||||
|
||||
// double quote should be escaped by another double quote. (rfc4180)
|
||||
char *escape_double_quotes_in_csv(const char *str) {
|
||||
if (str == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
size_t escaped_length = strlen(str) + 1;
|
||||
|
||||
for (size_t i = 0; str[i] != '\0'; i++) {
|
||||
if (str[i] == '"') {
|
||||
escaped_length++;
|
||||
}
|
||||
}
|
||||
|
||||
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
|
||||
if (escaped == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
size_t pos = 0;
|
||||
for (size_t i = 0; str[i] != '\0'; i++) {
|
||||
if (str[i] == '"') {
|
||||
escaped[pos++] = '"';
|
||||
}
|
||||
escaped[pos++] = str[i];
|
||||
}
|
||||
|
||||
// no need to set zero due to calloc() being used prior
|
||||
|
||||
return escaped;
|
||||
}
|
||||
|
||||
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
|
||||
std::ofstream fout(fname);
|
||||
if (!fout.is_open()) {
|
||||
@ -474,7 +533,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
char * text_escaped = escape_double_quotes_and_backslashes(text);
|
||||
char * text_escaped = escape_double_quotes_in_csv(text);
|
||||
|
||||
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
|
||||
fout << 10 * t0 << "," << 10 * t1 << ",";
|
||||
@ -849,6 +908,35 @@ void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
// If the only argument starts with "@", read arguments line-by-line
|
||||
// from the given file.
|
||||
std::vector<std::string> vec_args;
|
||||
if (argc == 2 && argv != nullptr && argv[1] != nullptr && argv[1][0] == '@') {
|
||||
// Save the name of the executable.
|
||||
vec_args.push_back(argv[0]);
|
||||
|
||||
// Open the response file.
|
||||
char const * rspfile = argv[1] + sizeof(char);
|
||||
std::ifstream fin(rspfile);
|
||||
if (fin.is_open() == false) {
|
||||
fprintf(stderr, "error: response file '%s' not found\n", rspfile);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Read the entire response file.
|
||||
std::string line;
|
||||
while (std::getline(fin, line)) {
|
||||
vec_args.push_back(line);
|
||||
}
|
||||
|
||||
// Use the contents of the response file as the command-line arguments.
|
||||
argc = static_cast<int>(vec_args.size());
|
||||
argv = static_cast<char **>(alloca(argc * sizeof (char *)));
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
argv[i] = const_cast<char *>(vec_args[i].c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
@ -892,7 +980,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
if (!params.dtw.empty()) {
|
||||
cparams.dtw_token_timestamps = true;
|
||||
@ -926,6 +1016,29 @@ int main(int argc, char ** argv) {
|
||||
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
|
||||
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
|
||||
|
||||
if (!params.grammar.empty()) {
|
||||
auto & grammar = params.grammar_parsed;
|
||||
if (is_file_exist(params.grammar.c_str())) {
|
||||
// read grammar from file
|
||||
std::ifstream ifs(params.grammar.c_str());
|
||||
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
|
||||
grammar = grammar_parser::parse(txt.c_str());
|
||||
} else {
|
||||
// read grammar from string
|
||||
grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
}
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (grammar.rules.empty()) {
|
||||
fprintf(stderr, "error: failed to parse grammar \"%s\"\n", params.grammar.c_str());
|
||||
return 4;
|
||||
} else {
|
||||
fprintf(stderr, "%s: grammar:\n", __func__);
|
||||
grammar_parser::print_grammar(stderr, grammar);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
|
||||
const auto fname_inp = params.fname_inp[f];
|
||||
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
|
||||
@ -972,7 +1085,8 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
|
||||
const bool use_grammar = (!params.grammar_parsed.rules.empty() && !params.grammar_rule.empty());
|
||||
wparams.strategy = (params.beam_size > 1 || use_grammar) ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
|
||||
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = params.print_progress;
|
||||
@ -997,12 +1111,16 @@ int main(int argc, char ** argv) {
|
||||
|
||||
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
|
||||
|
||||
wparams.suppress_regex = params.suppress_regex.empty() ? nullptr : params.suppress_regex.c_str();
|
||||
|
||||
wparams.initial_prompt = params.prompt.c_str();
|
||||
|
||||
wparams.greedy.best_of = params.best_of;
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
|
||||
wparams.temperature_inc = params.no_fallback ? 0.0f : params.temperature_inc;
|
||||
wparams.temperature = params.temperature;
|
||||
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
|
||||
@ -1010,6 +1128,20 @@ int main(int argc, char ** argv) {
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s, 0 };
|
||||
|
||||
const auto & grammar_parsed = params.grammar_parsed;
|
||||
auto grammar_rules = grammar_parsed.c_rules();
|
||||
|
||||
if (use_grammar) {
|
||||
if (grammar_parsed.symbol_ids.find(params.grammar_rule) == grammar_parsed.symbol_ids.end()) {
|
||||
fprintf(stderr, "%s: warning: grammar rule '%s' not found - skipping grammar sampling\n", __func__, params.grammar_rule.c_str());
|
||||
} else {
|
||||
wparams.grammar_rules = grammar_rules.data();
|
||||
wparams.n_grammar_rules = grammar_rules.size();
|
||||
wparams.i_start_rule = grammar_parsed.symbol_ids.at(params.grammar_rule);
|
||||
wparams.grammar_penalty = params.grammar_penalty;
|
||||
}
|
||||
}
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
wparams.new_segment_callback = whisper_print_segment_callback;
|
||||
@ -1106,7 +1238,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
if (!params.no_prints) {
|
||||
whisper_print_timings(ctx);
|
||||
}
|
||||
whisper_free(ctx);
|
||||
|
||||
return 0;
|
||||
|
@ -75,6 +75,7 @@ struct whisper_params {
|
||||
bool print_progress = false;
|
||||
bool no_timestamps = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt = "";
|
||||
@ -87,6 +88,8 @@ struct whisper_params {
|
||||
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
|
||||
|
||||
std::string openvino_encode_device = "CPU";
|
||||
|
||||
std::string dtw = "";
|
||||
};
|
||||
|
||||
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params, const server_params& sparams) {
|
||||
@ -126,6 +129,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
|
||||
// server params
|
||||
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
|
||||
fprintf(stderr, " --host HOST, [%-7s] Hostname/ip-adress for the server\n", sparams.hostname.c_str());
|
||||
fprintf(stderr, " --port PORT, [%-7d] Port number for the server\n", sparams.port);
|
||||
fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str());
|
||||
@ -173,7 +177,9 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
|
||||
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
// server params
|
||||
else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--host") { sparams.hostname = argv[++i]; }
|
||||
@ -498,7 +504,53 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
// whisper init
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
if (!params.dtw.empty()) {
|
||||
cparams.dtw_token_timestamps = true;
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_NONE;
|
||||
|
||||
if (params.dtw == "tiny") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY;
|
||||
}
|
||||
if (params.dtw == "tiny.en") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY_EN;
|
||||
}
|
||||
if (params.dtw == "base") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE;
|
||||
}
|
||||
if (params.dtw == "base.en") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE_EN;
|
||||
}
|
||||
if (params.dtw == "small") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL;
|
||||
}
|
||||
if (params.dtw == "small.en") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL_EN;
|
||||
}
|
||||
if (params.dtw == "medium") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM;
|
||||
}
|
||||
if (params.dtw == "medium.en") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM_EN;
|
||||
}
|
||||
if (params.dtw == "large.v1") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V1;
|
||||
}
|
||||
if (params.dtw == "large.v2") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V2;
|
||||
}
|
||||
if (params.dtw == "large.v3") {
|
||||
cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V3;
|
||||
}
|
||||
|
||||
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
|
||||
fprintf(stderr, "error: unknown DTW preset '%s'\n", params.dtw.c_str());
|
||||
return 3;
|
||||
}
|
||||
}
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
@ -784,7 +836,7 @@ int main(int argc, char ** argv) {
|
||||
if (params.response_format == text_format)
|
||||
{
|
||||
std::string results = output_str(ctx, params, pcmf32s);
|
||||
res.set_content(results.c_str(), "text/html");
|
||||
res.set_content(results.c_str(), "text/html; charset=utf-8");
|
||||
}
|
||||
else if (params.response_format == srt_format)
|
||||
{
|
||||
@ -865,6 +917,7 @@ int main(int argc, char ** argv) {
|
||||
if (!params.no_timestamps) {
|
||||
word["start"] = token.t0 * 0.01;
|
||||
word["end"] = token.t1 * 0.01;
|
||||
word["t_dtw"] = token.t_dtw;
|
||||
}
|
||||
word["probability"] = token.p;
|
||||
total_logprob += token.plog;
|
||||
@ -894,7 +947,7 @@ int main(int argc, char ** argv) {
|
||||
"application/json");
|
||||
}
|
||||
|
||||
// reset params to thier defaults
|
||||
// reset params to their defaults
|
||||
params = default_params;
|
||||
});
|
||||
svr.Post(sparams.request_path + "/load", [&](const Request &req, Response &res){
|
||||
|
@ -36,6 +36,7 @@ struct whisper_params {
|
||||
bool tinydiarize = false;
|
||||
bool save_audio = false; // save audio to wav file
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -72,6 +73,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
|
||||
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
@ -109,6 +111,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
|
||||
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU inference\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during inference\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -153,7 +156,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
if (WHISPER_SDL2)
|
||||
# talk-llama
|
||||
set(TARGET talk-llama)
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp)
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp unicode-data.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
|
||||
if (WHISPER_CLBLAST)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -37,9 +37,13 @@
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
|
||||
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 4
|
||||
#define LLAMA_SESSION_VERSION 6
|
||||
|
||||
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
|
||||
#define LLAMA_STATE_SEQ_VERSION 1
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
@ -60,9 +64,26 @@ extern "C" {
|
||||
|
||||
enum llama_vocab_type {
|
||||
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
|
||||
LLAMA_VOCAB_TYPE_SPM = 1, // SentencePiece
|
||||
LLAMA_VOCAB_TYPE_BPE = 2, // Byte Pair Encoding
|
||||
LLAMA_VOCAB_TYPE_WPM = 3, // WordPiece
|
||||
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
|
||||
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
|
||||
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
|
||||
};
|
||||
|
||||
// pre-tokenization types
|
||||
enum llama_vocab_pre_type {
|
||||
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
|
||||
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
|
||||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
|
||||
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
|
||||
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
|
||||
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
|
||||
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
|
||||
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
|
||||
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
|
||||
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 10,
|
||||
LLAMA_VOCAB_PRE_TYPE_OLMO = 11,
|
||||
LLAMA_VOCAB_PRE_TYPE_DBRX = 12,
|
||||
};
|
||||
|
||||
// note: these values should be synchronized with ggml_rope
|
||||
@ -117,6 +138,8 @@ extern "C" {
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
@ -154,7 +177,7 @@ extern "C" {
|
||||
bool sorted;
|
||||
} llama_token_data_array;
|
||||
|
||||
typedef bool (*llama_progress_callback)(float progress, void *ctx);
|
||||
typedef bool (*llama_progress_callback)(float progress, void * user_data);
|
||||
|
||||
// Input data for llama_decode
|
||||
// A llama_batch object can contain input about one or many sequences
|
||||
@ -190,15 +213,19 @@ extern "C" {
|
||||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||||
LLAMA_KV_OVERRIDE_TYPE_STR,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
char key[128];
|
||||
enum llama_model_kv_override_type tag;
|
||||
|
||||
char key[128];
|
||||
|
||||
union {
|
||||
int64_t int_value;
|
||||
double float_value;
|
||||
bool bool_value;
|
||||
int64_t val_i64;
|
||||
double val_f64;
|
||||
bool val_bool;
|
||||
char val_str[128];
|
||||
};
|
||||
};
|
||||
|
||||
@ -227,9 +254,10 @@ extern "C" {
|
||||
const struct llama_model_kv_override * kv_overrides;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool check_tensors; // validate model tensor data
|
||||
};
|
||||
|
||||
struct llama_context_params {
|
||||
@ -265,6 +293,7 @@ extern "C" {
|
||||
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool embeddings; // if true, extract embeddings (together with logits)
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
bool flash_attn; // whether to use flash attention
|
||||
|
||||
// Abort callback
|
||||
// if it returns true, execution of llama_decode() will be aborted
|
||||
@ -275,13 +304,17 @@ extern "C" {
|
||||
|
||||
// model quantization parameters
|
||||
typedef struct llama_model_quantize_params {
|
||||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
bool pure; // quantize all tensors to the default type
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
enum ggml_type output_tensor_type; // output tensor type
|
||||
enum ggml_type token_embedding_type; // itoken embeddings tensor type
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
bool pure; // quantize all tensors to the default type
|
||||
bool keep_split; // quantize to the same number of shards
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
void * kv_overrides; // pointer to vector containing overrides
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
||||
@ -382,12 +415,15 @@ extern "C" {
|
||||
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
|
||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||||
|
||||
// Get the model's RoPE frequency scaling factor
|
||||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||
@ -435,10 +471,24 @@ extern "C" {
|
||||
// Returns 0 on success
|
||||
LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
float scale,
|
||||
const char * path_base_model,
|
||||
int32_t n_threads);
|
||||
const char * path_lora,
|
||||
float scale,
|
||||
const char * path_base_model,
|
||||
int32_t n_threads);
|
||||
|
||||
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
||||
// the currently loaded vector.
|
||||
// n_embd should be the size of a single layer's control, and data should point
|
||||
// to an n_embd x n_layers buffer starting from layer 1.
|
||||
// il_start and il_end are the layer range the vector should apply to (both inclusive)
|
||||
// See llama_control_vector_load in common to load a control vector.
|
||||
LLAMA_API int32_t llama_control_vector_apply(
|
||||
struct llama_context * lctx,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
//
|
||||
// KV cache
|
||||
@ -499,11 +549,12 @@ extern "C" {
|
||||
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
|
||||
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
|
||||
|
||||
// Clear the KV cache
|
||||
// Clear the KV cache - both cell info is erased and KV data is zeroed
|
||||
LLAMA_API void llama_kv_cache_clear(
|
||||
struct llama_context * ctx);
|
||||
|
||||
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
|
||||
// seq_id < 0 : match any sequence
|
||||
// p0 < 0 : [0, p1]
|
||||
// p1 < 0 : [p0, inf)
|
||||
@ -575,34 +626,92 @@ extern "C" {
|
||||
|
||||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||||
// and kv_cache) - will often be smaller after compacting tokens
|
||||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||
LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
|
||||
LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
|
||||
"use llama_state_get_size instead");
|
||||
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
// Returns the number of bytes copied
|
||||
LLAMA_API size_t llama_copy_state_data(
|
||||
LLAMA_API size_t llama_state_get_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * dst);
|
||||
LLAMA_API DEPRECATED(size_t llama_copy_state_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * dst),
|
||||
"use llama_state_get_data instead");
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(
|
||||
LLAMA_API size_t llama_state_set_data(
|
||||
struct llama_context * ctx,
|
||||
const uint8_t * src);
|
||||
LLAMA_API DEPRECATED(size_t llama_set_state_data(
|
||||
struct llama_context * ctx,
|
||||
const uint8_t * src),
|
||||
"use llama_state_set_data instead");
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(
|
||||
LLAMA_API bool llama_state_load_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_session,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out);
|
||||
LLAMA_API DEPRECATED(bool llama_load_session_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_session,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out),
|
||||
"use llama_state_load_file instead");
|
||||
|
||||
LLAMA_API bool llama_save_session_file(
|
||||
LLAMA_API bool llama_state_save_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_session,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count);
|
||||
LLAMA_API DEPRECATED(bool llama_save_session_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_session,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count),
|
||||
"use llama_state_save_file instead");
|
||||
|
||||
// Get the exact size needed to copy the KV cache of a single sequence
|
||||
LLAMA_API size_t llama_state_seq_get_size(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Copy the KV cache of a single sequence into the specified buffer
|
||||
LLAMA_API size_t llama_state_seq_get_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * dst,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
|
||||
// Returns:
|
||||
// - Positive: Ok
|
||||
// - Zero: Failed to load
|
||||
LLAMA_API size_t llama_state_seq_set_data(
|
||||
struct llama_context * ctx,
|
||||
const uint8_t * src,
|
||||
llama_seq_id dest_seq_id);
|
||||
|
||||
LLAMA_API size_t llama_state_seq_save_file(
|
||||
struct llama_context * ctx,
|
||||
const char * filepath,
|
||||
llama_seq_id seq_id,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count);
|
||||
|
||||
LLAMA_API size_t llama_state_seq_load_file(
|
||||
struct llama_context * ctx,
|
||||
const char * filepath,
|
||||
llama_seq_id dest_seq_id,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out);
|
||||
|
||||
//
|
||||
// Decoding
|
||||
@ -659,23 +768,31 @@ extern "C" {
|
||||
LLAMA_API void llama_synchronize(struct llama_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to llama_decode()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Logits for which llama_batch.logits[i] == 0 are undefined
|
||||
// Rows: n_tokens provided with llama_batch
|
||||
// The logits for which llama_batch.logits[i] != 0 are stored contiguously
|
||||
// in the order they have appeared in the batch.
|
||||
// Rows: number of tokens for which llama_batch.logits[i] != 0
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Logits for the ith token. Equivalent to:
|
||||
// llama_get_logits(ctx) + i*n_vocab
|
||||
// Logits for the ith token. For positive indices, Equivalent to:
|
||||
// llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
|
||||
// Negative indicies can be used to access logits in reverse order, -1 is the last logit.
|
||||
// returns NULL for invalid ids.
|
||||
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
// Get all output token embeddings
|
||||
// shape: [n_tokens*n_embd] (1-dimensional)
|
||||
// Get all output token embeddings.
|
||||
// when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
|
||||
// the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
|
||||
// in the order they have appeared in the batch.
|
||||
// shape: [n_outputs*n_embd]
|
||||
// Otherwise, returns NULL.
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the ith token
|
||||
// llama_get_embeddings(ctx) + i*n_embd
|
||||
// Get the embeddings for the ith token. For positive indices, Equivalent to:
|
||||
// llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
|
||||
// Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
// returns NULL for invalid ids.
|
||||
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
// Get the embeddings for a sequence id
|
||||
@ -693,9 +810,14 @@ extern "C" {
|
||||
|
||||
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
|
||||
|
||||
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
|
||||
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
|
||||
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
|
||||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||||
|
||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
@ -704,7 +826,7 @@ extern "C" {
|
||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
||||
|
||||
// codellama infill tokens
|
||||
// Codellama infill tokens
|
||||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||||
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
||||
@ -718,26 +840,28 @@ extern "C" {
|
||||
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||||
/// @return Returns the number of tokens on success, no more than n_tokens_max
|
||||
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||||
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
||||
/// Does not insert a leading space.
|
||||
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
|
||||
/// as plaintext. Does not insert a leading space.
|
||||
LLAMA_API int32_t llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens_max,
|
||||
bool add_bos,
|
||||
bool special);
|
||||
bool add_special,
|
||||
bool parse_special);
|
||||
|
||||
// Token Id -> Piece.
|
||||
// Uses the vocabulary in the provided context.
|
||||
// Does not write null terminator to the buffer.
|
||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||
// @param special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_token_to_piece(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length);
|
||||
int32_t length,
|
||||
bool special);
|
||||
|
||||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||||
@ -890,7 +1014,7 @@ extern "C" {
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
|
||||
LLAMA_API llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
@ -945,6 +1069,16 @@ extern "C" {
|
||||
int32_t n_past,
|
||||
int32_t n_predict);
|
||||
|
||||
/// @details Build a split GGUF final path for this chunk.
|
||||
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
|
||||
// Returns the split_path length.
|
||||
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
|
||||
|
||||
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
|
||||
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
|
||||
// Returns the split_prefix length.
|
||||
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||
|
||||
@ -967,15 +1101,49 @@ extern "C" {
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct ggml_tensor;
|
||||
|
||||
struct llama_partial_utf8 {
|
||||
uint32_t value; // bit value so far (unshifted)
|
||||
int n_remain; // num bytes remaining; -1 indicates invalid sequence
|
||||
};
|
||||
|
||||
struct llama_grammar {
|
||||
const std::vector<std::vector<llama_grammar_element>> rules;
|
||||
std::vector<std::vector<const llama_grammar_element *>> stacks;
|
||||
|
||||
// buffer for partially generated UTF-8 sequence from accepted tokens
|
||||
llama_partial_utf8 partial_utf8;
|
||||
};
|
||||
|
||||
struct llama_grammar_candidate {
|
||||
size_t index;
|
||||
const uint32_t * code_points;
|
||||
llama_partial_utf8 partial_utf8;
|
||||
};
|
||||
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
||||
struct llama_context * ctx
|
||||
);
|
||||
|
||||
void llama_grammar_accept(
|
||||
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
|
||||
const uint32_t chr,
|
||||
std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
|
||||
|
||||
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
const std::string & src,
|
||||
llama_partial_utf8 partial_start);
|
||||
|
||||
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
|
||||
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
|
||||
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
|
||||
|
||||
#endif // LLAMA_API_INTERNAL
|
||||
|
||||
#endif // LLAMA_H
|
||||
|
@ -35,10 +35,10 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
@ -66,6 +66,7 @@ struct whisper_params {
|
||||
bool no_timestamps = true;
|
||||
bool verbose_prompt = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string person = "Georgi";
|
||||
std::string bot_name = "LLaMA";
|
||||
@ -105,6 +106,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; }
|
||||
else if (arg == "--session") { params.path_session = argv[++i]; }
|
||||
@ -123,7 +125,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
}
|
||||
}
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -154,6 +155,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str());
|
||||
fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str());
|
||||
@ -285,9 +287,15 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
|
||||
if (!ctx_wsp) {
|
||||
fprintf(stderr, "No whisper.cpp model specified. Please provide using -mw <modelfile>\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// llama init
|
||||
|
||||
@ -301,6 +309,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams);
|
||||
if (!model_llama) {
|
||||
fprintf(stderr, "No llama.cpp model specified. Please provide using -ml <modelfile>\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params lcparams = llama_context_default_params();
|
||||
|
||||
@ -308,6 +320,7 @@ int main(int argc, char ** argv) {
|
||||
lcparams.n_ctx = 2048;
|
||||
lcparams.seed = 1;
|
||||
lcparams.n_threads = params.n_threads;
|
||||
lcparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams);
|
||||
|
||||
|
2183
examples/talk-llama/unicode-data.cpp
Normal file
2183
examples/talk-llama/unicode-data.cpp
Normal file
File diff suppressed because it is too large
Load Diff
17
examples/talk-llama/unicode-data.h
Normal file
17
examples/talk-llama/unicode-data.h
Normal file
@ -0,0 +1,17 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_separator;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol;
|
||||
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control;
|
||||
extern const std::multimap<uint32_t, uint32_t> unicode_map_nfd;
|
||||
extern const std::map<char32_t, char32_t> unicode_map_lowercase;
|
File diff suppressed because it is too large
Load Diff
@ -5,9 +5,9 @@
|
||||
#include <vector>
|
||||
|
||||
#define CODEPOINT_TYPE_UNIDENTIFIED 0
|
||||
#define CODEPOINT_TYPE_DIGIT 1
|
||||
#define CODEPOINT_TYPE_NUMBER 1
|
||||
#define CODEPOINT_TYPE_LETTER 2
|
||||
#define CODEPOINT_TYPE_WHITESPACE 3
|
||||
#define CODEPOINT_TYPE_SEPARATOR 3
|
||||
#define CODEPOINT_TYPE_ACCENT_MARK 4
|
||||
#define CODEPOINT_TYPE_PUNCTUATION 5
|
||||
#define CODEPOINT_TYPE_SYMBOL 6
|
||||
@ -21,6 +21,11 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
|
||||
int unicode_cpt_type(uint32_t cp);
|
||||
int unicode_cpt_type(const std::string & utf8);
|
||||
|
||||
bool unicode_cpt_is_whitespace(uint32_t cp);
|
||||
|
||||
std::string unicode_byte_to_utf8(uint8_t byte);
|
||||
uint8_t unicode_utf8_to_byte(const std::string & utf8);
|
||||
|
||||
char32_t unicode_tolower(char32_t cp);
|
||||
|
||||
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);
|
||||
|
@ -32,6 +32,7 @@ struct whisper_params {
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string person = "Santa";
|
||||
std::string language = "en";
|
||||
@ -64,6 +65,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
@ -99,6 +101,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
@ -188,7 +191,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// whisper init
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
|
||||
|
||||
|
@ -1,9 +1,10 @@
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
add_subdirectory(libwchess)
|
||||
set_target_properties(wchess-core PROPERTIES FOLDER "libs")
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
add_subdirectory(wchess.wasm)
|
||||
set_target_properties(wchess.wasm PROPERTIES FOLDER "libs")
|
||||
else()
|
||||
add_subdirectory(wchess.cmd)
|
||||
set_target_properties(wchess PROPERTIES FOLDER "libs")
|
||||
endif()
|
||||
|
@ -32,6 +32,7 @@ struct whisper_params {
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
@ -61,6 +62,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during decoding\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
@ -92,6 +94,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
@ -183,7 +186,9 @@ int main(int argc, char ** argv) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context_params cparams = whisper_context_default_params();
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
if (!ctx) {
|
||||
|
@ -145,7 +145,7 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
val start = System.currentTimeMillis()
|
||||
val text = whisperContext?.transcribeData(data)
|
||||
val elapsed = System.currentTimeMillis() - start
|
||||
printMessage("Done ($elapsed ms): $text\n")
|
||||
printMessage("Done ($elapsed ms): \n$text\n")
|
||||
} catch (e: Exception) {
|
||||
Log.w(LOG_TAG, e)
|
||||
printMessage("${e.localizedMessage}\n")
|
||||
|
@ -16,7 +16,7 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
Executors.newSingleThreadExecutor().asCoroutineDispatcher()
|
||||
)
|
||||
|
||||
suspend fun transcribeData(data: FloatArray): String = withContext(scope.coroutineContext) {
|
||||
suspend fun transcribeData(data: FloatArray, printTimestamp: Boolean = true): String = withContext(scope.coroutineContext) {
|
||||
require(ptr != 0L)
|
||||
val numThreads = WhisperCpuConfig.preferredThreadCount
|
||||
Log.d(LOG_TAG, "Selecting $numThreads threads")
|
||||
@ -24,7 +24,13 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
val textCount = WhisperLib.getTextSegmentCount(ptr)
|
||||
return@withContext buildString {
|
||||
for (i in 0 until textCount) {
|
||||
append(WhisperLib.getTextSegment(ptr, i))
|
||||
if (printTimestamp) {
|
||||
val textTimestamp = "[${toTimestamp(WhisperLib.getTextSegmentT0(ptr, i))} --> ${toTimestamp(WhisperLib.getTextSegmentT1(ptr, i))}]"
|
||||
val textSegment = WhisperLib.getTextSegment(ptr, i)
|
||||
append("$textTimestamp: $textSegment\n")
|
||||
} else {
|
||||
append(WhisperLib.getTextSegment(ptr, i))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -131,12 +137,29 @@ private class WhisperLib {
|
||||
external fun fullTranscribe(contextPtr: Long, numThreads: Int, audioData: FloatArray)
|
||||
external fun getTextSegmentCount(contextPtr: Long): Int
|
||||
external fun getTextSegment(contextPtr: Long, index: Int): String
|
||||
external fun getTextSegmentT0(contextPtr: Long, index: Int): Long
|
||||
external fun getTextSegmentT1(contextPtr: Long, index: Int): Long
|
||||
external fun getSystemInfo(): String
|
||||
external fun benchMemcpy(nthread: Int): String
|
||||
external fun benchGgmlMulMat(nthread: Int): String
|
||||
}
|
||||
}
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
private fun toTimestamp(t: Long, comma: Boolean = false): String {
|
||||
var msec = t * 10
|
||||
val hr = msec / (1000 * 60 * 60)
|
||||
msec -= hr * (1000 * 60 * 60)
|
||||
val min = msec / (1000 * 60)
|
||||
msec -= min * (1000 * 60)
|
||||
val sec = msec / 1000
|
||||
msec -= sec * 1000
|
||||
|
||||
val delimiter = if (comma) "," else "."
|
||||
return String.format("%02d:%02d:%02d%s%03d", hr, min, sec, delimiter, msec)
|
||||
}
|
||||
|
||||
private fun isArmEabiV7a(): Boolean {
|
||||
return Build.SUPPORTED_ABIS[0].equals("armeabi-v7a")
|
||||
}
|
||||
|
@ -212,6 +212,22 @@ Java_com_whispercpp_whisper_WhisperLib_00024Companion_getTextSegment(
|
||||
return string;
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercpp_whisper_WhisperLib_00024Companion_getTextSegmentT0(
|
||||
JNIEnv *env, jobject thiz, jlong context_ptr, jint index) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = (struct whisper_context *) context_ptr;
|
||||
return whisper_full_get_segment_t0(context, index);
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_whispercpp_whisper_WhisperLib_00024Companion_getTextSegmentT1(
|
||||
JNIEnv *env, jobject thiz, jlong context_ptr, jint index) {
|
||||
UNUSED(thiz);
|
||||
struct whisper_context *context = (struct whisper_context *) context_ptr;
|
||||
return whisper_full_get_segment_t1(context, index);
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercpp_whisper_WhisperLib_00024Companion_getSystemInfo(
|
||||
JNIEnv *env, jobject thiz
|
||||
|
@ -45,6 +45,6 @@ if [ ! -f ./models/ggml-${model}.bin ] ; then
|
||||
fi
|
||||
|
||||
# fine-tune the parameters according to your machine specs
|
||||
./stream -t 8 -m models/ggml-base.en.bin --step 350 --length 10000 -f /tmp/whisper.nvim 2> /dev/null
|
||||
./stream -t 8 -m models/ggml-${model}.bin --step 350 --length 10000 -f /tmp/whisper.nvim 2> /dev/null
|
||||
|
||||
exit 0
|
||||
|
@ -1 +0,0 @@
|
||||
7652115c79fa0ffedb58a28c09cd2871403d5a20
|
@ -1,6 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
cp -rpv ../llama.cpp/llama.h ./examples/talk-llama/llama.h
|
||||
cp -rpv ../llama.cpp/llama.cpp ./examples/talk-llama/llama.cpp
|
||||
cp -rpv ../llama.cpp/unicode.h ./examples/talk-llama/unicode.h
|
||||
cp -rpv ../llama.cpp/unicode.cpp ./examples/talk-llama/unicode.cpp
|
26
ggml-alloc.c
26
ggml-alloc.c
@ -371,16 +371,16 @@ struct ggml_gallocr {
|
||||
};
|
||||
|
||||
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
|
||||
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
|
||||
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr));
|
||||
GGML_ASSERT(galloc != NULL);
|
||||
|
||||
galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1);
|
||||
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
|
||||
GGML_ASSERT(galloc->bufts != NULL);
|
||||
|
||||
galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1);
|
||||
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t) * n_bufs);
|
||||
GGML_ASSERT(galloc->buffers != NULL);
|
||||
|
||||
galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1);
|
||||
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
|
||||
GGML_ASSERT(galloc->buf_tallocs != NULL);
|
||||
|
||||
for (int i = 0; i < n_bufs; i++) {
|
||||
@ -548,7 +548,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
// TODO: better way to add external dependencies
|
||||
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
|
||||
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
|
||||
// itself is never used and should not be considered a dependency
|
||||
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
||||
}
|
||||
@ -565,8 +569,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
|
||||
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
||||
|
||||
// allocate explicit inputs and leafs
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
|
||||
// allocate explicit inputs
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
||||
}
|
||||
}
|
||||
@ -642,8 +646,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
free(galloc->hash_set.keys);
|
||||
free(galloc->hash_values);
|
||||
galloc->hash_set.size = hash_size;
|
||||
galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size);
|
||||
galloc->hash_values = calloc(sizeof(struct hash_node), hash_size);
|
||||
galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
|
||||
galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
|
||||
GGML_ASSERT(galloc->hash_set.keys != NULL);
|
||||
GGML_ASSERT(galloc->hash_values != NULL);
|
||||
} else {
|
||||
@ -663,7 +667,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
// set the node_allocs from the hash table
|
||||
if (galloc->n_nodes < graph->n_nodes) {
|
||||
free(galloc->node_allocs);
|
||||
galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes);
|
||||
galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
|
||||
GGML_ASSERT(galloc->node_allocs != NULL);
|
||||
}
|
||||
galloc->n_nodes = graph->n_nodes;
|
||||
@ -693,7 +697,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
if (galloc->n_leafs < graph->n_leafs) {
|
||||
free(galloc->leaf_allocs);
|
||||
galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs);
|
||||
galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
|
||||
GGML_ASSERT(galloc->leaf_allocs != NULL);
|
||||
}
|
||||
galloc->n_leafs = graph->n_leafs;
|
||||
|
@ -103,6 +103,11 @@ extern "C" {
|
||||
// check if the backend supports an operation
|
||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||
// even if the weight has to be copied from the CPU temporarily
|
||||
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||
|
314
ggml-backend.c
314
ggml-backend.c
@ -278,7 +278,7 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
|
||||
return err;
|
||||
}
|
||||
|
||||
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
return backend->iface.graph_compute(backend, cgraph);
|
||||
}
|
||||
|
||||
@ -286,6 +286,13 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
|
||||
return backend->iface.supports_op(backend, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
if (backend->iface.offload_op != NULL) {
|
||||
return backend->iface.offload_op(backend, op);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// backend copy
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
@ -413,7 +420,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
|
||||
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
|
||||
|
||||
// add forward decls here to avoid including the backend headers
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
|
||||
ggml_backend_cuda_reg_devices();
|
||||
#endif
|
||||
@ -761,6 +768,10 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
|
||||
|
||||
if (cpu_plan->cplan.work_size > 0) {
|
||||
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
||||
if (cpu_plan->cplan.work_data == NULL) {
|
||||
free(cpu_plan);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
@ -811,7 +822,11 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
|
||||
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float
|
||||
return
|
||||
op->type != GGML_TYPE_IQ2_XXS &&
|
||||
op->type != GGML_TYPE_IQ2_XS &&
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
|
||||
default:
|
||||
@ -834,6 +849,7 @@ static struct ggml_backend_i cpu_backend_i = {
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
@ -999,11 +1015,11 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_SPLITS
|
||||
#define GGML_SCHED_MAX_SPLITS 256
|
||||
#define GGML_SCHED_MAX_SPLITS 2048
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
||||
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
|
||||
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_COPIES
|
||||
@ -1043,8 +1059,9 @@ struct ggml_backend_sched {
|
||||
struct ggml_cgraph * graph;
|
||||
|
||||
// graph splits
|
||||
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
|
||||
struct ggml_backend_sched_split * splits;
|
||||
int n_splits;
|
||||
int splits_capacity;
|
||||
|
||||
// pipeline parallelism support
|
||||
int n_copies;
|
||||
@ -1114,40 +1131,48 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
// TODO: use supports_op to check if the backend supports the op
|
||||
|
||||
// assign pre-allocated nodes to their backend
|
||||
// dst
|
||||
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
||||
if (cur_backend != -1) {
|
||||
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
||||
if (cur_backend_id != -1) {
|
||||
SET_CAUSE(tensor, "1.dst");
|
||||
return cur_backend;
|
||||
return cur_backend_id;
|
||||
}
|
||||
|
||||
// view_src
|
||||
if (tensor->view_src != NULL) {
|
||||
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
||||
if (cur_backend != -1) {
|
||||
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
||||
if (cur_backend_id != -1) {
|
||||
SET_CAUSE(tensor, "1.vsrc");
|
||||
return cur_backend;
|
||||
return cur_backend_id;
|
||||
}
|
||||
}
|
||||
|
||||
// input
|
||||
// graph input
|
||||
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
|
||||
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
|
||||
SET_CAUSE(tensor, "1.inp");
|
||||
return cur_backend;
|
||||
return cur_backend_id;
|
||||
}
|
||||
|
||||
// assign nodes that use weights to the backend of the weights
|
||||
// operations with weights are preferably run on the same backend as the weights
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
const struct ggml_tensor * src = tensor->src[i];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
|
||||
// operations with weights are always run on the same backend as the weights
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
|
||||
// check if a backend with higher prio wants to offload the op
|
||||
if (src_backend_id == sched->n_backends - 1) {
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
SET_CAUSE(tensor, "1.off");
|
||||
return b;
|
||||
}
|
||||
}
|
||||
}
|
||||
SET_CAUSE(tensor, "1.wgt%d", i);
|
||||
return src_backend;
|
||||
return src_backend_id;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1157,9 +1182,9 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
static char * fmt_size(size_t size) {
|
||||
static char buffer[128];
|
||||
if (size >= 1024*1024) {
|
||||
sprintf(buffer, "%zuM", size/1024/1024);
|
||||
snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
|
||||
} else {
|
||||
sprintf(buffer, "%zuK", size/1024);
|
||||
snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
@ -1227,28 +1252,31 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
// pass 1: assign backends to ops with pre-allocated inputs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
if (tensor_backend_id(leaf) != -1) {
|
||||
int * leaf_backend_id = &tensor_backend_id(leaf);
|
||||
if (*leaf_backend_id != -1) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||
}
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (tensor_backend_id(node) != -1) {
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
// src
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (tensor_backend_id(src) == -1) {
|
||||
tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||
int * src_backend_id = &tensor_backend_id(src);
|
||||
if (*src_backend_id == -1) {
|
||||
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1270,21 +1298,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
if (tensor_backend_id == sched->n_backends - 1) {
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
if (*node_backend_id == sched->n_backends - 1) {
|
||||
// skip cpu (lowest prio backend)
|
||||
cur_backend_id = -1;
|
||||
} else {
|
||||
cur_backend_id = tensor_backend_id;
|
||||
cur_backend_id = *node_backend_id;
|
||||
}
|
||||
} else {
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.2");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pass 2.1 expand gpu up
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
@ -1293,22 +1320,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
if (tensor_backend_id == sched->n_backends - 1) {
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
if (*node_backend_id == sched->n_backends - 1) {
|
||||
// skip cpu (lowest prio backend)
|
||||
cur_backend_id = -1;
|
||||
} else {
|
||||
cur_backend_id = tensor_backend_id;
|
||||
cur_backend_id = *node_backend_id;
|
||||
}
|
||||
} else {
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.1");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// pass 2.4 expand rest down
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
@ -1317,16 +1342,16 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
cur_backend_id = tensor_backend_id;
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
cur_backend_id = *node_backend_id;
|
||||
} else {
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.4");
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.3 expand rest up
|
||||
// pass 2.3 expand rest up
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
@ -1334,11 +1359,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
cur_backend_id = tensor_backend_id;
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
cur_backend_id = *node_backend_id;
|
||||
} else {
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.3");
|
||||
}
|
||||
}
|
||||
@ -1351,9 +1376,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
// pass 3: assign backends to remaining src from dst and view_src
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
int cur_backend_id = tensor_backend_id(node);
|
||||
if (node->view_src != NULL && cur_backend_id == -1) {
|
||||
cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
|
||||
int * cur_backend_id = &tensor_backend_id(node);
|
||||
if (node->view_src != NULL && *cur_backend_id == -1) {
|
||||
*cur_backend_id = tensor_backend_id(node->view_src);
|
||||
SET_CAUSE(node, "3.vsrc");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
@ -1361,14 +1386,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
int src_backend_id = tensor_backend_id(src);
|
||||
if (src_backend_id == -1) {
|
||||
int * src_backend_id = &tensor_backend_id(src);
|
||||
if (*src_backend_id == -1) {
|
||||
if (src->view_src != NULL) {
|
||||
// views are always on the same backend as the source
|
||||
tensor_backend_id(src) = tensor_backend_id(src->view_src);
|
||||
*src_backend_id = tensor_backend_id(src->view_src);
|
||||
SET_CAUSE(src, "3.vsrc");
|
||||
} else {
|
||||
tensor_backend_id(src) = cur_backend_id;
|
||||
*src_backend_id = *cur_backend_id;
|
||||
SET_CAUSE(src, "3.cur");
|
||||
}
|
||||
}
|
||||
@ -1380,19 +1405,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
// pass 4: split graph, find tensors that need to be copied
|
||||
{
|
||||
int cur_split = 0;
|
||||
int i_split = 0;
|
||||
struct ggml_backend_sched_split * split = &sched->splits[0];
|
||||
// find the backend of the first split, skipping view ops
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (!ggml_is_view_op(node->op)) {
|
||||
sched->splits[0].backend_id = tensor_backend_id(node);
|
||||
split->backend_id = tensor_backend_id(node);
|
||||
break;
|
||||
}
|
||||
}
|
||||
sched->splits[0].i_start = 0;
|
||||
sched->splits[0].n_inputs = 0;
|
||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
||||
int cur_backend_id = sched->splits[0].backend_id;
|
||||
split->i_start = 0;
|
||||
split->n_inputs = 0;
|
||||
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
|
||||
int cur_backend_id = split->backend_id;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
@ -1400,18 +1426,54 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
continue;
|
||||
}
|
||||
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
const int node_backend_id = tensor_backend_id(node);
|
||||
|
||||
GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
|
||||
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
|
||||
|
||||
if (tensor_backend_id != cur_backend_id) {
|
||||
sched->splits[cur_split].i_end = i;
|
||||
cur_split++;
|
||||
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
|
||||
sched->splits[cur_split].backend_id = tensor_backend_id;
|
||||
sched->splits[cur_split].i_start = i;
|
||||
sched->splits[cur_split].n_inputs = 0;
|
||||
cur_backend_id = tensor_backend_id;
|
||||
// check if we should start a new split based on the sources of the current node
|
||||
bool need_new_split = false;
|
||||
if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
// check if a weight is on a different backend
|
||||
// by starting a new split, the memory of the previously offloaded weights can be reused
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = tensor_backend_id(src);
|
||||
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
|
||||
need_new_split = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// check if the split has too many inputs
|
||||
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
||||
const size_t id = hash_id(src);
|
||||
int src_backend_id = sched->tensor_backend_id[id];
|
||||
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
|
||||
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
||||
need_new_split = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (node_backend_id != cur_backend_id || need_new_split) {
|
||||
split->i_end = i;
|
||||
i_split++;
|
||||
if (i_split >= sched->splits_capacity) {
|
||||
sched->splits_capacity *= 2;
|
||||
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
|
||||
GGML_ASSERT(sched->splits != NULL);
|
||||
}
|
||||
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
|
||||
split = &sched->splits[i_split];
|
||||
split->backend_id = node_backend_id;
|
||||
split->i_start = i;
|
||||
split->n_inputs = 0;
|
||||
cur_backend_id = node_backend_id;
|
||||
}
|
||||
|
||||
// find inputs that are not on the same backend
|
||||
@ -1421,10 +1483,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
continue;
|
||||
}
|
||||
|
||||
int src_backend_id = tensor_backend_id(src);
|
||||
const int src_backend_id = tensor_backend_id(src);
|
||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||
size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
||||
ggml_backend_t backend = sched->backends[src_backend_id];
|
||||
@ -1441,7 +1503,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||
}
|
||||
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
||||
tensor_backend_id(tensor_copy) = src_backend_id;
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
}
|
||||
int n_graph_inputs = sched->n_graph_inputs++;
|
||||
@ -1450,9 +1511,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
}
|
||||
|
||||
if (src_backend_id != tensor_backend_id) {
|
||||
if (src_backend_id != node_backend_id) {
|
||||
// create a copy of the input in the split's backend
|
||||
size_t id = hash_id(src);
|
||||
const size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
||||
ggml_backend_t backend = sched->backends[cur_backend_id];
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
@ -1463,76 +1524,42 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||
}
|
||||
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
||||
tensor_backend_id(tensor_copy) = cur_backend_id;
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
}
|
||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
int n_inputs = split->n_inputs++;
|
||||
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = src;
|
||||
split->inputs[n_inputs] = src;
|
||||
}
|
||||
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
||||
}
|
||||
}
|
||||
}
|
||||
sched->splits[cur_split].i_end = graph->n_nodes;
|
||||
sched->n_splits = cur_split + 1;
|
||||
split->i_end = graph->n_nodes;
|
||||
sched->n_splits = i_split + 1;
|
||||
}
|
||||
#ifdef DEBUG_PASS4
|
||||
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
// sanity check: all sources should have the same backend as the node
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
||||
if (tensor_backend == NULL) {
|
||||
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
|
||||
}
|
||||
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
|
||||
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
|
||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
||||
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
|
||||
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
|
||||
if (src_backend != tensor_backend /* && src_backend != NULL */) {
|
||||
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
||||
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
|
||||
}
|
||||
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
|
||||
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
|
||||
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
|
||||
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
|
||||
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
|
||||
}
|
||||
}
|
||||
}
|
||||
fflush(stderr);
|
||||
#endif
|
||||
|
||||
// create copies of the graph for each split
|
||||
// TODO: avoid this copy
|
||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
|
||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||
|
||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
assert(graph_copy->size > (graph_copy->n_nodes + 1));
|
||||
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
|
||||
const size_t input_id = hash_id(input);
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
|
||||
|
||||
// add a dependency to the input source so that it is not freed before the copy is done
|
||||
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
||||
input_dep->src[0] = input;
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
||||
|
||||
// add a dependency to the input copy so that it is allocated at the start of the split
|
||||
@ -1541,6 +1568,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
|
||||
for (int j = split->i_start; j < split->i_end; j++) {
|
||||
assert(graph_copy->size > graph_copy->n_nodes);
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
||||
}
|
||||
@ -1625,13 +1653,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
}
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
} else {
|
||||
// wait for the split backend to finish using the input before overwriting it
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
ggml_backend_synchronize(input_backend);
|
||||
}
|
||||
|
||||
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
|
||||
}
|
||||
}
|
||||
@ -1698,20 +1725,24 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
|
||||
|
||||
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
||||
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
|
||||
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
||||
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
||||
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
|
||||
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
|
||||
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
|
||||
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
|
||||
|
||||
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
||||
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
|
||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||
|
||||
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
|
||||
const int initial_splits_capacity = 16;
|
||||
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
|
||||
sched->splits_capacity = initial_splits_capacity;
|
||||
|
||||
for (int b = 0; b < n_backends; b++) {
|
||||
sched->backends[b] = backends[b];
|
||||
@ -1742,6 +1773,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
}
|
||||
ggml_gallocr_free(sched->galloc);
|
||||
ggml_free(sched->ctx);
|
||||
free(sched->splits);
|
||||
free(sched->hash_set.keys);
|
||||
free(sched->tensor_backend_id);
|
||||
free(sched->tensor_copies);
|
||||
@ -1752,16 +1784,20 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
// reset state for the next run
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
||||
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
||||
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
||||
if (!sched->is_reset) {
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
||||
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
||||
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
||||
|
||||
sched->is_reset = true;
|
||||
sched->is_reset = true;
|
||||
}
|
||||
sched->is_alloc = false;
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
|
||||
// TODO: extract this to a separate function
|
||||
@ -1776,7 +1812,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
@ -1938,10 +1974,10 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_hash_set hash_set = {
|
||||
/* .size = */ graph->visited_hash_table.size,
|
||||
/* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
|
||||
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
|
||||
};
|
||||
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
|
||||
bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
|
||||
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
||||
bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
|
||||
|
@ -70,11 +70,11 @@ extern "C" {
|
||||
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
@ -137,7 +137,7 @@ extern "C" {
|
||||
/*
|
||||
Example usage:
|
||||
|
||||
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be asigned
|
||||
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
|
||||
// preferrably to run on the same backend as the buffer
|
||||
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
|
||||
|
@ -377,6 +377,27 @@ typedef struct {
|
||||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
// 1.75 bpw
|
||||
typedef struct {
|
||||
uint8_t qs[QK_K/8]; // grid index, low 8 bits
|
||||
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
|
||||
#if QK_K == 64
|
||||
ggml_half d;
|
||||
#endif
|
||||
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
|
||||
} block_iq1_m;
|
||||
#if QK_K == 64
|
||||
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
|
||||
#else
|
||||
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
|
||||
#endif
|
||||
|
||||
// Used by IQ1_M quants
|
||||
typedef union {
|
||||
ggml_half f16;
|
||||
uint16_t u16;
|
||||
} iq1m_scale_t;
|
||||
|
||||
// Non-linear quants
|
||||
#define QK4_NL 32
|
||||
typedef struct {
|
||||
@ -426,10 +447,11 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_
|
||||
|
||||
#define GGML_COMMON_IMPL
|
||||
#elif defined(GGML_COMMON_IMPL_SYCL)
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#define GGML_TABLE_BEGIN(type, name, size) static dpct::global_memory<const type, 1> name(sycl::range<1>(size), {
|
||||
#define GGML_TABLE_END() });
|
||||
#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = {
|
||||
#define GGML_TABLE_END() };
|
||||
|
||||
#define GGML_COMMON_IMPL
|
||||
#endif
|
||||
@ -1050,6 +1072,7 @@ GGML_TABLE_END()
|
||||
|
||||
#define NGRID_IQ1S 2048
|
||||
#define IQ1S_DELTA 0.125f
|
||||
#define IQ1M_DELTA 0.125f
|
||||
#if defined(GGML_COMMON_IMPL_C)
|
||||
GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S)
|
||||
0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff,
|
||||
|
11772
ggml-cuda.cu
11772
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
21
ggml-cuda.h
21
ggml-cuda.h
@ -17,29 +17,17 @@ extern "C" {
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
|
||||
GGML_API GGML_CALL void ggml_init_cublas(void);
|
||||
|
||||
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
|
||||
GGML_API GGML_CALL bool ggml_cublas_loaded(void);
|
||||
|
||||
GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
|
||||
GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API GGML_CALL int ggml_cuda_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
|
||||
// device buffer
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
@ -47,6 +35,9 @@ GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
47
ggml-cuda/acc.cu
Normal file
47
ggml-cuda/acc.cu
Normal file
@ -0,0 +1,47 @@
|
||||
#include "acc.cuh"
|
||||
|
||||
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, int offset) {
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
int src1_idx = i - offset;
|
||||
int oz = src1_idx / nb2;
|
||||
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||||
int ox = src1_idx % nb1;
|
||||
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||||
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||||
} else {
|
||||
dst[i] = x[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
|
||||
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||
|
||||
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
|
||||
}
|
5
ggml-cuda/acc.cuh
Normal file
5
ggml-cuda/acc.cuh
Normal file
@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ACC_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
34
ggml-cuda/arange.cu
Normal file
34
ggml-cuda/arange.cu
Normal file
@ -0,0 +1,34 @@
|
||||
#include "arange.cuh"
|
||||
|
||||
static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
dst[nidx] = start + step * nidx;
|
||||
}
|
||||
|
||||
static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
|
||||
arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
float start;
|
||||
float stop;
|
||||
float step;
|
||||
memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
|
||||
memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
|
||||
memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
|
||||
|
||||
int64_t steps = (int64_t)ceil((stop - start) / step);
|
||||
GGML_ASSERT(ggml_nelements(dst) == steps);
|
||||
|
||||
arange_f32_cuda(dst_d, dst->ne[0], start, step, stream);
|
||||
}
|
5
ggml-cuda/arange.cuh
Normal file
5
ggml-cuda/arange.cuh
Normal file
@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ARANGE_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
103
ggml-cuda/argsort.cu
Normal file
103
ggml-cuda/argsort.cu
Normal file
@ -0,0 +1,103 @@
|
||||
#include "argsort.cuh"
|
||||
|
||||
template<typename T>
|
||||
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||
T tmp = a;
|
||||
a = b;
|
||||
b = tmp;
|
||||
}
|
||||
|
||||
template<ggml_sort_order order>
|
||||
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
|
||||
// bitonic sort
|
||||
int col = threadIdx.x;
|
||||
int row = blockIdx.y;
|
||||
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float * x_row = x + row * ncols;
|
||||
extern __shared__ int dst_row[];
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k / 2; j > 0; j /= 2) {
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
// copy the result to dst without the padding
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
|
||||
static int next_power_of_2(int x) {
|
||||
int n = 1;
|
||||
while (n < x) {
|
||||
n *= 2;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
// bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
const dim3 block_dims(ncols_pad, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
}
|
3
ggml-cuda/argsort.cuh
Normal file
3
ggml-cuda/argsort.cuh
Normal file
@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
280
ggml-cuda/binbcast.cu
Normal file
280
ggml-cuda/binbcast.cu
Normal file
@ -0,0 +1,280 @@
|
||||
#include "binbcast.cuh"
|
||||
|
||||
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
GGML_UNUSED(a);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_add(const float a, const float b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_mul(const float a, const float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_div(const float a, const float b) {
|
||||
return a / b;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
||||
const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
|
||||
|
||||
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i11 = i1 % ne11;
|
||||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
}
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
const int i3 = i/(ne2*ne1*ne0);
|
||||
const int i2 = (i/(ne1*ne0)) % ne2;
|
||||
const int i1 = (i/ne0) % ne1;
|
||||
const int i0 = i % ne0;
|
||||
|
||||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i11 = i1 % ne11;
|
||||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
struct bin_bcast_cuda {
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||
cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int nr0 = ne10/ne0;
|
||||
int nr1 = ne11/ne1;
|
||||
int nr2 = ne12/ne2;
|
||||
int nr3 = ne13/ne3;
|
||||
|
||||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
// collapse dimensions until first broadcast dimension
|
||||
int64_t cne[] = {ne0, ne1, ne2, ne3};
|
||||
int64_t cne0[] = {ne00, ne01, ne02, ne03};
|
||||
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||
|
||||
size_t cnb[] = {nb0, nb1, nb2, nb3};
|
||||
size_t cnb0[] = {nb00, nb01, nb02, nb03};
|
||||
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
cne[2] = cne[3];
|
||||
cne[3] = 1;
|
||||
};
|
||||
|
||||
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||
cnb[1] *= cne[1];
|
||||
cnb[2] *= cne[2];
|
||||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
int64_t ne10 = cne1[0];
|
||||
int64_t ne11 = cne1[1];
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
size_t s0 = nb0 / sizeof(dst_t);
|
||||
size_t s1 = nb1 / sizeof(dst_t);
|
||||
size_t s2 = nb2 / sizeof(dst_t);
|
||||
size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||||
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||
|
||||
dim3 block_nums(
|
||||
(hne0 + block_dims.x - 1) / block_dims.x,
|
||||
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||
(ne2*ne3 + block_dims.z - 1) / block_dims.z
|
||||
);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
|
||||
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
} else {
|
||||
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<class op>
|
||||
static void ggml_cuda_op_bin_bcast(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
6
ggml-cuda/binbcast.cuh
Normal file
6
ggml-cuda/binbcast.cuh
Normal file
@ -0,0 +1,6 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
34
ggml-cuda/clamp.cu
Normal file
34
ggml-cuda/clamp.cu
Normal file
@ -0,0 +1,34 @@
|
||||
#include "clamp.cuh"
|
||||
|
||||
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
|
||||
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, dst->op_params, sizeof(float));
|
||||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
||||
}
|
5
ggml-cuda/clamp.cuh
Normal file
5
ggml-cuda/clamp.cuh
Normal file
@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_CLAMP_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
658
ggml-cuda/common.cuh
Normal file
658
ggml-cuda/common.cuh
Normal file
@ -0,0 +1,658 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cuda.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#define GGML_COMMON_DECL_HIP
|
||||
#define GGML_COMMON_IMPL_HIP
|
||||
#else
|
||||
#define GGML_COMMON_DECL_CUDA
|
||||
#define GGML_COMMON_IMPL_CUDA
|
||||
#endif
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cfloat>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <hipblas/hipblas.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
// for rocblas_initialize()
|
||||
#include "rocblas/rocblas.h"
|
||||
#endif // __HIP_PLATFORM_AMD__
|
||||
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
|
||||
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
||||
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
|
||||
#define CUBLAS_OP_N HIPBLAS_OP_N
|
||||
#define CUBLAS_OP_T HIPBLAS_OP_T
|
||||
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
||||
#define CUDA_R_16F HIPBLAS_R_16F
|
||||
#define CUDA_R_32F HIPBLAS_R_32F
|
||||
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||
#define cublasCreate hipblasCreate
|
||||
#define cublasDestroy hipblasDestroy
|
||||
#define cublasGemmEx hipblasGemmEx
|
||||
#define cublasGemmBatchedEx hipblasGemmBatchedEx
|
||||
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
|
||||
#define cublasHandle_t hipblasHandle_t
|
||||
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
|
||||
#define cublasSetStream hipblasSetStream
|
||||
#define cublasSgemm hipblasSgemm
|
||||
#define cublasStatus_t hipblasStatus_t
|
||||
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
|
||||
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
||||
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
||||
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
|
||||
#define cudaDeviceProp hipDeviceProp_t
|
||||
#define cudaDeviceSynchronize hipDeviceSynchronize
|
||||
#define cudaError_t hipError_t
|
||||
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
|
||||
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
|
||||
#define cudaEventCreateWithFlags hipEventCreateWithFlags
|
||||
#define cudaEventDisableTiming hipEventDisableTiming
|
||||
#define cudaEventRecord hipEventRecord
|
||||
#define cudaEventSynchronize hipEventSynchronize
|
||||
#define cudaEvent_t hipEvent_t
|
||||
#define cudaEventDestroy hipEventDestroy
|
||||
#define cudaFree hipFree
|
||||
#define cudaFreeHost hipHostFree
|
||||
#define cudaGetDevice hipGetDevice
|
||||
#define cudaGetDeviceCount hipGetDeviceCount
|
||||
#define cudaGetDeviceProperties hipGetDeviceProperties
|
||||
#define cudaGetErrorString hipGetErrorString
|
||||
#define cudaGetLastError hipGetLastError
|
||||
#define cudaHostRegister hipHostRegister
|
||||
#define cudaHostRegisterPortable hipHostRegisterPortable
|
||||
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
||||
#define cudaHostUnregister hipHostUnregister
|
||||
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||
#ifdef GGML_HIP_UMA
|
||||
#define cudaMalloc hipMallocManaged
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
|
||||
#else
|
||||
#define cudaMalloc hipMalloc
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||
#endif
|
||||
#define cudaMemcpy hipMemcpy
|
||||
#define cudaMemcpyAsync hipMemcpyAsync
|
||||
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
|
||||
#define cudaMemcpy2DAsync hipMemcpy2DAsync
|
||||
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
|
||||
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
|
||||
#define cudaMemcpyKind hipMemcpyKind
|
||||
#define cudaMemset hipMemset
|
||||
#define cudaMemsetAsync hipMemsetAsync
|
||||
#define cudaMemGetInfo hipMemGetInfo
|
||||
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||
#define cudaSetDevice hipSetDevice
|
||||
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
||||
#define cudaStreamDestroy hipStreamDestroy
|
||||
#define cudaStreamFireAndForget hipStreamFireAndForget
|
||||
#define cudaStreamNonBlocking hipStreamNonBlocking
|
||||
#define cudaStreamPerThread hipStreamPerThread
|
||||
#define cudaStreamSynchronize hipStreamSynchronize
|
||||
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
|
||||
#define cudaStream_t hipStream_t
|
||||
#define cudaSuccess hipSuccess
|
||||
#define __trap abort
|
||||
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
|
||||
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
|
||||
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
|
||||
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
|
||||
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
|
||||
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
|
||||
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
|
||||
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
|
||||
#else
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
#if CUDART_VERSION < 11020
|
||||
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
|
||||
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
|
||||
#define CUBLAS_COMPUTE_16F CUDA_R_16F
|
||||
#define CUBLAS_COMPUTE_32F CUDA_R_32F
|
||||
#define cublasComputeType_t cudaDataType_t
|
||||
#endif // CUDART_VERSION < 11020
|
||||
|
||||
#endif // defined(GGML_USE_HIPBLAS)
|
||||
|
||||
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
||||
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
|
||||
|
||||
#define CC_PASCAL 600
|
||||
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||
#define CC_VOLTA 700
|
||||
#define CC_AMPERE 800
|
||||
#define CC_OFFSET_AMD 1000000
|
||||
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
|
||||
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
||||
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
|
||||
|
||||
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
||||
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
||||
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
||||
// - 7B quantum model: +100-200 MB
|
||||
// - 13B quantum model: +200-400 MB
|
||||
//
|
||||
//#define GGML_CUDA_FORCE_MMQ
|
||||
|
||||
// TODO: improve this to be correct for more hardware
|
||||
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
|
||||
#if !defined(GGML_CUDA_FORCE_MMQ)
|
||||
#define CUDA_USE_TENSOR_CORES
|
||||
#endif
|
||||
|
||||
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
|
||||
#define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
|
||||
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_STREAMS 8
|
||||
|
||||
[[noreturn]]
|
||||
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
||||
|
||||
#define CUDA_CHECK_GEN(err, success, error_fn) \
|
||||
do { \
|
||||
auto err_ = (err); \
|
||||
if (err_ != (success)) { \
|
||||
ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
|
||||
|
||||
#if CUDART_VERSION >= 12000
|
||||
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
||||
return cublasGetStatusString(err);
|
||||
}
|
||||
#else
|
||||
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
||||
switch (err) {
|
||||
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
|
||||
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
|
||||
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
|
||||
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
|
||||
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
|
||||
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
|
||||
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
|
||||
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
|
||||
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
|
||||
default: return "unknown error";
|
||||
}
|
||||
}
|
||||
#endif // CUDART_VERSION >= 12000
|
||||
|
||||
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
||||
|
||||
#if !defined(GGML_USE_HIPBLAS)
|
||||
static const char * cu_get_error_str(CUresult err) {
|
||||
const char * err_str;
|
||||
cuGetErrorString(err, &err_str);
|
||||
return err_str;
|
||||
}
|
||||
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
||||
#endif
|
||||
|
||||
#if CUDART_VERSION >= 11100
|
||||
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
||||
#else
|
||||
#define GGML_CUDA_ASSUME(x)
|
||||
#endif // CUDART_VERSION >= 11100
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
typedef half dfloat; // dequantize float
|
||||
typedef half2 dfloat2;
|
||||
#else
|
||||
typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif //GGML_CUDA_F16
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#define __CUDA_ARCH__ 1300
|
||||
|
||||
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__)
|
||||
#define RDNA3
|
||||
#endif
|
||||
|
||||
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
|
||||
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
|
||||
#define RDNA2
|
||||
#endif
|
||||
|
||||
#ifndef __has_builtin
|
||||
#define __has_builtin(x) 0
|
||||
#endif
|
||||
|
||||
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
||||
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
|
||||
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||
#if __has_builtin(__builtin_elementwise_sub_sat)
|
||||
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
||||
return reinterpret_cast<const int &>(c);
|
||||
#else
|
||||
int8x4_t c;
|
||||
int16_t tmp;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp = va[i] - vb[i];
|
||||
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
||||
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
||||
c[i] = tmp;
|
||||
}
|
||||
return reinterpret_cast<int &>(c);
|
||||
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
|
||||
return __vsubss4(a, b);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
|
||||
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
||||
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
||||
unsigned int c;
|
||||
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
#elif defined(RDNA3)
|
||||
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||
int tmp1;
|
||||
int tmp2;
|
||||
asm("\n \
|
||||
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
|
||||
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
|
||||
v_add3_u32 %0, %1, %2, %0 \n \
|
||||
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
|
||||
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
|
||||
v_add3_u32 %0, %1, %2, %0 \n \
|
||||
"
|
||||
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
|
||||
: "v"(a), "v"(b)
|
||||
);
|
||||
#else
|
||||
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
||||
#endif
|
||||
return c;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIPBLAS)
|
||||
|
||||
#define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
|
||||
#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
||||
static bool fast_fp16_available(const int cc) {
|
||||
return cc >= CC_PASCAL && cc != 610;
|
||||
}
|
||||
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||
file_name, line, function_name, arch);
|
||||
GGML_UNUSED(arch_list);
|
||||
#else
|
||||
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||
file_name, line, function_name, arch, arch_list);
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
}
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
||||
#else
|
||||
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
|
||||
#endif // __CUDA_ARCH__
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#if FP16_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
|
||||
reinterpret_cast<half&>(a.x) += __low2half(a_other);
|
||||
reinterpret_cast<half&>(a.y) += __high2half(a_other);
|
||||
}
|
||||
return a;
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
}
|
||||
return a;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
return a;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#if FP16_AVAILABLE
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
return __float2half(fmaxf(__half2float(a), __half2float(b)));
|
||||
#else
|
||||
return __hmax(a, b);
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
GGML_UNUSED(b);
|
||||
return a;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
#else
|
||||
half2 ret;
|
||||
reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
|
||||
reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
|
||||
return ret;
|
||||
#endif // CUDART_VERSION >= CUDART_HMAX
|
||||
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
|
||||
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
|
||||
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
|
||||
return mask_low | mask_high;
|
||||
}
|
||||
#endif // CUDART_VERSION < 12000
|
||||
|
||||
// TODO: move to ggml-common.h
|
||||
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
||||
|
||||
|
||||
//////////////////////
|
||||
|
||||
struct ggml_cuda_device_info {
|
||||
int device_count;
|
||||
|
||||
struct cuda_device_info {
|
||||
int cc; // compute capability
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
};
|
||||
|
||||
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
|
||||
|
||||
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
|
||||
};
|
||||
|
||||
const ggml_cuda_device_info & ggml_cuda_info();
|
||||
|
||||
void ggml_cuda_set_device(int device);
|
||||
int ggml_cuda_get_device();
|
||||
|
||||
struct ggml_cuda_pool {
|
||||
virtual ~ggml_cuda_pool() = default;
|
||||
|
||||
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||
virtual void free(void * ptr, size_t size) = 0;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct ggml_cuda_pool_alloc {
|
||||
ggml_cuda_pool * pool = nullptr;
|
||||
T * ptr = nullptr;
|
||||
size_t actual_size = 0;
|
||||
|
||||
ggml_cuda_pool_alloc() = default;
|
||||
|
||||
explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
|
||||
}
|
||||
|
||||
ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
|
||||
alloc(size);
|
||||
}
|
||||
|
||||
~ggml_cuda_pool_alloc() {
|
||||
if (ptr != nullptr) {
|
||||
pool->free(ptr, actual_size);
|
||||
}
|
||||
}
|
||||
|
||||
// size is in number of elements
|
||||
T * alloc(size_t size) {
|
||||
GGML_ASSERT(pool != nullptr);
|
||||
GGML_ASSERT(ptr == nullptr);
|
||||
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
T * alloc(ggml_cuda_pool & pool, size_t size) {
|
||||
this->pool = &pool;
|
||||
return alloc(size);
|
||||
}
|
||||
|
||||
T * get() {
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
|
||||
ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
|
||||
ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
|
||||
ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
|
||||
};
|
||||
|
||||
|
||||
// backend interface
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||
};
|
||||
|
||||
|
||||
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
|
||||
#define USE_CUDA_GRAPH
|
||||
#endif
|
||||
|
||||
struct ggml_graph_node_properties {
|
||||
void * node_address;
|
||||
ggml_op node_op;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
};
|
||||
|
||||
struct ggml_cuda_graph {
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
~ggml_cuda_graph() {
|
||||
if (instance != nullptr) {
|
||||
CUDA_CHECK(cudaGraphExecDestroy(instance));
|
||||
}
|
||||
if (graph != nullptr) {
|
||||
CUDA_CHECK(cudaGraphDestroy(graph));
|
||||
}
|
||||
}
|
||||
cudaGraph_t graph = nullptr;
|
||||
cudaGraphExec_t instance = nullptr;
|
||||
size_t num_nodes = 0;
|
||||
std::vector<cudaGraphNode_t> nodes;
|
||||
std::vector<cudaKernelNodeParams> params;
|
||||
bool disable_due_to_gpu_arch = false;
|
||||
bool disable_due_to_too_many_updates = false;
|
||||
bool disable_due_to_failed_graph_capture = false;
|
||||
int number_consecutive_updates = 0;
|
||||
std::vector<ggml_graph_node_properties> ggml_graph_properties;
|
||||
std::vector<char **> updated_kernel_arg;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct ggml_backend_cuda_context {
|
||||
int device;
|
||||
std::string name;
|
||||
cudaEvent_t copy_event = nullptr;
|
||||
|
||||
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
||||
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||
|
||||
std::unique_ptr<ggml_cuda_graph> cuda_graph;
|
||||
|
||||
explicit ggml_backend_cuda_context(int device) :
|
||||
device(device),
|
||||
name(GGML_CUDA_NAME + std::to_string(device)) {
|
||||
}
|
||||
|
||||
~ggml_backend_cuda_context() {
|
||||
if (copy_event != nullptr) {
|
||||
CUDA_CHECK(cudaEventDestroy(copy_event));
|
||||
}
|
||||
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
|
||||
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
|
||||
if (streams[i][j] != nullptr) {
|
||||
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
|
||||
}
|
||||
}
|
||||
if (cublas_handles[i] != nullptr) {
|
||||
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cudaStream_t stream(int device, int stream) {
|
||||
if (streams[device][stream] == nullptr) {
|
||||
ggml_cuda_set_device(device);
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
|
||||
}
|
||||
return streams[device][stream];
|
||||
}
|
||||
|
||||
cudaStream_t stream() {
|
||||
return stream(device, 0);
|
||||
}
|
||||
|
||||
cublasHandle_t cublas_handle(int device) {
|
||||
if (cublas_handles[device] == nullptr) {
|
||||
ggml_cuda_set_device(device);
|
||||
CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
|
||||
CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
|
||||
}
|
||||
return cublas_handles[device];
|
||||
}
|
||||
|
||||
cublasHandle_t cublas_handle() {
|
||||
return cublas_handle(device);
|
||||
}
|
||||
|
||||
// pool
|
||||
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
|
||||
|
||||
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
|
||||
|
||||
ggml_cuda_pool & pool(int device) {
|
||||
if (pools[device] == nullptr) {
|
||||
pools[device] = new_pool_for_device(device);
|
||||
}
|
||||
return *pools[device];
|
||||
}
|
||||
|
||||
ggml_cuda_pool & pool() {
|
||||
return pool(device);
|
||||
}
|
||||
};
|
49
ggml-cuda/concat.cu
Normal file
49
ggml-cuda/concat.cu
Normal file
@ -0,0 +1,49 @@
|
||||
#include "concat.cuh"
|
||||
|
||||
static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
// operation
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
if (blockIdx.z < ne02) { // src0
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
} else {
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
(blockIdx.z - ne02) * ne0 * gridDim.y;
|
||||
dst[offset_dst] = y[offset_src];
|
||||
}
|
||||
}
|
||||
|
||||
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2);
|
||||
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||
concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
|
||||
}
|
||||
}
|
5
ggml-cuda/concat.cuh
Normal file
5
ggml-cuda/concat.cuh
Normal file
@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_CONCAT_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
824
ggml-cuda/convert.cu
Normal file
824
ggml-cuda/convert.cu
Normal file
@ -0,0 +1,824 @@
|
||||
#include "convert.cuh"
|
||||
#include "dequantize.cuh"
|
||||
|
||||
#define CUDA_Q8_0_NE_ALIGN 2048
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
|
||||
const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t ib = i/qk; // block index
|
||||
const int64_t iqs = (i%qk)/qr; // quant index
|
||||
const int64_t iybs = i - i%qk; // y block start index
|
||||
const int64_t y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(vx, ib, iqs, v);
|
||||
|
||||
y[iybs + iqs + 0] = v.x;
|
||||
y[iybs + iqs + y_offset] = v.y;
|
||||
}
|
||||
|
||||
template <bool need_check>
|
||||
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) {
|
||||
#if __CUDA_ARCH__ >= CC_PASCAL
|
||||
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
|
||||
|
||||
const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
|
||||
const int * x0 = ((int *) vx) + blockIdx.x * nint;
|
||||
half2 * y2 = (half2 *) (y + i0);
|
||||
|
||||
__shared__ int vals[nint];
|
||||
|
||||
#pragma unroll
|
||||
for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
|
||||
if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
|
||||
break;
|
||||
}
|
||||
|
||||
const int ix = ix0 + threadIdx.x;
|
||||
vals[ix] = x0[ix];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
|
||||
if (need_check && i0 + iy + 2*threadIdx.x >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
|
||||
const half d = *b0;
|
||||
const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
|
||||
|
||||
y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(vx);
|
||||
GGML_UNUSED(y);
|
||||
GGML_UNUSED(k);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
// assume 32 threads
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
const int64_t ir = tid%8;
|
||||
const int64_t ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||
|
||||
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
|
||||
const float d = __half2float(x->d);
|
||||
const float dm = -8*d;
|
||||
|
||||
const uint8_t * q = x->qs + 4*il;
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
y[l+ 0] = d * (q[l] & 0xF) + dm;
|
||||
y[l+16] = d * (q[l] >> 4) + dm;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
// assume 32 threads
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
const int64_t ir = tid%8;
|
||||
const int64_t ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||
|
||||
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
|
||||
const float2 d = __half22float2(x->dm);
|
||||
|
||||
const uint8_t * q = x->qs + 4*il;
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
|
||||
y[l+16] = d.x * (q[l] >> 4) + d.y;
|
||||
}
|
||||
}
|
||||
|
||||
//================================== k-quants
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_q2_K * x = (const block_q2_K *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t n = tid/32;
|
||||
const int64_t l = tid - 32*n;
|
||||
const int64_t is = 8*n + l/16;
|
||||
|
||||
const uint8_t q = x[i].qs[32*n + l];
|
||||
dst_t * y = yy + i*QK_K + 128*n;
|
||||
|
||||
float dall = __low2half(x[i].dm);
|
||||
float dmin = __high2half(x[i].dm);
|
||||
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||
#else
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const int64_t il = tid%16; // 0...15
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
float dall = __low2half(x[i].dm);
|
||||
float dmin = __high2half(x[i].dm);
|
||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_q3_K * x = (const block_q3_K *) vx;
|
||||
|
||||
#if QK_K == 256
|
||||
const int64_t r = threadIdx.x/4;
|
||||
const int64_t tid = r/2;
|
||||
const int64_t is0 = r%2;
|
||||
const int64_t l0 = 16*is0 + 4*(threadIdx.x%4);
|
||||
const int64_t n = tid / 4;
|
||||
const int64_t j = tid - 4*n;
|
||||
|
||||
uint8_t m = 1 << (4*n + j);
|
||||
int64_t is = 8*n + 2*j + is0;
|
||||
int shift = 2*j;
|
||||
|
||||
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
||||
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
||||
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
||||
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
||||
float d_all = x[i].d;
|
||||
float dl = d_all * (us - 32);
|
||||
|
||||
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
||||
const uint8_t * q = x[i].qs + 32*n;
|
||||
const uint8_t * hm = x[i].hmask;
|
||||
|
||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||
#else
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const int64_t il = tid%16; // 0...15
|
||||
const int64_t im = il/8; // 0...1
|
||||
const int64_t in = il%8; // 0...7
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
||||
const float d = (float)x[i].d;
|
||||
|
||||
if (is == 0) {
|
||||
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
} else {
|
||||
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||
if (j < 4) {
|
||||
d = q[j] & 63; m = q[j + 4] & 63;
|
||||
} else {
|
||||
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const block_q4_K * x = (const block_q4_K *) vx;
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 32 threads
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8;
|
||||
const int64_t ir = tid%8;
|
||||
const int64_t is = 2*il;
|
||||
const int64_t n = 4;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||
}
|
||||
#else
|
||||
const int64_t tid = threadIdx.x;
|
||||
const uint8_t * q = x[i].qs;
|
||||
dst_t * y = yy + i*QK_K;
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const block_q5_K * x = (const block_q5_K *) vx;
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/16; // il is in 0...3
|
||||
const int64_t ir = tid%16; // ir is in 0...15
|
||||
const int64_t is = 2*il; // is is in 0...6
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
||||
const uint8_t * qh = x[i].qh + 2*ir;
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
|
||||
uint8_t hm = 1 << (2*il);
|
||||
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
||||
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
||||
hm <<= 1;
|
||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||
#else
|
||||
const int64_t tid = threadIdx.x;
|
||||
const uint8_t q = x[i].qs[tid];
|
||||
const int64_t im = tid/8; // 0...3
|
||||
const int64_t in = tid%8; // 0...7
|
||||
const int64_t is = tid/16; // 0 or 1
|
||||
const uint8_t h = x[i].qh[in] >> im;
|
||||
const float d = x[i].d;
|
||||
dst_t * y = yy + i*QK_K + tid;
|
||||
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
||||
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const block_q6_K * x = (const block_q6_K *) vx;
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
#if QK_K == 256
|
||||
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t ip = tid/32; // ip is 0 or 1
|
||||
const int64_t il = tid - 32*ip; // 0...32
|
||||
const int64_t is = 8*ip + il/16;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 128*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * ql = x[i].ql + 64*ip + il;
|
||||
const uint8_t qh = x[i].qh[32*ip + il];
|
||||
const int8_t * sc = x[i].scales + is;
|
||||
|
||||
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||
#else
|
||||
|
||||
// assume 32 threads
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t ip = tid/16; // 0 or 1
|
||||
const int64_t il = tid - 16*ip; // 0...15
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t ql = x[i].ql[16*ip + il];
|
||||
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
||||
const int8_t * sc = x[i].scales;
|
||||
|
||||
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * aux8 = (const uint8_t *)q2;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
|
||||
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * qs = x[i].qs + 8*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
||||
const uint8_t signs = x[i].signs[4*ib + il];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
||||
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
iq1m_scale_t scale;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
||||
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||
const float d = (float)x[ib].d;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#if QK_K != 64
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const int64_t i = blockIdx.x;
|
||||
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
const int64_t il = tid/8; // 0...3
|
||||
const int64_t ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
|
||||
dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
|
||||
if (k % CUDA_Q8_0_NE_ALIGN == 0) {
|
||||
const bool need_check = false;
|
||||
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
||||
} else {
|
||||
const bool need_check = true;
|
||||
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb32 = k / 32;
|
||||
const int nb = (k + 255) / 256;
|
||||
dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb32 = k / 32;
|
||||
const int nb = (k + 255) / 256;
|
||||
dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
#if QK_K == 64
|
||||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const src_t * x = (src_t *) vx;
|
||||
|
||||
y[i] = x[i];
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_cuda;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_row_q4_1_cuda;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
|
||||
return dequantize_block_q8_0_f16_cuda;
|
||||
}
|
||||
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return dequantize_row_q2_K_cuda;
|
||||
case GGML_TYPE_Q3_K:
|
||||
return dequantize_row_q3_K_cuda;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return dequantize_row_q4_K_cuda;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return dequantize_row_q5_K_cuda;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return dequantize_row_q6_K_cuda;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_cuda;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_cuda;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_cuda;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_row_q4_1_cuda;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return dequantize_row_q2_K_cuda;
|
||||
case GGML_TYPE_Q3_K:
|
||||
return dequantize_row_q3_K_cuda;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return dequantize_row_q4_K_cuda;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return dequantize_row_q5_K_cuda;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return dequantize_row_q6_K_cuda;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_cuda;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_cuda<half>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
13
ggml-cuda/convert.cuh
Normal file
13
ggml-cuda/convert.cuh
Normal file
@ -0,0 +1,13 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||
|
||||
template<typename T>
|
||||
using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int64_t k, cudaStream_t stream);
|
||||
|
||||
typedef to_t_cuda_t<float> to_fp32_cuda_t;
|
||||
typedef to_t_cuda_t<half> to_fp16_cuda_t;
|
||||
|
||||
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
|
||||
|
||||
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
|
490
ggml-cuda/cpy.cu
Normal file
490
ggml-cuda/cpy.cu
Normal file
@ -0,0 +1,490 @@
|
||||
#include "cpy.cuh"
|
||||
|
||||
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||||
|
||||
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
float * dsti = (float *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
half * dsti = (half *) cdsti;
|
||||
|
||||
*dsti = __float2half(*xi);
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||
const half * xi = (const half *) cxi;
|
||||
half * dsti = (half *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
const half * xi = (const half *) cxi;
|
||||
float * dsti = (float *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = xi[j];
|
||||
amax = fmaxf(amax, fabsf(v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = xi[j]*id;
|
||||
|
||||
dsti->qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < fabsf(v)) {
|
||||
amax = fabsf(v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -8;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; ++j) {
|
||||
const float x0 = xi[0 + j]*id;
|
||||
const float x1 = xi[QK4_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
|
||||
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||||
|
||||
float vmin = FLT_MAX;
|
||||
float vmax = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; ++j) {
|
||||
const float v = xi[j];
|
||||
|
||||
if (v < vmin) vmin = v;
|
||||
if (v > vmax) vmax = v;
|
||||
}
|
||||
|
||||
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->dm.x = d;
|
||||
dsti->dm.y = vmin;
|
||||
|
||||
for (int j = 0; j < QK4_1/2; ++j) {
|
||||
const float x0 = (xi[0 + j] - vmin)*id;
|
||||
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
|
||||
|
||||
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
|
||||
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q5_0 * dsti = (block_q5_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK5_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < fabsf(v)) {
|
||||
amax = fabsf(v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -16;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_0/2; ++j) {
|
||||
const float x0 = xi[0 + j]*id;
|
||||
const float x1 = xi[QK5_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
|
||||
const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
|
||||
|
||||
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||
}
|
||||
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q5_1 * dsti = (block_q5_1 *) cdsti;
|
||||
|
||||
float min = xi[0];
|
||||
float max = xi[0];
|
||||
|
||||
for (int j = 1; j < QK5_1; ++j) {
|
||||
const float v = xi[j];
|
||||
min = v < min ? v : min;
|
||||
max = v > max ? v : max;
|
||||
}
|
||||
|
||||
const float d = (max - min) / 31;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dsti->dm.x = d;
|
||||
dsti->dm.y = min;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_1/2; ++j) {
|
||||
const float x0 = (xi[0 + j] - min)*id;
|
||||
const float x1 = (xi[QK5_1/2 + j] - min)*id;
|
||||
|
||||
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
||||
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
||||
|
||||
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
||||
}
|
||||
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||
}
|
||||
|
||||
|
||||
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
|
||||
if (x <= val[0]) return 0;
|
||||
if (x >= val[n-1]) return n-1;
|
||||
int ml = 0, mu = n-1;
|
||||
while (mu-ml > 1) {
|
||||
int mav = (ml+mu)/2;
|
||||
if (x < val[mav]) mu = mav; else ml = mav;
|
||||
}
|
||||
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_NL; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < fabsf(v)) {
|
||||
amax = fabsf(v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
float d = vmax / kvalues_iq4nl[0];
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
const float x0 = xi[0 + j]*id;
|
||||
const float x1 = xi[QK4_NL/2 + j]*id;
|
||||
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
|
||||
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
|
||||
dsti->qs[j] = xi0 | (xi1 << 4);
|
||||
const float v0 = kvalues_iq4nl[xi0];
|
||||
const float v1 = kvalues_iq4nl[xi1];
|
||||
const float w0 = xi[0 + j]*xi[0 + j];
|
||||
const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
|
||||
sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
|
||||
sumq2 += w0*v0*v0 + w1*v1*v1;
|
||||
}
|
||||
|
||||
dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_0 == 0);
|
||||
const int num_blocks = ne / QK5_0;
|
||||
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_1 == 0);
|
||||
const int num_blocks = ne / QK5_1;
|
||||
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_NL == 0);
|
||||
const int num_blocks = ne / QK4_NL;
|
||||
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
||||
//GGML_ASSERT(src0->ne[3] == 1);
|
||||
|
||||
const int64_t nb00 = src0->nb[0];
|
||||
const int64_t nb01 = src0->nb[1];
|
||||
const int64_t nb02 = src0->nb[2];
|
||||
const int64_t nb03 = src0->nb[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
|
||||
//GGML_ASSERT(src1->ne[3] == 1);
|
||||
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2];
|
||||
const int64_t nb13 = src1->nb[3];
|
||||
|
||||
cudaStream_t main_stream = ctx.stream();
|
||||
|
||||
char * src0_ddc = (char *) src0->data;
|
||||
char * src1_ddc = (char *) src1->data;
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
ggml_cuda_cpy(ctx, src0, dst);
|
||||
}
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q5_0, QK5_0>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q5_1, QK5_1>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
9
ggml-cuda/cpy.cuh
Normal file
9
ggml-cuda/cpy.cuh
Normal file
@ -0,0 +1,9 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_CPY_BLOCK_SIZE 32
|
||||
|
||||
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
|
||||
|
||||
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
|
103
ggml-cuda/dequantize.cuh
Normal file
103
ggml-cuda/dequantize.cuh
Normal file
@ -0,0 +1,103 @@
|
||||
#include "common.cuh"
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x = vui & 0xF;
|
||||
v.y = vui >> 4;
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hsub2(v, {8.0f, 8.0f});
|
||||
v = __hmul2(v, {d, d});
|
||||
#else
|
||||
v.x = (v.x - 8.0f) * d;
|
||||
v.y = (v.y - 8.0f) * d;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const dfloat d = __low2half(x[ib].dm);
|
||||
const dfloat m = __high2half(x[ib].dm);
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x = vui & 0xF;
|
||||
v.y = vui >> 4;
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hmul2(v, {d, d});
|
||||
v = __hadd2(v, {m, m});
|
||||
#else
|
||||
v.x = (v.x * d) + m;
|
||||
v.y = (v.y * d) + m;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||
|
||||
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hsub2(v, {16.0f, 16.0f});
|
||||
v = __hmul2(v, {d, d});
|
||||
#else
|
||||
v.x = (v.x - 16.0f) * d;
|
||||
v.y = (v.y - 16.0f) * d;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const dfloat d = __low2half(x[ib].dm);
|
||||
const dfloat m = __high2half(x[ib].dm);
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||
|
||||
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hmul2(v, {d, d});
|
||||
v = __hadd2(v, {m, m});
|
||||
#else
|
||||
v.x = (v.x * d) + m;
|
||||
v.y = (v.y * d) + m;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
v.x = x[ib].qs[iqs + 0];
|
||||
v.y = x[ib].qs[iqs + 1];
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hmul2(v, {d, d});
|
||||
#else
|
||||
v.x *= d;
|
||||
v.y *= d;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
40
ggml-cuda/diagmask.cu
Normal file
40
ggml-cuda/diagmask.cu
Normal file
@ -0,0 +1,40 @@
|
||||
#include "diagmask.cuh"
|
||||
|
||||
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
||||
const int col = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ncols + col;
|
||||
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
||||
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
||||
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
||||
}
|
||||
|
||||
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
||||
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
||||
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
||||
const dim3 block_nums(nrows_x, block_num_x, 1);
|
||||
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int nrows0 = ggml_nrows(src0);
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
|
||||
}
|
5
ggml-cuda/diagmask.cuh
Normal file
5
ggml-cuda/diagmask.cuh
Normal file
@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||
|
||||
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
813
ggml-cuda/dmmv.cu
Normal file
813
ggml-cuda/dmmv.cu
Normal file
@ -0,0 +1,813 @@
|
||||
#include "dmmv.cuh"
|
||||
#include "dequantize.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
#else
|
||||
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||
#endif
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
#if QK_K == 256
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||
|
||||
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const int in = tid - step*im; // 0...15 or 0...7
|
||||
|
||||
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
||||
const int q_offset = 32*im + l0;
|
||||
const int s_offset = 8*im;
|
||||
const int y_offset = 128*im + l0;
|
||||
|
||||
uint32_t aux[4];
|
||||
const uint8_t * d = (const uint8_t *)aux;
|
||||
const uint8_t * m = (const uint8_t *)(aux + 2);
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + y_offset;
|
||||
const uint8_t * q = x[i].qs + q_offset;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
||||
aux[0] = a[0] & 0x0f0f0f0f;
|
||||
aux[1] = a[1] & 0x0f0f0f0f;
|
||||
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
||||
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
||||
|
||||
float sum1 = 0, sum2 = 0;
|
||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
||||
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
||||
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
||||
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
||||
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
||||
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
||||
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
||||
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
||||
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
||||
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
||||
|
||||
}
|
||||
tmp += dall * sum1 - dmin * sum2;
|
||||
|
||||
}
|
||||
#else
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||
const int offset = tid * K_QUANTS_PER_ITERATION;
|
||||
|
||||
uint32_t uaux[2];
|
||||
const uint8_t * d = (const uint8_t *)uaux;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + offset;
|
||||
const uint8_t * q = x[i].qs + offset;
|
||||
const uint32_t * s = (const uint32_t *)x[i].scales;
|
||||
|
||||
uaux[0] = s[0] & 0x0f0f0f0f;
|
||||
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
||||
|
||||
const float2 dall = __half22float2(x[i].dm);
|
||||
|
||||
float sum1 = 0, sum2 = 0;
|
||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||
const uint8_t ql = q[l];
|
||||
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
||||
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
||||
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
||||
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
||||
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
||||
}
|
||||
tmp += dall.x * sum1 - dall.y * sum2;
|
||||
}
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
#if QK_K == 256
|
||||
|
||||
const uint16_t kmask1 = 0x0303;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
||||
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const int in = tid - step*im; // 0....15 or 0...7
|
||||
|
||||
const uint8_t m = 1 << (4*im);
|
||||
|
||||
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
||||
const int q_offset = 32*im + l0;
|
||||
const int y_offset = 128*im + l0;
|
||||
|
||||
uint16_t utmp[4];
|
||||
const int8_t * s = (const int8_t *)utmp;
|
||||
|
||||
const uint16_t s_shift = 4*im;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + y_offset;
|
||||
const uint8_t * q = x[i].qs + q_offset;
|
||||
const uint8_t * h = x[i].hmask + l0;
|
||||
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
||||
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
||||
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
||||
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
float sum = 0;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
||||
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
||||
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
||||
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
||||
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
||||
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
||||
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
||||
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
||||
}
|
||||
tmp += d * sum;
|
||||
|
||||
}
|
||||
#else
|
||||
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
||||
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
||||
const int in = offset/8; // 0 or 1
|
||||
const int im = offset%8; // 0...7
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + offset;
|
||||
const uint8_t * q = x[i].qs + offset;
|
||||
const uint8_t * s = x[i].scales;
|
||||
|
||||
const float dall = (float)x[i].d;
|
||||
|
||||
float sum = 0;
|
||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||
const uint8_t hl = x[i].hmask[im+l] >> in;
|
||||
const uint8_t ql = q[l];
|
||||
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
||||
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
||||
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
||||
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
||||
}
|
||||
tmp += sum;
|
||||
}
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||
|
||||
#if QK_K == 256
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
const uint16_t kmask3 = 0xc0c0;
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
||||
|
||||
const int il = tid/step; // 0...3
|
||||
const int ir = tid - step*il; // 0...7 or 0...3
|
||||
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
||||
|
||||
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||
const int in = il%2;
|
||||
|
||||
const int l0 = n*(2*ir + in);
|
||||
const int q_offset = 32*im + l0;
|
||||
const int y_offset = 64*im + l0;
|
||||
|
||||
uint16_t aux[4];
|
||||
const uint8_t * sc = (const uint8_t *)aux;
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 2
|
||||
uint32_t q32[4];
|
||||
const uint8_t * q4 = (const uint8_t *)q32;
|
||||
#else
|
||||
uint16_t q16[4];
|
||||
const uint8_t * q4 = (const uint8_t *)q16;
|
||||
#endif
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y1 = yy + i*QK_K + y_offset;
|
||||
const float * y2 = y1 + 128;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux[0] = a[im+0] & kmask1;
|
||||
aux[1] = a[im+2] & kmask1;
|
||||
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 2
|
||||
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
||||
const uint32_t * q2 = q1 + 16;
|
||||
|
||||
q32[0] = q1[0] & 0x0f0f0f0f;
|
||||
q32[1] = q1[0] & 0xf0f0f0f0;
|
||||
q32[2] = q2[0] & 0x0f0f0f0f;
|
||||
q32[3] = q2[0] & 0xf0f0f0f0;
|
||||
|
||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||
float smin = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
||||
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
||||
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||
}
|
||||
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||
#else
|
||||
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
||||
const uint16_t * q2 = q1 + 32;
|
||||
|
||||
q16[0] = q1[0] & 0x0f0f;
|
||||
q16[1] = q1[0] & 0xf0f0;
|
||||
q16[2] = q2[0] & 0x0f0f;
|
||||
q16[3] = q2[0] & 0xf0f0;
|
||||
|
||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||
float smin = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
||||
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
||||
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||
}
|
||||
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||
#endif
|
||||
|
||||
}
|
||||
#else
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||
|
||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||
|
||||
uint16_t aux16[2];
|
||||
const uint8_t * s = (const uint8_t *)aux16;
|
||||
|
||||
float tmp = 0;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
const uint8_t * q = x[i].qs + step;
|
||||
const float * y = yy + i*QK_K + step;
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux16[0] = a[0] & 0x0f0f;
|
||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
float sum = 0.f;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
||||
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
||||
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
||||
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
||||
}
|
||||
tmp += sum;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
||||
|
||||
const int row = blockIdx.x;
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
#if QK_K == 256
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
const uint16_t kmask3 = 0xc0c0;
|
||||
|
||||
const int tid = threadIdx.x/2; // 0...15
|
||||
const int ix = threadIdx.x%2;
|
||||
|
||||
const int il = tid/4; // 0...3
|
||||
const int ir = tid - 4*il;// 0...3
|
||||
const int n = 2;
|
||||
|
||||
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||
const int in = il%2;
|
||||
|
||||
const int l0 = n*(2*ir + in);
|
||||
const int q_offset = 32*im + l0;
|
||||
const int y_offset = 64*im + l0;
|
||||
|
||||
const uint8_t hm1 = 1 << (2*im);
|
||||
const uint8_t hm2 = hm1 << 4;
|
||||
|
||||
uint16_t aux[4];
|
||||
const uint8_t * sc = (const uint8_t *)aux;
|
||||
|
||||
uint16_t q16[8];
|
||||
const uint8_t * q4 = (const uint8_t *)q16;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
||||
|
||||
const uint8_t * ql1 = x[i].qs + q_offset;
|
||||
const uint8_t * qh = x[i].qh + l0;
|
||||
const float * y1 = yy + i*QK_K + y_offset;
|
||||
const float * y2 = y1 + 128;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux[0] = a[im+0] & kmask1;
|
||||
aux[1] = a[im+2] & kmask1;
|
||||
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||
|
||||
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
||||
float smin = 0;
|
||||
const uint16_t * q1 = (const uint16_t *)ql1;
|
||||
const uint16_t * q2 = q1 + 32;
|
||||
q16[0] = q1[0] & 0x0f0f;
|
||||
q16[1] = q1[8] & 0x0f0f;
|
||||
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
||||
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
||||
q16[4] = q2[0] & 0x0f0f;
|
||||
q16[5] = q2[8] & 0x0f0f;
|
||||
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
||||
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
||||
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
||||
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
||||
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
||||
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
||||
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
||||
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
||||
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
||||
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
||||
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
||||
}
|
||||
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
||||
}
|
||||
|
||||
#else
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||
const int im = step/8;
|
||||
const int in = step%8;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
const uint8_t * q = x[i].qs + step;
|
||||
const int8_t * s = x[i].scales;
|
||||
const float * y = yy + i*QK_K + step;
|
||||
const float d = x[i].d;
|
||||
float sum = 0.f;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
const uint8_t h = x[i].qh[in+j] >> im;
|
||||
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
||||
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
||||
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
||||
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
||||
}
|
||||
tmp += sum;
|
||||
}
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||
|
||||
#if QK_K == 256
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
||||
|
||||
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
||||
|
||||
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const int in = tid - step*im; // 0...15 or 0...7
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 1
|
||||
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
||||
const int is = 0;
|
||||
#else
|
||||
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
||||
const int is = in / 4;
|
||||
#endif
|
||||
const int ql_offset = 64*im + l0;
|
||||
const int qh_offset = 32*im + l0;
|
||||
const int s_offset = 8*im + is;
|
||||
const int y_offset = 128*im + l0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + y_offset;
|
||||
const uint8_t * ql = x[i].ql + ql_offset;
|
||||
const uint8_t * qh = x[i].qh + qh_offset;
|
||||
const int8_t * s = x[i].scales + s_offset;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 1
|
||||
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
||||
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
||||
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
||||
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
||||
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
||||
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
||||
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
||||
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
||||
tmp += sum;
|
||||
#else
|
||||
float sum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
||||
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
||||
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
||||
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
||||
}
|
||||
tmp += sum;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
||||
|
||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + step;
|
||||
const uint8_t * ql = x[i].ql + step;
|
||||
const uint8_t * qh = x[i].qh + step;
|
||||
const int8_t * s = x[i].scales;
|
||||
|
||||
const float d = x[i+0].d;
|
||||
|
||||
float sum = 0;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
||||
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
||||
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
||||
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
||||
}
|
||||
tmp += sum;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const half * x = (const half *) vx;
|
||||
|
||||
// automatic half -> float type cast if dfloat == float
|
||||
v.x = x[ib + iqs + 0];
|
||||
v.y = x[ib + iqs + 1];
|
||||
}
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
||||
// qk = quantized weights per x block
|
||||
// qr = number of quantized weights per data value in x block
|
||||
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
||||
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// partial sum for each thread
|
||||
#ifdef GGML_CUDA_F16
|
||||
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
||||
#else
|
||||
float tmp = 0.0f;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
for (int i = 0; i < ncols; i += iter_stride) {
|
||||
const int col = i + vals_per_iter*tid;
|
||||
const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index
|
||||
const int iqs = (col%qk)/qr; // x quant index
|
||||
const int iybs = col - col%qk; // y block start index
|
||||
|
||||
// processing >2 values per i iter is faster for fast GPUs
|
||||
#pragma unroll
|
||||
for (int j = 0; j < vals_per_iter; j += 2) {
|
||||
// process 2 vals per j iter
|
||||
|
||||
// dequantize
|
||||
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
||||
dfloat2 v;
|
||||
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
||||
|
||||
// matrix multiplication
|
||||
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
||||
#ifdef GGML_CUDA_F16
|
||||
tmp += __hmul2(v, {
|
||||
y[iybs + iqs + j/qr + 0],
|
||||
y[iybs + iqs + j/qr + y_offset]
|
||||
});
|
||||
#else
|
||||
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
||||
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
#ifdef GGML_CUDA_F16
|
||||
dst[row] = tmp.x + tmp.y;
|
||||
#else
|
||||
dst[row] = tmp;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const dim3 block_dims(32, 1, 1);
|
||||
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<1, 1, convert_f16>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||
GGML_UNUSED(ctx);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
||||
#ifdef GGML_CUDA_F16
|
||||
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
|
||||
half * src1_dfloat = nullptr; // dfloat == half
|
||||
|
||||
bool src1_convert_f16 =
|
||||
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
||||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
||||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
||||
|
||||
if (src1_convert_f16) {
|
||||
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
|
||||
}
|
||||
#else
|
||||
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddq_i);
|
||||
GGML_UNUSED(src1_ncols);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
}
|
18
ggml-cuda/dmmv.cuh
Normal file
18
ggml-cuda/dmmv.cuh
Normal file
@ -0,0 +1,18 @@
|
||||
#include "common.cuh"
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
|
||||
// TODO: remove this?
|
||||
#ifndef GGML_CUDA_DMMV_X
|
||||
#define GGML_CUDA_DMMV_X 32
|
||||
#endif
|
||||
|
||||
#ifndef GGML_CUDA_MMV_Y
|
||||
#define GGML_CUDA_MMV_Y 1
|
||||
#endif
|
||||
|
||||
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
47
ggml-cuda/fattn-common.cuh
Normal file
47
ggml-cuda/fattn-common.cuh
Normal file
@ -0,0 +1,47 @@
|
||||
#define FATTN_KQ_STRIDE 256
|
||||
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
||||
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
float * __restrict__ dst) {
|
||||
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
|
||||
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
|
||||
dst += D * gridDim.y*blockIdx.x;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ float2 meta[parallel_blocks];
|
||||
if (tid < 2*parallel_blocks) {
|
||||
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float kqmax = meta[0].x;
|
||||
#pragma unroll
|
||||
for (int l = 1; l < parallel_blocks; ++l) {
|
||||
kqmax = max(kqmax, meta[l].x);
|
||||
}
|
||||
|
||||
float VKQ_numerator = 0.0f;
|
||||
float VKQ_denominator = 0.0f;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < parallel_blocks; ++l) {
|
||||
const float diff = meta[l].x - kqmax;
|
||||
const float KQ_max_scale = expf(diff);
|
||||
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
||||
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
||||
|
||||
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
|
||||
VKQ_denominator += KQ_max_scale * meta[l].y;
|
||||
}
|
||||
|
||||
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||
}
|
430
ggml-cuda/fattn-vec-f16.cu
Normal file
430
ggml-cuda/fattn-vec-f16.cu
Normal file
@ -0,0 +1,430 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if FP16_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ half KQ[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||
}
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
half kqmax[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax[j] = -HALF_MAX_HALF;
|
||||
}
|
||||
half kqsum[ncols] = {0.0f};
|
||||
|
||||
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
||||
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
||||
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
||||
half kqmax_new = kqmax[0];
|
||||
half kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax_new_arr[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 sum2[ncols] = {{0.0f, 0.0f}};
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum2[j] = warp_reduce_sum(sum2[j]);
|
||||
half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
|
||||
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
if (ncols == 1) {
|
||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||
} else {
|
||||
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[j*D + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
||||
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||
KQ[j*D + tid] = val;
|
||||
|
||||
VKQ[j] *= __half2half2(KQ_max_scale);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D; k0 += 2) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 V_k;
|
||||
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
|
||||
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= kqsum[j_VKQ];
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && tid != 0) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
5
ggml-cuda/fattn-vec-f16.cuh
Normal file
5
ggml-cuda/fattn-vec-f16.cuh
Normal file
@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
384
ggml-cuda/fattn-vec-f32.cu
Normal file
384
ggml-cuda/fattn-vec-f32.cu
Normal file
@ -0,0 +1,384 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ float KQ[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
float kqmax[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols] = {0.0f};
|
||||
|
||||
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
||||
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
float2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i0/WARP_SIZE].x *= scale;
|
||||
Q_h2[j][i0/WARP_SIZE].y *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
float VKQ[ncols] = {0.0f};
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax_new_arr[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
float sum[ncols] = {0.0f};
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
|
||||
sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum[j] = warp_reduce_sum(sum[j]);
|
||||
sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[j*D + i_KQ] = sum[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_new_arr[j];
|
||||
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||
KQ[j*D + tid] = val;
|
||||
|
||||
VKQ[j] *= KQ_max_scale;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < D; ++k) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j] += V_ki*KQ[j*D + k];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
float dst_val = VKQ[j_VKQ];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= kqsum[j_VKQ];
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && tid != 0) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
3
ggml-cuda/fattn-vec-f32.cuh
Normal file
3
ggml-cuda/fattn-vec-f32.cuh
Normal file
@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
699
ggml-cuda/fattn.cu
Normal file
699
ggml-cuda/fattn.cu
Normal file
@ -0,0 +1,699 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#if FP16_MMA_AVAILABLE
|
||||
#include <mma.h>
|
||||
#endif
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if FP16_MMA_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||
|
||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||
|
||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||
constexpr int D_padded = D + 8;
|
||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
half2 slope2 = make_half2(1.0f, 1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
slope2 = make_half2(slopeh, slopeh);
|
||||
}
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||
float * KQ_f = (float *) KQ;
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||
float KQ_max_f[ncols/nwarps];
|
||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
half2 KQ_max_h2[ncols/nwarps];
|
||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||
}
|
||||
|
||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||
half2 * VKQ2 = (half2 *) VKQ;
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||
frag_c_KQ KQ_c[ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||
frag_a_K K_a;
|
||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||
}
|
||||
|
||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||
|
||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||
}
|
||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||
|
||||
float KQ_rowsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||
}
|
||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||
} else {
|
||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||
}
|
||||
|
||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||
|
||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
nvcuda::wmma::load_matrix_sync(
|
||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||
KQ + j0*(kqar*kqs_padded) + k,
|
||||
kqar*kqs_padded);
|
||||
}
|
||||
}
|
||||
|
||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
|
||||
frag_a_V v_a;
|
||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync(
|
||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||
D_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
half2 VKQ_scale;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||
} else {
|
||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j_VKQ = j0 + threadIdx.y;
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
|
||||
float KQ_rowsum_j;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||
} else {
|
||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= KQ_rowsum_j;
|
||||
}
|
||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float2 dst_meta_val;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||
} else {
|
||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||
}
|
||||
dst_meta_val.y = KQ_rowsum_j;
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||
}
|
||||
|
||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||
|
||||
// Number of VKQ rows calculated in parallel:
|
||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||
}
|
||||
|
||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if ((parallel_blocks) == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
||||
return;
|
||||
}
|
||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||
|
||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||
|
||||
ggml_cuda_set_device(ctx.device);
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
|
||||
if (!fast_fp16_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fp16_mma_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (precision != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
// case 256:
|
||||
// launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
// break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
3
ggml-cuda/fattn.cuh
Normal file
3
ggml-cuda/fattn.cuh
Normal file
@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
178
ggml-cuda/getrows.cu
Normal file
178
ggml-cuda/getrows.cu
Normal file
@ -0,0 +1,178 @@
|
||||
#include "getrows.cuh"
|
||||
#include "dequantize.cuh"
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(
|
||||
const void * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
|
||||
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst_row[iybs + iqs + 0] = v.x;
|
||||
dst_row[iybs + iqs + y_offset] = v.y;
|
||||
}
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = src0_row[i00];
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
GGML_ASSERT(ne00 % 2 == 0);
|
||||
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
|
||||
template<typename src0_t>
|
||||
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user